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ARTICLE INFO 1. ABSTRACT

Keywords: Multivariate spectral signals are highly correlated. Often, variable selection techniques are deployed, aiming at

Feat‘fre Selecrion model optimization, identification of key variables to explore the underlying physicochemical system or devel-

ISVI“lti"a“ate opment of a cheap multi-spectral system based on key variables. However, many times the selected variables do
pectroscopy

not supply a good estimate of properties when tested on a new setting such as new measurements performed on a
different spectrometer, different physical or chemical state of the samples and difference in the environmental
factors around the experiment. Often the model based on variables selected in the first domain (specific condi-
tions/instrument) does not generalize on the new domain (specific conditions/instrument). To deal with it, in the
present work a new method to variable selection called domain invariant covariate selection (di-CovSel) is
proposed. The method selects the most informative variables which are invariant to the differences in the in-
struments, physical or chemical state of the samples and the differences in the environmental factors around the
experiment. The method is inspired by domain invariant partial least-square (di-PLS) and the covariate selection
(CovSel). The potential of the method is demonstrated on four real cases related to the calibration of near-infrared
(NIR) spectroscopy on agri-food materials. The results show that in all the cases, the domain invariant features
selected by the di-CovSel have low prediction error compared to the standard variable selection with the CovSel
approach when the models are tested on a new data domain. In summary, domain invariant features selected
across domains support the development of calibration models with good generalization and supply a better
understanding of the system by bypassing the external factors originating from differences in the instruments,
physical or chemical states of the samples and the differences in the environmental factors around the experiment.
Note that one key feature of the proposed method is that the most important variables which generalize well
across domains can be identified without requiring reference measurements in the target domain.

Domain adaptation

1. Introduction

Optical spectroscopy techniques are widely used in diverse scientific
domains for non-destructive and non-contact analysis of material prop-
erties [1-3]. Optical spectroscopy can be performed in different parts of
the electromagnetic radiation (EMR) spectrum ranging from X-rays [4] to
terahertz [5]. Furthermore, it allows to capture information on different
EMR interactions related to the chemical components and those related
to the microstructure [2]. Application of optical spectroscopy can be
found in several areas of research such as fruit and vegetables [6],
pharmaceutical manufacturing [7,8], medicine [9], forensics [10], agri-
cultural plants [11,12], veterinary [13] etc.

* Corresponding author.
E-mail address: puneet.mishra@wur.nl (P. Mishra).

https://doi.org/10.1016/j.chemolab.2022.104499

A key feature of the optical spectroscopy sensing techniques is that all
the techniques capture the material responses as multivariate signals
which are acquired as responses of the interactions between EMR and the
material. For example, in near infrared spectroscopy (NIRS) the attenu-
ation of EMR in the wavelength range from 700 to 2500 nm upon
interaction with the sample is quantified at different wavelengths [1].
Multivariate signals acquired with spectral sensing technique are highly
collinear [14] and especially the responses of neighboring spectral bands
are highly correlated in low energy EMR ranges such as UV, visible (Vis),
NIR, MIR and terahertz. As these spectra typically do not contain wave-
length variables which are specific for the component of interest, the data
must be processed with chemometric or machine learning tools to
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identify the most informative wavelengths and for predictive modelling
[14]. While a wide range of methods are used for exploring the spectral
signals, the latent space modelling approaches such as principal
component analysis (PCA) [15] and partial least-squares (PLS) [16,17]
based approaches are widely used when the aim is not only to model the
data but also to gain insights in the underlying chemistry. The main asset
of the latent space modelling approaches for modelling highly correlated
spectral data is their ability to extract the key orthogonal subspaces
which are most explanative of the data (for example variation for PCA) or
predictive (for example covariation for PLS) for the property of interest
[16-18].

While many researchers have reported on the use of NIR spectral
sensing and chemometrics for both qualitative and quantitative analysis
of samples, most studies were limited to primary calibration of models on
a limited number of samples where the NIR spectroscopy works very well
[1]. However, due to its sensitivity to the unmodelled physical and
chemical disturbances in the systems, obtaining long-term performance
with NIR models turns out to be more challenging [19-21]. These dis-
turbances can be due to a range of factors such as a change in temperature
of the sensor or the samples compared to the temperature of sensor or
samples of the calibration data set [19], changes in the physical form of
samples such as from solid to powder form [22], seasonal differences for
fresh fruit analysis related applications [21,23,24] and due to changes in
the instruments where the model is made on one instrument and required
to be used on a new instrument [25]. All these disturbances may lead to
failure of the predictive models. Therefore, different methods have been
proposed for correcting models for the disturbances, such as external
parameter orthogonalization (EPO) [19], dynamic orthogonal projection
(DOP) [20,26], domain invariant partial least-squares (di-PLS) [27-29]
and transfer component analysis (TCA) [30]. EPO and DOP aim to
eliminate the differences which can cause model failure, such as spectral
differences originating from temperature variation [31]. Di-PLS, a
method inspired by domain adaptation, was recently proposed to achieve
domain invariant NIR calibrations that generalize well when used on
data acquired in the new domain [27-29]. A key point to note is that the
domain adaptation approaches such as di-PLS and transfer component
analysis (TCA) [30] require some data from the new domain to achieve
the domain adaptation.

Apart from the development of predictive models, it is also of interest
to gain more insight into the key region of interest of the multivariate
signals which are explanative of the data or the property of interest. The
task is usually termed variable selection and particularly for spectral data
aims to select key wavelengths of interest [32,33]. In the chemometric
scientific literature, a wide range of variable selection methods for
spectral data can be found and can be broadly classified as wrapper,
embedded, filter and a combination of them called hybrid approaches
[33]. Variable selection can be aimed at enhanced understanding of the
background chemistry or at developing low cost and fast multi-spectral
sensors. However, like full range calibration models, the models and
conclusions based on selected variables may not hold true when met with
a new batch of data carrying unseen variation. Hence, there is also a need
to tune for the variable selection task specific for a batch carrying unseen
variation. This might be achieved by adding domain invariance to the
variable selection approaches. Covariate selection (CovSel) [34] is a
widely used variable selection technique with strong similarity to PLS
thanks to the involvement of simple orthogonalization steps. Thanks to
this similarity, it could be possible to make it domain invariant based on
the principles of di-PLS [27-29]. Therefore, the aim of this study was to
develop and test a domain invariant version of the CovSel variable se-
lection method. The development of di-CovSel is inspired by the existing
di-PLS and CovSel variable selection approaches. The main hypotheses of
the study are as follow:

o Just like the standard PLS model that suffers from unseen variation
present in the new domains, the models based on CovSel selected
variables will not generalize well to the new domain.
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e Adding domain invariance to CovSel will allow to select variables that
provide models which generalize better to the new domain of the
data.

To test the above two hypotheses, CovSel and di-CovSel were
compared on a wide range of NIR data sets. Furthermore, the advantages
and disadvantages of the newly developed di-CovSel method are also
discussed and recommendations for future use are provided.

2. Theory

In this section, a theoretical background to both di-PLS and CovSel is
provided. Next, the di-CovSel method is introduced starting from the
concepts of di-PLS and CovSel. All matrices are presented in bold upper
case. All vectors are in bold lower case and constants are in lower case.
We symbolize the elements to construct di-CovSel as follows: X; € R™*k
and y € R™ rrepresent the calibration data belonging to the source
domain. X, € R™*k represents the data for adaptation to the target
domain. Double sub indexed vectors x,; € R™, x; € R™, represent the j-th
column of the corresponding matrices which relate to the j-th spectral
variable. Super indexed vectorsx! and x! € R* represent an observation in
the source and target domain, respectively. X7, yT and X7 are used for
the respective transpose elements. One-dimensional arrays represented
in bold lower case are assumed to be arranged as columns and therefore
their transpose represents a one-dimensional row array. Regular italic
low case notation represents scalar values. The matrices are assumed to
be centered by columns, with g, , u, and p,,, representing the means.

2.1. Domain invariant PLS analysis

The underlying idea to construct a domain invariant model based on
PLS relies on the association of X and y by a bilinear model constrained to
an invariability of the projected domains [35]. The objective function
considering the domain invariability for PLS [35] is given by Eq. (1)
mi_nHX —waHz, subject to |var(t,) — vat(t,)| =0 (¢})
wherew € RK corresponds to the weight vector of the bilinear model and

t; and ¢, represent the scores, that is, the projection of matrices X; and X,
onto w. This optimization criterion is redefined in di-PLS as Eq. (2)

n}jn”X —yw"||* + A(w" Aw) @)

where w! Aw is an upper bound of |var(t;) — var(t;)|, 2 becomes a domain
regularization parameter and matrix A is defined by the eigenvectors and
the absolute value of the eigenvalues of D = cov(X;) — cov(X;). Following
an iterative procedure as in classical PLS, the complete di-PLS model is
defined by a latent variables. At each step, w is calculated based on Eq.
(2). Latent variable scores t;, = X;w and ¢, = X,w are calculated followed
by loading vectors pI = ¢, 1T X;, pT =, 1¢T X, and regression coefficient
c= (tsTts)fltST y. Such scores, loadings and regression coefficient are
finally used to deflate the elements as X; = X,—tpl,y =y — ct; and X; =
X—tpl.

With the deflated elements, a new iteration starts until the target
number of a latent variables have been calculated. Using the corre-
sponding obtained matrices W and P and regression coefficients c, the net
analyte signal vector for the linear regression and intercept are calculated
as Egs. (3) and (4)

b=WEW) 'c 3)

by=p, — . b (4

In this way, di-PLS delivers the estimation of a linear regression
model which can be subsequently used for prediction in the target
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Algorithm for di-CovSel
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Input: source domain matrices X; € R ™*¥ | y € R™s and target domain X, € R™*¥

centered, number of variables to select m and the value of A for the domain invariant

regularization parameter.

Output: Selected variables and order of selection selvars: = [ ]

forl=1tomdo:

D = cov(X;) — cov(X,) = Vdiag(o,, 05, ...,0:)VT

A=vdiag(|o,|, |oz],... | VT
A= (O'I+a8)7"

j = ArgMax(diag(A;X{yy X A));

selvars: = [selvars,j]
P = x0) (XTyXs) " x5
P, = xt(l)(xZ(L)xt(l))_lxI(l)

Xs(1) = Xsj

X;=X;—-PX;
y=y—Pgy
Xt = X[ — PtXt
end
domain using Eq. (5)
3=x/""b +b, 5)

2.2. Covariate selection approach

Variable selection by covariate selection (CovSel) relies on the
maximization of the covariance between X and y, analogous to the
definition of the latent variables in the case of PLS. We use the source
domain to refer to CovSel. The first variable selected by CovSel i.e., x,(1)
corresponds to the j-th variable i.e., x; which maximizes the criterion
given by Eq. (6)

2
cov(xg,y) = xpyyxg 6)
This criterion is equivalent to findingx,; such that,

Jj = ArgMax(diag(XTyy"X;));

Xs(1) = Xy

Once x,1) has been selected, a deflation step takes place to orthogo-
nalize the matrices by the selected variable. To do so, the projector P is
calculated as Eq. (7)

1
P, :xx(l)(x((l)x:(l)) xST(l) )

and matrices are deflated as X; = X;— P1X;andy =y — Pyy. The process
is repeated to select x(1), Xs(2), ---) Xs(k)-

2.3. Domain invariant covariate selection

To extend CovSel to select variables that are invariant across domains,
the principle used by di-PLS is inherited to develop domain invariant
covariate selection (di-CovSel). This method is based on calibration data
from the source domain X; and y, and a separate set for domain adap-
tation X,. Note that the use of unsupervised samples in the target domain

builds on the assumption that the marginal distributions of the domains
are different (P(X;) # P(X;)), while the conditional distribution that de-
fines the relationship between X and y remains unchanged [27,35]. The
procedure in di-CovSel consists of three steps: (i) calculate domain
invariant matrix A, (ii) select the most informative variable according to
CovSel and di-PLS criteria combined, (iii) deflate source and target
domain matrices by their indicative selected variable. The initial step is
executed by calculating matrix A as in di-PLS making use of X; and X;. For
the second step, the criterion for variable selection takes the same cri-
terion from CovSel [34] inheriting the solution of the optimization cri-
terion of di-PLS as in Eq. (2). The solution to the latter corresponds to the
vector calculated with Eq. (8)

w’ :yTXS((yTy)I+/1A)7l (8

where I is the identity matrix of the adequate order. This is equivalent to
defining the solution as w = A AXST , Where A; is a symmetric matrix
defining the rightest term becoming a weighting matrix for the columns
of X;, that is, a weighting for the variables. Therefore, to select the most
informative domain invariant variable j, X is substituted by the weighted
matrix XA, in the criterion of CovSel, rendering the criterion for di-
CovSel as Eq. (9)

j= ArgMax(diag(AAXfnyXsAA)); Xy(1) = Xy 9

Once j has been found, projectors for the source and target domain are
calculated as Egs. (10) and (11)

—1
P, :x.\m(xf(,)xs(l)) xly 10)

-1
P, =Xi(1) (x,TU)xt(l)) x,TU) an

These projectors are finally used to carry over the deflation step as
X; =X; — PyX;,y =y— Pgy, and X; = X,— P X,. Thereafter, the pro-
cess is repeated for [x.2), X«2)], [Xs@3), X«3)]s -5 Fsw)» Xew)]. Note that the
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Table 1
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A summary of samples and reference properties in calibration, domain adaption and test set for the 4 cases.

Datasets Wavelength Samples in source calibration set/ ~ Samples in source test set/ Samples for adaption in target Samples for test in target set/
(reference range (nm) reference property range (mean reference property range set/reference property range reference property range
property) =+ std) (mean =+ std) (mean =+ std) (mean + std)
Rice (Protein %) 950-1200 140/(9.07 + 1.46) 60/(9.02 + 1.57) 60/(9.19 + 1.48) 140/(8.99 + 1.50)
Wheat (Nitrogen 397-2497 380/(4.15 + 1.29) 163/(4.37 + 1.32) 162/(4.31 + 1.36) 381/(4.18 +1.27)
%)
Pear (Moisture 720-997 167/(85.79 + 1.42) 72/(85.79 + 1.22) 69/(85.59 + 1.02) 161/(85.53 + 1.02)
OA])
Mango (Moisture ~ 684-990 2584/(83.63 + 2.52) 1108/(83.51 + 2.58) 150/(85.33 + 1.90) 351/(85.47 + 1.97)

%)

term in Eq. (9) corresponds to j = ArgMax(w?), where w is the domain
invariant version of the covariance direction X"y which is also squared in
CovSel as shown in Eq. (6). The di-CovSel depends on the domain
invariant regularization parameter 1 as it is the case in di-PLS [35]. The
role of this parameter in di-CovSel becomes the trade-off between
selecting variables that contain purely the highest covariance with y in
the source domain and variables that are the most invariant between the
domains. In this regard, for A — 0, A; — (y"y)I"! and the di-CovSel so-
lution converges to the CovSel [34] solution.

Algorithm. for di-CovSel

3. Datasets
3.1. Different physical forms of rice samples

The rice data set was used to show the capability of the di-CovSel
model to select the variables that allow a model to be used in a
different physical form of samples. The source was the solid rice kernels,
while the target was rice powder. This data set was first published in
Ref. [36] and later used in Ref. [22] to show the application of di-PLS for
domain adaption of the model made on rice kernels to use it on rice
powder. The data set consists of NIR spectra measured on 200 individual
rice kernels followed by spectral measurement on the ground rice kernels
in powder form. The spectral measurements were performed with a
FT-NIR spectrometer (MPA, Bruker, Germany). The reference property
was the protein content which according to the primary study was
measured using the Dumas combustion method [36].

3.2. Wheat data set for model adaption from point to spectral camera for
digital phenotyping

The wheat data set was used to show the capability of di-CovSel to
select variables that lead to generalized models between different modes
of Vis-NIR spectroscopy. The source was the point spectrometer, while
the target was the spectral camera. The data set is the same as published
in Ref. [37] and later used in Ref. [38] to show the capability of cali-
bration transfer to transfer models from point spectrometers to spectral
cameras. It consists of spectral and reference nitrogen content measure-
ments performed on 200 plants at 3 different time points. The spectral
measurements were performed in the Plant Accelerator facility at the
University of Adelaide, Australia. To obtain wide nitrogen variation in
plants, the plants were treated with four treatments of 25, 50, 100 and
200 mg N/kg. The point spectral measurements were performed with a
combination of a diode array with a monochromator in the 400-2500 nm
range (FieldSpec 3, Analytic Spectral Devices, Boulder, USA) with a leaf
clip, and the spectral imaging was performed using a high-throughput
spectral imaging setup (WIWAM, Ghent, Belgium) with Vis-NIR and
SWIR spectral cameras from Specim, Finland. The data set contains 600
spectral measurements for each spectral sensor and 600 reference values
for the N content (%). Based on the earlier study, 57 measurements were
outliers and removed as suggested in Ref. [37]. Finally, the data set had
543 spectral and 543 reference nitrogen measurements.

3.3. Moisture prediction in pear fruit of different seasons

The pear data set was used to show the capability of di-CovSel to adapt
models based on different seasons for fruit moisture content (MC) pre-
diction. Currently, the season variability is one of the main challenges in
NIR spectroscopy of fruit which leads to model failure. The pear data set
consists of pear ‘Conference’ fruit harvest of two seasons 2019 (season 1)
and 2020 (season 2), measured with a portable fruit spectrometer (Felix F-
750, Camas, WA, USA). This data set is the same as used in Ref. [39].
Season 1 data consists of spectra and reference MC measurements on 239
pear fruits, while the season 2 data set consists of 230 fruits. Spectral
measurements were performed at the center belly part of the fruit. For
reference MC measurements, a 1 cm thick slice was cut from the fruit
equator and divided into four equal parts. One of these parts without peel
was used to determine MC by recording the weight of the part before and
after drying in a hot-air oven (FP 720, Binder GmbH, Tuttlingen, Germany)
at 80 °C for 96 h. Details of the reference MC range can be found in Table 1.

3.4. Model transfer between point spectrometers to predict moisture content
in mango fruit

The mango fruit data set was used to demonstrate di-CovSel for using
free access spectral datasets for local use in new experiments. Basically, it
is a case of standard free calibration transfer where the free access dataset
measured with a similar instrument was generalized to a new local in-
strument. The free access data set used in this study is the mango data set
[40-42] for which both spectra and reference moisture content values
are available. Please note that the mango data set is based on mango
samples measured in Australia. The local mango data set measured with a
similar but different instrument was the same as used in Ref. [43] and
consisted of spectral and moisture measurements performed on 501
mango fruit of ‘Keitt’ and ‘Kent’ cultivar performed at Wageningen
University & Research, The Netherlands. The instrument model used for
the acquisition of the open-access and local data set was a portable fruit
spectrometer (Felix F-750, Camas, WA, USA). For MC measurements, the
peel of the part was removed and later the fresh weight of the fruit's flesh
was measured using an electronic balance and dried in a hot-air oven (FP
720, Binder GmbH, Tuttlingen, Germany) at 80 °C for 96 h. After drying,
the dried fruit weight was measured, and the MC was estimated and
expressed in %. The spectral range used for modelling was the same
(684-990 nm) as recommended in earlier publications [40,42,43] on the
open-access mango data set. Please note that the original free access
mango data set has more than 10k measurements. However, in this study
we only used measurements from the year 2016. Since we used data from
season 2016 and the new data set measured in a local setting based on
fruit from season 2020, the mango case also forms a basis for model
adaptation related to seasonal differences. More details on the sample
number and reference property range can be found in Table 1.

4. Data analysis

The datasets of the source domain were randomly divided into cali-
bration and test sets with a 70-30 rule. A detail on total samples and
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Fig. 1. Mean spectral differences between the different domains considered in the 4 cases: (A) rice, (B) wheat plants, (C) pear fruit, and (D) mango fruit.

before and after the partition is provided in Table 1. The datasets from
the target domain were randomly divided into target and test targets with
a 30-70 rule. The minority was chosen for the sake of using as few
samples from the target domain as possible during domain invariant
variable selection. Calibration models were trained using ordinary least
squares (OLS) with the selected variables based on the calibration data of
the source domain and tested on the source and target domains for
CovSel and di-CovSel.

To account for a suitable bias term in the OLS models to predict the
target domain, recentering of the source domain was performed. For this,
10 samples were selected from the adaptation target data with a Kennard
Stone [44] algorithm. These samples were used to recenter only the
source matrices X; in the case of mango, rice, and wheat. On the other
hand, as indicated in section 3.3, the final di-CovSel using unsupervised
samples and subsequent OLS models remains valid under the assumption
that only the marginal distributions of X; and X, need to be adjusted. For
the current application of moisture prediction in pear, it was detected
from the predictions that a bias correction was necessary also for y sug-
gesting that a shift occurred in the relationship between X and y.
Therefore, in this case, the y values were also recentered using the 10
selected samples.

The number of variables was tuned from 1 up to 30 and the domain
invariant parameter in di-CovSel was tuned for the values 1 = [1,10!,
102,10%,10%,105,10°,107,108 ] taking reference from the tuning re-
ported in applications with di-PLS [27,35]. For the case of wheat, in-
termediate values 4= [5.10%,5.10°,5.10°,5.107] were also tuned as
large changes were detected in the cross-validation performance. The
optimal number of variables and optimal value of 1 were selected based
on a 10-fold cross-validation. The error was quantified in terms of the
root mean squared error in cross-validation (RMSECV) and prediction
on the test set (RMSEP). The squared coefficient of correlation % was
also calculated in cross-validation and on the test set. Furthermore, bias,
and standard errors were also estimated to access the capability of
di-CovSel to achieve lower bias predictive models. All analyses were
performed in Python language 3.8 using in-house codes with functions

from the SciKit Learn Library version 0.24 (https://scikit-learn.org/sta
ble/about.html).

5. Results

The spectra for the different cases used to demonstrate the perfor-
mance of di-CovSel and CovSel are illustrated in Fig. 1. The mean rice
kernel spectra and rice powder spectra are shown in Fig. 1A, where the
differences in the spectra for different rice physical forms can be noted.
At first, three main peaks and valleys can be noted at 960 nm, 1140 nm,
and 1200 nm. These peaks can be related to OH, RNH; and CH bond
overtones, which are abundant in molecules such as starch, cellulose, and
protein present in rice [45]. However, apart from the peaks, the main
thing to note was that the key difference between the rice physical forms
was mainly related to the absorption bands at 960 nm and 1140 nm,
which could show that the rice grinding brought changes in the spectral
zones related to OH and NH bonds compared to the CH bonds. This might
be attributed to differences in the light scattering as the powder particles
scatter more light compared to the solid kernels [22]. The wheat data set
constitutes a pure case of instrument differences, where the spectra
measured with the point spectrometer have higher spectral intensity in
the NIR range compared to those acquired with the spectral camera
(Fig. 1B). The smaller absorption bands also seem to have been smoothed
out due to the lower spectral resolution in the spectral camera. For the
pear data set, differences in the mean spectra of fruit from the different
seasons can be noted around 800 nm and 960 nm (Fig. 1C). These can be
attributed to overtones of OH molecules present in abundance in fresh
fruit. The mango data set (Fig. 1D) is a mixed case involving both in-
strument and seasonal differences, where the main differences can be
noted in the spectral range from 800 to 950 nm, again a domain corre-
sponding to the overtones of OH and CH bonds present in abundance in
macromolecules present in fresh fruit. Please note that in real-life situa-
tions there is usually very little information available about the differ-
ence between scenarios, for example, in the case of seasonal differences,
the underlying cause is hardly known due to the high biological
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Fig. 2. 10-fold cross-validation plots to select optimal number of variables for CovSel and di-CovSel for the 4 cases: (A) rice, (B) plants, (C) pear fruit, and (D)

mango fruit.

variability. Hence, a major focus of the scientific community working on
fruit spectroscopy is to bypass the difference [21-23], which is also
explored with the di-CovSel approach proposed in this study. The prop-
erties of the different data sets are summarized in Table 1. The reference
property ranges for the target domain for all data sets were in the range of
the target property ranges of the source samples. Also, note that the
di-CovSel method was applied in this study using as low as 60 samples for
the rice data set to up to a maximum of 150 samples for the mango data
set. Sample sizes of 60-150 for model adaptation without the need for
new reference property analyses can be considered as a profitable situ-
ation in practice, as typically the reference analysis is the main limiting
factor for model adaptation with traditional chemometric approaches
[25].

The optimizations of the CovSel and the di-CovSel for all four data
sets are illustrated in Fig. 2. It should be noted that for di-CovSel there is
an extra A parameter which needs to be tuned and in Fig. 2 corresponds to
the distinct color error curves. For the rice data set (Figs. 2A), 10 vari-
ables were selected for CovSel and di-CovSel based on the evolution of
the cross-validation error as a function of the number of selected vari-
ables. The domain invariant regularization parameter was set to 10° as
the RMSECV values started to increase for larger values. With the same
number of selected variables for CovSel and di-CovSel, the OLS model
made on selected variables to predict protein content in rice performed
differently. Particularly, the model made on variables selected with
CovSel on the rice kernel data set (Fig. 3A) performed poor (Fig. 3B)
when tested on the rice flour data set. On the other hand, the model made
on di-CovSel selected variables achieved lower prediction error (Fig. 3C)
compared to CovSel tested on rice flour samples. Achieving up to 65%
lower RMSEP than the CovSel approach, the di-CovSel demonstrated the
importance of selecting domain invariant variables for generalized var-
iable selection across the different physical forms of samples.

For the wheat data set, the cross-validation results for CovSel and di-
CovSel (Fig. 2B) suggested that the optimal number of variables by
CovSel was 16, which was similar for values of A < 5.10° in di-CovSel.
For larger values of the domain invariant regularizer, the optimal num-
ber of variables became more clearly ~11. As the aim was to compare di-
CovSel and CovSel for selecting variables that generalize well across

different modalities of NIR spectroscopy i.e., point spectroscopy and
spectral imaging, the models were created with the same number of
selected variables for CovSel and di-CovSel. The OLS model made with
CovSel selected variables on point spectroscopy data (Fig. 3D) performed
poor when used on the spectral imaging data (Fig. 3E). The prediction
performance showed a large dispersion together with a clear problem of
bias. However, with di-CovSel the RMSEP was decreased from 1.29% to
0.90%, showing the bias problem (Fig. 3E and F) was fully corrected and
a lower dispersion in the predictions was obtained. This result suggests
the ability of di-CovSel to select better generalizing variables when the
calibration model is to perform across different modalities of NIR spec-
troscopy, especially for the correction of bias in the predictions.

For the pear data set, the optimal number of variables appears to be 7
for CovSel and for di-CovSel with values of 4 < 108. The effect of the 4
value on the optimal number of variables can be noted as some smaller
values of this parameter suggested to use 6 variables. The resulting
performance of CovSel is illustrated in Fig. 3H and in Fig. 3I for di-CovSel
with the same number of variables i.e., 7 and setting A = 107. The OLS
model made with equal number of variables showed that di-CovSel
achieved a lower RMSEP of 0.51% compared to the RMSEP of 0.55%
for CovSel.

For the mango data set, CovSel suggested 8 variables while for di-
CovSel some values of A suggested up to 11 variables. Please note that
the mango data set was a complex case involving both instrument and
seasonal differences, where the two batches correspond to mango sam-
ples of different year harvests measured with two different instruments.
The model made with CovSel selected variables resulted in higher
RMSEP value (Fig. 3K) compared to di-CovSel selected variables (Fig. 3L)
when the model was tested on a new season/instrument data.

In summary, the better predictive performances of the OLS models
made with di-CovSel selected variables compared to CovSel selected
variables shows the potential of selecting domain invariant variables to
handle common model adaptation tasks such as model adaptation for
physical forms of samples, instruments, and seasonal effects.

The performance of the final OLS models built with the variables
selected by CovSel and di-CovSel is summarized in Table 2 and Table 3,
respectively. For all four cases, the performance obtained in the target
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Fig. 3. Summary of OLS models built on variables selected with CovSel and di-CovSel for the rice case (A, B, C), the wheat plants (D, E, F), the pear fruit (G, H, I) and
the mango fruit (J, K, L); with results for CovSel built and tested on the source test set (left), CovSel tested on the target test set (middle) and di-CovSel tested on the

target test set (right).

Table 2

A summary of performance of CovSel on the source and target domain test sets.

Data sets Variables Bias,, SECV Bias,, (Source) SEP (Source) Bias,, (Target) SEP (Target)
Rice 10 0.01 0.40 —0.03 0.39 1.12 1.84
Plant 16 0.00 0.55 0.03 0.53 —0.89 0.94
Pear 7 0.00 0.57 —0.03 0.58 0.19 0.52
Mango 8 0.00 0.93 —0.01 0.93 0.44 0.92

domain with di-CovSel was better than with CovSel in terms of lower SEP
(Tables 2 and 3). One of the key benefits of the di-CovSel was the

reduction of the bias for all the cases. The bias reduction was more
dominant for the Rice and Plant cases, where the model obtained based



V.F. Diaz et al.

Table 3

A summary of performance of di-CovSel on the source and target domain test sets.

Chemometrics and Intelligent Laboratory Systems 222 (2022) 104499

Data sets Variables Bias,, SECV Bias,, (Source) SEP (Source) Bias,, (Target) SEP (Target)
Rice 10 0.00 0.36 0.00 0.35 —0.09 0.74
Plant 16 0.00 0.53 0.04 0.50 —0.04 0.89
Pear 7 0.00 0.55 0.02 0.56 —0.06 0.51
Mango 8 0.00 0.93 —0.01 0.96 0.11 0.87
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on the CovSel variables achieved high bias (Tables 2 and 3). However, it
should be noted that for all cases the performance in the target domain
was poorer than the performance on the source domain. This finding
related to di-CovSel aligns with the conclusions of di-PLS, which states
that the domain invariance does not guarantee similar performances
across domains, but better performance across domains compared to
models that rely on monodomain (source domain only) information.
Complementary, the performances on the source domain in cross-
validation and on the test set indicate that the models based on di-
CovSel selected variables maintained their performance on the source

domain. This indicates that the variables selected by di-CovSel were
considerably less sensitive to the domain variance, and the models based
on them can be used both in the source and target domain. We also
compared the performance of standard PLS calibrations based on full
spectral data with the OLS models based on CovSel and di-CovSel
selected variables. We found that OLS models based on CovSel and di-
CovSel selected variables worked either similar or slightly better than
the PLS modelling on full spectra of source calibration (Supplementary
Table 1) and source test set (Supplementary Table 2), rendering a lower
bias and prediciton error. However, we found out that testing the OLS
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Fig. 6. Illustration of the variable selection steps (top to bottom) for CovSel (left column) and di-CovSel (right column) for the pear fruit data set. In total, 7 variables

were selected by both methods.

model based on CovSel selected variables on the target test set showed
either similar perfomance to PLS based on full spectra or poorer perfor-
mance (Supplementary Table 3). The OLS model based on di-CovSel
selected variables on the target test set always led to lower prediction
bias and for three out of four cases lower prediction error than the PLS
analysis based on full spectra (Supplementary Table 3).

The selected variables for CovSel and di-CovSel are illustrated in Fig. 4
for the different cases. For the rice data set, the selected variables by both
methods are shown in Fig. 4A where the spectra are plotted as recentered
to the mean of the target domain. In Fig. 4A, it can be noted that in the
range 950-1050 nm, di-CovSel led to the selection of variables slightly
shifted from variables selected by CovSel. Such a shift could show that the
rice grinding causing light scattering may have deformed the spectra. In
the range from 1150 to 1250 nm, the di-CovSel selected several new
variables which could be related to overtones of CH bonds in several
macromolecules present in rice kernels [36]. For the wheat data set (case
of model adaptation from point spectrometer to spectral camera), the
recentered spectra with the selected variables for CovSel and di-CovSel are
shown in Fig. 4B. While the mean shift (Fig. 4B) around 1000 nm was
corrected with recentering, a clear difference in the domains can be seen
around 500 nm. This is in line with the variable selection by di-CovSel
where the spectral range around 500 nm was not included in the final
selection by di-CovSel but was included by CovSel leading to inferior
performance of the OLS model made on CovSel selected variables. For the
pear and mango data sets, the variables selected by di-CovSel were slightly
shifted compared to the CovSel selected variables.

From the above, it can be concluded that the OLS models based on di-
CovSel selected variables led to better predictive performance compared

to models based on CovSel selected variables for all the four data sets. To
explore the performance of di-CovSel and CovSel as a function of selected
variables, a posterior analysis was performed where the RMSEP was
estimated on the test set from the target domain as a function of the
increasing number of selected variables. The test set was the same as used
to evaluate the performance of the CovSel and di-CovSel. The posterior
analysis for all four data sets is shown in Fig. 5. For the rice data set
(Fig. 5A), the performance of the model based on di-CovSel selected
variables was better from the start compared to the model based on
CovSel selected variables, although the CovSel variables-based model
could have performed better than the di-CovSel with 7 selected variables.
However, it should be noted that one might not have found the optimal
number of variables as 7 from the CV plot (Fig. 2A). On the other hand,
the di-CovSel selected variables (>7) always performed better than the
CovSel selected variables. Similarly, for the wheat data set (Fig. 5B), the
model based on di-CovSel selected variables performed better than the
model based on CovSel selected variables (for >5 variables). For the pear
data set (Fig. 5C), the model based on di-CovSel selected variables per-
formed better than the model based on CovSel selected variables <8. For
the mango data set (Fig. 5D), the di-CovSel and CovSel selected variable
models performed similarly in the initial range of variables <9. However,
the di-CovSel selected variables model outperformed the model based on
CovSel selected variables for higher numbers of variables.

To illustrate the difference in the functionality of the CovSel and di-
CovSel, each step in the variable selection related to the pear data set
is shown in Fig. 6. As a total of seven variables were selected for the pear
fruit case, there are seven rows in Fig. 6. Furthermore, the two columns
are related to CovSel (left column) and di-CovSel (right column). It can be
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noted that the first variable selected by the CovSel method was related to
the overtone bands (Fig. 6A). In the case of di-CovSel, it was the shortest
wavelength in the dataset (Fig. 6B) which may be attributed to an offset
correction [34]. The CovSel selected such an offset as a second variable
(Fig. 6C), while the second variable selected by di-CovSel was related to
the chemical overtones (Fig. 6D). It should be noted that the spectral
variable around 760 nm selected by CovSel was never selected by the
di-CovSel method. This is remarkable as the region around 760 nm was
identified as the one with the largest differences between the two data
batches (Fig. 1C). Hence, avoidance of that region by the di-CovSel
method is in line with our expectations. The variable 760 nm included
in the CovSel selection could be the reason for the inferior performance of

10

the CovSel method on the target domain compared to the di-CovSel, as all
other variables selected by CovSel and di-Covsel were neighboring
bands. It should also be noted that the di-CovSel method selected
better-resolved peaks which can be related to chemical overtones
compared to the broader global peaks selected by the CovSel method
(Fig. 6).

The behavior of the covariance criterion for variable selection as a
function of the regularization parameter is demonstrated for the first
iteration of the di-CovSel algorithm related to the pear data set in Fig. 7.
The first row of the figure shows the original spectra for A = 0 which is
equivalent to CovSel. As the value of A increases, the weighted spectra
show less variability between the domains, while showing different
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peaks according to the covariance criterion. In the third row of Fig. 7,
with a larger regularization value there are specifically 2 regions, around
750 nm and between 850 nm and 950 nm, which are still not invariant.
With the last increase of A, all the regions became invariant. However, the
degree of noise is of important notice in the last row of Fig. 7. It can be
noted that from 700 nm to 800 nm the weighted spectra remained
smoother than the resulting signal across the rest of the spectrum. This
was in line with the highest peak in the covariance criterion obtained
around 700 nm making it the first selected variable, in contrast to the less
regularized covariances. Therefore, we highlight that the method can
select wavelengths that remain more stable across domains and the
regularization parameter has the potential to find such stable bands. It is
of important notice here that the domain invariant criterion supports the
identification of such bands, which are further used to build a model
using the original source domain data with reference values.

6. Conclusions

A new method called domain invariant covariate selection (di-Cov-
Sel) for generalized feature selection across different data domains was
presented, which combines the principles of domain invariant PLS (di-
PLS) and covariate selection (CovSel). The method was tested on diverse
cases of domain adaptation such as adapting models for different physical
forms of samples, adapting models for seasonal differences and per-
forming tasks such as calibration transfer for similar modality (point to
point spectrometer), as well as different modalities of NIR spectroscopy
(point spectrometer to spectral camera). In all the presented cases, the
multivariate predictive models based on variables selected by adding the
domain invariance to the CovSel approach led to lower standard error of
prediction and prediction bias compared to the models based on vari-
ables selected with the original CovSel method. However, it should be
noted that for all cases the performance in the target domain was poorer
than the performance on the source domain. This finding related to di-
CovSel aligns with the conclusions of di-PLS, which states that the
domain invariance does not guarantee similar performances across do-
mains, but better performance across domains compared to models that
rely on monodomain (source domain only) information. Furthermore, in
three out of four cases better prediction performance was obtained with
the same number of variables as selected by the CovSel method. More-
over, di-CovSel suggested that even with a lower number of variables a
better performance compared to CovSel can be achieved for several
cases. Interpreting the selected variables allowed us to understand that
the di-CovSel method utilizing the knowledge about the spectra from the
target domain was able to avoid the spectral regions which were most
influenced by the domain differences and to select slightly shifted peaks
compared to the CovSel based approach. Avoidance of the spectral region
that has domain differences led to bias correction, hence, reduction in the
prediction error. A key point to note is that the di-CovSel variable se-
lection approach does not require any new reference analytical mea-
surements and solely relies on the spectra from the target domain. Hence,
solely relying on the spectra makes it a very practical tool to be used in
practice as often the reference analysis is the main limiting factor to
update models with traditional chemometric approaches. In the current
application of di-CovSel, it was possible to perform a successful tuning of
the number of variables and the value of the domain invariant regulari-
zation parameter 1 based on cross-validation with the source domain
calibration data. Nonetheless, we suggest the practitioner to validate the
selected values of these tuning parameters using reference measurements
in the target domain. In addition, with the availability of a few reference
measurements, the performance of the adapted models was improved by
correcting the degradation in the bias term of the calibration models. In
this work, it was shown that as low as 60 samples were sufficient to allow
di-CovSel to select generalized variables. Although in this study all the
presented cases were related to NIR spectroscopy, the method is appli-
cable to any area of multivariate data modelling where often the models
fail when they need to be used in a new domain. The new domain can be
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anything related to the different physical forms of samples, different
instruments and modalities and seasonal effects. Note that, in general,
the domain invariant techniques such as di-PLS and di-CovSel, are bound
to succeed if the required adaptation concerns the spectral variation and
no changes in the relationship between spectral values and reference
analysis occur.
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