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Abstract
Soil–plant–atmosphere models and certain land surface models usually require information about the ability of soils to store and
release water. Thus, a critical soil parameter for such reservoir-likemodels is the available water capacity (AWC),which is usually
recognized as themost influential parameter whenmodelingwater transfer. AWCdoes not have a single definition despite its wide
use by scientists in research models, by regional managers as land-management tools and by farmers as decision-aid tools.
Methods used to estimate AWC are also diverse, including laboratory measurements of soil samples, field monitoring, use of
pedotransfer functions, and inversemodeling of soil-vegetationmodels. However, the resulting estimates differ and, depending on
the method and scale, may have high uncertainty. Here, we review the many definitions of AWC, as well as soil and soil–plant
approaches used to estimate it from local to larger spatial scales. We focus especially on the limits and uncertainties of each
method. We demonstrate that in soil science, AWC represents a capacity—the size of the water reservoir that plants can use—
whereas in agronomy, it represents an ability—the quantity of water that a plant can withdraw from the soil.We claim that the two
approaches should be hybridized to improve the definitions and estimates of AWC. We also recommend future directions: (i)
adapt pedotransfer functions to provide information about plants, (ii) integrate newly available information from soil mapping in
spatial inverse-modeling applications, and (iii) integrate model-inversion results into methods for digital soil mapping.
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1 Introduction

At the interface between the atmosphere and geosphere, soils
play an essential role in ecosystem services. They are reser-
voirs that store fresh water and control how much water is
available to plants (i.e., “green water”) (Schyns et al. 2015).
Characterizing them at local and regional scales is critical for
understanding crop-environment interactions (e.g., Folberth
et al. 2016).

In tools such as SWAT (Soil & Water Assessment Tool)
and in crop models, water balance in the soil–plant system is
often modeled using a reservoir-type representation of the
soil, whose hydraulic properties are described by the
available water capacity (AWC). These models can range
from complex representations of plant growth and soil
water balance to more simplified models for end-users.
In both cases, AWC theoretically represents the maximum
quantity of water available for plant growth, as defined by
Veihmeyer and Hendrickson (1927). It is thus an integrat-
ed value determined over the entire soil thickness, from
water content at field capacity (FC) to that at the perma-
nent wilting point (PWP). These two water content limits
are empirical concepts and may have different meanings
and values depending on the discipline (e.g., soil, plant or
climate science). Along with AWC, the literature de-
scribes other concepts: soil scientists may use “water
holding capacity” or “soil holding capacity” (Lebon
et al. 2003), “soil water reservoir” (Ratliff et al. (1983)
or “soil water availability” (Brillante et al. 2016), while
agronomists and forest scientists may use “apparent avail-
able water content” (Cabelguenne and Debaeke 1998),
“relative available soil water” (Zhang et al. 2015), “plant
available water capacity” (Jiang et al. 2007), “root zone
available water capacity” (Lo et al. 2017), or “transpirable
or extractable soil water” (Klein et al. 2014). The number
of articles that mention these keywords continues to in-
crease (Fig. 1), which emphasizes the need to clarify these
concepts.

AWC is considered the most influential parameter in wa-
tershed or irrigation models (Barker et al. 2018; Shivhare et al.
2018). AWC is also a main source of uncertainty in outputs of
land-surface and crop models (Dewaele et al. 2017; Eitzinger
et al. 2004), especially when used over large regions in the
context of climate change (Wang et al. 2018).

Many methods to estimate AWC have been developed: a
soil-based approach by soil scientists, and a soil–plant-based
approach by agronomists (Fig. 2). Both approaches have
limits, and a combined approach would help to analyze
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advantages and limitations of different methods and to devel-
op new strategies to estimate AWC.

In this review, we (i) describe and develop the concepts
related to AWC and its components, (ii) present the methods
used to estimate AWC using soil-based and soil–plant-based
approaches, and (iii) after a critical analysis of each approach,
provide insights for developing improved methods to estimate
AWC that are relevant for a given spatial scale and with the
data available. At each stage, we focus specifically on limita-
tions of the methods and uncertainties in the estimates.

2 The capacity of soil to store and release
water: definitions and concepts

2.1 Concepts related to AWC and transpirable soil
water content

2.1.1 Historical and current concepts related to AWC

The AWC concept describes the soil as a “bucket” that con-
tains soil water between an upper limit, FC, and a lower limit,

Fig. 1 Dynamics of publications
recorded in the WOS (Web of
Science, questioned 28th
July 2019) about the available
water capacity, field capacity and
wilting point concepts. The
requests are: For AWC and
related concepts : TOPIC =
(“plant available water” or “soil
available water” or “soil holding
capacity” or “extractable soil
water” or “transpirable soil
water”). For field capacity:
TOPIC = “field capacity”. For
wilting point TOPIC = “wilting
point”.

Fig. 2 Examples of different
approaches for estimating
available water capacity (AWC)
at different scales: a Soil-based
approach with local
measurements (photo UMR
EMMAH). b Indirect estimation
at field scale of AWC combining
geophysics and soil types
characterization (reproduced from
Seger et al. 2016). c Plant-based
approach using crop growth
estimation and status (normalized
difference vegetation index—
NDVI images here) combined
with variation in soil water or
inversion of crop models to
estimate AWC.
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PWP. This original definition of AWC of Veihmeyer and
Hendrickson (1927, 1931) is included in the current definition
of the INSPIRE Directive (http://inspire.ec.europa.eu/
codelis t /SoilDerivedObjectParameterNameValue/
availableWaterCapacity): “the amount of water that a soil can
store that is available for use by plants, based on a potential
rooting depth. It is the water held between field capacity and
the wilting point, adjusted downward for rock fragments and
for salts in solution.” AWC was initially defined as total
available water (TAW). To avoid confusion, we do not use
this term. The AWC is thus the water quantity summed over
horizons of the soil profile down to rooting depth:

AWC ¼ ∑i¼maxDepth
i¼1 ΔZi FCi−PWPið Þ ð1Þ

where maxDepth is the maximum soil depth or rooting depth,
ΔZ is the horizon thickness, and i is the number of soil
horizons.

AWC is usually expressed in cm3 cm−3, but can also be
expressed in g g−1 or mm cm−1. It can be determined from
laboratory measurements and, under certain conditions dis-
cussed later, from field measurements.

In the definition of Veihmeyer and Hendrickson (1927),
AWC is a plant-oriented parameter that defines the capacity
of a soil to store water that can be extracted by plant roots.
Consequently, maxDepth (Eq. 1) is the rooting depth.
However, the rooting depth varies because it depends on the
plant species or genotype and the stage of plant development.
Some authors, especially those who map soils, consider that
maxDepth refers to total soil depth. Unfortunately, the defini-
tion of the INSPIRE Directive does not clear up the ambiguity
because it introduces the concept of “potential rooting depth.”
We discuss this challenging issue related to depth in detail
later (Section 2.3).

2.1.2 Extractable or transpirable soil water content

Monitoring of water content in the field indicates that plants
may take up less (rarely more) water than the AWCmeasured
in laboratory experiments (Cabelguenne and Debaeke 1998;
Ritchie 1981). Based on Ritchie (1981), some authors defined
the plant available water capacity (PAWC), (total) extractable
soil water content, or (total) transpirable soil water (TTSW)
content as the difference between the field-measured drained
upper limit—equal to FC—and a “(crop) lower limit” (CLL).
Sinclair and Ludlow (1986) defined the latter limit as the “soil
water content when transpiration of the drought-stressed
plants decreased to 10% or less of that of well-watered plants.”
This limit can be reached during dry years or by depriving the
soil of water (e.g., using rain shelters; Burk and Dalgliesh
(2013)). By monitoring water content in the field, some au-
thors defined a part of this TTSW as the fraction of
transpirable soil water (FTSW), which is commonly used in

irrigation or drought studies (Abreu et al. 2015; Bindi et al.
2005; Casadebaig et al. 2008; Gaudin and Gary 2012; Lebon
et al. 2003; Zhang et al. 2015). It is a relevant parameter for
assessing the hydric functioning of the soil–plant system, es-
pecially for plants whose rooting depth is difficult to estimate
(e.g., trees). TTSW and FTSW always refer to field measure-
ments and are always associated with both a soil and a plant.
Because this lower limit is not always the same as PWP,
TTSW is not the same as AWC (Section 2.2.2).

2.1.3 AWC: available water content or available water
capacity?

Based on historical and current definitions, AWC is concep-
tualized as the maximum quantity of water that soil, consid-
ered as a bucket, can theoretically store which is a capacity. It
differs from the quantity of water that is actually stored at any
one time, which is the content. Since AWC was first defined,
confusion between “capacity” and “content” remains in the
acronym; both are widely used in the literature and are rarely
defined precisely. This confusion is maintained by that be-
tween AWC and TTSW; for the latter, field monitoring pro-
vides the soil water content. In the sections that follow, AWC
refers to “available water capacity.”

2.2 Two characteristic points of water content used to
estimate AWC

2.2.1 Field capacity

In many handbooks dealing with AWC, the current definition
of water content at FC, which has not changed since first
defined, corresponds to the soil water content after rapid drain-
age, linked to dominance of gravity over capillary forces, has
ceased (Briggs and MacLane 1910; Ottoni et al. 2014;
Veihmeyer and Hendrickson 1927). FC water content thus
corresponds to the maximum amount of water that a soil can
store, which is assumed to be available to plants. Over tem-
poral scales of plant growth, and depending on the climate,
plants capture only a small amount of the water contained in
the porosity drained by gravity (McDonnell 2014), but this
assumption is debated (de Jong van Lier 2017; Logsdon
2019). FC is thus related to a physical process—gravity drain-
age—and should not vary among crops for a given type of
soil, as demonstrated by Ratliff et al. (1983).

Veihmeyer and Hendrickson (1931) stated that FC is
reached when the change in water content “reaches a negligi-
ble flow.” The Soil Science Society of America (1984) con-
siders 2–3 days for drainage to become negligible when de-
termining FC; however, some authors suggested different du-
rations: 2–12 days (Ratliff et al. 1983), 50–450 h (Jabro et al.
2009), a few hours to several months due to hydraulic con-
ductivity and the climatic demand (Assouline and Or 2014),
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6–24 h for coarse textured soils (Cassel and Sweeney 1974)
and several weeks for fine textured soils (Davidson et al.
1969). Some authors recommend defining FC based on dy-
namics of the soil water content. While Ratliff et al. (1983)
recommend that the change in soil water content should be
0.1–0.2% vol. per day at FC, Assouline and Or (2014) dem-
onstrated that no standard change can be found in the litera-
ture. These criteria, based either on a duration after the end of
rainfall or irrigation, or water content dynamics, are contro-
versial; thus, some authors recommend setting FC as a given
matric potential. Colman (1947) recommended a value of – 33
kPa, which has remained a reference value since then
(Nachabe 1998); however, several authors recommended dif-
ferent values: − 20 kPa (Salter and Haworth 1961), − 10 kPa
(Romano and Santini 2002), − 5 kPa (Nemes et al. 2011), and

– 6 kPa (Toth et al. 2015). Assouline and Or (2014) demon-
strated that soil texture influences this value strongly.
However, − 10 kPa or the original – 33 kPa value are the most
common values currently found throughout the literature to
describe FC.

The water content at FC depends strongly on soil characteris-
tics, especially soil texture and structure. This is visible, for exam-
ple, when examining volumetric water contents estimated from
measurements of undisturbed soil aggregates equilibrated at – 10
kPa, from the UNSODA database (Nemes et al. 2001) and the
EU-HYDI database (Weynants et al. 2013) (Fig. 3a), which gath-
er mostly soils from temperate climate (see Table 1, Nemes et al.
2001). The − 10 kPa FCwater contents differ strongly within and
among texture classes, with a mean of 0.14 (± 0.07) cm3 cm−3 for
sandy soils and 0.44 (± 0.08) cm3 cm−3 for clayey soils. Other

-b-

-a-
Fig. 3 Water content at – 10 kPa
(a) and – 1500 kPa (b),
determined on undisturbed soil
samples using different laboratory
protocols (mainly measurements
on plate apparatus), according to
the USDA textural classes. The
data are collected from the
UNSODA database and EU-
HYDI database in which
recordings without any
information about the method or
about the texture have been
removed.
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reference values, including the influence of structure expressed by
the bulk density, can be found in articles that address point
pedotransfer functions (PTFs) (e.g., Al Majou et al. 2008).

2.2.2 Permanent wilting point

The original definition of PWP, for plants in pots, is the water
content which induces a plant water deficit that results in leaf wilt
that cannot reversed when the plant is placed in a water-saturated
atmosphere (Briggs and Shantz 1912). PWP represents the in-
ability of roots to extract water from soil with low water content,
which induces wilting. This biological definition of PWP has
been refined over time by defining standardized situations and
conditions (Furr and Reeve 1945; Taylor et al. 1934). However,
PWP is also influenced by the soil/root profile, plant stage, tran-
spiration rate, and osmotic adjustment, which resulted in recog-
nizing that PWP is not a single value but one that may vary
within a certain range (Taylor et al. 1934). This biological esti-
mate of PWP is relatively laborious and time consuming. It was

replacedwith awater content at a fixedmatric potential, as earlier
scientists found that soil type influenced PWP more than envi-
ronmental variables such as potential evapotranspiration (Briggs
and Shantz 1911; Briggs and Shantz 1912; Taylor et al. 1934;
Veihmeyer and Hendrickson 1948). Richards et al. (1949),
Richards and Weaver (1943, 1944), and Sykes (1964) showed
that PWP determined from plant experiments yielded matric po-
tentials of − 10 to − 20 bars (− 1000 to − 2000 kPa), with a mean
of − 15 bars (− 1500 kPa). As wilting can occur due to plant or
soil conditions, depending on the thermodynamic equilibrium of
the soil–plant system (Czyz and Dexter 2012), the water content
at − 1500 kPa is widely used as the operational estimate of PWP,
at least for annual crops in temperate climates (Ratliff et al.
1983). Some authors (e.g., Toth et al. 2015) also used a matric
potential of − 1580 or − 1600 kPa, but due to the steepness of the
retention curve at these potentials, their water content differs little
from that at – 1500 kPa; in any case, the logarithm of PWP is
always ca. 4.2. Nevertheless, the matric potential at PWP can
vary greatly among plant species, ranging from as low as −

Table 1 Examples and characteristics of soil-vegetation models used in inversion to estimate AWC components.

Model type and main characteristics Model sub-type and main
characteristics (by increasing
complexity)

Model name/Reference

Soil water focused models
Mechanistic modelling of water transfers in the soil

(Darcy-Richards equation)
Aerial part poorly described

More or less complex description of root water uptake

Lumped root sink term Hydrus (Simunek et al. 2016)

Water potential gradient from root
to leaves

(Konrad and Roth-Nebelsick 2011)

Root system architecture (Doussan et al. 2006)
R-SWMS (Javaux et al. 2008)

Vegetation focused models
More precise description of plant functioning (aerial

parts), simulation of biomass accumulation / LAI
evolution

Water transfers in the soil often described with bucket
analogy

Simple Water Budget
Simple description of soil and

plant

SIYM (Morgan et al. 2003; Jiang et al. 2008)
HYDRUS-1D (Schelle et al. 2013)

SVAT–LSM
Detailed description of water and

carbon fluxes

JULES (Bandara et al. 2015)
MIKE SHE–SW-ET (Ridler et al. 2012)
Noah (Santanello et al. 2007; Gutmann and

Small 2007, 2010)
SEtHyS (Coudert et al. 2008)
SWAP (Jhorar et al. 2002, 2004; Das et al. 2008;

Ines and Mohanty 2008; Singh et al. 2010;
Charoenhirunyingyos et al. 2011; Shin et al. 2013)

WAVE (Ritter et al. 2003)

Forest 3-PG (Coops et al. 2012)

Crop models
APSIM (Florin et al. 2011)

CERES (Link et al. 2006; Braga and Jones 2004;
Dente et al. 2008)

CropGro (Irmak et al. 2001; Ferreyra et al. 2006)
STICS (Guérif et al. 2006; Varella et al. 2010a, 2010b;

Jégo et al. 2012, 2015; Sreelash et al. 2012, 2017;
Yemadje-Lammoglia et al. 2018)

Coupled soil-vegetation models Agro-hydrological models TNT2 (Ferrant et al. 2016)
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16,000 to – 3500 kPa for xerophilic species to higher than –
1000 kPa for hydrophilic species (Gobat et al. 2004). The water
content at – 1500 kPa can thus differ from that “at the lowest
limit in the field,” as used in the definition of TTSW (Ratliff et al.
1983). The amount of water released at potentials lower than –
1500 kPa are however generally low.

To aggregate cumulative effects on crop water uptake re-
lated to soil water and its dynamics, aeration, but alsomechan-
ical resistance due to soil type and crop management, some
authors introduced the concept of “least limiting water range”
(daSilva and Kay 1997; Leao et al. 2006). This concept should
not be confused with the PWP.

Using a reference potential of – 1500 kPa provides average
ranges of PWPwater content, which varies from 0.05 (± 0.04)
cm3 cm−3 for sandy soil to 0.28 (± 0.07) cm3 cm−3 for clayey
soil (Fig. 3b). Other reference potentials can be found in arti-
cles that address pedotransfer functions (e.g., Al Majou et al.
2008; Toth et al. 2015).

2.2.3 Wilting point or permanent wilting point?

From a plant-use viewpoint, not all the water stored in AWC is
equally available to plants for uptake. This fact was strongly
debated in the 1950s between initial findings of Veihmeyer and
Hendrickson (1927, 1948) and experiments of Richards and
Wadleigh (1952): the latter showed that plants begin to wilt
and restrict their growthwell before the soil water content reaches
PWP. Many experiments that followed demonstrated that
Richards and Wadleigh’s view was accurate. When the matric
potential in soil falls below a certain value, a plant’s stomata
begin to close to prevent dehydration, and transpiration decreases
below maximum transpiration (determined by the climate and
plant stage). The soil water content, at which the ratio of actual
evapotranspiration to maximum evapotranspiration falls below
one, is called the temporary wilting point (TWP), and the water
content between FC and the TWP is called readily available
water (Brisson et al. 1992). It defines the amount of soil water
necessary for the plant to avoid suffering from a water deficit.
TWP water content depends strongly on the species considered,
its resistance to drought, and the amount of potential evapotrans-
piration (Allen et al. 1998). Some irrigation decision tools use the
readily available water content in order to trigger irrigation when
water content falls below it.

2.3 The depth used to estimate AWC: soil depth or
rooting depth?

As mentioned, maxDepth (Eq. 1) is a key factor in soil AWC
estimation, but it remains difficult to define and estimate. In its
original definition, AWC defines two properties: (i) the ability of
soil to store water and (ii) the capacity of plants to collect water
from this soil water stock. Depth can mean the maximum soil
depth or the rooting depth, depending on the objective of using

the AWC concept and the relative importance of these two as-
pects in the definition. Thus, ambiguity remains about which
depth to use when estimating AWC. The term “maximum soil
depth” itself can be misleading when (i) roots colonize the sap-
rolite layers located between the bottom of the soil and the bed-
rock (e.g., vineyard, forest) and (ii) a soil horizon becomes an
obstacle to roots.

2.3.1 Estimating soil depth

Many studies have defined AWC for a given soil, regardless of
the crop. Consequently, maxDepth (Eq. 1) was considered the
soil depth or maximum soil depth. Specifications of the
GlobalSoilMap program (Arrouays et al. 2014) considered
“depth to the bedrock” (i.e., either “hard” bedrock—an indurated
or cemented layer—or “soft” bedrock that meets the consistency
requirements for paralithic contact (Soil Survey Division Staff
1993)). This depth represents the “potential rooting depth”men-
tioned by the INSPIRE Directive that considers potential rooting
in saprolite layers and obstacles caused by certain soil layers.

In addition to these definition issues, soil depth remains
difficult to estimate. The (maximum) soil depth can be
underestimated for deep soils if the real soil depth exceeds
the maximum observation depth (i.e., “right-censored” soil
depth) (Chen et al. 2019).

2.3.2 Estimating rooting depth

If specific crops are considered when estimating AWC,
maxDepth should be the rooting depth, as it influences esti-
mates of AWC strongly. For example, given an elementary
AWC for 1 cm of soil of 1–2.5 mm cm−1 soil depth, a 10 cm
error in rooting depth and a measurement accuracy of water
contents at FC and PWP of ca. 0.01 m3 m−3 (as an estimate for
laboratory measurement), the total resulting error in AWC
over a 100 cm homogeneously rooted soil horizon would
range from 17 to 29 mm, of which 58–87% would originate
from the 10 cm error in rooting depth.

Despite its relevance for estimating AWC, maximum rooting
depth is rarelymeasured in the field as it is time consuming; thus,
it is usually estimated from tabulated values (e.g., Allen et al.
1998). In this case, a range of maximum and minimum values is
generally provided, and the difference between them ranges from
0.2 m to more than 1 m depending on the species, as rooting
depth varies greatly among cultivars and soil conditions (e.g.,
water, nutrients). Thus, measuring rooting depth in the field can
provide a more accurate estimate of AWC. Unfortunately, no
consensus exists on which measurement to use as the rooting
depth, such as the deepest visible root or 95% of the cumulative
root distribution (Combres et al. 1999). Moreover, although
rooting is relatively spatially homogeneous in the upper soil lay-
er, root heterogeneity increases greatly with depth (Hodge et al.
2009; Fig. 4). This heterogeneity can influence water uptake
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greatly due to the explored soil volume and local variability in
soil hydraulic properties (Beudez et al. 2013), and challenges the
idea of AWC when roots are assumed to be equally efficient
throughout the entire rooting depth. For forest soils, several au-
thors showed that knowing the AWC for some of the rooting
depth is sufficient to estimate tree transpiration or growth, even if
roots are observed at greater depths (Algayer et al. 2020; Tanaka
et al. 2004). Cabelguenne and Debaeke (1998) reported on field
experiments in which several annual crops (i.e., maize, sorghum,
soybean, sunflower, and wheat) could withdraw all extractable
water, even at a matric potential lower than – 1500 kPa in the
near-surface layer, whereas not all of the water stored in deeper
soil layers was captured, due to lower root density. Droogers
et al. (1997) stressed that “the amount of available soil water”
should not be confused with “water accessibility” to roots; the
latter depends strongly on soil structure and may differ in
compacted and uncompacted soils, even in the case, which is
theoretically possible depending on the stress value, when they
have the same AWC.

The concept of TTSW aggregates differences in the rooting
and extraction potential among plant species throughout the
rooting depth. TTSW refers to a given crop, in a given soil,
and under given climate conditions. Agronomists sometimes
use TTSW to quantify water uptake instead of AWC
(Pellegrino et al. 2004; Ratliff et al. 1983), but it is applied
only at the local scale as it requires data on field water content.
The issue of rooting depth remains a challenge for modeling
soil–plant functioning over large regions.

2.4 AWC in heterogeneous soils: how to address rock-
fragment content and pedological heterogeneities

Some horizons have structural heterogeneities, such as irreg-
ular horizon boundaries (e.g., tongues) or rock fragments, that

must be considered when estimating AWC. A common prac-
tice is to estimate the nominal AWC for each component of
the soil horizon and then sum these values for an overall esti-
mate of AWC at the horizon or profile scale.

As a porous medium, rock fragments can store and release
water. AWC has the same definition for rock fragments as for
fine earth: the difference between water content at FC and
PWP. The elementary AWC of a s tony hor izon
(AWChorizon) is thus estimated as follows:

AWChorizon ¼ w:AWCRockFragment þ 1−wð Þ:AWCFineEarth ð2Þ

where AWCRockFragment and AWCFineEarth represent the AWC
of rock fragments and fine earth, respectively, and w is the
volumetric proportion of rock fragments in the horizon.

Tetegan et al. (2011) demonstrated that, depending on their
lithological type, sedimentary rock fragments can contribute
2% (for flint) to 60% (for weathered limestone) to the soil
horizon AWC. In a case study of a calcareous soil, Cousin
et al. (2003) demonstrated that ignoring the rock-fragment
content would underestimate annual water percolation by ca.
15%, and that considering their volume but ignoring their
hydraulic properties would overestimate annual percolation
by 15%. Algayer et al. (2020) observed a significant increase
in the correlation between tree growth and AWC when the
AWC of rock fragments was included in the estimated
AWC of forest soil.

The same may apply to other types of soil heterogeneity.
For an Albeluvisol with white silty-loam tongues in a red clay-
loam horizon, Frison et al. (2009) demonstrated that PWP
water content was lower and FC water content was higher
for the white soil volumes than for the red soil volumes.
AWCwas thus significantly higher in tongues than in the bulk
soil horizon, with differences ranging from 0.055 to 0.144 cm3

cm−3. Considering the contribution of tongues to the horizon

Fig. 4 Vertical soil profile with
root impacts. a Picture of the field
setting for examining 2D
distribution of root impacts with a
grid. b Resulting distribution of
root impacts under 3 rows for
82-day-old maize. The horizontal
dotted blue line shows the depth
of the cumulative 95% of root
impacts. (C. Doussan,
unpublished results).
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AWC resulted in AWC of 0.171–0.228 cm3 cm−3, depending
on the proportions of white and red soil volumes.

2.5 Limits of this review: non-limiting water range
and saline soils

Some authors introduced an alternative and more integrated
concept of AWC and TTSW, the “non-limiting water range,”
which describes the range of soil water contents in which
water, oxygen, and mechanical resistance do not limit plant
growth. This concept lies outside the scope of this review.
As mentioned in the INSPIRE Directive’s definition of
AWC, salt content in the soil solution must be considered
as it alters interfacial tensions in the soil porous media
and the osmotic conditions under which plants can with-
draw water from the soil. Thus, the general concept of
AWC cannot be considered valid for saline or sodic soils,
which require site-specific studies (e.g., Wang et al. 2011;
Abd El-Mageed and Semida 2015). Specifically, current
PTFs (Section 3.2.2) lie outside the range for these soil
types.

3 Estimating AWC from a soil viewpoint:
current approaches and their limits

For decades, soil scientists have determined AWC, FC, and
PWP based on the assumption that soil can be described
as a vertical succession of soil horizons with different
properties, especially hydraulic ones. Laboratory measure-
ments, field monitoring, estimates using PTFs, and soil
mapping are thus usually conducted at the horizon scale
and summed over the soil profile down to the soil depth
and, if the estimate has a spatial dimension, over the soil
mapping unit.

3.1 Estimating local AWC components

3.1.1 Estimating AWC components from laboratory
measurements of soil samples

AWC is usually estimated from laboratory measurements of
disturbed or undisturbed soil samples (ca. 10 cm3 in volume)
collected in each soil horizon of the soil profile, and then
equilibrated at pre-determined matric potentials using a
Richards pressure-plate apparatus (for 5–7 days, according
to ISO norm 11274 (2019)). To determine their gravimetric
water content, soil samples are weighed (i) immediately
after removal from the pressure-plate apparatus, to record
their moisture weight, and (ii) after they have been dried
at 105 °C for 48 h, to record their dry weight. As men-
tioned, this usually uses either a value of – 33 kPa deter-
mined by Colman (1947) or a value of – 10 kPa assumed

to be closer to the matric potential in the field (Bruand
et al. 2004). For PWP, the traditional value of − 1500 kPa
of Richards and Weaver (1943) is usually used. For lab-
oratory measurements, the terms “field capacity” and
“permanent wilting point” are not completely appropriate,
as soil samples are not subjected to drainage dynamics or
to wilting plants.

Due to the usual hysteretic form of the water retention
curve, the water content measured at − 33 or − 10 kPa may
depend on the initial water content of the soil sample before it
was placed on the pressure plate, and whether a wetting or a
drying process was used to obtain equilibrium. The standard
procedure according to the ISO 11274 (2019) norm requires
sampling undisturbed soil clods near FC to ensure that PWP is
measured during drying. To measure FC, the undisturbed
clods should be gently re-saturated before they are placed on
the pressure plate to ensure that they are also drying.
Conversely, due to the pore sizes involved in water retention
at PWP, PWP can be measured from disturbed or sieved
samples.

Because water contents measured at FC and PWP in the
laboratory are based on sample weights, they are first
expressed as gravimetric water contents. As traditional esti-
mates of AWC are based on volumetric water contents, how-
ever, they usually also require estimating the bulk density.
Bulk density can be estimated from the soil samples used to
estimate FC and PWP or from direct measurement of soil
horizons. The latter is recommended for estimates at the pro-
file scale, especially for stony soil horizons in which the con-
tribution of rock fragments to AWC must be included at the
horizon or profile scale.

Uncertainties in measuring AWC in the laboratory are due
to (i) uncertainties in the matric potential in the pressure-plate
apparatus (which is related to the laboratory’s mainte-
nance protocol), (ii) lack of hydrostatic equilibrium in
pressure plate (depending on soil type), (iii) uncertainties
in the measured weight as a function of the precision of
the scale, and (iv) intrinsic variability in the texture and
structure of the soil horizon. Intrinsic variability is
expressed by the standard deviation of the gravimetric
water content for all of the samples used. For estimates
of FC, undisturbed soil samples are more representative
than disturbed or sieved soil samples, as they maintained
their structure. All types of uncertainties can be consid-
ered by providing a mean and standard deviation of water
content. For example, in the SOLHYDRO database
(Bruand et al. 2004), the mean gravimetric water content
at – 33 kPa for clayey soils and sandy soils is 0.22 and
0.07 g g−1, respectively, whereas the mean standard devi-
ation associated with this mean is 0.062 and 0.027 g g−1,
respectively. Estimated volumetric water content must in-
clude uncertainties in estimated bulk density to estimate
the total uncertainty in AWC.
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3.1.2 Estimating AWC components from in situ soil water
content monitoring

In the field, the water content of soil horizons can be moni-
tored by sensors, such as time-domain reflectometry or neu-
tron probes (Ritchie 1981), from the surface down to the po-
tential rooting depth or a reasonable investigation depth.
Ideally, several sensors are installed in each soil horizon to
capture its heterogeneity.

For FC, field monitoring must be conducted on bare soil,
preferably in winter, to obtain a soil water content high
enough to be near the FC and to avoid high evaporation rates
(which can even be more limited if the soil is covered) (Ottoni
et al. 2014). The objective is to follow dynamics of the water
content profile over several drying sequences from an almost
saturated state, which occurs after heavy rainfall or irrigation.
FC is thus estimated by analyzing the water content time series
to obtain a value that does not change by more than 0.1–0.2%
vol. in a single day (Ratliff, 1981), which is assumed to rep-
resent the transition between fast drainage and a quasi-steady-
state of water content. The duration of the monitoring and the
frequency of the measurements must be adapted to the texture
of the soil horizons, but the transient fast drainage is generally
assumed to last 48 h or more (Section 2.2.1). An important
point of caution is the potential for ascending water fluxes due
to capillary rise when the water table is near the soil surface.
These fluxes do not have to be considered when estimating
AWC although they contribute to the water supply of plants
when they occur, and can lead to a wrong estimation of FC.

Several technical and environmental factors influence the
uncertainty in FC estimated from field measurements. First,
the uncertainty in measurements using water-content sensors
usually varies from ca. 1–4% vol. (Robinson et al. 2008),
depending on sensor technology, installation, and calibration;
careful calibration, especially for soil bulk density may be
needed (Huang et al. 2004). Second, spatial variability in soil
texture or structure can introduce as much uncertainty in mean
measured values as sensor uncertainty can (Vandervaere et al.
1994), depending on the number of sampling sites and knowl-
edge of the field site. The temporal and spatial distribution of
measurements can also introduce biases into the estimation of
FC. Measuring for too short a period may miss favorable
climatic conditions that lead to FC conditions in the field.
The influence of the length of the time series with favorable
conditions is also related to the measurement frequency (from
hourly logging to weekly or less frequent manual measure-
ments), which must be high enough to determine whether FC
has been reached. Estimating FC water content down to the
soil depth or the potential rooting depth requires installing and
calibrating sensors in each soil horizon. This can be difficult,
but is sometimes feasible, in stony soils (Coppola et al. 2013)
or when roots colonize cracks in hard horizons or regolith.
Finally, the number of measurements to make over the soil

profile depends on its structuring. If the succession of soil
horizons is not known, water content should be recorded
along the entire soil profile (e.g., with probes in tubes) instead
of measuring it at a few depths, in order to obtain a realistic
vertical average.

PWP is also traditionally estimated from the time series of
water content, but in cropped situations (Section 4.1.2), which
estimates AWC from a soil–plant viewpoint.

3.1.3 Estimating AWC components by inverting soil models

Inverse modeling has long been an alternative and indirect
way of estimating soil hydraulic properties. It has been widely
used at the horizon scale using data from experiments on
drainage or evaporation in soil column samples (e.g., single
or multistep outflow experiments (Vereecken et al. 1997;
Vrugt et al. 2001), wind evaporation experiments (Tamari
et al. 1993)). It consists of adjusting the parameters of soil-
water transfer models to simulate observations of the system
(e.g., fluxes, soil water content, matric potential) as accurately
as possible. As specific points on the water retention curve,
water contents at FC and PWP can then be estimated using
inverse modeling, which selects ad hoc matric potentials.

In wind evaporation experiments, Mohrath et al. (1997)
demonstrated that inversion can have low error, except when
soil samples are layered. Using more recent methods, such as
generalized likelihood uncertainty estimation, Yan et al.
(2017) highlighted that the quality of inversion depends
strongly on the parameters of the inversion method itself
(i.e., hyper-parameters). Uncertainties in properties estimated
from model inversion may depend on many factors. Their
estimation is feasible but their relevance can be questionable
and they can hardly be validated. A detailed discussion on this
issue is given Section 4.2.3.

3.2 Spatial estimation of AWC from the field scale to
the regional scale

The locations of available soil observations andmeasurements
used to estimate AWC in the previous methods represent only
a small fraction of total soil cover. Therefore, for most large
areas, AWC must be determined at unvisited locations. At the
field scale, a geophysical survey can serve as a proxy for the
AWC or its components when mapping at high spatial reso-
lution. At larger scales, soil mapping techniques are used that
require easily available soil properties (e.g., particle-size dis-
tribution, soil thickness) observed at enough locations to be
interpolated. For AWC in particular, laboratory and field mea-
surements are too expensive and time consuming to use at a
large number of locations. This issue is usually addressed by
combining soil mapping techniques with PTFs that relate
AWC to basic soil properties (Bouma and van Lanen 1987).
These approaches are detailed below.
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3.2.1 Using geophysics to estimate AWC at the field scale

Agricultural geophysics involves measurement techniques
based on physical processes to provide information about soil
properties. These methods are generally non-invasive and use
proximal soil sensors which, when placed on vehicles, can be
used to create high-precision soil maps of the field (e.g.,
Samouelian et al. 2005). The most common geophysical
methods that can sense soil down to the rooting depth are
resistivity sounding and electromagnetic induction, which
map the soil’s electrical conductivity (ECa) or resistivity av-
eraged over different depths. Since the 2000s, an increasing
number of studies have used ECa as a proxy for soil texture
(often the clay content) and water content (Heil and
Schmidhalter 2017) for non-saline soils. Based on this infor-
mation, FC and PWP water contents, as well as AWC, can be
estimated in several ways. In some cases, a map of soil texture
is derived from relationships between ECa and soil texture;
the latter is then transformed into AWC using PTFs
(Section 3.2.2) (Abdu et al. 2008; Fortes et al. 2015)
(Fig. 5). When ECa correlates well with soil parameters
(especially texture and soil depth), ECa mapping can be
used to delineate homogeneous zones of soil functioning
or contrasting soil types. These zones can generate an
optimized sampling scheme for estimating AWC
(Genere et al. 2015), and a single AWC from laboratory
measurements can be used for each zone (Hedley and
Yule 2009; Ortuani et al. 2016). This also sometimes en-
ables direct regression analyses between ECa and labora-
tory measurements of FC and PWP water contents (Jiang
et al. 2007).

Due to the high sensitivity of ECa to water content (Besson
et al. 2010), some authors suggest using ECa as a proxy for
water content only at FC. AWCmaps are thus produced using

a mixed approach that includes field estimates of FC and lab-
oratory estimates of PWP (Hezarjaribi and Sourell 2007; Lo
et al. 2017). In several studies, the R2 of observed site-specific
relationships between ECa and AWC or AWC components
ranged from 0.20 to 0.80 (Abdu et al. 2008; Fortes et al. 2015;
Hedley and Yule 2009; Heil and Schmidhalter 2017;
Hezarjaribi and Sourell 2007; Jiang et al. 2007; Ortuani
et al. 2016). However, the quality of the relationship may
depend on soil depth: for deep soil layers, weak correlations
between ECa and AWC components (Ortuani et al. 2016) and
inconsistent patterns (Ortega-Blu and Molina-Roco 2016)
have been observed. This can be due to (i) the date of mea-
surement (dry or wet season), which can enhance or blur the
relationship, depending on soil type; (ii) the relationship be-
tween the depth and sensitivity of the geophysical method; or
(iii) the vertical arrangement of soil horizons.

Gooley et al. (2014) and Priori et al. (2019) suggested
adding gamma-ray spectroscopy to ECa measurements to
map AWC at the plot scale. Viscarra Rossel et al. (2017)
developed a comprehensive integrated soil core sensing sys-
tem that included a gamma-ray densitometer and digital cam-
eras in the visible to near-infrared spectrum to estimate several
soil characteristics, including AWC, rapidly. In all of these
approaches, however, errors in estimated AWC or FC and
PWP water contents still need to be estimated (Gooley et al.
2014).

In addition to using proximal data from geophysical tools,
remote-sensing information can be used to estimate AWC.
However, as it is used mainly during the growing season, this
approach is not considered here as a “soil approach”
(Section 4.1.3). Nevertheless, in specific situations without
vegetation, remotely sensed data can be used to provide
high-resolution information about bare soils and help deter-
mine soil characteristics (Gomez et al. 2012; Pasquier et al.

Fig. 5 Evaluation of Available Water Capacity (AWC) from electrical
resistivity measurements in an agricultural plot in Central France
(Villamblain). a Channel 3 of the electrical resistivity prospecting by
the ARP device (Dabas, 2009), and locations of sampling for soil
characteristics determinations (particle size distribution, organic carbon

content, pH, CaCO3 content). b Soil types derived from the electrical
resistivity device and the soil characteristics. c Available water capacity
(mm) map derived from laboratory measurements of water contents at –
10 kPa and – 1500 kPa in each soil horizon of the soil types. Adapted
from Seger et al. (2016).
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2016; Vaudour et al. 2019). Remotely sensed data can also be
used in digi ta l soi l mapping (DSM) approaches
(Section 3.2.4).

3.2.2 Using pedotransfer functions to estimate AWC

PTFs predict soil properties that are not easily available (e.g.,
soil water properties) from more readily available soil proper-
ties (e.g., particle-size distribution, soil organic carbon con-
tent) (Bouma 1989). See the review of Van Looy et al. (2017)
for more information about PTFs. Soil water properties are the
most important set of PTFs (Pachepsky and Rawls 2004;
Wösten et al. 2001), and they are continually improved (e.g.,
Castellini and Iovino 2019; Szabo et al. 2019; Dharumarajan
et al. 2019; Roman Dobarco et al. 2019b). Two main types of
PTFs are usually defined: (i) point PTFs, which estimate water
content at a given matric potential for a group of soils, and (ii)
parametric PTFs, which estimate parameters of a model of the
water-retention curve. PTFs are developed using a variety of
statistical methods, from linear or nonlinear regressions (e.g.,
Romano and Palladino 2002) to artificial intelligence (e.g.,
Haghverdi et al. 2012; Nemes et al. 2006; review of
Vereecken et al. (2010)). The best predictors for the water
retention curve are those with physical significance related
to water retention (Minasny and Hartemink 2011). Texture
and particle-size distribution are the most commonly used
predictors in PTFs (Jamagne et al. 1977; Rawls et al. 1982),
but soil organic carbon content (Arrouays and Jamagne 1993;
Batjes 1996) and bulk density (Al Majou et al. 2008;
Vereecken et al. 1989) are also frequently used to improve
their quality (Vereecken et al. 2010). PTF predictors must be
adapted to the target of interest, and should differ when esti-
mating FC and PWP, as different pore sizes are involved in
water retention at these two potentials (Tomasella et al. 2003).
Thus, specific PTFs have been developed for FC (Ottoni et al.
2014) and for PWP (Czyz and Dexter 2013).

The efficiency of PTFs was first considered by Pachepsky
and Rawls (1999), who distinguished accuracy (i.e., the dif-
ference between measured and estimated data for the datasets
used to develop a PTF) from reliability (i.e., the difference
between measured and estimated data for datasets other than
those used to develop a PTF). For most published point PTFs,
accuracy is provided as the mean and standard deviation of
water content for each soil group considered and/or some
measure of goodness-of-fit, such as the root mean square error
(RMSE). For example, Wösten et al. (2001) and Vereecken
et al. (2010) compared the performances of a large set of PTFs
and reported respectively an RMSE of 0.02–0.11 m3 m−3 and
a mean adjusted RMSE of 0.017 m3 m−3 as measures of ac-
curacy. For parametric PTFs, authors usually provide metrics
of reliability, such as mean errors of prediction, root mean
square errors of prediction, and/or standard errors of predic-
tion, along with means of AWC or its components.

Regardless of the predictors chosen, some variance remains
unexplained by PTFs (Vereecken et al. 2010). The accuracy and
reliability of PTFs can be increased first by enlarging the data-
base used to calibrate them. However, it should not generate
harmonization problems (e.g., multiple protocols used to mea-
sure hydraulic properties, soil predictors and hydraulic properties
measured from different samples).While the calibration database
is of prime importance, accuracy can increase by stratifying data
into different subsets (e.g., by soil type, parent material, horizon
depth, or texture group) (e.g., Al Majou et al. 2008).

Good practices for selecting a relevant PTF include choos-
ing a PTF that is (i) published with its uncertainties (Minasny
and McBratney 2002); (ii) developed using soils similar to
those to which it is applied (Wösten et al. 2001), for example
by comparing ranges of their textural characteristics (Minasny
and Hartemink 2011; Roman Dobarco et al. 2019b); and (iii)
developed at a scale similar to that at which it is applied
(Stoorvogel et al. 2019; Van Looy et al. 2017). In addition,
sets of PTFs can be used, for example to estimate soil proper-
ties over large regions, as recommended by Dai et al. (2019).

3.2.3 Conventional soil mapping techniques applied to AWC

The traditional method for mapping AWC is to use soil maps
produced by conventional soil surveys. For the latter, an area is
separated into mapping classes, each of which is usually charac-
terized by a representative soil profile or information about the
variability in soil properties (i.e., minimum, mean/mode, maxi-
mum). Soil properties measured in the representative profiles or
represented by modes or means are generally assumed to apply
to the entire soil class and entire surface area. Many maps of
AWC or its components have been produced using this conven-
tional approach, especially for large spatial extents (e.g., Dejong
and Shields 1988; Batjes 2016).

This conventional approach is limited by the precision of
soil map delineation, which is related to the map scale.
Leenhardt et al. (1994) investigated the precision of predicted
AWC and its components estimated from soil maps at three
scales (1:10,000, 1:25,000, 1:100,000). AWC estimates were
relatively inaccurate regardless of the scale (R2 = 0.40) due to
the propagation of uncertainty in soil depth, which was poorly
estimated (R2 < 0.20). Although these results were obtained in
a specific pedological context and could thus differ from soil
mapswith different spatial soil structure, they provided insight
into the advantages and limitations of such approaches.

Other limitations are due to errors in characterizing soil
classes. AWC is usually not measured from representative
profiles, but is inferred from PTFs, which results in high un-
certainties (Section 3.2.2). AWC is often estimated from
small-scale soil maps (1:250,000 and lower) that delineate
complex soil mapping units that have more than one soil class.
This makes selecting a single representative profile difficult.
Aggregation methods are necessary to obtain a single value
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per mapping unit (e.g., weighted mean, dominant class).
However, estimates of AWC at a given location may be irrel-
evant if this location does not represent the dominant soil class
or if the agronomic context is too specific.

3.2.4 Digital soil mapping applied to AWC

DSM was developed in the 1990s as an alternative to conven-
tional soil surveys for mapping soil properties at lower cost
(Lagacherie and McBratney 2007; McBratney et al. 2003;
Minasny and McBratney 2016). McBratney et al. (2003) devel-
oped the equation S = f(s,c,o,r,p,a,n) to summarize the general
principle of DSM: a soil property (S) can be predicted using a
spatial inference function (f) that uses as input existing soil infor-
mation (s); spatial covariates that map factors of soil formation,
defined by Jenny (1941) (c,o,r,p,a, standing for climate, organ-
isms, relief, parent material, and age, respectively) and geograph-
ic location (n), which can highlight spatial trends missed by the
other covariates. Many soil-sensing products that estimate soil
properties at multiple unvisited sites can also be associated with
DSM protocols, such as visible to short-wave-infrared remote
sensing (Lagacherie and Gomez 2018), electrical resistivity
(Ben-Dor et al. 2009), or electromagnetic induction combined
with remotely sensed images (Sommer et al. 2003). Remote-
sensing data that assess soil-vegetation-atmosphere functioning
could also be useful in DSM approaches (Maynard and Levi
2017; Taylor et al. 2013). Although DSM has as many limita-
tions as conventional soil surveys due to the availability of
existing soil information, it has several advantages: (i) it benefits
from a wide range of spatial landscape data provided by the
spatial data infrastructure; (ii) it can provide local estimates of
uncertainty in predictions, which enables realistic use of outputs;
and (iii) its outputs can be updated easily to improve precision if
new data are collected.

Despite its relevance for users, until 2009, AWC had fewer
DSM applications than many other soil properties: only 5 of the
90 DSM articles reviewed by Grunwald (2009) focused on
AWC.DSMhas been increasing applied to AWC in recent years
(Hong et al. 2013; Jin et al. 2018; Levi et al. 2015; Roman
Dobarco et al. 2019a; Szabo et al. 2019; Zare et al. 2018), and
several articles include pioneer considerations of rooting depth
and gravel contents (Leenaars et al. 2018). Styc and Lagacherie
(2019) showed that performances of AWC mapping were influ-
enced strongly by the order in which “combining primary soil
properties,” “aggregating soil layers across depths,” and “map-
ping” are executed to provide the targeted AWC.

To date, it has been difficult to determine whether the new
DSM techniques predict AWC more accurately than conven-
tional soil mapping, as the literature contains no full validation
of AWC predictions, such as that performed by Leenhardt
et al. (1994) for conventional soil surveys. However, several
estimates of DSM accuracy for AWC components exist, with
R2 of ca. 0.20–0.30 for FC and PWP and ca. 0.10–0.40 for soil

depth (Hong et al. 2013; Mulder et al. 2016; Roman Dobarco
et al. 2019b; Shangguan et al. 2017). Based on analysis of the
limitations of using DSM to map soil properties related to
AWC, the density of sites with measured soil properties is
likely a major limiting factor, and is thus the main factor that
influences variation in the accuracy of predictions across case
studies (Vaysse and Lagacherie 2015).

4 Estimating AWC from an agronomic
viewpoint: incorporating the influence
of plants in experimental
and inverse-modeling approaches

4.1 Using a soil–plant approach to estimate AWC

4.1.1 The plant in soil–plant hydric functioning

Plants take upwater through their root system tomeet the climatic
demand until the water is too tightly retained by soil particles,
which stops transpiration and causes them to start suffering from
severe drought, inducing wilting. At this point, as mentioned, the
water content should be close to PWP. Consequently, monitoring
plant physiological parameters (e.g., transpiration, leaf water po-
tential) over time could reveal soil hydraulic properties and PWP
attributes.A decrease in a plant’s relative transpiration or predawn
leaf potential indicates that the readily available soil water
(Section 2.2.3) is depleted (e.g., Feddes and Raats 2004), while
a near zero relative transpiration, or nearly null difference be-
tween midday and predawn leaf water potentials, indicates that
soil water is close to PWP. Water limitations also influence crop
growth (e.g., biomass, leaf area index), and the reduction is relat-
ed directly to the decrease in relative evapotranspiration and use
of soil available water. Vegetation features (e.g., a uniformly
managed sunflower field) may reflect soil hydraulic properties
and soil depth strongly, especially when exposed to water limita-
tions in the absence of other stresses (Fig. 6).

4.1.2 Field monitoring of soil water content in a vegetated
soil and estimation of PWP water content

Field estimates of PWP water content are based on sensor mea-
surements of the soil profile of a vegetated area, as well as on
analysis of the water content time series. PWP is considered to be
the lowest water content of cultivated soil after plants have
stopped extracting water and are at or near premature death or
have become dormant due towater stress (e.g., Ratliff et al. 1983;
Kunrath et al. 2015). These conditions can occur in dry seasons
without irrigation (Nielsen and Vigil 2018) or depriving soil of
water, such as by using rain shelters (Burk and Dalgliesh 2013).
Close monitoring is thus needed to detect changes in soil water
content, and wilting can be associated with measurements of low
transpiration or visual signs of unrecoverable wilting. PWP can
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become more difficult to estimate, especially in shallow soil or
near-surface layers, when soil evaporation is counterbalanced by
water supply from deeper soil layers due to capillary rise. Plants
can use this ascending water to limit wilting. This process, which
is included in the transpirable soil water content and PAWC
(Section 2.1.2), is sometimes incorrectly used for PWP water
content when field monitoring is involved.

4.1.3 Including remotely sensed vegetation data to estimate
AWC or its components

Remotely sensed images of vegetated plots reflect crop devel-
opment throughout the growing season. Analyses of images
of rainfed agricultural areas can be used to estimate AWC, as
demonstrated by Araya et al. (2013) using normalized differ-
ence vegetation indexes (NDVI) from MODIS images.
Remotely sensed data have been used for several decades to
estimate AWC or its components directly. See the study of
Dewaele et al. (2017) for recent examples.

4.2 Inverting soil–plant models to estimate AWC

Inversemodeling has been used to predict hydraulic properties of
soil–plant systems based on the influence of soil hydraulic pa-
rameters on plant variables (e.g., growth, transpiration, leaf water

potential) (e.g., Hupet et al. 2005; Konrad and Roth-Nebelsick
2011; Sreelash et al. 2017). Comparing soil/crop variables pre-
dicted by an adequate model to observations of the same vari-
ables can be used to estimate values or probability distributions
of certain AWC components from the distance between these
predicted and observed values using optimization (Dente et al.
2008; Timlin et al. 2001) or Bayesian methods (Das et al. 2008).
A conceptual diagram of model inversion process shows how it
can be used to estimate AWC components (Fig. 7).

4.2.1 Models and data used in inverse-modeling approaches

The complexity of models used to estimate AWC depends on
their original objectives. Soil-vegetation models inverted to
estimate AWC components differ in the detail with which they
describe soil-water transfers and plant functioning (Table 1).
These characteristics influence their suitability and ease of
application for the soil-vegetation system considered.

The observations used in the inversion process are diverse
and depend on the field of application, the model used and the
spatial scale of interest. A wide variety of observations are
used, from field measurements of hydrological or vegetation
variables to remote-sensing products (Table 2). In recent de-
cades, several studies used satellite products due to their ad-
vantages for spatial applications. Some studies have shown

11

20

40

70

120
Resis�vity (Ohm.m)b)

Fig. 6 Effect of available water capacity (AWC) on vegetation growth
(sunflower at the Avignon INRA site, France, in 2015). a Four UAV
(unmanned aerial vehicle) images of NDVI (normalized difference
vegetation index) of a sunflower field exposed to increasing water
stress showing the evolution of the vegetation from early growth
(sowing was achieved on late May) to senescence (harvest occurred on
mid-September), with large within-field heterogeneity; green zone
correspond to high NDVI and high level of green leaf area; red zones

correspond to low NDVI and low level of green leaf area. b Map of soil
electrical resistivity over 0–2 m on the same field as (a) revealing the soil
depth heterogeneity; the red zones correspond to high electrical resistivity
values for shallow soil depths (80–90 cm); the greener zones correspond
to lower electrical resistivity for soil depths deeper than 2 m. Crop
heterogeneity appears to be due to AWC heterogeneity, especially soil
depth.
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the utility of combining other types of observations of hydrau-
lic properties of the surface and deeper root zone
(Charoenhirunyingyos et al. 2011; Sreelash et al. 2012).

The components of AWC that are predicted by inverse
soil–plant modeling differ depending on the model used.
AWC or FC/PWP water contents can be predicted from
models based on the bucket analogy, while the entire soil
water retention curve (usually parameterized using the van
Genuchten model) can be estimated from models based on
the Darcy-Richards equation. Bulk density can also be esti-
mated when FC and PWP are expressed gravimetrically in the
inversed model; in practice, however, they are often set at
measured or a priori values.

Soil depth or maximum rooting depth is often assumed to be
known, and usually only soil hydraulic properties are estimated
by the inversion. However, several studies have estimated depth
(Irmak et al. 2001; Link et al. 2006; Ridler et al. 2012; Sreelash
et al. 2012; Sreelash et al. 2017; Varella et al. 2010a; Varella et al.

2010b). Some authors also estimated root distribution parameters
(e.g., Hupet et al. 2003; Schelle et al. 2013).

As mentioned, rock fragments can influence soil hydraulic
functioning strongly and thus AWC or its components. To our
knowledge, however, inversion of soil–plant models does not
consider the influence or properties of rock fragments when
estimating AWC.

Describing the complexity of the soil profile in the inversed
model is an important issue. The soil can be represented as (i) a
single layer (Jhorar et al. 2002), with the estimated soil hydraulic
properties thus assumed to represent those of multiple soil hori-
zons, or (ii) multiple layers, which increases the number of pa-
rameters to be estimated (e.g., each layer’s thickness and water
contents at FC and PWP) (Seki et al. 2015). Some authors
showed that, regardless of model complexity, using multiple
layers provides better performance than a single homogenous
layer, except for soils with low heterogeneity (Schneider et al.
2013; Thomas et al. 2017).

Fig. 7 General description of the
model inversion process applied
to the estimation of Available
Water Capacity (AWC)
components.

Table 2 Examples of observation types used in soil-vegetation models inversion to estimate AWC components. Bold references refer to studies that
used observations derived from satellites products.

Type of observation used Reference

Hydrologic
variables

Soil moisture or hydraulic heads
at different depths

Ritter et al. 2003; Braga and Jones 2004; Qu et al. 2014; Hou and Rubin 2005; Chen and Yin 2006
2019; Schneider et al. 2013; Seki et al. 2015; Thomas et al. 2017

Surface soil moisture Santanello et al. 2007; Das et al. 2008; Ines and Mohanty 2008 ; Ridler et al. 2012; Shin et al.
2013; Bandara et al. 2015

Drainage Schelle et al., 2012, Schelle et al. 2013

Vegetation
variables

Evapotranspiration/surface
temperature

Burke et al. 1998; Jhorar et al. 2002, 2004; Gutmann and Small 2007, 2010; Coudert et al. 2008;
Singh et al. 2010; Charoenhirunyingyos et al. 2011; Ridler et al. 2012; Shin et al. 2013

LAI Guérif et al. 2006 ; Dente et al. 2008; Varella et al. 2010a, 2010b; Charoenhirunyingyos et al. 2011;
Coops et al. 2012; Jégo et al. 2012, 2015 ; Ferrant et al. 2016; Yemadje-Lammoglia et al., 2018

Yield He et al. 2001; Timlin et al. 2001; Morgan et al. 2003; Braga and Jones 2004; Ferreyra et al. 2006;
Link et al. 2006; Jiang et al. 2008; Florin et al. 2011; Yemadje-Lammoglia et al., 2018

Plant nitrogen content Varella et al. 2010a, 2010b
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4.2.2 Local or spatial model inversion

Inverse modeling is a natural way to estimate suitable soil
parameters at the resolution of the measurements used as input
data. It is also considered a powerful method for upscaling
(Mohanty 2013; Vrugt et al. 2008). As such, it is a multiscale
method. A local inversion (i.e., applied to a single location)
estimates AWC components for the spatial (horizontal) sup-
port of the observations used. Alternately, a spatial inversion
(i.e., applied to a heterogeneous landscape using spatially
comprehensive observations of the soil-vegetation system)
predicts spatial distribution of AWC components. Spatial in-
versions can be performed using either a multi-local configu-
ration (i.e., independent inversions of the observed locations)
or inversion of a spatial model over the area considered.

Local applications are generally restricted to methodological
studies and are performed for well-described experimental sites
with many types of data and for specific experiments, such as
infiltration experiments (e.g., Russo et al. 1991; Simunek et al.
1998). In comparison, spatial applications for areas of a few
hundred m2 to a few km2 can benefit from adequate knowledge
of the modeled situation, especially the availability of in situ
measurements and prior information, low uncertainty in model
inputs, and amodel that is adequate for the situations considered.
Most applications described in the literature focus on precision
agriculture (e.g., Braga and Jones 2004; Florin et al. 2011; Link
et al. 2006; Morgan et al. 2003; Timlin et al. 2001). Their objec-
tive was to assess variability in soil properties to optimize crop
management (e.g., irrigation, fertilization) at the intra-field scale.
The authors usually used multi-local crop-model inversion along
with observations obtained from in situ yield-monitoring systems
with a resolution of a few m2. High spatio-temporal resolution
satellites (e.g., Sentinel-1, Sentinel-2) are promising sources of
observations for these applications (Ferrant et al. 2016; Yemadje-
Lammoglia et al. 2018).

Large-scale applications, mostly based on bucket analogy
for soil water, have high uncertainty in model inputs and prior
information (Jégo et al. 2015) due to limited access to in situ
measurements and less adequate models due to their poten-
tially high variability. For example, satellite data with medium
pixel resolution (100–300 m) have been used over areas larger
than 100 km2 to provide spatial information about the status of
soil and/or vegetation (Coops et al. 2012; Dente et al. 2008).

4.2.3 Errors and uncertainties in AWC estimated by inverse
modeling

Relatively few studies directly estimate the error in AWC
components predicted by model inversion, instead doing so
indirectly for variables of interest simulated by the models,
such as soil water content, water fluxes, yield, or leaf area
index (e.g., Charoenhirunyingyos et al. 2011; Shin et al.
2013; Singh et al. 2010). As the inversion configurations

(i.e., models, observation systems, parameters estimated) of-
ten differ among studies, few objective elements are available
to analyze and quantify the accuracy of the AWC components
estimated by inverting soil–plant models. However, a few
studies estimated errors in estimates of AWC components,
which ranged from 10 to 18% for FC, 15–20% for PWP,
and 10–30% for AWC (Dente et al. 2008; Jégo et al. 2012;
Jiang et al. 2008; Morgan et al. 2003; Sreelash et al. 2017;
Todoroff et al. 2010).

Model inversion has many sources of uncertainty due to
model structure, input data, and the measurements used for
inversion. Most inversion methods can consider at least some
of these uncertainties and provide information about the un-
certainty in the estimated soil parameters (Morgan et al. 2003).
For example, Bayesian methods provide a joint posterior dis-
tribution, which allows a variety of criteria to be calculated to
quantify their uncertainty (e.g., standard deviation, confidence
intervals, correlations) (Scharnagl et al. 2011). However, the
reliability of the uncertainties calculated may be questionable,
as they are often based on assumptions about model and ob-
servation errors that are rarely checked due to a lack of infor-
mation. These criteria should be validated by estimating the
percentage of “true” values that fall within the limits of uncer-
tainty (Shrestha and Solomatine 2006). To our knowledge,
AWC components estimated from inverse modeling have
never been validated in this way, as doing so would require
estimating these uncertainties for many sites/pixels (usually
several hundred) and relevant measurements of soil
properties.

4.2.4 Limits of using inverse modeling to estimate AWC
components

Inversion methods can estimate AWC components spatially
without requiring heavy in situ measurement systems, but
their practical application faces limits that continue to restrict
their use. For example, they face the inherent limitation in the
ability to solve inverse problems of complex nonlinear
models. The complexity of the relationships modeled between
inversed observations and estimated AWC components
makes it difficult to identify the amount and type of observa-
tions required to estimate a given set of components (or, con-
versely, the set of components that could be estimated from a
given amount and type of available observations), with an
associated level of uncertainty. The amount of information
obtained through inversion to estimate parameters depends
on the sensitivity of the observed variables to variations in
the model’s parameters. This sensitivity depends strongly on
the agro-pedo-climatic context studied (e.g., the occurrence of
water stress) (Jhorar et al. 2002; Sreelash et al. 2017; Varella
et al. 2010a). The observation system should provide a suffi-
cient level of independent information about the estimated
parameters; if not, the inversion often results in equifinality
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or non-identifiability issues, which increases the uncertainty
and interdependence of the estimated parameter (e.g., Jhorar
et al. 2002; Ferrant et al. 2016). The small amount of infor-
mation available without using heavy in situ measurement
systems explains why, in general, only a few AWC compo-
nents are estimated and simplified vertical representations of
the soil are often used.

Spatial applications at extents of a few hundred m2 to a few
km2 may benefit from knowledge of the modeled situation:
availability of in situ measurements, low uncertainty in model
inputs, and prior information strongly influenced by errors in
observations and in the model. Inversion can automatically
compensate for biases in observations or in the model by using
non-physical values of the estimated parameters (e.g., Florin
et al. 2011; Jiang et al. 2008). Model errors also include struc-
tural errors due to processes that the models do not consider
but which often influence soil–plant functioning, such as
pests, disease, or runoff. They may influence inversion results
greatly in certain situations (Jiang et al. 2008). Errors in in-
verse modeling also include propagation of input errors (e.g.,
in non-estimated parameter values, initial conditions, forcing),
which may be particularly large for applications at a large
spatial scale. Ferreyra et al. (2006) showed that high-quality
data may be required to invert spatially coupled crop-models,
and that using one-dimensional uncoupled models is prefera-
ble when the data are of lower quality. This requires a com-
promise between a realistic model and the need for data, de-
pending on the situation studied.

5 Comparing and reconciling soil approaches
and soil–plant approaches

5.1 Comparing approaches for estimating AWC
components

As described in the previous sections, the main characteristics
of soil- and plant-based approaches for estimating AWC vary.
In the Table 3 (described in the following paragraphs), we
compare the different approaches to assess the advantages
and disadvantages of each.

5.1.1 Different types and numbers of AWC components can
be estimated (Table 3(a and c))

Local estimation methods are based on soil profiles and/or
augering, which can provide estimates for nearly all AWC
components (Table 3(a)). For heterogeneous horizons, labora-
tory measurements are recommended to estimate AWC rather
than using field monitoring. The water content or matric po-
tential measured in situ in stony or glossy horizons vary great-
ly and would be difficult to interpret from continuous field
monitoring due to problems in sensor calibrations, except if

gravimetric water content and bulk density can be measured
from soil samples frequently collected in situ (Table 3(c1)).
As mentioned, the maximum rooting depth is rarely measured
in the field; instead, a range of depths is often used
(Section 2.3.2).

When considering spatial estimation methods within an
agricultural field, a soil depth map may be available, for ex-
ample from maps of electrical resistivity (Bourennane et al.
2017). Soil depth maps are less common at larger scales, but
GlobalSoilMap products include information about depth,
along with its associated uncertainty (Arrouays et al. 2014).
Depending on the input and external data, however, the vari-
ability in rooting depth may be difficult to consider over these
areas.

When inverting soil-vegetation models, to improve formu-
lation of the problem and address equifinality issues, the max-
imum rooting depth is usually assumed to be known and is not
included in the set of parameters to be estimated. At the local
scale, at which information in addition to the observed data
(e.g., soil texture in each horizon) is available, the inversion
can estimate each horizon’s FC and PWP water contents, as
well as its depth. At larger scales, with less external informa-
tion, it is difficult to estimate more than the equivalent FC and
PWPwater contents of a virtual soil layer at a given soil depth.
When depth is estimated, the sensitivity of vegetation vari-
ables to the maximum rooting depth may be strongly correlat-
ed with FC and PWP water contents in the rooting zone and,
consequently, the estimated depth and water content are de-
pendent (Varella et al. 2010a). Therefore, accurate prior infor-
mation about the parameters may avoid estimating inaccurate
values.

5.1.2 The spatial support can differ between the different
AWC measurements and the inversion (Table 3(b))

Laboratory and field estimates of AWC usually differ
(Asgarzadeh et al. 2014), especially for soils with low AWC
(Morgan et al. 2001) (Table 3(b)). Volumes of soil on which
measurements are made differ and may or may not represent
the behavior of the soil horizon. Laboratory measurements are
performed on undisturbed soil clods or aggregates of known
volume.When the size of the soil aggregate is a representative
elementary volume of the soil horizon, laboratory measure-
ments are considered to represent the horizon. Depending on
field conditions and the sensor volume of measurements, wa-
ter content from field monitoring may be difficult to relate to a
given horizon. For inverse modeling, the spatial support of
estimated AWC components is related to the footprint of the
observations used as inputs. Consequently, comparisons of
AWC measurements and inversion results should be consid-
ered with caution, and validating one method with the other is
not always relevant.
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5.1.3 Differences in descriptions of soil-water transfer
and the soil (Table 3(c2))

The accuracy with which soil-water transfer is represented
depends on whether measurement conditions (or model equa-
tions, in inverse modeling) represent the reality of water trans-
fer. Representing the physics of water transfer raises two is-
sues: (i) equilibrium vs non-equilibrium approaches and (ii)
limits of the bucket analogy.

(i) Equilibrium vs non-equilibrium approaches

To measure AWC in the laboratory, soil samples are
brought to a given matric potential in a pressure-plate appara-
tus, assuming that each sample has a matric potential equilib-
rium. For matric potential near PWP, however, samples can
have such a low hydraulic conductivity that they never equil-
ibrate, even after many days on the plate (Gee et al. 2002).
Due to their structure, some pores in the aggregates on the
pressure plate may become disconnected from the water-
percolation path (i.e., “hydraulic cut-off”; Czyz and Dexter
2012). Evidence of non-equilibrium has been shown by simul-
taneous measurements with pressure plates and psychrome-
ters, and differences in water content between the two
methods can reach 0.1 cm3 cm−3 (Bittelli and Flury 2009;
Klein et al. 2006). Laboratory measurements are usually con-
ducted at equilibrium, especially those for matric potentials
close to FC. Conversely, the matric potential is rarely fixed
in in situ monitoring, and field measurements are usually per-
formed out of matric potential equilibrium.

Because PTFs are usually developed from laboratory mea-
surements, their estimates can be considered to describe soil
hydraulic functioning “at equilibrium” (Section 3.2.2).
Nevertheless, development of large databases that include da-
ta from multiple acquisition methods, such as those of
UNSODA or EU-HYDI (Nemes et al. 2001; Weynants et al.
2013), challenges this assertion. PTF users must therefore
consider the conditions under which a given PTF should be
used. Gribb et al. (2009) used a PTF estimate of soil hydraulic
properties to describe dynamics of field soil water content and
found little agreement between field data and PTF estimates.

(ii) Limits of the bucket analogy for water fluxes

As expressed in the definition of the INSPIRE Directive,
AWC is defined by describing soil horizons as buckets, which
can be filled and drained by the downwardmovement of water
from rainfall or irrigation. In many situations, water is avail-
able to plants from water ascending from deeper areas of the
vadose zone, either capillary rise frommore saturated zones or
hydraulic lift. In certain hydrological contexts, capillary rise
can provide 30–60% of the water needed by crops (Vergnes
et al. 2014). Water that is redistributed along the soil profile

due to hydraulic lift from deep roots can provide 7% of the
water needed by crops (Doussan et al. 2006); however, this
contribution remains poorly understood and rarely quantified
(Prieto and Ryel 2014). When water flows upward from deep
reservoirs, estimating plant available water using “at equilib-
rium”methods, such as laboratory measurements or tradition-
al PTFs, is inadequate, which challenges the utility of the
AWC. Conversely, estimates that use field monitoring data
or model inversion consider all water fluxes, upward or down-
ward, and thus can determine relevant parameters for model-
ing. The latter estimate is not strictly equivalent to the AWC
defined by the bucket analogy because it considers all water
fluxes and is estimated in an “out-of-equilibrium” state. As it
was not defined by modeling, this unnamed AWC-equivalent
parameter can be considered equivalent to TTSW. Estimating
this unnamed AWC-equivalent parameter over successive
seasons could provide a distribution of AWC (and its uncer-
tainty) relevant for a given soil-climate-plant context.

5.1.4 Differences in the temporal variability of AWC in soil
or soil–plant approaches (Table 3(c3))

Among AWC components, maxDepth (Eq. 1) is one of the
most influential. In a soil-based approach, a maxDepth that
represents soil depth can be considered constant over time
(Table 3(c3)); consequently, AWCwould be stable for several
years. Conversely, the AWC-equivalent parameter estimated
by inverting a soil–plant model depends strongly on the
rooting depth, which is strongly influenced by weather dy-
namics during a crop’s growing season for a given soil
(Table 3(c3)). Multi-annual estimates for a given crop type
are recommended to provide a mean value of this parameter,
whose annual variation would represent the uncertainty. FC
water content can also change over time due to its sensitivity
to soil structure, which can vary over short time scales in the
surface horizon due to the climate, biological activity (e.g.,
root activity, animal bioturbation) and human actions (e.g.,
tillage). Developing temporal PTFs, including predictors of
soil structure dynamics, would improve their utility (Van
Looy et al. 2017; Vereecken et al. 2010), especially for studies
that address climate change and/or changes in land use or
management that require long-term modeling.

5.1.5 Costs of input and external data, knowledge level
and processing time: suggestions for choosing a compromise
(Table 3(d))

Evaluating the feasibility of methods is an important issue.
Laboratory measurements are highly time-consuming, as they
include digging a soil pit, sampling soil in the field, and per-
forming the measurements themselves, while using remote-
sensing data requires less measuring effort, and data are avail-
able at high spatial resolution and high temporal frequency
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due to the development of Sentinel products (Bousbih et al.
2017) (Table 3(d1 to d3)). However, laboratorymeasurements
of AWC provide an independent assessment, with no need for
external knowledge or data, and use simple calculations.
Conversely, inverse modeling approaches that use remotely
sensed information require large amounts of external knowl-
edge and data. Users must be familiar with the model and its
parameterization, and must be expert enough to provide rele-
vant values for non-estimated parameters or the a priori infor-
mation required for inversion.

5.1.6 The quality of the estimated AWC (Table 3(e))

Among the attributes of quality, accuracy is challenging to
assess as it requires a reference (Table 3(e1)). Whereas local
estimates do not provide AWC estimations over a large extent
and with a high precision of spatial variability (Table 3(e2 and
e3)), we considered them as the most accurate and compared
them to the estimates of other methods for spatial entities
characterized well by the local measurements. This character-
istic is strongly correlated with spatial attributes (e.g., resolu-
tion, extent). Another important attribute of output quality is a
representation of an estimate’s uncertainty, regardless of the
estimate’s accuracy. For local methods, uncertainty can be
assessed by the repeatability of the measurements
(laboratory) and by investigating different agro-climatic con-
ditions (soil monitoring) (Table 3e4). For spatial or multiscale
methods, assessment depends on the types of input data and
statistical processing.

Summarizing the most important characteristics of these
approaches highlights their differences (Fig. 8). This compar-
ison also highlights that there is no perfect method for estimat-
ing soil AWC and that no method has better qualities than
another (Table 3). The advantages and limitations of each
method are well known and can be considered by users.
Considering that they are complementary to some extent,
combining them could improve their performance greatly.

5.2 Combining soil and soil–plant approaches to im-
prove AWC estimates

5.2.1 Improving soil-based estimates of AWC using
inverse-modeling information or information about plants

As AWC represents the quantity of water available to plants,
the main input from inverse modeling of crop or soil–plant
system models should be a realistic rooting depth, depending
on the soil type and crop. This information should be available
at the local scale, for which a variety of accurate information
and adequate models can be included in the inversion process.
In databases such as GlobalSoilMap products in which AWC
is provided for multiple soil depths, users can choose the most
appropriate depth for their applications. The next step in

developing PTFs for estimating AWC would be to provide
information about plants, as suggested by Van Looy et al.
(2017). Similar to how class PTFs are usually defined for a
texture class, new types of PTFs could be defined for combi-
nations of texture and plant classes. To our knowledge, the
first authors to do so were Levi et al. (2015), who introduced
remotely sensed information from Landsat to produce func-
tional spatial PTFs for AWC,which differ significantly locally
from traditional PTFs. Similarly, Basile et al. (2019) high-
lighted the effectiveness of NDVI data to estimate PTFs.

5.2.2 Using soil information to improve inverse-modeling
estimates of the AWC-equivalent parameter

Improving inverse-modeling estimates of AWC could involve
integrating the available information from soil mapping
approaches into the inversion process, as shown by
Scharnagl et al. (2011) and Scholer et al. (2011). Existing
information about soils, which varies according to the con-
text, could be used more widely to constrain inversions by
providing direct information about the parameters to be
estimated. GlobalSoilMap products could be a particularly
relevant source of information in this context as an opera-
tional open-access product that provides the associated un-
certainties. For spatial applications, such as in hydrology,
Finsterle and Kowalsky (2008) and Mariethoz et al. (2010)
included a priori information about the spatial dependence
of the estimated parameters—obtained from soil geophys-
ical measurements—to constrain model inversions.

5.2.3 Improving spatial estimates of AWC over large regions

DSM techniques based on sites with known AWC compo-
nents and model inversion using remote-sensing data are still
limited in extent and precision for mapping AWC. However,
they are complementary approaches that could be used syner-
gistically to improve AWC mapping. Using DSM outputs to
constrain model inversions can be the first step toward such
synergy. The next step is to re-use in DSM the outputs of
punctual model inversions performed in situations that maxi-
mize the information about the parameters to be estimated
(i.e., for which model error is low and uncertainties in DSM
output are high). Approaches that combine different soil in-
puts have been developed to combine soil property measure-
ments and spectroscopy imagery estimates (Lagacherie et al.
2012; Walker et al. 2017). For soil–plant model inversions,
considering these outputs as pseudo-measurements of AWC
parameters significantly increases the density of sites with
known values of these parameters, which may increase the
accuracy of DSM predictions. The challenge is to develop
DSM models that can use traditional AWC measurements
and model-inversion outputs as input.
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6 Conclusion: toward newdefinitions of AWC?

The objective of this review was to identify the concepts that
underlie estimates of AWC and to clarify the methods used in
the literature to estimate this fundamental parameter of soil–
plant–atmosphere models at different scales. Soil-based ap-
proaches are usually based on measuring the water content
of soil samples at equilibrium at a given matric potential, or
on empirical models based on basic soil characteristics, such
as particle-size distribution or bulk density, whether for esti-
mates using PTFs or in DSM approaches. These soil-based
approaches thus correspond well to the original and current
definitions of AWC and represent a capacity (i.e., the maxi-
mum amount of water that soils can store to sustain plant
transpiration). Conversely, soil–plant-based approaches are

usually based on non-equilibrium approaches, which are
based on field measurements of soil water content or plant
characteristics when plants are dynamically subjected to cli-
mate variations. Estimating AWC directly from field measure-
ments or inverse estimates of soil-vegetation models, whose
input data are local field measurements or remotely sensed
images of vegetation growth, may not indicate the soil’s ca-
pacity to store water. Instead, it indicates the quantity of water
that the plant takes up from the soil (i.e., an ability). AWC in
this case should be called PAWC. Depending on the climate
conditions, this plant AWC-equivalent parameter can differ
strongly from the AWC estimated using soil-based ap-
proaches. In certain situations, it can be similar to the readily
available water content. Despite these differing definitions,
estimating AWC and AWC-based parameters can be

Fig. 8 Comparisons between the different methods presented in this paper to evaluate Available Water Capacity (AWC) and related definitions.
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improved by hybridizing soil-based approaches and soil–
plant-based approaches to create high-resolution maps of this
hydraulic parameter. Among potential improvements in the
near future, we emphasize three. First, estimates of AWC
would likely benefit from developing new types of functional
PTFs that include not only soil information but also plant-
functioning information, especially from remote-sensing data.
Second, including available soil data frommonitoring systems
when inverting models would improve estimates of AWC.
GlobalSoilMap products would be particularly relevant to ad-
dress the difficulty in estimating depth and the influence of
uncertainties. Third, a close relationship between soil-based
(laboratory-based) AWC measurements and AWC model-
inversion outputs would help to develop improved soil map-
ping products to estimate AWC accurately. These develop-
ments in AWC could benefit farmers, who could use them
as decision tools in precision agriculture, as well as scientists
who use land surface models at the global scale to assess
effects of global changes.
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