
HAL Id: hal-03689275
https://hal.inrae.fr/hal-03689275

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Pre-processing ensembles with response oriented
sequential alternation calibration (PROSAC): A step

towards ending the pre-processing search and
optimization quest for near-infrared spectral modelling
Puneet Mishra, Jean Michel Roger, Federico Marini, Alessandra Biancolillo,

Douglas N. D.N. Rutledge

To cite this version:
Puneet Mishra, Jean Michel Roger, Federico Marini, Alessandra Biancolillo, Douglas N. D.N.
Rutledge. Pre-processing ensembles with response oriented sequential alternation calibration
(PROSAC): A step towards ending the pre-processing search and optimization quest for near-
infrared spectral modelling. Chemometrics and Intelligent Laboratory Systems, 2022, 222, pp.104497.
�10.1016/j.chemolab.2022.104497�. �hal-03689275�

https://hal.inrae.fr/hal-03689275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Chemometrics and Intelligent Laboratory Systems 222 (2022) 104497
Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemometrics
Pre-processing ensembles with response oriented sequential alternation
calibration (PROSAC): A step towards ending the pre-processing search and
optimization quest for near-infrared spectral modelling

Puneet Mishra a,*, Jean Michel Roger b,c, Federico Marini d, Alessandra Biancolillo e,
Douglas N. Rutledge f,g

a Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700AA, Wageningen, the Netherlands
b ITAP, INRAE, Institut Agro, University Montpellier, Montpellier, France
c ChemHouse Research Group, Montpellier, France
d Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185, Rome, Italy
e Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy
f Universit�e Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 75005, Paris, France
g National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, Australia
A R T I C L E I N F O

Keywords:
Multi-block modelling
Pre-processing
Spectroscopy
Data fusion
* Corresponding author.
E-mail address: puneet.mishra@wur.nl (P. Mishr

https://doi.org/10.1016/j.chemolab.2022.104497
Received 10 October 2021; Received in revised for
Available online 15 January 2022
0169-7439/© 2022 The Author(s). Published by Els
1 . A B S T R A C T

Ensemble pre-processing is emerging as a potential tool to avoid the tiring pre-processing selection and optimi-
zation task in near-infrared (NIR) spectral modelling. Furthermore, differently pre-processed data may carry
complementary information, hence, ensemble pre-processing may represent the best suited modelling option to
extract all the useful information from differently pre-processed data. Recently, multi-block techniques such as
sequential (SPORT) and parallel (PORTO) orthogonalized partial least squares regression were proposed to extract
complementary information present in differently pre-processed data. Although such multi-block techniques
allowed efficient modelling of differently pre-processed data blocks, depending on the approach, challenges
related to choosing block order, parameter tuning, block scaling and optimization time requirements still must be
dealt with. To cope with such issues, the present study proposes the use of a recently developed faster, block order
independent and scale independent, multi-block data modelling technique called response-oriented sequential
alternation (ROSA) to process the multi-block data generated by differently pre-processing the same NIR data.
This new method is called PROSAC, i.e., pre-processing ensembles with ROSA calibration. The potential of the
approach is demonstrated on five real NIR spectral datasets. Furthermore, as baselines for comparison, partial
least squares regression was done on individually pre-processed data sets, and using two multi-block pre-pro-
cessing fusion approaches, i.e., SPORT and PORTO. The ensemble pre-processing with ROSA achieved either
better performance compared to the baseline methods or achieved comparable performance without the need to
worry about the pre-processing order, the scaling of data after pre-processing and optimization time requirements.
PROSAC can be considered as a general tool for the ensemble pre-processing for NIR data modelling.
1. Introduction

Near-infrared (NIR) spectroscopy is a widely used non-destructive
optical sensing technique often deployed for rapid and contact-less
analysis of materials [1]. NIR is based on the interaction of infrared ra-
diation with the materials and its consequent absorption, reflection, and
transmission spectra are used to characterize the material properties [1,
2]. Combined with chemometric processing, NIR spectroscopy can be
a).
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used for both qualitative and quantitative analysis of samples [3,4].
Applications of NIR spectroscopy can be found ranging from agriculture
[5] to high-end pharmaceutical manufacturing and process control [6].
Furthermore, NIR spectroscopy can be explored in either point or im-
aging spectroscopy mode, capturing the spatially resolved spectral
properties of materials [1,7,8].

Although many applications of NIR spectroscopy can be found in the
literature [1,9–13], a common struggle with regard to its proper
January 2022
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Table 1
A summary of different data sets used in this study. The data sets were partitioned in calibration and tests set using the Kennard-Stone algorithm.

Samples Wavelength (nm) Spectral variables nCal/nTest Reference content (%) Calibration range (mean � std) Test range (mean � std)

Mango 684–990 103 300/201 Moisture 85.36 � 2.03 85.53 � 1.85
Pear 720–997 85 330/221 Soluble solids 12.62 � 1.34 12.53 � 1.32
Apple 683–992 95 1210/808 Dry matter 15.49 � 1.67 15.54 � 1.48
Olive 720–999 94 349/234 Dry matter 28.47 � 3.12 28.79 � 3.23
Avocado 730–999 83 283/190 Dry matter 20.93 � 2.71 20.66 � 2.25

Fig. 1. Performance of PROSAC modelling on Pear data set. (A) Cross-validation plot for PROSAC, (B) LVs for each data block for PROSAC, (C) Prediction plot for
PROSAC, and (D) Winning block order for LVs. In subplot (D), a change of colour along the vertical direction indicates that the latent variable is selected from that
block. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 2
A summary of PLS models made on individually pre-processed data block for all data sets.

Data sets Raw data (LVs/
RMSEP)

1st derivative (LVs/
RMSEP)

2nd derivative (LVs/
RMSEP)

SNV (LVs/
RMSEP)

SNVþ1st derivative (LVs/
RMSEP)

SNVþ2nd derivative (LVs/
RMSEP)

Pear 11/0.60 10/0.61 8/0.60 10/0.62 11/0.61 9/0.62
Avocado 10/1.32 10/1.29 10/1.26 10/1.26 10/1.27 10/1.22
Apple 9/0.73 9/0.71 8/0.72 8/0.74 10/0.73 8/0.71
Mango 11/0.61 12/0.57 11/0.55 10/0.75 9/0.76 8/0.72
Olive 8/1.53 6/1.54 7/1.56 7/1.37 4/1.50 6/1.40
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implementation is the associated chemometric modelling required to
calibrate the spectral sensors for the desired tasks, for example, for the
prediction of a chemical constituent or for the classification of samples to
predefined classes [3,14]. Classical latent variable modelling techniques
such as partial least squares (PLS) [15,16] regression/discriminant
analysis and advanced deep convolutional neural networks [17–19] are
widely used. However, before performing the chemometric or deep
learning modelling, the NIR data requires extra work in terms of
2

removing the artefacts present in the signal, such as the additive and
multiplicative effects caused by the light scattering [20–22]. Following
its interaction with a material, the NIR light is subject to two major
phenomena: absorption and scattering [14,23]. The absorption is due to
the chemical components present in the samples while scattering is
mainly related to the attenuation in the signal due to the interaction of
light with the physical structure of the materials [1]. In general, when
predicting chemical constituents, it is crucial that the model be solely



Fig. 2. Performance of PROSAC modelling on Avocado data set. (A) Cross-validation plot for PROSAC, (B) LVs for each data block for PROSAC, (C) Prediction plot for
PROSAC, and (D) Winning block order for LVs. In subplot (D), a change of colour along the vertical direction indicates that the latent variable is selected from that
block. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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based on the absorption characteristics in the NIR spectra and not on the
scattering [20,21]. However, in cases where the scattering information
may supply an additional correlation with the property of interest, it is
recommended to use raw data [24,25]. In any case, before the NIR data
modelling for qualitative and quantitative purposes, a wide exploration
of different chemometric pre-processing techniques is needed to under-
stand if it is required or not [21]. Some commonly used pre-processing
techniques for NIR data modelling are normalisation techniques such
as standard normal variate (SNV) [26], variable sorting for normalisation
(VSN) [27], derivatives such as Savitzky-Golay (SavGol) [28], baseline
correction [29], physically based models for scatter correction such as
multiplicative scatter correction or its extended forms [30–32] and many
more [20,21]. Furthermore, several pre-processing are also used in
combinations such as normalisation techniques in combination with
differentiation, where the normalisation attenuates light scatter effects,
and the derivative reveals underlying peaks in the spectra [33].

The challenge of chemometric pre-processing choice and exploration
is well recognized in the chemometrics community and several exhaus-
tive approaches [34,35] and experimental design (DoE) based ap-
proaches [36,37] exist. These approaches, by exploring several
pre-processing methods and their combinations, can find the ones best
suited for a data set. The main drawback of such approaches is that they
can easily become a time and computing resource-consuming task [20].
There are also faster exhaustive methods based on genetic PLS ap-
proaches [38]. The drawback of exhaustive approaches is that they aim
to find a single pre-processing or a single combination of pre-processings,
while different pre-processing and/or their combinations may carry
complementary information which, if modelled in an ensemble strategy,
could result in better model accuracies [20]. Several recent studies [6,25,
3

33,39–41] have shown the complementary nature of different
pre-processings and highlighted the need for an ensemble pre-processing
modelling.

In the domain of chemometrics, ensemble pre-processing approaches
to NIR data modelling are emerging [20]. There are currently three main
types of ensemble approaches: stacked regression, DoE based, and
multi-block inspired. In the first one [42], several models are built based
on different pre-processings and stacked for ensemble modelling; in the
DoE based approach [43], a full-factorial design is explored for all
combinations of pre-processings and the best performing models are then
combined. The third approach is inspired by the family of multi-block
data fusion approaches used in the chemometric community such as
sequential and parallel orthogonalized partial least squares regression
analysis [44,45], which treats the same NIR data after different
pre-processings as a multi-block data set. Of the three approaches, the
multi-block ensemble approaches are of particular interest as they retain
all-important chemometric parameters such as regression coefficients,
scores, and loading, which are of great interest for model interpretation
and for understanding the background spectrochemistry of the models
[25]. Currently, there are two main multi-block ensemble pre-processing
approaches available, i.e., sequential pre-processing through orthogo-
nalization (SPORT) [44] and parallel pre-processing through orthogo-
nalization (PORTO) [45]. Both these approaches have been shown to
outperform the selective pre-processing modelling approaches in several
application areas [6,25,33,39–41].

Although both these approaches, i.e., SPORT [44] and PORTO [45]
allow pre-processing ensembles modelling for NIR data, they do have their
drawbacks from the operational and model optimization perspectives. The
main drawback of these approaches is that they are highly dependent on



Fig. 3. Performance of PROSAC modelling on Apple data set. (A) Cross-validation plot for PROSAC, (B) LVs for each data block for PROSAC, (C) Prediction plot for
PROSAC, and (D) Winning block order for LVs. In subplot (D), a change of colour along the vertical direction indicates that the latent variable is selected from that
block. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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the data block order, not necessarily in terms of prediction accuracy, but
rather in terms of the values of the model coefficients and the resulting
optimal complexity. For example, the SPORT approach, which is based on
the concept of sequential and orthogonalized PLS (SO-PLS) regression,
processes the data blocks sequentially; hence, if the order of the data blocks
is changed the SPORT model can select different numbers of latent vari-
ables for each block and the results and interpretation will be modified.
The PORTO approach is less dependent on data block order; however, it is
at least partly affected, since the components which are common to some
blocks only are extracted based on the order in which all the possible
subgroups of blocks are explored. The second main drawback of SPORT
and PORTO is the time required for model optimization; for example, the
SPORT approach based on the SO-PLS requires exploration of all combi-
nations of latent variables from different data blocks before selecting the
optimal one. Such an exploration is workable when the number of blocks is
low [46] but can become a very tedious task when the number of data
blocks increases. Such a computation cost is a limitation for exploring a
wide number of differently pre-processed blocks together. Hence, to deal
with the two main drawbacks of the SPORT and PORTO approaches, this
study proposes the implementation of the recently developed
response-oriented sequential alternation (ROSA) method [46] for a faster
order- and scale-independent ensemble modelling of several data blocks.
ROSA [46] is a newmultiblock extension of PLS regression which supplies
all the relevant parameters such as regression coefficient, scores and
loading.

This study aims to propose ROSA [46] as a novel tool for ensemble
pre-processing modelling for NIR spectroscopy data. This new method is
called PROSAC: pre-processing ensembles with ROSA calibration. To
demonstrate this, the PROSAC approach was applied to five different
4

data sets pre-processed with several different methods and the outcomes
were compared to those of single-block PLS analyses on the individually
pre-processed data blocks. Furthermore, a comparison with the SPORT
[44] and PORTO [45] approaches is also presented in terms of prediction
power and of the effect of the order of the data blocks. The time required
by PROSAC to handle large number of blocks is also explored.

2. Materials and methods

2.1. Data sets

Five real NIR datasets were used to demonstrate the potential of
PROSAC for ensemble pre-processing modelling as well for its compari-
son with the baseline techniques. The five datasets were related to the
prediction of dry matter (DM %), soluble solids content (SSC %) and
moisture content (MC %) in five different fresh fruits. All data sets were
measured with Felix fresh fruit quality meter (Camas, WA, USA). The
Felix fruit quality meter is a hand-held spectrometer that uses the
interaction mode to measure the spectral signature of samples. The Felix
spectrometer covers the spectral range of 310–1135 nm with a ~3 nm
spectral sampling interval. The spectrometer has a Xenon Tungsten Lamp
for illumination and a built-in white painted reference standard for
estimating the reflectance. For four out of five data sets, the data has
already been used in earlier publications by different authors around the
world. For example, the Mango data set (cultivar Keitt and Kent) was the
same as the validation set used in Ref. [47], the Pear data set (cultivar
Conference) was the same as used in Ref. [48], the Apple data set
(cultivar Cripps Pink, Fuji, Gala, Golden Delicious and Honeycrisp) was
sourced from Ref. [49] and the Olive data set was sourced from Ref. [50].



Fig. 4. Performance of PROSAC modelling on Mango data set. (A) Cross-validation plot for PROSAC, (B) LVs for each data block for PROSAC, (C) Prediction plot for
PROSAC, and (D) Winning block order for LVs. In subplot (D), a change of colour along the vertical direction indicates that the latent variable is selected from that
block. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

P. Mishra et al. Chemometrics and Intelligent Laboratory Systems 222 (2022) 104497
The Avocado (cultivar Hass) data set was a new data set measured in this
study and involved measurement of NIR spectra followed by dry matter
measurements using the oven drying method of the avocado flesh. The
fruit flesh was extracted from the same spot where the NIRmeasurements
were performed. Avocado flesh was placed into clean aluminium cups
and initial weights (g) were recorded using a balance (Mettler-Toledo
GmbH, Giessen, Germany). Later, the samples were dried in a hot-air
oven (FD 56, Binder GmbH, Tuttlingen, Germany) at 80�C for 60 h and
the final weights (g) of the aluminium cups were recorded with an
analytical balance (Mettler-Toledo GmbH, Giessen, Germany). A sum-
mary of all data sets is provided in Table 1. It can be noted that the
wavelength ranges for different data sets varied slightly but all were in
the 3rd overtones range of OH and CH and relevant for prediction of
parameters such as dry matter, soluble solids content and moisture
content. The reason for the slight variation in the wavelength range was
because the datasets were measured with similar but different in-
struments and had spectral ranges that had been reduced by the suppliers
of the original data. A key point to note is that all the data sets were
pre-partitioned into calibration (60%) and test (40%) sets using the
Kennard-Stone (KS) algorithm [51].

2.2. Data analysis

2.2.1. Preparing a multi-block data set from NIR spectra
A NIR data set for predictive modelling consist of spectra ðXÞ of size

n� p, where n are the total number of samples and p are spectral vari-
ables. The response vectors ðYÞ are of size n� k, where n are the total
number of samples and k are total number of responses. To use the multi-
block ensemble approaches, the NIR data can be processed with different
pre-processings resulting in a multi-block data set. For example, if a NIR
5

set of spectra ðXÞ, is pre-treated with six different pre-processings then
the spectral data set will contain six data blocks, i.e., ½X1;X2;X3;X4;X5;X6�,
where X1… X6; are just differently pre-processed forms of the same
spectra ðXÞ: In this study, to show the potential of the ROSA ensemble
approach, the six different spectral sets were: raw data, 1st derivative,
2nd derivative, SNV, SNV þ1st derivative, SNV þ2nd derivative. The
derivatives were calculated with the Savitzky-Golay algorithm [28] using
a 2nd order polynomial and a window size of 13 points. Initially, all data
sets were transformed to multi-block data using the same pre-processing
combination and order. In a later part of the study, the effect of different
pre-processing orders on the ensemble models was also explored.

2.2.2. Pre-processing ensembles with ROSA
ROSA [46] is a multi-block extension of the PLS technique and this

study shows the potential of ROSA for the ensemble pre-processing for
NIR spectra modelling. For a detailed description of the ROSA algorithm,
readers are referred to the original paper [46]. In ROSA for ensemble
pre-processing, the extraction of model components is organized as the
competition between the covariance-maximizing candidate components
computed from each differently pre-processed spectral block. At each
step, the block component resulting in the smallest Y residual is assigned
as the “winner” and taken to define the model component for that step.
The competition between the next candidate components is constrained
to the orthogonal complement of the subspaces spanned by the previous
winning components. These constraints assure both orthogonal scores
and loading weights. ROSA uses a forward selection approach of
orthogonal components where blocks can be used several times to extract
complementary information. A key trick of ROSA is that computationally
intensive X deflations (common for classical PLS techniques) are replaced
by faster Gram-Schmidt steps for computing the orthonormal scores and



Fig. 5. Performance of PROSAC modelling on Olive data set. (A) Cross-validation plot for PROSAC, (B) LVs for each data block for PROSAC, (C) Prediction plot for
PROSAC, and (D) Winning block order for LVs. In subplot (D), a change of colour along the vertical direction indicates that the latent variable is selected from that
block. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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loading weights, thus making ROSA an extremely fast technique to
explore many differently pre-processed data blocks. Furthermore, ROSA
is also an order- and scale-independent technique, making it a perfect
choice for the exploration of differently pre-processed data as
pre-processing can sometimes change the data scales.

In this study, the ROSA decomposition was performed with the free
code available in Ref. [46]. However, to optimize the ROSA components
for each data sets, in this study a 10-fold Venetian blind cross-validation
(CV) was integrated within ROSA. In the CV procedure, a range of
components from 1 to 50 in step 1 was explored with cross-validation,
and later, the elbow plots (RMSECV and RMSEC) were used to decide
on the optimal number of components for the final ROSA model. The
optimal number of components was decided by looking at the divergence
of the RMSECV and RMSEC in the CV plots.

2.2.3. Baseline comparison
PROSAC was compared with the standard single-block PLS analysis

on differently pre-processed data and with the recent multi-block
ensemble pre-processing techniques SPORT [41] and PORTO [42]. In
the results section the performance of PROSACwas first shown for all five
data sets (Table 1) and compared with the standard PLS analysis. This
was done to show the efficiency of PROSAC for ensemble modelling and
to show how PROSAC is just a direct extension of single block PLS
modelling. In the second part of the results, the performance of ROSAwas
compared with SPORT and PORTO using just the Mango data set.
Comparison of the outcomes of the different multi-block techniques was
based on the inspection of several aspects such as RMSEP, optimal
number of latent variables, or the order of the blocks. Finally, the ability
of PROSAC to model many pre-processed data blocks was also explored
6

and the time requirements were reported.
The PLS analysis on single block data were performed using the

‘plsregress’ function in MATLAB's ‘Statistics and machine learning’ toolbox
and using a 10-fold CV as used for the PROSAC modelling. SPORT was
implemented using the freely available MBA-GUI [52], and the number of
latent variables for each block was optimized by exploring all combina-
tions in the range of 0–10 to find the lowest RMSECV. PORTO modelling
was done using the PO-PLS multi-block data analysis codes from NOFIMA
(https://nofimamodeling.org/software-downloads-list/multiblock-regr
ession-by-poso-pls/). After a preliminary data compression (which also
provides noise-filtering) operated by retaining, for each block, the scores
resulting by individual PLS modelling, several local cross-validation (CV)
steps were performed in sequence, as discussed in Ref. [53], to find the
optimal number of common and distinct components for building the
PORTO model. All data analyses were performed using MATLAB (Release
2018b; The Mathworks, Natick, MA) on a workstation equipped with a
NVidia GPU (GeForce RTX 2080 Ti), an Intel® Core™ i7-4770k @3.5 GHz
and 64 Gb RAM, running Microsoft Windows 10 OS.

3. Results

3.1. Performance of PROSAC ensemble pre-processing for different data
sets and comparison with single block PLS

This section presents the results of PROSAC analysis of five different
data sets detailed in Table 1 and in block order of raw data, 1st deriva-
tive, 2nd derivative, SNV, SNV þ1st derivative, SNV þ2nd derivative.
The comparison in this part is performed with the single block PLS
analysis performed on each differently pre-processed data block. In

https://nofimamodeling.org/software-downloads-list/multiblock-regression-by-poso-pls/
https://nofimamodeling.org/software-downloads-list/multiblock-regression-by-poso-pls/


Fig. 6. Performance of PROSAC, SPORT and PORTO on Pear data set. (A)
Winning block components for PROSAC, (B) Prediction plot for PROSAC, (C)
Components from each block SPORT, (D) Prediction plot for SPORT, (E) Com-
mon and distinct components for PORTO, and (F) Prediction plot for PORTO.

Table 3
A summary of block orders used to compare its effect on PORTO, SPORT and
PROSAC.

Block combination Data block order

1 Raw, SNV, SNV þ1st Derivative, SNV þ2nd derivative
2 SNV, SNV þ1st Derivative, SNV þ2nd derivative, Raw
3 SNV þ1st Derivative, SNV þ2nd derivative, Raw, SNV
4 SNV þ2nd derivative, Raw, SNV, SNV þ1st derivative

P. Mishra et al. Chemometrics and Intelligent Laboratory Systems 222 (2022) 104497
Fig. 1, the analysis of the Pear data set is presented, where the cross-
validation with PROSAC selected 14 components (Fig. 1A). Among the
Fig. 7. Effect of changing block orders on (A) SPORT, (B) PORTO, and

7

14 components, many were extracted from 5 out of 6 of the pre-processed
data blocks, showing that PROSAC learned an ensemble model (Fig. 1B).
The trend of the block selection as a function of LVs is shown in Fig. 1D,
where it can be noted that the initial winning block was the raw data
block, and the other blocks start to contribute later for higher number of
LVs. For the final optimal LVs ¼ 14, there were 5 LVs from raw data
block, 2 from 1st derivative, 3 from 2nd derivative, 2 from SNV and 2
from SNV followed by 1st derivative. The PROSAC model was tested on
the independent test set giving an RMSEP ¼ 0.56% (Fig. 1C). It can be
noted that PROSAC based ensemble model gave the lowest RMSEP
compared to all single block PLS regressions performed on individual
data blocks with a similar number of components (Table 2). Similarly, for
the Avocado data set (Fig. 2), 9 out of 10 LVs were extracted from the
SNVþ2nd derivative data leading to a RMSEP ¼ 1.22%. For the Avocado
data set, the RMSEP was the same as the PLS analysis on the SNVþ2nd
derivative data with an equal number of components, i.e., 10. With
PROSAC modelling there was a slightly lower difference between the
RMSEC and RMSEP compared to PLS analysis on the SNVþ2nd deriva-
tive data which may indicate the PROSAC models may generalise well,
however, the difference was too low to justify the benefits of PROSAC
further.

For the Apple data set (Fig. 3), as with the Pear data set, PROSAC gave
an ensemble model selecting components from 4 out of 6 data blocks.
Since the model reached performance comparable to that of PLS on the
individual blocks, the main contribution of PROSAC here can be
considered as simply saving time by developing a single PROSAC model
compared to developing several single block PLS models to find the best
pre-processing. For theMango data set, PROSAC built an ensemblemodel
by selecting 5 out of 6 data blocks. The PROSAC model (Fig. 4C) for the
Mango data set performs better than the models made on normalised
data, and a combination of normalisation followed by derivative
(Table 2). However, the PROSAC model performed more poorly than the
PLS model built solely on derivative pre-processed data (Table 2). In
Table 2, it can be noted that the normalisation deteriorates the model.
Looking at the order of the selected blocks per component (Fig. 4D), it
can be noted that the PROSAC model for Mango selected the first
component from the SNV normalised data block. Such a selection of the
first component from the normalised data block makes it impossible, due
to the block deflation step in ROSA, to retrieve a good model as the non-
normalised space gets eliminated during the deflation. Hence, a reason
for the failure of the PROSAC model here may be found in the limitations
associated to the heuristic of the ROSA algorithm which does not allow
already selected model components to be updated during the selection of
future model components. Basically, the ROSAmodel heuristic involves a
forward stepwise selection but without any backward elimination step to
rejudge the selection of the model components. Currently, there is room
for improvement of the ROSA algorithm as its current heuristic for model
component selection may in some cases lead to poor models, although
this was observed for only 1 out of the 5 data sets in this study.

In the case of the Olive (Fig. 5) data set, PROSAC modelling selected
just a single data block, i.e., SNV þ2nd derivative. Such a selection of a
single data block suggests that PROSAC modelling does not only perform
ensemble modelling but can also identify an individual pre-processing as
(C) PROSAC. The analyses were carried out on the Pear data set.



Fig. 8. Effect of changing block combinations for SPORT, PORTO and PROSAC on (A) RMSEP, and (B) LVs. The analysis was carried out on Pear data set.

Fig. 9. Exploration of the optimal window
size for Savitzky-Golay 1st (top row) and 2nd
derivative (bottom row) with PROSAC. (A)
Cross-validation plot for selecting optimal
PROSAC components for 1st derivative data,
(B) Winning blocks, (C) Prediction plot for
PROSAC on 1st derivative data, (D) Cross-
validation plot for selecting optimal PRO-
SAC components for 2nd derivative data, (E)
Winning blocks, and (F) Prediction plot for
PROSAC on 2nd derivative data. The analysis
was carried out on Mango data set.

Fig. 10. A comparison of elapsed time for PROSAC analysis for ensemble pre-processing as a function of increasing number of pre-processing blocks. (A) Time for
cross validating the model for tuning optimal components, and (B) Time for PROSAC model development and testing on a new data set. The analysis was carried out on
the Mango data set.

P. Mishra et al. Chemometrics and Intelligent Laboratory Systems 222 (2022) 104497
the best one, when only a single pre-processing is sufficient to achieve the
optimal model. For the Olive (Fig. 5) data set, it can be noted that, as to
be expected, the performance of the PROSAC modelling was exactly like
that of the corresponding single block PLS analysis (Table 2).

3.2. A comparison of ensemble pre-processing using ROSA with SPORT
and PORTO

The performance of PROSAC was also benchmarked with the two
popular multi-block ensemble techniques SPORT and PORTO. The
analysis was carried out on the Pear data set and on four data blocks in
the order: Raw, SNV, SNV þ1st Derivative, SNV þ2nd derivative. The
analysis was reduced to one data set and from six to four blocks due to the
high optimization time cost for SPORT and PORTO. The effect of block
8

order on SPORT, PORTO and PROSAC is examined later in this study. In
Fig. 6, it can be noted that SPORT achieved the lowest RMSEP, and
outperformed PROSAC and PORTO, even if a close look at the model
statistics shows that the differences in RMSEP's of SPORT, PORTO and
PROSAC were minimal. This ranking is quite logical, since SPORT
comprehensively searches for the best LV combination, whilst PROSAC
uses a stepwise heuristic, and can be affected by local minima. In this
case, the key benefit of the PROSAC approach compared to SPORT and
PORTO is that it is independent of the block order. This is important for
ensemble pre-processing modelling as the user does not need to worry
about arranging the blocks in an optimal order. To show the effect of
changing block order on PORTO, SPORT and PROSAC analyses, the
analysis presented in Fig. 6 was repeated for different block order com-
binations as explained in Table 2.
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The results of the SPORT, PORTO and PROSAC analyses performed
on the different block orders (Table 3) are presented in Fig. 7 and Fig. 8. It
can be noted that with change in block order, the number of components
corresponding to the different data blocks changes for both SPORT
(Fig. 7A) and PORTO (Fig. 7B). In the case of PORTO, it is the total
number of common and distinct components that changes. On the other
hand, for PROSAC (Fig. 7C), the number of components from the blocks
are always the same and for the same data blocks. Such a uniform se-
lection of components and blocks by PROSAC shows that it is indeed an
order-independent technique, which can be of great use for ensemble
pre-processing modelling. The effect of such changes in block order can
also be seen in the RMSEP of the SPORT and PORTO models (Fig. 8A),
while the RMSEP for the PROSAC stayed the same. Please note that the
good performance of SPORT and PROSAC than the PORTO could be
related to the number of LVs extracted by SPORT and PROSAC being
higher (Fig. 8B). Again, PROSAC maintained its performance despite the
changing block orders.

3.3. Further comments on PROSAC for pre-processing exploration

In the earlier section, the potential of PROSAC for ensemble model-
ling and its comparison with other multi-block ensemble approaches was
presented. In this section the capabilities of PROSAC to handle several
blocks are highlighted. To show this, a ROSA model was used for 24 data
blocks (Mango data set) containing the Savitzky-Golay derivative over
the window ranges of from 5 to 51 in steps of 2. This means using
PROSAC to explore 24 blocks. The results for the 1st and the 2nd de-
rivatives are shown as the top and bottom rows in Fig. 9. It can be noted
that out of the wide range of intervals explored, only a subset of window
intervals was found to be the most explanatory. Learning from such an
analysis can allow the selection of a subset of the window sizes for further
exploration in combination with other pre-processings such as normal-
isation or scatter corrections.

As noted in the analysis presented in Fig. 9, a total of 24 data blocks
were modelled with PROSAC to evaluate the possible interplay of
different window sizes for the SavGol derivatives. Handling such a sub-
stantial number of blocks is challenging with the traditional methods
such as SPORT and PORTO which rely on a more complex heuristic, due
to the sequential or parallel nature of the analyses. To have an insight
into the time requirements, plots of the computational cost as a function
of the number of data blocks are shown in Fig. 10. It can be noted that
with increasing number of blocks, the model optimization (10-fold CV)
time increased; however, optimising PROSAC on the largest block size of
96, took just ~85 s. The model selection process in this case involved
exploring a total of 10� 50� 96 ¼ 48000 total candidate components
for data of dimensions 300� 103. Similarly, time requirement for
developing and testing a final PROSAC model based on 96 data blocks
was ~0.1 s. Such fast handling of a substantial number of blocks makes
PROSAC a unique tool where many pre-processings can be handled in a
single run, which seems currently challenging for other techniques like
SPORT and PORTO.

4. Conclusions

This study proposed the PROSAC multi-block analysis approach for
ensemble pre-processing modelling of NIR spectral data. The analysis of
five different real NIR data sets showed that in four out of five data sets,
PROSAC ensemble modelling either achieved better performance by
using an ensemble of information from differently pre-processed NIR
data or achieved performance like PLS analyses performed on individu-
ally pre-processed NIR data. A key point to note is that the single block
PLS requires training several models for each pre-processing, while for
PROSAC it is done in a single run, thus saving a substantial amount of
time for model exploration. Furthermore, PROSAC converges to a single
block PLS analysis when only a single block of data is selected as the
winning block. In such a way, PROSAC chooses the optimal pre-
9

processing rather than an ensemble of pre-processings.
PROSAC, PORTO, and SPORT are all ensemble learning methods

based on multiple blocks. They differ primarily in the heuristics they use
to explore how to combine the latent variables extracted from the blocks.
Because they use different heuristics, they produce different results and
have different advantages and disadvantages. On one data set, PROSAC
modelling did not perform as well as some single block models. The
reason for this result is related to the heuristic used by PROSAC, based on
forward stepwise selection. In some cases, if a particular component is
selected first for the model, the subsequent deflation phase could alter
the data set and compromise the rest of the selections. This shows that the
PROSAC algorithm could be further improved by adding a backward step
to re-evaluate the usefulness of previously selected model components.
Compared to SPORT and PORTO, PROSACwas unaffected by the order in
which the pre-processing blocks were arranged. Furthermore, the test of
PROSAC on a substantial number of data blocks showed that it is a fast
approach to perform a multi-block ensemble pre-processing. It was found
that optimising a 96 data block PROSAC model took ~80 s, which is
difficult to achieve with any other multi-block ensemble pre-processing
approach. However, it should be stressed that the speed of PROSAC
will always depend on the implementation and data dimensions, as with
any PLS based algorithm. The ability of PROSAC to perform fast order-
and scale-independent ensemble pre-processing and converge to a
traditional PLS when only a single pre-processing is sufficient, makes it a
useful tool for NIR calibration. Note that PROSAC is an application of the
ROSA multi-block modelling approach which, in turn, is an extension of
PLS regression, and therefore, PROSAC supplies all the relevant param-
eters for model interpretability, such as regression coefficients, scores
and loadings.

On the other hand, it should be stressed that, in principle, when
selecting components from multiple versions of the same dataset, there
could always be the risk of overfitting. However, due to its algorithmic
nature, this is not the case for PROSAC (as well as for SPORT or PORTO),
as is shown by the closeness of the values of the RMSEC, RMSECV and
RMSEP in all the reported examples.

Based on the findings from this study, it can be concluded that ROSA
ensemble pre-processing gives promising directions to end the era of
exhaustive pre-processing search and optimization for modelling NIR
data.
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