
HAL Id: hal-03689167
https://hal.inrae.fr/hal-03689167

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Detection of natural clusters via S-DBSCAN a
Self-tuning version of DBSCAN

Frédéric Ros, Serge Guillaume, Rabia Riad, Mohamed El Hajji

To cite this version:
Frédéric Ros, Serge Guillaume, Rabia Riad, Mohamed El Hajji. Detection of natural clusters via
S-DBSCAN a Self-tuning version of DBSCAN. Knowledge-Based Systems, 2022, 241, pp.108288.
�10.1016/j.knosys.2022.108288�. �hal-03689167�

https://hal.inrae.fr/hal-03689167
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Detection of natural clusters via S-DBSCAN a
Self-tuning version of DBSCAN

Frédéric Rosa,∗, Serge Guillaumeb, Rabia Riadc, Mohamed El Hajjid

aLaboratory PRISME, Orléans university, France
bITAP, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France

cERMAM - FPO, Ibn Zohr university, Morocco
dIRF-SIC, Ibn Zohr university, Morocco

Abstract

Density-based clustering algorithms have made a large impact on a wide range

of application fields application. As more data are available with rising size

and various internal organizations, non-parametric unsupervised procedures are

becoming ever more important in understanding datasets. In this paper a new

clustering algorithm S-DBSCAN 1 is proposed in the context of knowledge dis-

covery. S-DBSCAN belongs to the connectivity-based family such as DBSCAN

but with noticeable differences and advantages as working in a differential mode.

It is formalized via a very simple hierarchical process that hybridizes distance,

k-nearest and Density peaks concepts. It aims at partitioning existing data into

clusters until no more clustering can be done. The information delivered allows

the user to intuitively deduce different sets of natural partitions in clusters at

different scales. S-DBSCAN scans the database in a ordered way by applying

its algorithm core (S-DBSCANCORE) with judicious input parameters. Given

a set of data patterns in some space, S-DBSCANCORE groups together data

patterns that are closely packed together with respect to the differential den-

sity. Data patterns whose nearest neighbors have too different densities are

∗Corresponding author
Email addresses: frederic.ros@univ-orleans.fr (Frédéric Ros),

serge.guillaume@inrae.fr (Serge Guillaume), r.riad@uiz.ma.ac (Rabia Riad),
m.elhajji@uiz.ac.ma (Mohamed El Hajji)

1A sample code is (will be when ready for publication) available at: http://frederic.
rosresearch.free.fr/mydata/homepage/

Preprint submitted to Knowledge-Based Systems January 22, 2022

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0950705122000946
Manuscript_aa3cbc5ad6b3d92a57b2f49bc857b6d8

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0950705122000946
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0950705122000946

detected and marked as borders while the others are not visited. S-DBSCAN

embeds some intelligence that makes it self-tuning (almost fully automatic) and

not dependent on a global density threshold as many existing algorithms. Tests

were carried out using 2-dimensional benchmark datasets of various shapes and

densities. They showed that S-DBSCAN was highly effective. It also proved

efficient in high dimension space when natural clusters exist and much easier to

use than competitive algorithms.

Keywords: Clustering, Natural cluster, Distance, Density, Neighbors

1. Introduction

Clustering [1] is probably the most powerful unsupervised tool to find a

structure in a collection of unlabeled data. It can be formally defined as the

process of organizing the data into clusters whose members are similar in some

way while data in different clusters are dissimilar. Three basic notions of what

a cluster is lead to three main types of algorithms. If a cluster is defined by its

center and a basin of attraction then distance is the central concept. It is also

possible to define a cluster as a dense area separated from another cluster by a

sparsely populated zone; in this case, density is the key idea. Finally, a third

definition is based on a set of connected points, in which case neighborhood is

of prime concern.

Many methods were developed in the past and the topic has been continously

investigated [2, 3]. When the data are easy to cluster, meaning that the groups

are well separated, most of the existing algorithms are likely to yield a good

result, but clustering algorithms have to deal with more complex situations

such as different types of attributes, various shapes and densities, and must

include outlier and noise management. In addition to the recurrent challenges,

the expectations for new proposals can be grouped in two categories. The first

one concerns the dimension and volume of 21st century databases. It involves

the curse of dimensionality and algorithm scalability. This issue is not novel

[4, 5] but more challenging today [6, 7] in the era of big data. The second

2

one is discovering natural clusters without any a priori information, which is

still a challenging problem in cluster analysis. There is firstly a related issue

concerning the cluster definition itself. The task of clustering is inherently prone

to subjectivity, the optimal solution can be extremely costly to discover and

sometimes even unreachable or nonexistent. Moreover, although conceptually

the cluster notions are well-shared by the community, clustering algorithms

nevertheless differ in how these notions are interpreted and formalized. Some

algorithms are based on interpretations that are too restrictive to deal with real

world situations or are too specific. Most of clustering algorithms are driven

by the number of clusters as input. These approaches are however not very

appropriate for a discovery process where the number of clusters is unknown.

With them, the discovery is classically handled via internal indexes that can

help while lacking in genericity and precision.

The real challenge for new algorithms is to be sufficiently self-tuning and

simple. They also have to be adaptive for the result to be acceptable what-

ever the input parameters, or put differently, for the same set of parameters to

handle various datasets. In that sense, the input parameters only differentiate

between acceptable solutions and allow the user to select a more or less detailed

representation of the data. This question of scale is essential. Several natural

partitions can exist and need to be discovered.

In the private sector, pioneer kmeans and DBSCAN are rather satisfying in

many cases, understandable by the investigator and especially easy to use. Since

DBSCAN relies on a global density threshold to find core (high-density) points,

it has issues in detecting clusters with varied densities. Different from DBSCAN

using a Euclidean distance function, Shared Nearest Neighbours (SNN) [8] clus-

tering uses SNN similarity instead of the distance measure in DBSCAN. The

SNN similarity of any two points is the number of neighbours they share in their

lists of nearest neighbours. Because points usually have lower SNN similarity

in transition regions between different clusters, SNN can discover clusters with

relatively uniform regions of different density values. SNN uses the same neigh-

bourhood density estimator and the same cluster definition as DBSCAN. There

3

are many variants of these algorithms which have been proposed to overcome

this weakness such as Recon-DBSCAN [9], [10], [11], Rnn-DBSCAN [12] and

SNN-radius [13].

There are however not yet popular in the private sector as there is not a

clear perception of the added value in terms of both efficiency and simplicity.

Other variants also focus on the computational aspect and scalability addressing

the big data challenge. They are based on approximate [14] or exact [15, 16]

DBSCAN clustering but they do not address the discovery challenge presented

above.

Our proposed algorithm "a Self-tuning version of DBSCAN " (S-DBSCAN)

deals with the discovery process and aims at facing the multi-challenge of sim-

plicity and efficiency while not addressing the big data challenge. It can however

be combined with so called "sampling algorithms" to handle larger databases.

Its core is conceptually close to DBSCAN type algorithms while it has prop-

erties similar to those of partitioning and hierarchical algorithms. As in a di-

visive clustering, it keeps dividing existing data into clusters using increasing

radii until no more clustering can be done. S-DBSCAN assumes that a cluster

is characterized by the distribution of its neighboring patterns: quite homoge-

neous in the core of the cluster, with a possible decreasing level of homogeneity

when moving away from the core. This definition covering many cluster issues is

formalized in S-DBSCAN that differs from DBSCAN in its process. DBSCAN

is based on driving parameters in absolute terms (Npts, ε).

These parameters are not easy to tune and DBSCAN encounters problems

with density variation (cf. Fig.1). Our algorithm runs in a differential mode,

which allows it to better manage density variation. It only needs one volume

parameter.

The main contribution of this paper can be summarized as the proposal of

a simple yet effective method S-DBSCAN.

The rest of the paper is organized as follows: Section 2 reviews some algo-

rithms that are recent or close to our work. Section 3 recalls some definitions

and notations. Section 4 presents the algorithm and includes all the pseudo

4

Figure 1: A simple data set with varied cluster densities in 2D space where DBSCAN encoun-

ters problems to discover a partition in 4 clusters whereas S-DBSCAN can do it (bottom-right

Figure) without any tuning.

codes. Numerical experiments are carried out in Section 7. The final remarks

and open perspectives are stated in Section 8.

2. Related work

The topic of clustering is mature and has been widely studied while still

remaining challenging today. One of the recurrent challenges is related to the

search of solutions for managing cluster complexity, which has been the subject

of recent developments: non-linear distances with the kernel k-means, neural-

networks, Bregman distances [17] or graph-based algorithms [18], hierarchical

representation with agglomerative algorithms, based on density with DBSCAN

[19], Recon-DBSCAN [9] and DENCLUE [20], the mean shift algorithm, SC-

DOT [21], Munec [3] or Kdmutual [22].

5

Among recent algorithms the density peaks clustering algorithm, DP, was

proposed in 2014 [23] and has become popular. It is based on the idea that

cluster centers are characterized by a higher density than their neighbors and

by a large distance from items with a higher density. The pioneering algorithm

however suffered from some drawbacks due to its simplistic partition strategy:

the cutoff distance is not really adapted to the density variability and once a

high density point is mishandled its neighbors with lower density are more likely

to be misclassified. In addition, when the data sizes of large clusters are much

greater than those of small clusters, the information of small clusters is easily

overwhelmed, resulting in subjectivity in determining the number of clusters.

Improvements were recently proposed [21, 24, 2, 25, 26, 27, 12]. In [28], the

threshold distance dc is now automatically set using the potential entropy of

the data field from the original dataset. The local density is estimated using a

Gaussian function instead of the classical nearest neighbor count.

In [25], the Comparative Density Peaks algorithm (Comp. Dp) consists in

considering the parameter θi = δi−τi instead of δi, τi being the distance between

the point i and its nearest neighbor of lower density. θ embodies the relative

magnitude of δ by comparing with τ and thus helps to identify the potential

cluster centers. The automatic selection keeps points with the largest product

distance by density.

In the SCDOT algorithm [21] cluster centers are also assumed to be density

peaks that have a relatively large distance from higher density peaks. Local

density and distance are estimated in the same way as in DP. A neighboring

graph is constructed, as in Chameleon clustering [29], but with an additional

constraint to yield a tree. A node is connected to only one other node, i.e. its

nearest neighbor of higher density. The edge valuation is the same as in [23].

Cluster centers are recognized as points for which the edge value is larger than

the typical nearest neighbor distance.

The HierOpt algorithm was detailed in [30]. Its basis is a hierarchical clus-

tering algorithm using the single linkage criterion. Two improvements were

proposed to deal with noise. First, the single linkage criterion takes into ac-

6

count the local density to ensure that the distance involves core points of each

group. Second, the hierarchical algorithm forbids the merging of representative

clusters, higher than a minimum size, once identified.

The KdMutual algorithm [22] is based on the assumption that working with

cluster cores rather than considering frontiers makes the clustering process eas-

ier. It combines the best characteristics of density peaks and connectivity-based

approaches. In KdMutual potential core clusters are first identified to allow clus-

ters to be selected using a specific ranking criterion close to [23].

The DBSCAN algorithm is very popular without requiring the cluster num-

ber as input. It does not cope with varying density clusters subject of recent

improvements [9, 12, 31]. For example, while DBSCAN defines reachable points

using two parameters, Recon-DBSCAN [9] considers two radii, ϵ and θ with

θ ≥ ϵ. The reachability is based on the density ratio Npts(ϵ)/Npts(θ) compared

to the τ threshold. In the Rnn-DBSCAN algorithm [12], only one parameter

should be specified which presents a great advantage. The algorithm adopts the

same principle as DBSCAN to define the reachability of points in a data set

but based on a reverse k nearest neighbors model. Its core idea is based on the

union of k-nearest neighbor and reverse nearest neighbor to expand the cluster.

Conceptually, with Rnn-DBSCAN a cluster of non-core objects with different

densities cannot however be well-managed. The process of cluster expansion

requires heavy memory that makes it computationally inefficient.

The Shared Nearest Neighbor algorithm, SNN [8], as well as its variants [13],

is a density based clustering algorithm working similarly to DBSCAN albeit less

popular. The main difference is that the volume is not defined by the radius

but is induced by the nearest neighbors. The volume can be optionally limited

by a radius. It encounters the same issue as DBSCAN as it relies on a global

density threshold to find core (high-density) points.

In [32], the time complexity of SNN is reduced to O(n log(n)) instead of

O(n2) by using a kd-tree implementation.

In the Mdca algorithm [31], clusters of arbitrary shape can be easily located

based on the selection of initial data objects. However, it needs to determine

7

the density threshold before clustering. For this reason, it is not suitable when

the density of data sets varies largely or the overall density is basically the same.

The Munec algorithm [3] is based on an iterative process that merges mutual

nearest neighbors. It does not require the number of clusters as input. The first

merging steps are only controlled by the number of sub-clusters, to yield a

skeleton of the data structure. Then, two distinct stages are proposed and three

heuristic conditions help to discriminate between more nuanced situations and

provide the final partition. The algorithm is driven by a single parameter that

controls the level of density differentiation. The heuristics behind the algorithms

remain complex to understand for the investigator; they also appear to be more

appropriate to work in low dimensional space.

Several other density-based methods derived from DBSCAN have been re-

cently proposed to deal with large scale data [33, 32, 16, 15, 34, 6, 14] or accel-

erate the processing. They do not address our challenge directly but are worth

to be cited as complementary. Among them, the Mr-DBSCAN [34] that can

achieve an ideal load balance in a severely skewed data environment. The latter

was extended to Isb-DBSCAN [6] by focusing on clustering non-core objects,

which is undetermined when two core objects are equidistant from a non-core ob-

ject. The Block-DBSCAN [14] is a recent algorithm that consists in an approx-

imate and grid-based clustering approach. Its complexity is O(n log(n). Two

versions L2 and L∞ for relatively high and high dimensional data respectively

were proposed. This idea presents two strategies using a computation reduction

method. The first strategy uses a
ϵ

2
-norm ball to detect the inner core blocks in

which all points are the core points. The second strategy is a fast approximate

algorithm that predicts whether two inner core blocks are density-reachable.

Along with a cover tree to speed up density computations for unvisited points.

A benefit of this technique is that it can cluster high-dimensional data relatively

fast with high efficiency. At the opposite, even smart it remains based on the

concept of approximate grid approaches that are their own shortcomings.

A few algorithms such as the Block-DBSCAN [14] aim at improving the

run-time performance of DBSCAN. However, they suggest solutions based on

8

approximate clustering. Others such as µ-DBSCAN [16] or G-DBSCAN [15]

produce exact DBSCAN clustering under the general idea to accelerate neighbor

searching. The µ-DBSCAN algorithm is also amenable to parallelization. The

idea behind this algorithm consists in reducing the number of neighborhood

queries significantly. The algorithm first scans the data points, forms micro-

clusters, builds a hierarchical structure known as Rtree, and then processes the

micro-clusters to get preliminary clusters. In synthesis, it novelty lies in smart

identification of core points and it allows to reduce the average time complexity

of DBSCAN to O(n log(m) + n log(r)), where n, m and r denote number of

data points, micro-clusters and average number of points in one micro-cluster

respectively.

In synthesis, many algorithms have been proposed to face the clustering chal-

lenges. Several are working without requiring the number of clusters as input

and are more appropriate for a discovery process. The most popular such as DB-

SCAN, SNN, Chameleon, DP are based on global settings and cannot cover all

the varied cluster situations and more constraining are not easily tunable. This

shortcoming has boosted the generation of improved and more sophisticated

variants from several years.

The latter have afforded interesting research findings (some of them are more

difficult to tune) and have not turn into standards yet. Some others are focusing

on the acceleration of known algorithms such as DBSCAN via approximate

or exact clustering approaches. They do not however focus on the discovery

improvement.

3. Definitions and Notation

3.1. Clustering problem

The clustering problem can be formally defined as follows: Given X, the

clustering of X is the partitioning of X into C clusters {C1, C2, . . . , CC} satis-

fying the following conditions: each pattern should be assigned to a cluster, i.e.

∪C
l=1 Cl = X, each cluster has at least one pattern assigned to it, i.e. Cp ̸= ∅,

9

p = 1, . . . , C and for hard clustering, each pattern is assigned to one and only

one cluster, i.e. Cp ∩ Cq = ∅ for p ̸= q.

3.2. Neighbors and neighboring

The neighborhood concept has been used in many clustering techniques.

There are two main ways to define a neighborhood. The first one counts items

that fall within a space, usually a hypersphere of radius r (influence zone of x)

centered on the point x defined as Hx(r).

Let X = {x1, x2, . . . , xn} be a set of n items (or patterns) in the p-dimensional

feature space. The neighbors of x are the items located at a distance less than

r:

Nr(x) = {xi | ||x(i) − x|| < r} (1)

y ∈ Hr(x) ⇔ y ∈ Nr(x) (2)

Hr(x) defines the hypersphere centered in x and having a radius r.

The second one is the set of nearest neighbors. Let {x(1), x(2), . . . , x(n−1)}

be the permutation of the elements of X \ {x}, such that:

||x(1) − x|| ≤ ||x(2) − x|| ≤ . . . ||x(n−1) − x|| (3)

The k-nearest neighbors of the x item are the set defined as:

Nk(x) = {x(1), x(2), . . . , xk)} (4)

then, one can define the distance between x and its nearest neighbor number

k as:

dk(x) = d(x, x(k)) (5)

where d is the selected distance (Euclidean...).

The n × (k + 1) nearest-neighbor matrix (NN) is set up as follows: the

first entry in each row indicates the pattern under consideration, the second

entry indicates the first nearest neighbour, the third entry indicates the second

10

nearest neighbour, and so on until the (k + 1)th entry indicates the kth nearest

neighbour.

The n × n similarity matrix S is defined so that entry Sij is the distance

between pattern i and j.

3.3. Specific definitions for S-Dbscan

The similarity of densities between two data patterns x1 and x2 is expressed

as:

Sim(x1, x2) =
m

M
(6)

where m = min(densl(x1),max(densl(x2), M = max(densl(x1),max(densl(x2)

and densl(x)) is the local density (section 5.2) at x. Let k be the considered

nearest neighbors and r a hypersphere radius, Ω the corresponding neighbor-

hood. One can define the local similarity maximum Maxs(
k
r)(x) and the average

µs(
k
r)(x) as follows:

Maxs(
k
r)(x) = max

z ∈Ω
(Sim(x, z)) (7)

µs(
k
r)(x) =

∑
l=1 to k′

Sim(x,N l(x))

k′
(8)

where k′ (k′ ≤ k) is the number of nearest neighbors among k present in Hr(x).

When r and k are identified, the notation is abbreviated by Maxs(x) and µs(x).

The minimum distance between a pattern x and its nearest neighbors having a

higher density than x is defined as:

dmin(x) = argmin
y∈Nk(x)

{d(x, y) /dens(x) ≤ dens(y)} (9)

The average k nearest distance for the set X is defined as:

dµ[k] =

∑
x∈X

d(x,Nk(x))

n
(10)

11

4. The proposed algorithm

4.1. Basic idea:

Our algorithm is articulated between the S-DBSCAN algorithm and its core

algorithm named S-DBSCANCORE. S-DBSCAN consists in searching for the

connectable elements using its core algorithm S-DBSCANCORE by scanning

the patterns on the basis of an increasing series of influence zones rinf , . . . rsup

that are automatically generated. The underlying idea is similar that the one of

DBSCAN as S-DBSCANCORE groups together data patterns that are closely

packed. With S-DBSCAN the connectivity criteria are based on the differen-

tial density and the scan is driven via selected entries (seeds). The seeds are

determined by classifying (ordering) the patterns according to the principle of

searching for density peaks proposed in [23]. Thus, the first entry point for

S-DBSCANCORE is the 1st seed, then the second is the 2nd seed available (not

already connected) until the entire database has been scanned. S-DBSCAN

includes the mechanisms to provide all the required parameters for launching

S-DBSCANCORE that is based on the following concept of connectivity:

Let A be a pattern of the base. A is connectable if there is a pattern B such

that:

1. B is one of the k nearest neighbors of A: B ∈ Nk(A)

2. B is in the zone of influence HA(r)(formalized by a hypersphere of radius

r) of A: B ∈ Nr(A)

3. B must have a density comparable to that of A, measured by maxs(A)

and compared with the threshold Simmax

Conditions 1 and 2 are basic neighborhood rules as condition (3) aims at pro-

hibiting connections as soon as a discontinuity in density is detected. The

algorithm is driven by three inputs (k, HA(r) and Simmax) and that are auto-

matically processed in S-DBSCAN and not tuned by the investigator. The idea

widens the possibilities of connectivity as the zone of influence grows while re-

maining within the limit of the k nearest neighbors. The value of k corresponds

12

to the minimum nearest neighbors for which the patterns of the same natural

cluster are mutually reachable. This value is central as it serves for estimating

the local density (see section 5). In the case where clusters are separable, the

patterns belonging to the same natural cluster are then mainly connectable.

For a given r, there are then k′ (k′ ≤ k) nearest neighbors that fall within the

corresponding hypersphere.

4.2. Detailled description

The S-DBSCAN algorithm is shown in Algorithm 1. The pre-processing

operations of S-DBSCAN concern the calculation of the features denoted Ip

needed to drive the process: S, NN, k that will be used in the whole process,

the determination of the local density densl of all the patterns and Simmax.

These algorithms are detailed in section 5.

The input parameters for the user are the data set X, gr. gr serves to define

the granularity of the scans for S-DBSCAN (line 8) in the interest range of

distances. Then, the successive radii can be automatically calculated (line 11)

and incremented. Simmax is the main parameter that drives the algorithm by

defining the level of continuity between pattern densities to be connectable. It

is set up automatically (Algorithm 8) but it can be tuned by the user to modify

the severity level.

S-DBSCAN includes internal generic parameters that are fixed. SizeMin is

the threshold above which a group can be considered as a cluster. The default

value is set at n/100 that allows skipping outliers and noisy patterns while keep-

ing small clusters, ε stands for the partition stagnation between two iterations

(connex components without and with border patterns). Minw is the threshold

above which the found partition is considered as enough representative to be

selected. The default value is set at n/2 meaning that at least half of patterns

have to be included in the discovered partition to be qualified.

The core of the algorithm is concentrated in the central repeat loop (lines 8-

20) and includes an internal loop (lines 10-13). At the beginning of the internal

loop, all patterns are available and can be visited (line 9). The entry point for

13

Algorithm 1 S-Dbscan Clustering algorithm
1: Input: X, gr {granularity}

2: Process Ip: [S, NN, k (Alg. 5), densl (Alg. 7), Simmax (Alg. 8)].

3: ∆r = (dµ[k]− dµ[1])/gr {Equation 10}

4: t = 0, ract = dµ[1], Minw = 0.5, SizeMin = n/100, ε = 0.01

5: for (i = 1 to n) do

6: δ[i] = densl[i]× dmin[i] {δ[i]: peak level for i, (Equation 9) }.

7: end for

8: repeat

9: Call[t] = ∅, Id = 0, Visited[1..n]=false

10: while (seed=EntryPoint(δ, Visited) == true) do

11: CId = S-DBSCANCORE(seed, ract, V isited, Ip)

12: Call[t] = Call[t] ∪ CId, Id = Id+ 1

13: end while

14: Call[t] = { ∪
i≤Id

Ci| |Ci| ≥ SizeMin}, Id = |Call[t]|

15: Nit[t] = Id, Rit[t] =

∑
i≤Id

|Ci|

|X|
16: if (Rit[t] ≥ Minw & Nit[t] ≥ 1) then

17: GrowingCore(Call[t], Ip) {algorithm 9}

18: end if

19: t = t+ 1, ract = ract +∆r, ∆c = Rit[t] - Rit[t− 1]

20: until (t > gr) & (∆c ≤ ε || Nit[t] == 1)

S-DBSCANCORE is determined (line 10) following the principle of [23]. At

each iteration, the entry point is the pattern having the best potential to be a

density peak while being not visited or not marked as a border (cf. algorithm 2).

From this entry point, all the patterns that are connectable are put in the same

object using the core algorithm S-DBSCANCORE. All the connected patterns

are marked when visited as well as the patterns that were visited but rejected

(border patterns) as not belonging to the current object.

This subset of patterns is considered as a reliable connex component if it

14

represents a minimum number of patterns (line 14). In this case, the number of

connex components is increased as well as the total number of patterns belonging

to a connex component. The internal loop ends when there are no more potential

seeds (line 10). One obtains both the number of clusters and the representativity

(lines 14-15).

Algorithm 2 EntryPoint algorithm
1: Input: Visited, δ

2: Output: TRUE/FALSE, seed

3: S = { ∪
xi∈X

| V isited[i] = false}

4: if (S == ∅) then

5: return FALSE

6: end if

7: seed = argmax
xi∈S

{δ[i]} {the best not visited peak pattern}

8: return TRUE

Nit[t] is the number of discovered clusters at time t while Rit[t] expresses

the consistency of a discovered partition (line 15). A minimum of consistency is

needed to validate the partition. The case where Nit[t] = 1 may appear in the

case of strong overlapping meaning the non presence of natural clusters.

By increasing the radii (line 19), the general tendency is to have the number

of connex components increasing (groups having the minimum sizes are gener-

ated) and then decreasing (the partitions are formed with groups of larger sizes).

The idea is then to stop the process in the decreasing phase when there is no

point in testing a larger radius again. The algorithm stops after a minimum of

gr iterations (line 20) and when there is either one partition or a tiny evolution

of the cumulative size of the connex components between two iterations (line

20).

A post processing stage is done under representative conditions (lines 16-

17) (cf. algorithm 9) that consists in developing the discovered clusters using

a neighbourhood mechanism. This algorithm is not central for the discovery

topic but allows to refine the discovered clusters while avoiding the selection of

15

outlier data patterns.

4.3. S-DBSCANCORE algorithm

The key role of S-DBSCANCORE is to group together data patterns in

subsets that are closely packed in terms of density. Each subset of patterns

forms a connex component that represents a cluster. For this, it is necessary to

examine if a candidate pattern can be connectable to the current group.

It is conceptually very close to DBSCAN while it is driven by a different

strategy.

S-DBSCANCORE algorithm is shown in algorithm 3. It is recursive and

driven by the Ip parameters given by S-DBSCAN. At the first call, the entry

point is the available seed given in [23] and the cluster is empty. At the other

calls, the entry point is a neighbor of a pattern already selected in this cluster.

To be examined, each candidate pattern has to be not already visited (line 3).

The visited patterns can belong to other clusters or marked as a border. In

this case, the evaluation is done via the algorithm IsConnex (Algorithm. 4).

Given a candidate A, its influence hypersphere HA(ract), and the similarities

with all its neighbors included in HA(ract) (lines 5-6) are calculated (line 7).

The maximum (line 9) and average (lines 8, 13) of similarities are determined

and compared with Simmax. If the condition is fulfilled A is connectable (line

13) then selected. If a pattern A is selected, it is added to the current cluster

(line 10).

Then, S-DBSCANCORE is applied to all its neighbors in the influence region

materialized by ract to decide whether they are in the same component or not

(lines 12). If A is rejected, its neighbors are simply not inspected. At the end of

the algorithm, none of the visited patterns are available anymore and the list of

connected patterns (from the entry point) is returned (line 8) as a novel cluster

C. There are the selected and border patterns (visited but not selected).

4.4. Illustrative example and behavior

This dataset comprises 2000 patterns in 2d that were centered/normalized

in each dimension. It includes 5 clusters with a small overlap and noisy patterns

16

Algorithm 3 S-DBSCANCORE algorithm
1: Input: Visited, Cand, C(cluster), ract, Ip

2: Ouput: C

3: if (Visited[Cand] == TRUE) then

4: return C;

5: end if

6: Visited[Cand] = TRUE

7: if (IsConnex(Cand, ract, Ip) == FALSE) then

8: return C {Alg. IsConnex}

9: end if

10: C = C∪(Cand) {Candidate is included in C}

11: for (i = 1 to k′) do

12: C = S-DBSCANCORE(Visited, NN[Cand][i], C, ract, Ip) {k’is the number of

nearest neighbors in ract with k’≤ k}

13: end for

Algorithm 4 IsConnex algorithm
1: Input: Cand, ract (radius), Ip

2: Output: TRUE/FALSE

3: Maxs = 0

4: for (i = 1 to k) do

5: Neigh = NN[Cand][i], dneigh = dCand(Neighbor)

6: if (dneigh ≤ ract) then

7: r =
min(densl[Cand], densl[Neigh])

max(densl[Cand], densl[Neigh])
8: Maxs = max(Maxs, r)

9: end if

10: end for

11: if (Maxs ≥ Simmax) then

12: return TRUE

13: else

14: return FALSE

15: end if

17

(20%) randomly distributed. Their sizes are different and their shapes are rather

compact for 3 of them and rather elongated for 2. Two of them are denser than

the others. To run S-DBSCAN, only the granularity gr was set up to its default

value (10).

Fig. 2 illustrates the local densities (10 and 20 strata from left) of the

patterns where the color depicts the relative local density between patterns: in

red the densest (10%), in orange (between 10% and 20%) and in purple (from

the highest to the lowest) the others. The relative densities are similar. The

potential peak density can be seen in Fig. 3. The highest values of δ are in the

patterns in red and in the large circle; then in yellow, grey, blue and the lowest

values in black. The first radius ract = 0.049 and ∆r = 0.000705.

S-DBSCAN needs 12 iterations to finish the process; the stopping radius

was ract = 0.15. In Fig. 4 from top to bottom and left to right, the connex

components found by the algorithm can be seen. The growing procedure (cf.

Algorithm 9 has not been activated to see the cluster cores. The number of

connex components of size more than n/100 first increases and then decreases.

The first two densest clusters are detected first and then the others (Fig. 4).

For the latter, a higher radius is required to reach the pattern neighbors. Fig.

5 illustrates the process. The x axis presents the different radii (at the bottom)

and the number of small subsets (at the top) considered as noise or outliers. At

the beginning there are a lot of small subsets and this number decreases with

the increase in radii. The y axis depicts the number of connex components (or

clusters).

The result is reliable only from iteration 5 and beyond as the number of

patterns grouping all the connex components is more than 50%. The vertical

line in green shows this frontier. There is a plateau for 5 connex components

that highlights the presence of 5 natural clusters in the database without any

tuning. Partitions in 3 and 6 clusters are also possible but they present less

stability. When the radius increases, S-DBSCAN tries to catch neighbors that

respect the connectivity rule. As there is only one iteration to go from 5 to 3

and 3 to 1 cluster, it is likely that the clusters are closed to each other. The

18

cluster sizes from iterations 5 to 12 are given in Table 1. At each iteration (It),

one can see the number of connex components (#C). The %” represent patterns

without (%−”) and with (%+”) border patterns and the sizes of the discovered

clusters. A border pattern is a pattern that has been reached via the recursive

algorithm, but from which it is not possible to continue the process.

Fig. 5 shows the algorithm behavior when one threshold is automatic while

the other varies in logical ranges. The results are comparable producing the

same major plateau.

Table 1: cluster number

It #C %− %+ |C1| |C2| |C3| |C4| |C5| |C6|

5 5 54.6 55.4 483 480 48 36 32 X

6 6 64.5 65.9 504 500 110 87 54 30

7 5 69.8 71.9 550 509 155 95 93 X

8 5 73.4 75.78 561 515 172 122 107 X

9 5 76.0 78.91 568 521 187 146 116 X

10 5 78.5 81.68 573 524 215 156 124 X

11 3 79.9 83.22 796 690 136 X X X

12 1 80.8 84.24 1642 X X X X X

Figure 2: Local density illustration: with 10 strata at left and 20 at right

19

Figure 3: Detected Peaks by importance (red, yellow and cyan)

5. Peripherical algorithms

This section describes all the peripherical algorithms that are needed to run

S-DBSCAN and produce inputs for S-DBSCANCORE.

5.1. Reachability via the k-nearest neighbors

Conventional k-nearest neighbor classification approaches have several lim-

itations when dealing with some problems caused by the special datasets, such

as the sparse and noise problem. In our approach, the local and global infor-

mation of the query pattern are taken into account by hybridizing the notions

of neighborhood based on the k nearest neighbors, and those of distance and

density. In S-DBSCAN the reachability is defined as the number of minimum

nearest neighbors k for which a pattern y can be reached from x via the subset of

patterns Ωk(x) generated by iterating the nearest neighbors function (Equation

12). Let fk(x) be the search function for the k nearest neighbors of x:

20

Figure 4: hierarchical process with clusters of varied densities: from left to right and top to

bottom.

Nk(x) = fk(x) (11)

21

Figure 5: Effect of Simmax : the same plateau is discovered

Ωk(x) = fk ◦ . . . ◦ fk(x) (12)

fk(x) takes as input a data pattern and produces k data patterns from which

f is again applied. These patterns are marked as visited. To obtain Ωk(x), the

operation is repeated until there are no more unvisited patterns.

The number of iterations of fk(x) is such that ∀y ∈ Ωk(x) Nk(y) ⊂ Ωk(x).

Then, y is reachable from x, if y ∈ Ωk(x). Behind this idea, the goal is to

have patterns belonging to same natural cluster that are mutually reachable. In

machine learning, pre-defined k values for defining a neighbordhood are set to

λ
√
n with λ ≤ 1. The λ coefficient acts on the noise sensitivity as well as the

frontier accuracy when the purpose is classification. In any case, k depends on n

and has no link with the data structure. For our goal, kmax =
√
n is considered

22

as an upper bound and the objective is to find k so that the reachability is

achieved.

Algorithm 5 Reachability algorithm
1: Input: NN, n

2: Output: k

3: kmax =
√
n, T = 0.95, N = min(1000, n) {fixed variables}

4: for (k = 1 to kmax) do

5: count = 0

6: for (i = 1 to N) do

7: pattern = random(n)

8: neighbor = NN[pattern][kmax]

9: for (j = 1 to n) do

Visited[j]=FALSE

10: end for

11: if (Isreachable(Visited, pattern, neighbor, k, NN) == TRUE) then

12: count = count + 1

13: end if

14: end for

15: if (count ≥ Tn) then

16: return k

17: end if

18: end for

19: return kmax

The reachability algorithm (see algorithm 5) formalizes this idea. It consists

in testing a subset of N = 1000 patterns and for each pattern determines the

number of neighbors needed to reach its kmax nearest neighbor, N being justified

by [35]. This guarantees with a high probability that at least a minimum of

points is taken per cluster via its sample, when C clusters are considered. The

main loop of the algorithm (lines 4-18) consists of evaluating k from 1 to the

upper bound for N patterns taken randomly. Given a pattern A (line 7), its

23

kmax neighbor is taken (line 8) for the NN matrix and its reachability for a k is

tested (line 11).

The algorithm stops when there is a k such that most of the tested patterns

the reachability is achieved (line 15). In any case, the maximum value of k is

kmax. The Isreachable algorithm (see algorithm 6) is a recursive algorithm that

tests whether for an entry point pseed and a k value, pseed can reach ptarget

by recursively propagating the connectable neighbor patterns of pseed. The

algorithm stops as soon as there is a pseed that matches with ptarget (line 5),

or when all the successive neighbor patterns have been visited (line 12) without

reaching ptarget. ptarget is fixed and pseed is recursively replaced by its k nearest

neighbors (line 9).

Algorithm 6 Isreachable algorithm
1: Input: Visited, pseed, ptarget, k, NN

2: Ouput: TRUE/FALSE

3: if (Visited[pseed] == TRUE) then

4: return FALSE

5: end if

6: if (pseed == ptarget) then

7: return TRUE

8: end if

9: Visited[pseed]=TRUE

10: for (i = 1 to k) do

11: if (Isreachable(Visited, NN[pseed][i], ptarget, k, NN) == TRUE) then

12: return TRUE {all the neighbors are tested}

13: end if

14: end for

15: return FALSE

24

5.2. Local density algorithm

The reader is referred to [36] for a recent survey devoted to local density

estimation. Whatever the method, how to define the neighbordhood remains

a key question. Any efficient algorithm can be used in S-DBSCAN. Our local

density algorithm is computed using both k nearest neighbors and hypervolume

information. The novelty stems from the smart mechanism that is adapted to

the reachability notion. To be run, the algorithm needs k, SS and NN. It starts

by defining a series of increasing radii rh. The lower bound (rlow) is determined

so that 95% of the patterns have their 1nn nearest distance less than rlow (line

3). The principle is the same for the upper bound while k is considered instead

of 1 (line 4). The range is cut into Nr strata empirically set at 10 (default value).

A coarser / thinner cut only slightly impacts the results. Given a pattern A,

the main idea is to consider its k neighbors (line 1), select the ones contained

in each hypersphere HA(r)(line 17) and process the partial score (line 15) per

hypersphere. This score is in the range [0, 1], 1 when the target is similar to

A and 0 when the target is located at the frontier (line 18). Then, having the

partial score in each stratum, the local density is deduced by averaging the sum

(line 22).

5.3. Automatic threshold

The driven parameter Simmax has to be high [0.8-0.99] in accordance with

our cluster definition. Except for outliers or some noisy patterns that can have

specific local densities, most of the patterns considered in a given neighborhood

have a relatively similar density. This is true if there is no cluster and in presence

of many clusters. A majority of patterns are not noisy, not outliers and not at

a cluster frontier. Clusters can have different densities from one to another and

even in the same cluster. However, the density difference for close patterns in

the same cluster is comparatively small, at to a lesser extent it is even true for

noisy patterns that are more isolated and those that have tiny densities.

Under these assumptions, an automatic threshold can be easily estimated

(see algorithm 8) via the distribution θ of Simmax in the largest neighborhood

25

Algorithm 7 Local density estimation algorithm
1: Input: k, NN, dist, Nr {default value=10}

2: Output: densl {local density vector}

3: rlow = sort(d1(i))
i=1,..,n

[95%n] {Quantile of the 1nn distances}

4: rup = sort(dk(i))
i=1,..,n

[95%n] {Quantile of the knn distances}

5: ∆ = (rup − rlow)/Nr

6: for (λ = 1 to Nr) do

7: rh[λ]= rlow + (λ− 1)∆ {radius vector}

8: end for

9: for (i = 1 to n) do

10: densl[i]=0 {initialisation of the pattern density}

11: for (λ= 1 to Nr) do

12: densr[λ]=0 {estimation in a given radius}

13: end for

14: for (j = 1 to k) do

15: target = NN[i][j]

16: for (λ = 1 to Nr) do

17: if (dist[i][target] ≤ rh[λ]) then

18: densr[λ] = densr[λ] + (1.− dist[i][target]

rh[λ]
)

19: end if

20: end for

21: end for

22: densl[i]=
1

Nr

Nr∑
λ=1

densr[λ]

23: end for

24: return densl

represented by the number of k nearest neighbors (cf. algorithm reachability).

By skipping the lowest (10%) values corresponding to the maximum neighbor-

hood potential frontier patterns are rejected as marginal.

26

Algorithm 8 Automatic threshold determination for Simmax

1: Inputs: n, k, NN, densl, Tmax

2: Output: simmax

3: for (i = 1 to n) do

4: simmax=0

5: for (j = 1 to k) do

6: Neigh = NN[i][j]

7: r =
min(densl[i], densl[Neigh])

max(densl[j], densl[Neigh])
8: simmax = max(simmax, r)

9: end for

10: θmax[i] = simmax

11: end for

12: return simmax=Q(θmax, Tmax%))

5.4. Growing core algorithm

The idea of the algorithm (cf. algorithm 9) is to add the candidate patterns,

i.e the ones not already included in a partition, in the nearest existing cluster

(line 16) using the single link distance.

The process is iterative with k (line 5) allowing the cluster to grow at each

step. A restriction (line 13) is added to avoid the inclusion of outlier/noise

by comparing the nearest distance with the average of the 1nn distance of the

initial patterns included in the closest cluster (line 4). At the end, the remaining

patterns are placed in a separate category.

6. Algorithm complexity

The S-DBSCAN algorithm requires minimum interaction with the investi-

gator and the hierarchical process is generated with a small number of evalu-

ations (cf. algorithm 1). However, S-DBSCAN itself can run only with small

or medium datasets. In its current version, it has not been optimized to deal

with large data sets as the scalability was not its primarily objective. Most of

27

Algorithm 9 GrowingCore algorithm
1: Input: k, X, C, NN, deuc

2: Output: C, noise

3: Thresh = 0.5, novel = 0

4: Process µ1nn {the average vector of the 1nn distance for each cluster}

5: for (u = 1 to k) do

6: taken=TRUE, Nk=0

7: while (taken==TRUE) do

8: taken=FALSE

9: for (i = 1 to n) do

10: target=NN[i][u]

11: if (X[i] ∈ C) || !(target ∈ C) then

continue {not in the same neighbourdhood}

12: end if

13: r =
min(µ1nn[Cl[target]], deuc[i][target])

max(µ1nn[Cl[target]], deuc[i][target])
14: if (r < Thres) then

15: taken=TRUE, novel=novel+1 Nk=Nk+1

16: C[Cl[target]] = C[Cl[target]] ∪ {X[i]} {X[i] is added to the same cluster

Cl[target] of target}

17: end if

18: end for

19: end while

20: end for

21: if (∥X∥ == ∥C∥) then

22: noise = FALSE

23: else

24: noise = TRUE {the data not included in a cluster are regrouped in a noise

category}

25: end if

26: return C

implied mechanisms in the algorithm are based on the availability of the SS and

NN matrices. Having these matrices avoids distance and nearest neighbours re-

28

computations. It however needs O(n2) (exactly (n2−n)/2) and O(k×n) memory

respectively without the use of an accelerating index structure, whereas a non-

matrix based implementation of S-DBSCAN only needs O(n) memory while

being computationally expensive. The number of iterations in the central loop

S-DBSCAN is governed by gr that allows to determine the radius increment ∆r,

then in reality gr runs of the S-DBSCANCORE algorithm. S-DBSCANCORE

visits each point of the database, possibly several times as candidates to dif-

ferent clusters. For practical considerations, however, the time complexity is

mostly governed by the number of region query invocations. In the worst case,

the run time complexity is however O(n2) as S-DBSCAN executes exactly one

such query for each point. The central loop has a run time complexity of O(n2)

in the worst case. The space and time complexities s are summarized in Table

2.

Table 2: Time and space complexity for S-DBSCAN

Time complexity

Construction of S and NN O(n2)

Reachability algorithm O(N × n) (N=1000 by default)

Local density estimation algorithm O(k ×Nr × n) (Nr ≤ 20 and k≤ n0.5)

Automatic threshold algorithm O(k × n)

GrowingCore algorithm O(k × n)

S-DBSCANCORE processing O(n2)

S-DBSCAN processing O(gr × n2)

worst cost O(gr × n2) (optimization: O(gr × n log(n))

Space complexity

S O(n2) (exactly (n2 − n)/2)

NN O(k × n)

dens O(n)

worst cost O(n2) (optimization 2×O(n× k)+O(n))

In synthesis, the worst complexity case for time complexity remains O(n2)

29

but can be reduced to O(n × log(n)) using a Kd-tree structure. For space

complexity, the worst case is O(n2) but can be reduced to 2×O(k×n)+O(n) as

S-DBSCAN only needs for each point its k nearest neighbors, the corresponding

distances and the local density of each data point.

In its current version, S-DBSCAN has to be combined with sampling and/or

coreset techniques [37, 38, 39] to manage large datasets. These techniques aim

at organizing, summarizing and finally understanding the data. As a recall,

their goal is to select a sample that behaves like the whole, i.e. without losing

any valuable information. The idea consists in quantifying the distortion of a

given monotonic measure when computed on a sample instead of on the whole

set. Then, solving the optimization problem or its approximation on the small

coreset yields an approximate solution of the original dataset. The key idea is

that the number of samples needed to perform clustering does not depend on

the dataset size, it is related to the data structure.

7. Experimental study and discussion

This section aims at demonstrating that S-DBSCAN is efficient for a large

variety of data structures. Its efficiency was evaluated at two levels: the ability

to discover natural clusters and the accuracy of the discovered partition. In

all experiments, S-DBSCAN was run with the same setting to check its self-

tuning power. The parameter Simmax is set up using the algorithm 8. When

the ground truth is available accuracy is measured with two non symmetric

indices, the F-measure (Fm) [40] and the Mutual Index (MI) [41] that compare

the expected partition with the one yielded by the algorithm. The scores were

processed by skipping the noise both for the ground truth and the result. In

real life the reference is unknown and clustering algorithms are used to analyze

the data. In the case where there is no reference, only internal validation indices

[42] can be considered even if their efficiency is questionable. In this study an

extended version of the David-Bouldin index has been selected. Different kinds

of experiments are proposed.

30

The first subsection deals with 2-dimensional datasets as they allow for a

human assessment of what partitions are acceptable.

The second subsection illustrates the behavior of the proposal in various dif-

ficulties of higher dimensions involving Gaussian and non Gaussian data struc-

tures.

The third subsection deals with real data where the ground truth does not

stand out. In the fourth subsection a comparison with competitive algorithms

was carried out using a selected set of databases introduced in the first sub-

section. The preprocessing includes a {µ, σ} standardization step and, for the

datasets with more than four thousand items, a sampling [38] algorithm is ap-

plied in order to store the distance matrix in memory and to complete the tests

in a reasonable amount of time. This also allows all the competitive algorithms

to be run.

S-DBSCAN can be combined with a sampling algorithm to handle large

databases. A complementary study is done to compare the efficiency of this

combination with two recent algorithms [14, 15] especially developed to handle

very large data bases. These algorithms produce approximate and exact DB-

SCAN clustering while improving its run-time performance. The comparison

focus on the run-time efficiency.

7.1. Benchmark datasets in two dimensions

A wide range of datasets (16) is used as benchmarks in this section. Some

datasets are from the data clustering repository of the computing school of

Eastern Finland University2 while others come from the github repository 3

or were proposed in the published literature. They are usually considered for

testing new clustering algorithms. To complete the diversity, homemade data

have been added: clusters are different in size, shape, density, amount of noise

and degree of separation. Their main characteristics are summarized in Table

2https://cs.joensuu.fi/sipu/datasets/
3https://github.com/deric/clustering-benchmark/tree/master/src/

31

4 and the acceptable partitions given via the ground truth are displayed in Fig.

6. The data may include some variations in the clusters.

Five categories have been established to describe these variations, and for

each category there is a code (from 1 to 3) depicting the level of difficulty. As

for example, F1 depicts the potential difficulty related to variation of cluster

size and F5 the one related to the variation of cluster density.

The main sources of variation with their associated codes are given in Table

3. The datasets are classified as shown in Table 4.

Results are shown in Table 5. The expected number of clusters are displayed

in column 2 and the discovered ones in column 3 (Found #C).

The left number corresponds to the cluster number, the number in paren-

theses in column 3 is the plateau size, and in bold the number of clusters having

the largest plateau size. As for example for D15, 12 valid clusters have been

detected five times, each time corresponding to a radius value, having in mind

that the range is set up automatically (cf. Algorithm 1).

D (column 4) indicates success or failure in the discovery process, Fm (col-

umn 5) the F-Measure coefficient and MI the mutual index (column 6).

Table 3: The main sources of variation and their corresponding code from 1 to 3

1 2 3

Size(F1) Similar Variability Irregular

Shape(F2) Compact Long/thin Irregular

Separation(F3) Well-separated Low/very Low small Overlap

Noise(F4) None Small amount Large amount

Density(F5) No variation small Large

7.2. Experiments with datasets of higher dimension

Three kinds of experiments were carried out to assess the behavior of the

algorithm in higher-dimensional spaces under different configurations: density

peak, pseudo uniform data, more or less separated, different densities. In the

32

Table 4: The sixteen datasets and their classification in five categories (F1 to F5)

Dataset Size #C Name Origin F1 F2 F3 F4 F5

D1 3000 4 A.set 1 [43] 2 3 1 1 2

D2 5250 2 A.set 2 [43] 1 2 1 1 1

D3 240 2 FLAME [44] 1 2 1 1 1

D4 7500 2 A.set 3 [43] 2 3 2 1 2

D5 373 5 JAIN [45] 2 2 2 1 1

D6 5000 15 S.sets 1 [46] 1 2 1 1 1

D7 5000 31 S.sets 1 [46] 1 1 3 1 1

D8 5401 15 Dim sets 1 Foot 2 1 2 2 1 1

D9 8000 6 Chameleon [29] 2 3 2 3 1

D10 10000 2 Cluto-t7.10k Foot 3 2 3 2 3 1

D11 2000 4 H1 Home 1 1 1 2 1

D12 3800 15 H2 Home 3 2 1 2 2

D13 2200 4 H3 Home 2 3 1 1 3

D14 2000 2 H4 (Spiral) Home 1 2 2 2 1

D15 2500 12 H5 Home 2 3 2 2 2

D16 3500 6 H6 Home 3 2 2 2 3

first one, a series of high-dimensional datasets with Gaussian clusters are tested.

The first sub series (from "dimsets low"[47]) is in moderate dimension and the

data patterns are partitioned in 9 Gaussian clusters in d = {2, 5, 10, 15}. The

second (from "dimset high" [48]) contains high-dimensional datasets with 16

Gaussian clusters in d = {32, 64, 128, 256}. Each cluster in a set has the same

size that increases linearly as dimensionality increases. These sets were proposed

in [48] and clusters are rather well separated. They are denominated G1, . . . , G8.

In the second one, 10 datasets, d = {3, 6, 9, 10, 18 . . . , 58}, with 3 clusters are

tested. They are denominated S1, . . . , S10. They are also Gaussian based but

more difficult to discriminate. The separation level is low, shapes and densities

are different and some amount of noise is introduced. The formulas used for

33

Figure 6: The sixteen datasets. The labels are the x and y coordinates.

Figure 7: Effect of Simmax={auto, 0.7, 0.6} (database 13)

cluster generation are as follows, i being the dimension:

• the first cluster (green in the Fig. 8) is non spherical: µi = −2 if i ̸= 1

µ1 = 0, σi = 0.5 if i is odd otherwise σi = 0.1 + 2× rand(0.1) ;

34

Table 5: Results for synthetic data set: in bold the number of found clusters having the largest

plateau size (in parenthesis).

Dataset #C Found #C D Fm MI

D1 2 5(2),4(20),3(10) Y 1.00 1.00

D2 2 6(2),5(2),3(2),2(28) Y 1.00 1.00

D3 2 4(1),3(5),2(20) Y 0.989 1.00

D4 2 10(4),8(3),5(2),2(49) Y 0.978 0.984

D5 5 8(4),6(3),5(6),4(8) Y 0.997 0.998

D6 15 15(6),13(4),12(3),8(1) Y 0.978 0.992

D7 31 31(3),30(3),16(6),12(2) Y 0.989 0.991

D8 15 15(35),14(13),13(14),12(2) Y 0.999 0.998

D9 6 6(4),5(14),4(6),3(5) Y 1.00 1.00

D10 9 9(10),8(4),5(4),4(4),2(8) Y 1.00 1.00

D11 4 4(31),5(4),3(10),2(5) Y 1.00 1.00

D12 15 15(27),9(3),6(5),5(7) Y 1.00 1.00

D13 4 10(3),9(15),8(9),6(10) N 0.885 0.866

D14 2 2(13) Y 1.00 1.00

D15 12 12(5) Y 0.967 0.963

D16 6 8(1),7(2),6(8),5(12) Y 0.978 0.999

• the second one (black) includes two Gaussian components with different

densities in each dimension: µ1
i = 0, σ1

i = 0.4 and µ2
i = 0.5, σ2

i = 0.1 ;

• the last one (red) is spherical: µi = −1, σi = 0.3.

dr random features were added to the initial dimension space, df (see exam-

ple in Fig. 8). The final dimension is d = df + dr. dr is computed according to

Eq. (13).

dr =

 df/2 if df < 10

df otherwise
(13)

The third experiment is based on the genRandomClust R package. Clusters

are now represented by pseudo uniform data instead of density peaks. Again,

35

Figure 8: Views of the first dataset, respectively 1-2, 1-3 and 2-3 axis.

clusters have different sizes, shapes, densities and irregularities. This is an im-

plementation of the method proposed in [49]. The degree of separation between

any cluster and its nearest neighboring cluster can be set to a specified value

regarding the separation index proposed in [50]. The package uses the basic

parameters for cluster generation such as the number of clusters, the space di-

mension and their respective sizes but also allows for variability management. A

ratio between the upper and the lower bound of the eigenvalues can be specified.

The default value of 10 is used in all the experiments. The range of variances in

the covariance matrix was set to the default value, rangeV ar = [1, 15]. The only

parameter used in this experiment is the value of the separation index between

two neighboring clusters, SepV al. It ranges from −1 to 1. Four typical config-

urations in 2 dimensions can be seen in Fig. 9. To each dataset 20% of noise

is added. The difficulty stems from the hybridization of sources of clustering

issues at especially low separation levels (0.1 and 0.2): the variations in density,

size (to a lesser extent, shape), a large amount of noise (20%). The number of

clusters C was randomly chosen (rangeK = [3, 6]) at each configuration to pro-

vide diversity. The tests were carried out in d={2, 3, 5, 7, 10, 20} with 4 values

of the separation degree: SepV al = {0.1, 0.2, 0.3, 0.4}. The number of samples

per cluster is random in the range [100+20d, 300+20d] increasing linearly with

the dimension. These datasets are denominated U1, . . . , U28. For low values of

SepV al, the clusters become less and less separable while the space dimension

increases due to the curse of dimensionality. As the shape is rather simple, the

Silhouette index is processed on the ground truth partition to delineate this

36

situation. Synthetic results for the three series are given in Table 6. Some

synthesis were done when the results were redundant. The average results are

provided.

Figure 9: Four configurations of SepV al for random cluster generation in d = 2 (axes x and

y), from left to right: 0.4, 0.3, 0.2 and 0.1

7.3. Experiments with real data sets

In real life, the original labels of data are unknown and clustering algorithms

are used to analyze the data. To determine the cluster quality by features such as

similarity, compactness, and separation, an extended version of Davies-Bouldin

has been used in order to better measure the efficiency when the discovery is

related to more complex cluster shapes.

The idea is very simple: each discovered cluster is divided in sub-clusters

via a prototype selection algorithm ([38]) in which the Davies-Bouldin index is

applied. The idea behind is to reduce the whole inertia via the division and then

obtain more "globular" shapes. Then, instead of applying the Davies-Bouldin

index to each complete cluster it is applied to its sub-clusters considering the

worse Davies-Bouldin index between sub-clusters. This way presents a fair an-

alytic method and the division in sub-clusters puts the evaluation in a context

where the use of a simple index has a sense.

Ten benchmarked data sets denoted R1 to R10 covering a wide span of

applications were selected in order to satisfy a number of criteria such that the

collection represents a vast array of applications. These data sets are widely used

in the literature and come from popular repository databases as shown in Table

7. For example, The Iris dataset is well known to contain only two clusters

37

Table 6: Results for data sets in higher dimensions, #C is the expected cluster number (the

plateau size being in parenthesis), D the finding result (Y or N), Fm and MI the internal

indexes. In bold the number of found clusters having the largest plateau size (in parenthesis)

Dataset #C found #C D Fm MI

G1-G4 9 9 (all) Y 1.00 1

G5-G8 16 16 (all) Y 1.00 1

S1-S5 3 8(1), 5(3), 3(6),2(3) Y 0.968 0.959

S6-S10 3 3(7),2(5) Y 0.987 0.988

U1 4 6(1),5(3),4(3),3(1) Y 0.994 0.994

U2 3 4(2),3(14),2(17) Y 0.999 0.998

U3 6 6(13),5(9),3(2),2(3) Y 1.00 1.00

U4 4 5(1),4(22),3(10),2(6) Y 1.00 1.00

U5 4 4(3),3(1),2(3) Y 0.901 0.912

U6 3 3(2),2(4),3(1),2(6) Y 1.00 1.00

U7 5 5(24),4(1),3(1),2(6) Y 0.989 0.978

U8 4 4(12),3(5),2(3) Y 1.00 1.00

U9 3 3(all) Y 0.978 0.969

U10 3 3(2),2(1) Y 1.00 1.00

U11 3 3(all) Y 1.00 1.00

U12 4 4(20) Y 1.00 1.00

U13 6 1(all) N X X

U14 3 3 (manual mode) Y 0.971 0.969

U15 3 3(3),2(5) Y 0.901 0.913

U16 4 4(2),3(1) Y 1.00 1.00

U17-U18 4,4 1 N X X

U19 3 2(4) N 0.819 0.821

U20 4 4(4),2(8) Y 0.987 0.986

U21-U23 3,5 1 N X X

U24 3 2(3) N 0.791 0.782

38

with a rather obvious separation: one of the groups contains the Iris setosa,

while the other group contains both the Iris virginica and the Iris versicolor;

the latter group cannot be separated without information on the species that

Fisher used 4. Without any ambiguity, S-DBSCAN discovers the two clusters

(a plateau with 14 points) as shown in Table 7 for three groups, two species

being not separable. Fig. 10 displays the discovery process for some databases

where different plateaus are visible. The vertical axis shows the number of

connex components, the horizontal one the radius and the top axis the number

of patterns not selected.

Table 7: Real world datasets: description and results where (#C) is the number of discovered

clusters with the largest plateau. In bold the number of found clusters having the largest

plateau size (in parenthesis)

Dataset Size #d Name Or clusters D #C

R1 857357 3 Trans90k [51] 18(2),5(9) Y (4)

R2 34112 3 House8 [46] 6(3),3(6),2(3) Y (3)

R3 245057 3 Skin UCI 5(3),3(5),2(2) Y (3)

R4 440 8 Wholesale UCI 5(8),4(4),2(10) Y (5)

R5 150 4 Iris UCI 3(1),2(14) Y (2)

R6 68040 9 Color moment [51] 2(14),3(1) Y (2)

R7 1473 9 Contraceptive [51] 6(8),9(1),16(2) Y (6)

R8 6876 13 Marketing [51] 4(1),3(7),2(8) Y (2)

R9 7200 21 Tyroid [51] 10(2),11(8),12(2), 13(4) Y (11)

R10 58000 9 Shuttle UCI 10(5) Y (5)

7.4. Comparisons with other algorithms

The proposal was compared to 13 other algorithms depicted in Table 8 with

their parameters and referred to in section 2. Several competitive algorithms

(A1, A6−A9, A11−A12) take the number of clusters as input. These algorithms

4https://fr.wikipedia.org/wiki/Iris_de_Fisher

39

Figure 10: Results for R2 and R3 from left to right. top-bottom. In red, the number of patterns

that are not assigned to a cluster (before the growing process driven by the algorithm 9) .

The vertical green line presents the frontier from which the found partitions are eligible as

enough representative.

were run by varying the number of clusters from 2 to 20. The second ones (in

bold) do not require the number of clusters as input. They are more interesting

for the discovery aspect. For all the methods, the configurations producing

eligible partitions were retained to assess the discovery potential. A discovered

cluster is considered if it contains more than 2% of the whole patterns. A

partition is eligible if the set of eligible clusters present more than 80% of the

whole patterns. Results are shown in Table 9; S-DBSCAN is denoted A14. For

databases without ground truth, the extended David-Bouldin index has been

considered to evaluate the eligible partitions.

7.5. Results and discussion

Synthetic data sets. Table 5 highlights the power of S-DBSCAN to deal with

clusters in different 2D structures. Except for D13, the ground truth clusters are

easily discovered by the algorithm with high efficiency (Fm ∼ 1). The stronger

the separation, the more the algorithm provides a very distinguishable plateau

(D2, D3, D8, [D11, ..., D15]) while in other cases suggesting several partitions

as for D1 2, 3 and 4 partitions that are clustering compatible. For D13, S-

40

Table 8: The competitive algorithms

Algorithm Acro. Parameters Range Ref

Kmeans++ A1 c [2, 20] [1]

DBSCAN A2 ϵ, Minpts [0.05, 0.25],
√
n · [0.05, 0.25] [19]

R-DBSCAN A3 ϵ, θ, τ
√
d[0.01, 0.25], ϵ[1.1, 5], [0.2, 0.6] [9]

SNN A4 k,Share
√
n[0.01, 0.3], k[0.05, 0.9] [8]

SNN R(ε) A5 k,Share,ε
√
n[0.01, 0.3], k[0.05, 0.9],

√
d[0.05, 0.3] [13]

DPeaks A6 c, dc [2, 35],
√
d[0.01, 0.2] [23]

DPeaks DF A7 c [2, 20] [28]

Comp. Dp A8 c [2, 20] [25]

SCDOT A9 c [2, 20] [21]

Munec A10 u [0.02, 0.15] [3]

HierOpt A11 c [2, 20] [30]

Kdmutual A12 c [2, 20] [22]

Rnn-DBSCAN A13 k
√
n · [0.05, 0.5] [12]

S-DBSCAN A14 g [1, 10] X

DBSCAN in its automatic mode discovers one more cluster than the ground

truth that can be retrieved via a manual tuning ((Fig.7). The performances

are promising in higher dimension (Table 6). The algorithm fails however in its

discovery process with the U series for low SepV al values when the dimension

increases. Clusters are retrieved with a very high Simmax for U14 but not

for U [17, 18], U [21...24]. The difference in the distance between pairs of items

diminishes and discrimination is no longer possible. This is attested by the level

of the Silhouette index (as example {U21, U23} gives {0.09}) that is relevant in

this case. The cluster shapes generated via the genRandomClust R package are

globular/ellipsoidal.

As shown in Table 9 all the competitors succeed in discovering clusters when

they are well-separated (G5) even in high dimension, and none succeed when

there is a large overlap (U21) even in moderate dimensions. Between these two

situations, the performances are less clear-cut and more varied. S-DBSCAN

performs similarly to but better than connective approaches. The reason for this

advance is that proposal inherits the strength concepts of SNN and DBSCAN

41

Table 9: Synthetic data bases: best F-score index for 9 representative datasets (D6..U21) and

14 competitive algorithms (A1 to A14) where X means no finding and X(C) means that the

discovered partition in C clusters represents less than n/2 patterns

D6 D9 D16 G5 S5 U5 U10 U14 U21

A1 0.91 X X 0.89 X 0.96 0.97 0.98 X

A2 0.97 X 0.82 1.00 X 0.86(4) X X X

A3 0.98 0.89 1.00 1.00 X 0.86(4) X X X

A4 X X X(4) 1.00 X X X X X

A5 X X X(4) 1.00 X X X X X

A6 0.97 X 0.99 1.00 0.98 0.97 0.97 0.99 X

A7 0.97 X 0.99 1.00 0.98 0.97 0.98 0.99 X

A8 0.97 0.89 0.99 1.00 0.96 0.98 0.97 0.98 X

A9 X X 0.98 1.00 0.89 X 0.89 X X

A10 0.99 X(8) 0.99 1.00 0.96 0.98 0.98 X X

A11 0.96 0.97 0.98 1.00 X 0.98 0.97 0.96 X

A12 0.96 0.98 0.99 1.00 0.96 0.94 0.97 0.97 X

A13 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.891 X

A14 0.98 1.00 0.98 1.00 0.96 0.99 0.98 0.97 X

while being self-tuning and more adaptative as driven in a differencial mode.

The previous methods are static and thus less accurate. For D16, DBSCAN

discovers 5 clusters, SNN only 4 while S-DBSCAN discovers 6 and 5. For U5,

DBSCAN discovers 4 clusters instead of 5.

By nature, SNN algorithms can manage some differential in density but has

other limitations. In presence of a small overlap/noisy patterns and with irregu-

lar shapes, fixing an unique sharing neighbor value is not enough: one wants to

discriminate via this strong condition while in data structure the sharing con-

figuration varies. The shared neighborhood is no longer controlled: small values

are likely to produce many small clusters as larger ones can lead to only one

partition in the worse case, whatever the sharing level. This issue is managed

42

with S-DBSCAN as the scan acts at different levels as in D16. SNN algorithms

failed to discovering natural clusters with most of the selected datasets. DB-

SCAN approaches perform better than SNN ones especially at managing noisy

patterns or small overlaps. They however face issues as soon as there is a density

difference between clusters and a variability inside clusters, S5 being a typical

example. With DBSCAN, SNN and their derived approaches, a tedious and

computational multi-tuning is required without any guarantee of success even

in moderate dimensions (D9 is a typical example).

On the other hand, DP families and Kmeans++ are highly efficient when

clusters match well with density peaks even in presence of noise or overlapping.

They succeed with U14 whereas all the connective algorithms fail including S-

DBSCAN in automatic mode. For these cases, there are no natural clusters

but one peak per cluster does exist as the shapes are "simple". Up to a given

dimension (failure for U21) these algorithms can successfully aggregate the cor-

responding patterns, which is no longer possible for connective algorithms at

low separation level. On the contrary, they systematically failed in presence

of irregular shapes, large size variation even if low dimensions (D9). Kdmu-

tual reaches relevant Fm scores as good as S-DBSCAN but as for the previous

algorithms it needs the cluster number as input.

HierOpt and SCDOT are very slow and perform less well than S-DBSCAN.

Munec achieves more comparable results but needs the u parameter to be tuned

which is not straightforward as it is based on complex heuristics. S-DBSCAN

is computationally interesting (Table 12). It requires only one run and at worse

few trials in the manual mode.

Real world data sets. Real world data sets include more different data organi-

zations more difficult to handle. For each algorithm, the tuning produces a par-

tition that is formalized by the number of clusters and the associated extended

David-bouldin score. The main results are given in Tables 10 and 11: each

value is the minimum extended David-bouldin score obtained for each database

by varying the input parameter(s) of each algorithm. The last columns depicts

43

the percentage of discovery. Table 10 and 11 relate partitions with less or equal

5 (10) clusters. It can be seen that the results highlight significant variation

between the competitive algorithms.

Table 10: Competitive results for real data bases (from R1 to R10) and 14 competitive al-

gorithms (from A1 to A14) : min david-bouldin value for #C found ≤ 5 where X means no

finding.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 %

A1 1.68 1.22 1.72 1.16 0.40 1.94 1.28 1.99 1.02 1.49 100.00 %

A2 0.95 0.66 0.64 0.38 X 0.83 X X X 0.48 60.00 %

A3 0.95 0.66 0.64 0.43 X 0.83 X X X 0.48 60.00 %

A4 1.21 1.02 0.34 X X X X X X X 30.00 %

A5 1.21 0.11 0.34 X X 0.83 X X X X 40.00 %

A6 1.08 1.61 1.62 1.03 0.40 2.14 1.38 2.06 1.56 0.81 100.00 %

A7 1.78 1.61 1.75 1.02 0.40 1.99 1.38 2.11 1.51 0.81 100.00 %

A8 1.09 1.61 1.62 1.03 0.40 2.13 1.38 2.12 1.47 0.98 100.00 %

A9 1.86 0.47 0.65 1.13 0.88 1.07 1.26 1.10 X X 80.00 %

A10 4.01 1.73 X 1.04 0.39 2.16 1.31 X 2.42 1.97 70.00 %

A11 1.12 1.39 1.15 0.61 0.40 X 1.13 0.62 0.99 1.03 90.00 %

A12 1.09 1.56 1.67 1.17 0.40 2.04 0.87 2.07 1.01 0.93 100.00 %

A13 X 0.73 0.93 0.87 0.34 X X X X X 40.00 %

A14 X 1.16 1.84 0.92 0.43 1.90 1.06 2.25 1.11 0.80 90.00 %

S-DBSCAN found out natural clusters for 6 databases among 8 that are

correctly discriminated regarding the index. The algorithms working with the

number of clusters find eligible partitions. They deliver good extended David-

Bouldin scores. This has a certain logic as these algorithms work on the basis

of prototype detection. Even in case of the absence of natural clusters they can

determine partitions.

It is not the case for the other algorithms that work differently and can

produce more complex shapes. Except for the Munec algorithm that proves to

44

discover eligible partitions in many cases, the other algorithms working without

the number of clusters as input have real difficulties to discover eligible parti-

tions. It is particularly true when the dimension space is not low. We think

that an extensive tuning is likely to improve the results of the competitors but

with the consequence to degrade the usability for the investigator. It should be

highlighted that the Rnn-DBSCAN algorithm that is a recent algorithm fails in

many cases. In comparison with the majority of other algorithms that discover

eligible partitions from 70% to 100% (for 5 clusters), only 40% is reached for

Rnn-DBSCAN. This algorithm is also particularly slow compared to the other

algorithms.

Table 11: Competitive results for real data bases (from R1 to R10) : min index value for #C

found ≤ 10 where X means no finding.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 %

A1 1.39 1.06 1.16 0.69 0.38 1.85 1.11 1.84 0.81 0.73 100.00 %

A2 0.74 0.56 0.49 0.47 0.32 X 0.49 X X 0.39 70.00 %

A3 0.88 0.56 0.49 0.47 0.32 1.89 0.49 X X 0.42 80.00 %

A4 0.82 0.56 0.34 X X X X X X X 30.00 %

A5 0.85 0.77 0.34 0.93 X X 1.10 X X X 40.00 %

A6 0.85 0.79 1.10 0.94 0.40 2.14 1.11 2.02 1.13 0.81 100.00 %

A7 0.89 0.79 1.26 0.32 0.40 1.99 1.15 1.99 1.15 0.81 100.00 %

A8 0.88 0.77 1.10 1.03 0.40 1.77 1.16 1.79 0.87 0.98 100.00 %

A9 0.96 0.47 0.65 1.13 0.88 1.07 0.92 0.90 X 0.49 90.00 %

A10 1.23 1.08 1.30 0.98 0.37 2.16 1.07 2.07 1.49 1.50 100.00 %

A11 0.80 0.49 0.28 0.13 0.38 X 1.09 1.09 0.85 1.03 90.00 %

A12 0.77 0.89 1.11 0.93 0.40 1.93 0.77 1.91 0.87 0.89 100.00 %

A13 X 0.46 0.88 0.87 0.34 X 0.94 X X X 50.00 %

A14 0.99 1.16 1.84 0.88 0.43 1.90 0.93 2.14 0.88 0.80 100.00 %

S-DBSCAN appears to have more ability for the discovery task than its

competitors working without specifying the number of clusters as input. It

45

works with only one input parameter and its great advantage is to have an

automatic tuning. Except for R8, the corresponding extended David-Boulding

score is less than 2 that also assesses the quality of the discovered partitions.

Running time comparison. Except of kmeans++ that has O(λ × n) time com-

plexity, the other algorithms in their primarily versions have O(n2) complexity.

Complexity reduction is possible for all the algorithms (including our proposal)

using a kd tree structure as done in [33, 32, 34, 14]. Except of kmeans++

and Dpeak algorithms that have O(λ × n) space complexity, the others have

O(n2) as exploiting the distance matrix in memory to highly reduce their global

computational costs. Even with comparable complexities, there are significant

differences in the running time between the competitors to handle the experi-

mental databases.

The average time for one run was calculated for each algorithm and compared

with the median time (DBSCAN is taken as reference).

The results are summarized in Table 12 where in line 2 the values are the

relative multiplicative factors of rapidity in average, and in line 3 the number

of parameters to be tuned (# Param).

By tuning each parameter t times, the whole time can be approximated by

the product of the values in each row. For example, kmeans++ is 27 times faster

than DBSCAN for 1 run but needs to be launched t2 times to tune its two input

parameters.

Table 12: Runing time (1 run). Comparative results with DBSCAN (A2) as reference.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Unit 27 1 1 1 1 9.1 9.1 9.1 0.2 2.3 0.05 0.1 0.05 0.8

Param 1 2 3 2 3 2 1 1 1 1 1 1 1 1

46

7.6. Additional experiments to compare S-DBSCAN with scalable algorithms to

handle very large databases

In this experiment, the scalability and efficiency of the proposed method is

analyzed to handle very large datasets. A comparison is done with two scalable

and derivate algorithms of DBSCAN. Experiments were performed on 15 syn-

thetic datasets (#D), their sizes s ranging from 5K to 15M, and dimensions d

from 2 to 10. They are partitioned in 5 non overlapped clusters using a multi-

variate normal distribution for each cluster. The cluster centers are generated

by random sampling from a uniform distribution [−10; 10]d, and the covari-

ance matrix is taken as an 2D symmetric matrix of [d× d] size where diagonal

elements are also randomly generated from a uniform distribution (diagonal el-

ements [0.1; 1] and the others [−2; 2]). To each data set, 10% of uniform noise

[−10; 10]d is added. S-DBSCAN is pre-processed using the progressive sampling

framework in [39] with the Protras algorithm [38]. Then, S-DBSCAN is run

with sampled data of size s′ instead of s.

Figure 11: Sampling procedure to pre-process S-DBSCAN : in blue the original patterns from

s and in red the patterns from s′.

A simple database example using a diagonal covariance matrix with 15M

47

data in 2D and is displayed in Figure 11. This database is partitioned in five

clusters of sizes 1.1M, 3M, 0.5M, 8M, 1.2M, 1.2M and contains additional uni-

form data noise patterns. The ratio between the sizes is r =
|s′|
|s|

= 0.017% and

S-DBSCAN can easily retrieve the 5 clusters. The results of this experiment

are provided in Table 13: ts is the computational time using a single computer

to obtain s′ and ts to run S-DBSCAN on a given database D. tIP (s) is the

time for S-DBSCAN to obtain S, NN and dens, and t1run(ms) the average time

for one run of S-DBSCANCORE corresponding to a given radius; T(s)= ts +

tIP (s) + t1run(ms) is the total time. talg1 and talg2 are the average computa-

tional time (over 10 tests) to run G-DBSCAN [15] (exact DBSCAN clustering)

and BLOCK-DBSCAN [14] (approximate DBSCAN clustering) respectively on

D of size s. The time to put the data in the RAM is not considered as the

same for all the algorithms. The value "X" in the Table 13 means that the

computational time is more than 30 min.

Table 13 is related to 1 run. In reality, to discover a partition, BLOCK-

DBSCAN and G-DBSCAN have two parameters to be tuned while S-DBSCAN

only one. For a given number of tuning t per parameter, this means that the

whole time for S-DBSCAN is ts+tIP+ t×t1run when it is t2×talg1 and t2×talg2

for the competitive algorithms. Concerning S-DBSCAN, most of computational

time is related to the pre-processing step. As the distance matrix is available,

the scanning part is not dependant on the space dimension. The scalable ap-

proaches produces tiny computational time with small databases, several ms in

average to process a database of 5K patterns. There are more time efficient

than S-DBSCAN applied without sampling (D1 to D3). Despite their smart

complexities (at the level of O(n × log(n)) they become more questionable for

larger databases. With a single computer, one talks about tens of seconds for

100K patterns, several minutes for 1M of patterns and more than 30 minutes

for 15M of patterns. As t2 tests are needed to tune the S-DBSCAN parame-

ters, the discovery process even with scalable algorithms is time consuming. It

should be noted that BLOCK-DBSCAN appears to be faster than G-DBSCAN,

the difference being really relevant with databases having several tens of K pat-

48

Table 13: Competitive results with two scalable algorithms alg1 (G-DBSCAN [15]) and alg2

(BLOCK-DBSCAN [14]) to handle large databases. X means that the computational time is

more than 30 min.

#D s (Million) d s′(Kilo) ts(s) tIP (s) t1run(ms) T(s) talg1(ms) talg2(ms)

D1 0.005 2 5 0 1.190 5.89 1195.89 654 532

D2 0.005 5 5 0 1.416 6.11 1422.11 676 643

D3 0.005 10 5 0 1.527 6.71 1533.71 712 676

D4 0.01 2 3.112 2.177 1.120 5.89 3302.89 1167 861

D5 0.01 5 2.389 2.975 1.376 6.11 4357.11 1211 932

D6 0.01 10 2.521 2.106 1.324 6.71 3436.71 1312 982

D7 1 2 3.112 2.177 1.120 5.89 3362.89 1.426 106 2.832 105

D8 1 5 2.389 2.975 1.376 6.11 4357.11 1.580 106 8.132 105

D9 1 10 2.521 2.706 1.324 6.71 4036.11 1.628 106 9.372 105

D10 8 2 3.102 2.455 0.942 5.51 3302.51 X 1.654 106

D11 8 5 3.872 2.522 1.201 5.12 5078.12 X 3.728 106

D12 8 10 3.221 2.898 1.421 4.68 4323.68 X 4.872 106

D13 15 2 2.829 2.392 1.102 5.24 3499.24 X X

D14 15 5 3.301 2.342 1.280 4.89 3626.49 X X

D15 15 10 3.529 2.876 1.442 5.09 4823.09 X X

terns. Compared to the scalable approaches, the hybridization with sampling

approaches is more competitive. The computational time to obtain the sam-

pled data is low as the process is based on a progressive sampling approach

[39] that generates s′ without inspecting the whole database. This time is more

related to the data organization and than the size of the dataset. Thanks to

this pre-processsing step, S-DBSCAN is always applied to a reduced set where

the hierarchical partitions can be obtained in several seconds.

7.7. Behavior of the algorithm regarding the SizeMin parameter

In this experiment, the goal is to study the effect of the SizeMin parameter.

By default, this parameter is set up to n/100 (n is the data dimension) behind

49

Figure 12: Projection of data in 2D for T2, T3 and T4 with different n and d.

the idea that below this value a cluster does not afford a real contribution

for the final partition. Experiments were performed on four types of data for

which n and d (space dimension) vary: The first one (T1) is an uniform random

pattern distribution without being structured in clusters, the second one (T2)

contains 6 "globular" separated clusters having similar characteristics (same

size, multivariate normal Gaussian distributions with σij=0.3 + random(0, 0.1)

in each dimension j). When d > 2 one has cij=ci0 for all i and j. The third one

(T3) contains 6 separated clusters having different characteristics (size, shape

and internal density) where one cluster has a tiny size compared to the others.

The fourth one (T4) is more complex. It is a mixture of multivariate normal

distributions with varied densities producing 7 clusters: 2 major clusters having

complex shapes with a small overlapping, and 5 minor clusters plus or less

50

separated to the others.

For T3 and T4, the protocol is the same. The centers and standard deviations

are defined in 2D. Concerning d, all the center components cj are fixed according

to the first one : cij=ci0) for all clusters i and j > 2. The standard deviation

σij is fixed as follows : σij=min(σi0,σi1). To each data set, 20% of uniform

noise is added. The primal size s is 1080 patterns (900+20%× 900). The other

sizes are a multiple of s: n = λ × s. Figure 13 shows the data projections in

2D (components 0-1 and 0-7) for T2 (n = 5s), T3(n = 2s) and T4(n = 2s)

with d = 10. The algorithm is evaluated without preprocessing. Both n and d

are varied and the effect of SizeMin values has been studied for each dataset

type representing 45 sub-datasets (9[d]× 5[n]) for each type : n is ranged from

s to 5s (up to available memory in a single computer), d from 2 to 10 and four

SizeMin values are tested : n/1000, n/500, n/200 and n/100.

Table 14 gives the computational time Ct for different couples (n, d) and

each data type. It corresponds to the mean and standard deviation of the times

obtained using the four SizeMin values. The granularity gr (cf. Algorithm 1

line 1) is fixed at 20 but the number of iterations of S-DBSCAN (cf. Algorithm1)

can vary according to the end criterion. For a precise comparison, each value of

Ct corresponds to the time to process Ip (tIP) added to the mean time (t1run)

to compute 1 scan iteration (cf. Algorithms 3 and 9). It should be noted that

tIP does not depend on SizeMin but it includes a random share.

Ctµ,σ = [µ, σ](tIP + t1run) (14)

where tIP and t1run are vectors in 4 dimensions.

As shown in Table 14, the computational time increases with (n, d) with

very small variations due to SizeMin. As tIP does not depend on SizeMin, a

deeper analysis is given in Table 15 where only the t1run time for each database is

studied for n = 4s, d = [2 . . . 10] and SizeMin = [n/100, n/200, n/500, n/1000].

It can be shown that for each data type, the t1run time in milliseconds is very

close to each other regarding SizeMin and d. These results confirm that the

51

computational time essentially depends on (n, d) and not on SizeMin. It is

mainly due to tIp that varies with (n, d) and one has t1run ≪ tIp. A Wilcoxon

signed-rank was performed to confirm this point. Several couple (a, b) of series

of data were considered in T1, T2, T3 and T4 with different values of n and d;

a is the average time under 10 runs for one SizeMin value and b for another

one. The p-value is the probability of observing the computed statistic, given

the experimental conditions, under the null hypothesis, meaning that both time

values come from a unique population, i.e. there is no time difference between

different SizeMin values. The Wilcoxon does not support the rejection of the

null hypothesis at 5%.

Table 14: Computational time Ct when n and d vary. Each value corresponds to the mean

time in second to process tIp + t1run for 4 SizeMin values. The value in parenthesis is the

standard deviation.

@
@
@
@

n

d
2 4 6 8 10

T1(s) 1.47(0.02) 1.52(0.01) 1.61(0.02) 1.64(0.03) 1.73(0.04)

T1(3s) 14.69(0.1) 14.70(0.08) 14.74(0.11) 14.81(0.09) 16.47(0.13)

T1(5s) 45.34(0.12) 46.08(0.13) 46.90(0.09) 47.55(0.12) 48.71(0.11)

T2(s) 1.47(0.01) 1.84(0.01) 1.88(0.01) 2.01(0.02) 2.05(0.01)

T2(3s) 15.28(0.12) 15.48(0.2) 15.58(0.18) 16.27(0.1) 16.71(0.13)

T2(5s) 50.25(0.2) 51.17(0.21) 52.15(0.19) 53.4(0.14) 53.84(0.23)

T3(s) 1.84(0.01) 2.13(0.02) 2.1(0.01) 1.87(0.02) 1.94(0.01)

T3(3s) 15.33(0.17) 15.67(0.12) 17.10(0.09) 17.14(0.14) 19.66(0.19)

T3(5s) 43.45(0.21) 51.92(0.22) 52.19(0.19) 53.82(0.28) 55.90(0.23)

T4(s) 2.21(0.01) 2.66(0.01) 2.91(0.02) 3.06(0.02) 3.2(0.01)

T4(3s) 17.42(0.13) 18.27(0.19) 18.82(0.16) 19.32(0.14) 19.81(0.16)

T4(5s) 51.61(0.24) 52.18(0.22) 54.72(0.28) 56.11(0.25) 57.07(0.29)

In terms of accuracy, S-DBSCAN perfectly detects the internal structure of

the data without any ambiguity and whatever the configurations for T1 and T2.

52

Table 15: t1run in milliseconds for n = 4s: each value is the mean of t1run through the

iterations for a given SizeMin and d. The number of iterations depends on the end criterion

but there are at least 20 iterations as the granularity gr = 20.

HHH
HHH

HH
SizeMin

d
2 3 4 5 6 7 8 9 10

T1(n/100) 25.61 30.86 32.13 33.41 32.81 33.13 33.70 31.70 32.00

T1(n/200) 26.01 30.28 29.85 28.25 28.53 31.58 31.62 31.92 31.22

T1(n/500) 27.88 29.27 27.95 28.18 29.58 31.60 28.63 29.89 31.21

T1(n/1000) 24.23 28.63 30.16 32.95 28.93 25.22 30.27 31.22 31.23

T2(n/100) 12.32 12.91 10.83 10.90 10.72 11.04 11.40 11.68 10.95

T2(n/200) 12.72 12.65 10.71 10.78 10.80 11.11 11.10 11.12 10.00

T2(n/500) 11.71 13.03 10.74 10.68 10.82 10.99 12.12 12.01 11.12

T2(n/1000) 8.93 13.25 10.95 10.69 10.54 11.60 11.59 11.09 11.50

T3(n/100) 12.88 15.24 15.77 17.53 17.86 17.68 19.55 19.47 18.96

T3(n/200) 11.74 16.90 16.76 18.28 17.98 18.24 19.95 20.53 18.47

T3(n/500) 10.41 15.90 17.97 17.68 17.44 17.74 18.90 18.53 20.87

T3(n/1000) 10.41 15.12 16.06 17.44 17.93 17.48 19.49 19.41 21.58

T4(n/100) 13.19 18.46 18.45 22.36 18.36 18.63 16.5 18.33 18.22

T4(n/200) 13.78 18.60 17.99 22.02 18.25 18.18 16.91 18.21 18.70

T4(n/500) 13.42 19.01 18.02 21.99 20.25 20.02 17.52 19.04 19.03

T4(n/1000) 13.11 18.31 17.41 21.71 18.77 19.18 18.13 19.22 18.83

For T3, the first 5 main clusters are always perfectly discovered but it is not

the case for the 6th regarding its comparable tiny size (see sub-Figures 13.1 and

13.2) for SizeMin = n/100. The result is similar for T4 concerning SizeMin.

The smallest clusters are found for SizeMin = n/1000 but other small clusters

can also be detected particularly in low dimensions (see Sub-Figures 13.5 and

13.6) according to ract. It is due to the presence of noisy patterns that have

more chance to be structured than in high dimensions. Some clusters are not

well-separated in T4. As shown in Figure 13, S-DBSCAN discovers the expected

53

partitions with high accuracy (Fm > 0.9 and MI > 0.9) but also suggests some

variants as a function of ract (cf. Algorithm 1) that are easily interpretable.

Expected clusters that are very close to each other can be regrouped in one

cluster (see sub-Figures 13.6, 13.7 and 13.8).

Figure 13: Data types: Examples of discovery for T3 and T4 when n, d and SizeMin vary.

The detected clusters (seen in 2 dimensions) are in color and the noisy patterns in black.

The synthesis is as follows:

• There is no visible effect on the computational time when SizeMin varies.

54

This is explained by the fact that all the points are visited via the scan

whatever the SizeMin value.

• The computation time increase with n and d. It is due to the distance

calculations but there is non link with the SizeMin value in our imple-

mentation.

• With small SizeMin values, more small groups can be identified, they can

be real clusters or not. The major clusters remain the same.

• The algorithm does not logically allow to discover real clusters below the

SizeMin value. Then, according to the importance of such groups for very

large data sets, the investigator can adapt the value if needed regarding

n. As the scanning time is negligible compared to the preprocessing tasks

(to find S, NN, k, dens and Simmax) the tuning is easy and quick. The

process should be to use the default value n/100 for a first discovery and

smaller values can serve for a deeper analysis.

8. Conclusion

S-DBSCAN is simple, deterministic, non iterative and is able to discern a

wide class of data of arbitrary shapes and sizes in presence of noise and outliers.

S-DBSCAN is almost full automatic and requires minimum interaction with the

investigator. It is insensitive to the ordering of the points in the database, the

process being driven by the potential of each data pattern to be a density peak.

S-DBSCAN scans the database by applying its algorithm core S-DBSCANCORE

on the basis of an increasing series of influence zones. S-DBSCANCORE groups

together data patterns that are closely packed together with respect to the dif-

ferential density.

Experimental results showed that S-DBSCAN is powerful for the discovery

process without needing the cluster number as input. It is efficient in terms of

accuracy compared to connectivity-based competitive algorithms. When "nat-

55

ural" clusters exist S-DBSCAN can discover them without any tuning, which

is a strong asset.

In its pioneer version, scalable methods perform better on computational

time and S-DBSCAN has to be combined with sampling approaches to handle

large databases. This is mainly due to its memory complexity and the necessity

to process matrix distance.

Time complexity should be reduced to O(n× log(n)) using a kd-tree imple-

mentation as in [32] and space complexity to 2×O(k×n) + O(n) as only the k

nearest neighbors, their associated distances and the local density at each point

is needed to run S-DBSCAN.

As most of clustering algorithms, the performance of S-DBSCAN depends

on the distance measure used, the most common one being the Euclidean dis-

tance. Especially for high-dimensional data, this metric can be rendered almost

useless due to the so-called "Curse of dimensionality". Concentration of pairwise

distances and violation of neighborhood structure weaken the process.

The next advances could be based on a novel implementation based on an ef-

ficient indexing data structure and a systematic pre-processing integrated stage.

The latter would deal with very large databases and handle high dimensional

data by using either an unsupervised feature selection or an input space trans-

form.

References

[1] A. K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition

Letters 31 (2010) 651–666.

[2] X. Xu, S. Ding, Z. Shi, An improved density peaks clustering algorithm

with fast finding cluster centers, Knowledge-Based Systems 158 (2018)

65–74.

[3] F. Ros, S. Guillaume, Munec: A mutual neighbor-based clustering algo-

rithm, Information Sciences 486 (2019) 148–170.

56

[4] R. Salman, V. Kecman, Q. Li, R. Strack, E. Test, Fast k-means algorithm

clustering, arXiv preprint arXiv:1108.1351 (2011).

[5] P. Domingos, G. Hulten, A general method for scaling up machine learning

algorithms and its application to clustering, in: ICML, volume 1, 2001, pp.

106–113.

[6] Y. Lv, T. Ma, M. Tang, J. Cao, Y. Tian, A. Al-Dhelaan, M. Al-Rodhaan,

An efficient and scalable density-based clustering algorithm for datasets

with complex structures, Neurocomputing 171 (2016) 9–22.

[7] S. Wang, A. Gittens, M. W. Mahoney, Scalable kernel k-means cluster-

ing with nyström approximation: relative-error bounds, The Journal of

Machine Learning Research 20 (2019) 431–479.

[8] R. A. Jarvis, E. A. Patrick, Clustering using a similarity measure based

on shared near neighbors, IEEE Transactions on computers 100 (1973)

1025–1034.

[9] Y. Zhu, K. M. Ting, M. J. Carman, Density-ratio based clustering for

discovering clusters with varying densities, Pattern Recognition 60 (2016)

983–997.

[10] J. Xie, W. Jiang, An adaptive clustering algorithm by finding density

peaks, in: Pacific Rim International Conference on Artificial Intelligence,

Springer, 2018, pp. 317–325.

[11] J. Xie, W. Jiang, L. Ding, Clustering by searching density peaks via lo-

cal standard deviation, in: International Conference on Intelligent Data

Engineering and Automated Learning, Springer, 2017, pp. 295–305.

[12] A. Bryant, K. Cios, Rnn-dbscan: A density-based clustering algorithm

using reverse nearest neighbor density estimates, IEEE Transactions on

Knowledge and Data Engineering 30 (2018) 1109–1121.

57

[13] L. Ertöz, M. Steinbach, V. Kumar, Finding clusters of different sizes,

shapes, and densities in noisy, high dimensional data, in: Proceedings of

the 2003 SIAM International Conference on Data Mining, SIAM, 2003, pp.

47–58.

[14] Y. Chen, L. Zhou, N. Bouguila, C. Wang, Y. Chen, J. Du, Block-dbscan:

Fast clustering for large scale data, Pattern Recognition 109 (2021) 107624.

[15] K. M. Kumar, A. R. M. Reddy, A fast dbscan clustering algorithm by

accelerating neighbor searching using groups method, Pattern Recognition

58 (2016) 39–48.

[16] A. Sarma, P. Goyal, S. Kumari, A. Wani, J. S. Challa, S. Islam, N. Goyal,

µdbscan: an exact scalable dbscan algorithm for big data exploiting spatial

locality, in: 2019 IEEE International Conference on Cluster Computing

(CLUSTER), IEEE, 2019, pp. 1–11.

[17] Y. Song, Y. Gu, R. Zhang, G. Yu, Brepartition: Optimized high-

dimensional knn search with bregman distances, IEEE Transactions on

Knowledge and Data Engineering (2020).

[18] Z. Liu, C. Wu, Q. Peng, J. Lee, Y. Xia, Local peaks-based clustering

algorithm in symmetric neighborhood graph, IEEE Access 8 (2019) 1600–

1612.

[19] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm

for discovering clusters in large spatial databases with noise, in: Proceed-

ings of the Second International Conference on Knowledge Discovery and

Data, 1996, pp. 226–231.

[20] A. Hinneburg, D. A. Keim, A general approach to clustering in large

databases with noise, Knowledge and Information Systems 5 (2003) 387–

415.

58

[21] Q. Cheng, X. Lu, Z. Liu, J. Huang, G. Cheng, Spatial clustering with

density-ordered tree, Physica A: Statistical Mechanics and its Applications

460 (2016) 188 – 200.

[22] F. Ros, S. Guillaume, M. El Hajji, R. Riad, Kdmutual: A novel clustering

algorithm combining mutual neighboring and hierarchical approaches using

a new selection criterion, Knowledge-Based Systems (2020) 106–220.

[23] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks,

Science 344 (2014) 1492–1496.

[24] M. Du, S. Ding, H. Jia, Study on density peaks clustering based on k-

nearest neighbors and principal component analysis, Knowledge-Based

Systems 99 (2016) 135–145.

[25] Z. Li, Y. Tang, Comparative density peaks clustering, Expert Systems

with Applications 95 (2018) 236–247.

[26] M. Parmar, D. Wang, X. Zhang, A.-H. Tan, C. Miao, J. Jiang, Y. Zhou,

Redpc: A residual error-based density peak clustering algorithm, Neuro-

computing 348 (2019) 82–96.

[27] J. Jiang, Y. Chen, D. Hao, K. Li, Dpc-lg: Density peaks clustering based

on logistic distribution and gravitation, Physica A: Statistical Mechanics

and its Applications 514 (2019) 25–35.

[28] S. Wang, D. Wang, C. Li, Y. Li, G. Ding, Clustering by fast search and

find of density peaks with data field, Chinese Journal of Electronics 25

(2016) 397–402.

[29] G. Karypis, E.-H. Han, V. Kumar, Chameleon: Hierarchical clustering

using dynamic modeling, Computer 32 (1999) 68–75.

[30] F. Ros, S. Guillaume, A hierarchical clustering algorithm and an improve-

ment of the single linkage criterion to deal with noise, Expert Systems with

Applications 128 (2019) 96–108.

59

[31] A. I. Maghsoodi, A. Kavian, M. Khalilzadeh, W. K. Brauers, Clus-mcda:

A novel framework based on cluster analysis and multiple criteria decision

theory in a supplier selection problem, Computers & Industrial Engineering

118 (2018) 409–422.

[32] B. F. Faustino, J. Moura-Pires, M. Y. Santos, G. Moreira, kd-snn: a metric

data structure seconding the clustering of spatial data, in: International

Conference on Computational Science and Its Applications, Springer, 2014,

pp. 312–327.

[33] S. Kumari, S. Maurya, P. Goyal, S. S. Balasubramaniam, N. Goyal, Scalable

parallel algorithms for shared nearest neighbor clustering, in: 2016 IEEE

23rd International Conference on High Performance Computing (HiPC),

IEEE, 2016, pp. 72–81.

[34] Y. He, H. Tan, W. Luo, S. Feng, J. Fan, Mr-dbscan: a scalable mapreduce-

based dbscan algorithm for heavily skewed data, Frontiers of Computer

Science 8 (2014) 83–99.

[35] S. Guha, R. Rastogi, K. Shim, Cure: an efficient clustering algorithm for

large databases, Information Systems 26 (2001) 35 – 58.

[36] F. Ros, S. Guillaume, Dides: a fast and effective sampling for clustering

algorithm, Knowledge and information systems 50 (2017) 543–568.

[37] P. K. Agarwal, S. Har-Peled, K. R. Varadarajan, et al., Geometric approxi-

mation via coresets, Combinatorial and computational geometry 52 (2005)

1–30.

[38] F. Ros, S. Guillaume, Protras: A probabilistic traversing sampling algo-

rithm, Expert Systems with Applications 105 (2018) 65–76.

[39] F. Ros, S. Guillaume, A progressive sampling framework for clustering,

Neurocomputing 450 (2021) 48–60.

60

[40] D. Hand, P. Christen, A note on using the f-measure for evaluating record

linkage algorithms, Statistics and Computing 28 (2018) 539–547.

[41] S. Romano, J. Bailey, V. Nguyen, K. Verspoor, Standardized mutual in-

formation for clustering comparisons: one step further in adjustment for

chance, in: International Conference on Machine Learning, PMLR, 2014,

pp. 1143–1151.

[42] J. Hämäläinen, S. Jauhiainen, T. Kärkkäinen, Comparison of internal

clustering validation indices for prototype-based clustering, Algorithms

10 (2017) 105.

[43] I. Kärkkäinen, P. Fränti, Dynamic local search algorithm for the clustering

problem, Technical Report A-2002-6, Department of Computer Science,

University of Joensuu, Joensuu, Finland, 2002.

[44] L. Fu, E. Medico, Flame, a novel fuzzy clustering method for the analysis

of dna microarray data, BMC bioinformatics 8 (2007) 3.

[45] A. Jain, M. Law, Data Clustering: A User’s Dilemma, in: Proceedings

of the First international conference on Pattern Recognition and Machine

Intelligence, 2005, pp. 1–10.

[46] P. Fränti, O. Virmajoki, Iterative shrinking method for clustering problems,

Pattern Recognition 39 (2006) 761–765.

[47] I. Kärkkäinen, P. Fränti, Gradual model generator for single-pass cluster-

ing, Pattern Recognition 40 (2007) 784–795.

[48] P. Fränti, O. Virmajoki, V. Hautamäki, Fast agglomerative clustering using

a k-nearest neighbor graph, IEEE Trans. on Pattern Analysis and Machine

Intelligence 28 (2006) 1875–1881.

[49] W. Qiu, H. Joe, Generation of random clusters with specified degree of

separation, Journal of Classification 23 (2006) 315–334.

61

[50] W. . J. Qiu, Harry, Separation index and partial membership for clustering,

Computational Statistics & Data Analysis 50 (2006) 585–603.

[51] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez,

F. Herrera, Keel data-mining software tool: data set repository, integration

of algorithms and experimental analysis framework., Journal of Multiple-

Valued Logic & Soft Computing 17 (2011).

62

