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Abstract—A surface soil moisture (SM) condition at high spa-
tiotemportal resolutions is required by regional Earth system appli-
cations. Here, we mapped daily 1-km SM in the Babao River Basin
in the northwest of China during the summers from 2013 to 2015
using a random forest (RF) method by merging SM information re-
trieved from in situ measurements, optical/thermal remote sensing,
and topographical indices. Relative importance analysis was used
to determine the optimal predictors for estimating high-resolution
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SM. A specific RF model (RFVI+sup) was constructed using the
optimal predictors including remote sensing albedo, apparent ther-
mal inertia (ATI), normalized difference vegetation index, normal-
ized difference infrared index 5, soil adjusted vegetation index, and
topographical indices (aspect and elevation). The RFVI+sup also
accounted for missing observations of the thermal index (e.g., ATI)
over the mountainous regions. In the comparison between the SM
estimates using the new RFVI+sup model and other RF models, the
spatial coverage of available estimates increased from 14% to 64%
over the study region, the correlation coefficient values were im-
proved to 0.75, the unbiased root-mean-squared difference values
decreased to 0.032 m3/m3. Thus, the proposed RF method provided
accurate SM estimates with high spatiotemporal resolution over
the mountainous regions, by merging multiresource datasets from
in situ measurements, remotely-sensed, and topographical indices.

Index Terms—High resolution, mountainous regions, optical
index, random forest (RF) method, soil moisture (SM), thermal
index.

I. INTRODUCTION

SURFACE soil moisture (SM) is the key to adjusting land
surface energy partition, controlling vegetation transpira-

tion, and surface runoff [1]–[5]. As a consequence of these
needs, many microwave remote sensing observations were used
to estimate SM time series at a global scale [6], [7]. The ap-
plication of passive microwaves at L-band has been considered
one of the most promising methods [8]–[11], although higher
frequencies of passive and active microwave observations also
demonstrated good potential [12]. However, current passive mi-
crowaves missions (e.g., SMOS [9] and SMAP [8]) are limited in
spatial resolution (lower than 25 km), greatly limiting potential
applications at regional scales (1–10 km). In an effort to produce
higher resolution SM datasets, the SMAP and active microwave
Sentinel-1 observations were merged to produce the most recent
3-km SM product (L2_SM_SP) [13], [14]. However, these SM
products using active microwave observations are limited over
the mountain regions, which can be attributed to two aspects: 1)
Sentinel-1 has a low temporal resolution (6 or 12 days), which
results in the low temporal resolution (equal or larger than 12
days over China) [15]. Especially over the Northwest regions of
China, very few high-quality SM information from L2_SM_AP
is available; 2) the effect of mountains on the backscatter of
SAR or Sentinel-1 is too complex to be modified, which leads
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to the high uncertainties in the backscatter, further decreases the
accuracy of high-resolution SM [16].

Currently, downscaling microwave-derived coarse-resolution
SM products by the synergistic coupling of optical/thermal-
infrared datasets is the widely used approach to estimate high-
resolution (∼1 km) SM information [17]. These downscaling
approaches can be classified as empirical regression methods
[18]–[20] and semiphysical methods [21], [22], both relying
on the indirect relationships between SM and optical/thermal-
infrared indices. In the downscaling method, a range of indices
are used to provide high-resolution SM proxies, such as sur-
face albedo, apparent thermal inertia (ATI), optical vegetation
indices, land surface temperature (LST), temperature vegetation
dryness index [23]–[25], vegetation temperature condition index
[26], [27], and the soil evaporative efficiency [21], [22], [28].

The performance of downscaling approaches is limited by the
following two issues.

1) the mathematical functions could not describe the complex
relationship between SM and optical/thermal-infrared in-
dices over the mountainous regions. Previous analysis in-
dicated high variations in the relationship between SM and
optical/thermal-infrared indices [20], [27], [29]. More-
over, the relationship between SM and optical/thermal-
infrared indices could be more complex over mountainous
regions, because of the complex interactions among me-
teorological, topographical, and vegetation factors [30].
Few studies were made to evaluate these optical/thermal-
infrared indices on the estimation of SM over the moun-
tainous regions.

2) uncertainties associated with the coarse-resolution mi-
crowave SM products may degrade the accuracy of the
downscaled high-resolution SM [17]. In particular, over
mountainous regions, topographic effects could further in-
crease the uncertainties in the optimization of some param-
eters (e.g., vegetation properties and surface roughness)
used in the retrieval models for estimating microwave SM
products [9].

A promising alternative strategy to estimate high-resolution
SM is to extrapolate the in situ measurements to larger scales by
using geostatistical techniques [30]. Using the wireless sensor
networks (WSNs) [31], [32], several upscaling methods were
proposed to retrieve high-resolution SM, including block kriging
[33], [34], the Bayesian maximum entropy method [35], [36],
and the Bayesian linear regression (BLR) method [37]–[39]. The
latter was successfully used to estimate high-resolution SM over
the mountainous regions [38], [39], due to its ability to overcome
the issue of temporal discontinuity in high-resolution SM prod-
ucts. Note that all upscaled methods require the representative
in situ measurements, for instance, to be located in the shady
and sunny slopes for different elevations.

For BLR upscaling approach, a reference map of “true” SM
was first calculated as the ATI-retrieved SM, then the calibrated
relationship between the field-measured SM and the reference
SM was used to obtain high-resolution (1-km) SM [37], [39]. A
simple mathematical function with fixed empirical coefficients
was used to retrieve SM using ATI. This function could not be an
optimum expression reflecting the actual relationship between

SM and ATI as it is likely that the SM patterns are not spatially
uniform due to heterogeneity in the meteorological conditions,
the local land use types, and the vegetation cover, especially
in mountainous regions. This could increase the uncertainties
in the reference ATI-retrieved SM, which is a key to the BLR
estimation [38].

An alternative method to compute high-resolution SM maps
is machine learning (ML) techniques [e.g., artificial neural net-
work and random forest (RF)] [40], [41]. ML techniques started
to be used for downscaling satellite SM products [41]–[44],
due to its ability to merge the SM information derived from
several optical-derived variables [45]. Previous investigations
have found, in particular, that the RF algorithm can be used
to merge multisource observations and address the issue of a
nonlinear relationship between predictors and predictions [46],
[49]. The RF method is able to overcome the overfitting issues
by generating independent regression trees through randomly
selecting training samples, due to the low correlation between
each independent tree [50].

This study aims to estimate the daily 1-km resolution SM over
Babao River Basin, by proposing a framework to combine SM
information from multispectral images and topographic infor-
mation. The proposed method is to decrease the potential un-
certainties in the SM estimations over the mountainous regions.
Our approach relies on remote sensing and field-measurement
information (e.g., WSN measurements, aspect, and elevation
from ASTER digital elevation model and MODIS reflectance
and LST data). The WSN measurements, MODIS reflectance
and LST, and topography data are presented in Section II;
the proposed RF method and the metrics for evaluating the
RF-derived SM are given in Section III; and results, discussions,
and conclusions are given in Section IV–VI, respectively.

II. STUDY AREA AND DATASETS

A. Study Area and Field Campaigns

The Babao River Basin, located upstream of the Heihe River
Basin [see Fig. 1(a)], is the main water source for agriculture
in the mid- and downstream areas of the Heihe River Basin
[51], [52]. The developments of the Heihe River Basin have
been limited by the scarcity of water resources [51]. Thus, high-
resolution SM information of the Babao River Basin will be
critical for the water resource management in the whole Heihe
River Basin.

The Babao river basin, mainly covered with grasslands [see
Fig. 1(b)], has an area of about 2500 km2 and an elevation
ranging from∼2600 to 5100 m [see Fig. 1(a)] [53]. The runoff in
summer-wet months is mostly from precipitation. The spatial–
temporal variability of SM is mainly affected by the hetero-
geneous spatial distribution of precipitation and topographic
conditions, such as shady and sunny slopes [32].

As one of the core study areas in the Heihe Watershed Al-
lied Telemetry Experimental Research (HiWATER) project, the
whole Babao River Basin was instrumented with the Ecological
and Hydrological WSN [EHWSN; Fig. 1(a) and Table S1] for
monitoring SM and soil temperature [31]. EHWSN, consisting
of 37 in situ stations, was deployed according to an optimal
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Fig. 1. Study region. The spatial distributions of in situ measurements stations
of the study region were shown in (a), the corresponding land cover, terrain
aspect, and TWI were indicated in (b), (c), and (d), respectively. In (a), elevation
information is also shown and the WSN sites are marked as black points.
In (b), land cover types data at a spatial resolution of 30 m provided by the
HiWATER project [52].

design to better capture the spatial variations of SM [54]. The op-
timal sampling design of the network is obtained using a spatially
simulated annealing algorithm by considering the multivariate
(cross-) correlation and spatial trend. The results demonstrate
that this sampling method can capture the SM dynamics over
the mountainous regions [55].

SM and soil temperature at depths of 4, 10, and 20 cm at
5-min intervals were measured by EHWSN from 2013 to 2015.
The study period was 15th July to 15th October of 2013, 2014,
and 2015 to avoid snow periods covering from November to
May [33]. In situ measurements at a depth of 4 cm within a time
window of 1 h were matched with the instantaneous overpass
times of the MODIS LST product. In situ measurements from
2013 to 2014 were used for training the SM model, and in situ
measurements in 2015 were used to validate the SM estimates.

B. Optical/Thermal-Infrared Indices

Optical vegetation indices can be used for monitoring the
vegetation water status, which indicates an increase or de-
crease in the spatial variability of SM, due to that vegetation
can affect the upward/downward flow of water vapor [56].
MODIS 500-m daily nadir BRDF-Adjusted surface reflectance
product (MCD43A4) [57] was used here to calculate several
spectral indices (see Table S2) that are impacted directly or
indirectly by SM: NDVI, albedo, soil adjusted vegetation in-
dex (SAVI), visible atmospheric resistant index (VARI), nor-
malized difference water index (NDWI), normalized difference
infrared index 6 (NDII6), normalized difference infrared index
7 (NDII7), and global vegetation moisture index (GVMI). The
lower NDWI/NDII6 values indicate the lower leaf vegetation
water content. The 500-m resolution spectral indices were ag-
gregated into 1 km to match the spatial resolution of the LST
product by a simple average method.

The thermal-infrared indices, such as the difference between
LST at daytime and nighttime (ΔLST ) and ATI, have been
proved to be related to SM over regions with low vegetation
density [33], [38], [58]. ΔLST was calculated using the day-
and night-time daily LST provided by the MODIS 1-km Terra
LST product (MOD11A1) [59]. Higher SM content has high
thermal inertia, determining its higher resistance to temperature
variations. Thus, higher SM has lower ΔLST values. ATI was
retrieved using LST from MOD11A1 and albedo derived from
MCD43A4.

C. Topographic Indices

Over the mountainous regions, the spatial patterns of SM
are also influenced by the topographic conditions, such as
terrain aspect and elevation [30], thus topographic indices
could reflect SM information. The topographic wetness index
(TWI) [60] has been proved to be a good indicator of SM over
the mountainous regions where surface flow dominates the
processes of water transportation [61]–[63]. It is defined as
ln(a/tanβ) where a is the local upslope area draining through
a certain point per unit contour length and tanβ is the local
slope [60]. TWI combines local upslope contributing area and
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slope and has been commonly used to quantify topographic
control on hydrological processes. This potentially suggests that
TWI can better represent the distribution of SM than the slope.
Furthermore, the calculation of TWI was based on slope, namely
that TWI has included the slope information. TWI is not directly
related to the variability of SM but can identify hydrological
flow paths which generally are related to the spatial distribution
of SM. Thus, TWI was selected in this study instead of a slope.

Aspect, elevation, and TWI (see Table S2) were calculated
using 30-m Advanced Spaceborne Thermal Emission and Re-
flectance Radiometer (ASTER) Global Digital Elevation Model
(GDEM). These topographic indices were aggregated into the
1-km resolution data to match the spatial resolution of LST
product using a simple average method.

III. METHOD

A. RF Algorithm

The ML RF method has been applied to retrieve various
climate variables (e.g., SM, evapotranspiration, precipitation
and fire) [46], [50], [64]–[66]. The complex and highly nonlinear
relationship between the predictors and the response variable
can be described by the RF method due to its advantage in
involving the adaptive and decorrelated decision rules [50]. In
the RF algorithm, the relationship between the predictors and
the response was described using lots of decision trees. The RF
algorithm produces these decision trees in the training phase,
by dividing the input dataset into a number of regression trees,
known as forest, where each tree is generated using a bootstrap
sample method. Then, the mean prediction of the individual
trees is generated as the output. A bootstrap sample includes
two-thirds of the training input data, and the remaining samples
(about one-third) are used for the validation of each tree. This is
one of the key features of the RF algorithm to estimate the model
generalization error. This approach solves the overfitting issue
usually occurring in the traditional regression methods, with the
help of the bagging method that merges the information from
lots of decision trees.

Also, the RF method provides an analysis of the relative
importance of each predictor for the response variable. Each
predictor is permuted using the out-of-bag observations to esti-
mate the importance of each predictor. It is performed for every
tree in the RF framework, and changes in the prediction error
are estimated. The performance of the new model is improved
significantly, suggesting that the predictor is important for the
performance of the original model used to estimate the response
variable. The overall average of this measure is usually divided
by the standard deviation value of the overall ensemble, in order
to obtain a normalized measure of the predictor importance [50].

In this study, the optimal predictors (remote sensing indices,
Table S2) as input of the RF model were determined based
on their relative importance to the SM prediction. Then the
relationship between WSN-measured SM and SM predictors
was trained in the framework of the RF model. Last, the
trained RF model was used to estimate the high-resolution
(1-km) SM.

Fig. 2. Flowchart of the framework in this study.

B. RF-Derived SM

The RF-derived SM algorithm is presented in Fig. 2. First, to
build the optimal model for the high-resolution SM estimates,
a selection was first performed to identify an optimal set of
predictors representing the spatial and temporal variability of
SM. Thirteen remote sensing indices, tested as predictors, were
extracted from the pixels where the WSN nodes are located.
These predictors were ranked based on their relative importance
to SM mapping using the RF algorithm.

Based on the relative importance of the SM predictors, all
predictors were reassembled as 13 sets to estimate SM: The first
ranked variable was used to predict SM using the RF model,
defined as RFI; the second, third, …, thirteenth ranked variable
was added successively in the RF model to predict SM, defined
as RFII, RFIII, …, RFXL, respectively. The relationship between
the predictors and the in situ measured SM was calibrated using
the RF regression model. The calibrated relationship was used in
the RF model to predict SM. To determine the optimal RF model,
the performances of the 13 RF predictions were evaluated by
comparing them against the in situ measured SM, using statis-
tical metrics including the correlation coefficient (R), unbiased
root-mean-squared difference (ubRMSD), bias, and slope (see
Section III-D).

Based on the statistical metrics, a model (referred to as RFVI)
using six predictors [aspect, elevation, albedo, ATI, normalized
difference vegetation index (NDVI), and normalized difference
infrared index 5 (NDII5)] was determined to retrieve SM (as
presented in Section IV-A). In the RFVI model, the linking
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model (f ) between SM and the predictors is expressed as fol-
lows:

RFVI = f (aspect, elevation, albedo, ATI, NDVI, NDII5)
(1)

where RFVI is the retrieved SM value.
Note that the calculation of ATI, as a predictor, requires the

high-quality albedo and LST observations from both daytime
and nighttime, resulting in lower availability of ATI than other
optical indices. Namely, the optical indices could be obtained
when ATI is missing. Accounting for the missing ATI data due
to the missing LST observations affected by clouds [38], an RF
model (RFsup

VI ), as a supplementary model of RFVI, was trained
using the predictors without ATI to provide SM estimates at
the pixels where there are missing estimates from RFVI. The
supplementary RF model RFsup

VI was written as

RFsup
VI =f (aspect, elevation, albedo, NDVI,NDII5, SAVI)

(2)
where SAVI, ranked as the seventh importance prediction index
of SM, was added to replace ATI. RFVI was used in all pixels,
except the pixels without ATI observations, where RFsup

VI was
used instead. The combined model merging RFVI and RFsup

VI
was defined as RFVI+sup (3) and was used to estimate 1-km
resolution SM during the study period

RFVI+sup= merging (RFVI ,RF
sup
VI ) . (3)

C. Validation

An independent validation method was used to evaluate SM
estimates against in situ measurements: The in situ measure-
ments from 37 WSN sites during 2013–2014 were used to
calibrate the RFVI+sup model, and the in situ measurements in
2015 were used to validate the SM estimates using theRFVI+sup

model.

D. Evaluation Metrics

The performance of the proposed RF models was evaluated
using the following.

1) The ubRMSD. A nonbiased root-mean-squared error
(ubRMSE) was proposed to remove the mean bias caused
by the mean of the estimates or the amplitude of fluc-
tuations in the estimates. Accounting for that the spatial
SM distribution within each 1-km grid is heterogeneous,
and the in situ measurements also include measurement
uncertainties, the term “error” of ubRMSE was replaced
by “difference,” that is, ubRMSD [67], which was obtained

using (4) shown at the bottom of this page, in a unit of
m3/m3.

2) The correlation coefficient (R), which was used to evaluate
the consistency between the field measurements and SM
estimates, can be calculated using (5) shown at the bottom
of this page.

3) Slope, which was used to evaluate the agreement between
the field measurements and SM estimates at each grid, can
be calculated using simple linear regression (6)

θIn situ = slope · θupscale + intercept (6)

where N is the number of the WSN-measured SM in the
time series. θIn situ

t and θupscale
t are the WSN-measured and

the RF estimated SM on date t, respectively. θIn situ and
θupscale are the average SM values of the corresponding
time series.

IV. RESULTS

A. Predictor Selection

Aspect and elevation, as topography indices, were identified
as the first and second most important predictors of the RF-based
SM estimation, with mean relative importance of 33% and 18%
out of 100%; thus much more important than other predictors
(see Fig. 3). The results about the important role of topographic
indices in the spatial pattern of SM were also reported by previ-
ous studies related to the SM disaggregation using topographic
data [68]–[70]. By contrast, another topography index, TWI,
was only the eighth most important predictor of SM in this area.
The importance of optical and thermal indices (e.g., albedo, ATI,
NDVI, NDII5, and SAVI) for predicting SM is higher than that
of TWI, followed by VARI, NDII7, NDII6, ΔLST, and GVMI.

Thirteen sensitivity tests were made to evaluate the perfor-
mances of RF models on the SM estimates, by using different
groups of predictors based on the order of importance of the
predictors (see Fig. 4). The aspect was as the input used in RFI,
the elevation, albedo, ATI, NDVI, NDII5, SAVI, TWI, VARI,
NDII7, NDII6,ΔLST, and GVMI were added successively from
RFII to RFXL. The model with the best predictive performance
was determined by statistical metrics (e.g., lowest ubRMSD
and bias, highest R values, and slope values closer to one),
which were calculated by comparing the RF-derived estimates
against the in situ measured SM. With increasing the number
of predictors in the RF model, the R values between the SM
estimations and the field measurements were improved from
0.87 (RFI) to 0.93 (RFVI) with ubRMSD values decreasing
from 0.06 (RFI) to 0.043 m3/m3 (RFVI), albeit slope and bias

ubRMSD =

√
1

N

∑N

t=1
(θupscale

t − θupscale)
2 −

(
1

N

∑N

t=1
(θIn situ

t − θIn situ

)
)2 (4)

r =

∑N
t=1

(
θupscale
t − θupscale

)(
θin situ
t − θin situ

)
√∑N

t=1

(
θupscale
t − θupscale

)2

·∑N
t=1

(
θin situ
t − θin situ

)2
(5)
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Fig. 3. Relative importance in the model. Error bars represent the standard
deviation (SD; variability) of the relative importance (median+SD).

Fig. 4. Sensitivity tests of SM predictions by using different predictors based
on their relative importance for SM prediction.

values were almost similar by comparing the RFI and RFVI

estimates. Also, it can be seen (see Fig. 4) that all statistical
metrics, except bias, did not improve much from RFVI to RFXL,
indicated by the approximately constant R, ubRMSD, and slope
values. This implies that RFVI is very close to the optimal model
for estimating high-resolution SM over the study region.

Fig. 5. Performances of RF models and the supplementary RF models using
different predictors.

To evaluate the behaviors of RFI, RFII, RFIII, RFIV, RFV,
and RFVI for SM prediction, the scatter plots between the
RF-derived SM estimates and the in situ measurements are
shown in Fig. 5(a)–(f), together with the corresponding R and
ubRMSD values. Relative to RFI [see Fig. 5(a)] and RFII [see
Fig. 5(b)] estimations, RFIII [see Fig. 5(c)] agreed well with in
situ measurements with SM predictions close to the 1:1 line,
with improved metrics (R = 0.98 and ubRMSD = 0.56 m3/m3).
The performance of the RFVI model [see Fig. 5(f)] to estimate
SM was found to be the best with the highest R of 0.99 and
lowest ubRMSD of 0.0083 m3/m3. Thus, SM patterns could be
accurately captured by RFVI using six predictors: 1) aspect, 2)
elevation, 3) albedo, 4) ATI, 5) NDVI, and 6) NDII5.

Accounting for the missing ATI observations, three supple-
mentary RF models that did not include the ATI predictor were
evaluated. These three supplementary RF models were defined
as RFsup

IV [see Fig. 5(g)], RFsup
V [see Fig. 5(h)], and RFsup

VI [see
Fig. 5(i)] using the inputs of aspect, elevation, albedo, NDVI,
NDII5, and SAVI. Relative to RFIV [see Fig. 5(g)] and RFV [see
Fig. 5(h)], the corresponding supplementary RF models [see
Fig. 5(g) and (h)], which did not include the ATI predictor have
slightly lower statistical metrics. However, as the supplementary
model of RFVI, RFsup

VI [see Fig. 5(i)] has an identical performance
(R=0.99 and ubRMSD=0.0095 m3/m3) relative to RFVI. Thus,
the model combining RFVI and RFsup

VI (hereafter, RFVI+sup)
could be used to estimate accurately the SM patterns over the
study region.
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Fig. 6. Hovmöller diagrams showing available observations from the
(a) RFVI, (b) RFVI,sup , and (c) RFVI+sup estimates in the Babao River
Basin. Available observations are in the unit of percent, calculated using the
ratio between available estimates and the whole area in each latitude.

B. RF-Based SM Estimation

The 1-km SM estimates over the Babao River Basin were
derived using the RFVI model (using predictors including aspect,
elevation, albedo, ATI, NDVI, and NDII5), the RFsup

VI model
(using predictors including aspect, elevation, albedo, NDVI,
NDII5, and SAVI) and the RFVI+sup model combining the
RFVI and RFsup

VI models, respectively. The RFVI estimations
[see Fig. 6(a)] were found to be often missing over the study
period (with low spatial coverage of 14% over the study regions),
especially in September. Besides, the SM patterns are difficult
to observe over the southernmost and northernmost parts of the
study area using the RFVI model due to many missing data. The
missing RFVI estimates can be attributed to the missing ATI
observations. This is due to the limited availability of LST, used
in the calculation of ATI, because of the presence of clouds
and rain over the study region most of the year [38]. As a
supplementary estimate of the missing RFVI estimations, the
RFsup

VI model [see Fig. 6(b)] provided a higher spatial coverage
(62%) of SM estimates, albeit with missing observations over the
northernmost of the study region. To replace the missing RFVI

estimates with the corresponding RFsup
VI estimates at pixel-scale,

the RFVI+sup estimates [see Fig. 6(c)] have a high spatial
coverage, in good agreement with that of RFsup

VI .
To illustrate the performance of the RF models, the SM

estimates using RFVI+sup [see Fig. 7(c), (f), and (i)] over 3 days
(8th August, 12th August, and 4th October in 2013) are shown
in Fig. 7, together with the RFVI [see Fig. 7(a), (d), and (g)]
and RFsup

VI [see Fig. 7(b), (e), and (h)] estimates. It can be seen
that RFVI is able to provide detailed spatial SM patterns, but
only covering 79% [see Fig. 7(a)], 74% [see Fig. 7(d)], and
58% [see Fig. 7(g)] of the study region. In contrast to RFVI, the

Fig. 7. Spatial distribution of the SM estimates from the RFVI, RFVI, sup,

and RFVI+sup models on (a), (d), and (g) 4th October, (b), (e), and (h) 8th
August, and (c), (f), and (i) 12th August in 2013 over the Babao River Basin. The
corresponding SM differences between RFVI+sup and RFVI, sup were shown
in (j), (k), and (m), respectively. The spatial coverages of the RFVI estimates are
79% [see Fig. 4(a)], 74% [see Fig. 4(d)], and 58% [see Fig. 4(g)] of the study
region, respectively.

RFVI+sup model provided a higher spatial coverage, covering
98%, 98%, and 96% of the study region. Additionally, the spatial
distribution ofRFVI+sup [see Fig. 7(b), (e), and (h)] agreed well
with that of RFVI [see Fig. 7(a), (d), and (g)], suggesting that
RFsup

VI can be a good substitute of RFVI to capture the spatial
distribution of SM. Moreover, compared with RFVI and RFsup

VI ,
we can observe that RFVI+sup is able to provide more SM
information related to its spatiotemporal distribution. The SM
differences between RFsup

VI+sup and RFsup
VI showed that the spatial

pattern of SM estimates using RFsup
VI are generally close to that

using RFsup
VI+sup [see Fig. 7(j), (k), and (m)], except RFsup

VI have
higher SM estimates than RFsup

VI+sup in the middle of the study
region.

C. Evaluation of the RF Performance

The accuracy of the SM values estimated using the RFVI+sup

model was evaluated quantitatively by comparing them with
in situ measured SM in 2015 using an independent validation
method (see Fig. 8). The SM estimates had a good overall
correlation with the in situ measurements with a median R-value
of 0.75 and a range of 0.67 to 0.80 for all stations, relative to
the RFI estimates that present no correlation with the in situ
measured SM. Also, the overall ubRMSD values were improved
from 0.071 m3/m3 (RFI) to 0.030 m3/m3 (RFVI+sup), except
over WSN-25 (ubRMSD = 0.049 m3/m3), WSN-37 (ubRMSD
= 0.046 m3/m3), and WSN-38 (ubRMSD = 0.045 m3/m3). The
SM estimates had slope values closer to one for all stations,
with a median value of 0.83, ranging from 0.72 to 1.5. These
statistical metrics indicated that the RFVI+sup model provides
accurate estimates of SM.
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Fig. 8. Statistical metrics of the SM estimations based on the combined
model of RFVI and RFVI, sup (hereafter, RFVI+sup) against the in situ SM
measurements. Red dotted line represents the median value of the statistical
metrics.

Fig. 9. SM estimates using several RF models against the in situ data from
WSN-35 in shady slopes and WSN-10 in sunny slopes.

As an example, the time series of RF predictions (e.g., RFI,

RFII, RFIII, RFIV, RFVI, and RFVI+sup) and in situ measure-
ments at the WSN-35 site in shady slopes and WSN-10 site
in sunny slopes were presented in Fig. 9. In comparison with
the estimates based on RFVI+sup model and other RF models
at WSN-35 site [see Fig. 9(a)], the ubRMSD value decreased

from 0.086 to 0.038 m3/m3 while the R-value increased from
no-correlation to 0.76 (P-value<0.01). The improved perfor-
mance of RFVI+sup was also found at the WSN-10 site [see
Fig. 9(b)], providing higher R values and lower ubRMSD values
than the other SM estimates. Moreover, better agreements were
observed between the time series of the in situ measured SM
and the RFVI+sup estimates, compared with other estimates at
both WSN sites (see Fig. 9).

However, SM underestimation by RFVI+sup can be observed
at most sites (except WSN-25 and WSN-53 sites), as indicated by
slope values < 1 (ranging from 0.72 to 0.94). Note that WSN-25
also has a high ubRMSD value, indicating inaccurate estimations
by RFVI+sup. The poor performance of RFVI+sup over these spe-
cific sites could be attributed to the high uncertainties in optical
indices and the low repressiveness of the in situ measurements
(see Section V).

V. DISCUSSION

Here, the RF method was proposed to improve SM estimates
over mountainous areas, by merging remotely-sensed multispec-
tral and topographic data. The proposed RF model produced
accurate SM estimates over mountainous regions in the Babao
River Basin. Aspect and elevation were identified as the two
most important predictors to estimate SM over the mountainous
region, implying that topographic factors are the key to the
spatial distribution of SM over the study region associated with
precipitation, which affects the SM patterns, as noted by the
previous study in the same study region [38]. According to
Fig. 5 in Fan et al. (2019), at low elevation, the average values
of SM from the shady slope were 0.33 m3/m3, higher than the
sunny slope (0.23 m3/m3). Similar results also were observed
at high elevations that the SM from shady (0.31 m3/m3) was
higher than the sunny slope (0.21 m3/m3). Based on the in situ
measurements above, the SM at high elevation (0.31 m3/m3 and
0.21 m3/m3 from shady and sunny slopes) generally are lower
than low elevation (0.33 m3/m3 and 0.23 m3/m3 from shady and
sunny slopes) regions. These results indicated that the elevation
and aspect are the key factors for the distribution of SM at the
basin scale.

However, it is worth to be noted that the SM estimates using
the aspect and elevation have the worst accuracy. This could be
partly attributed to that aspect and elevation, as static predictors,
cannot capture the SM dynamics, although the spatial pattern
of SM could be determined by aspect and elevation over the
mountainous regions [71]. This further suggests the important
analysis of the RF method could be more related to the spatial
pattern of SM than temporal patterns. Furthermore, spectral
indices at high-resolution (1-km) were used in the RF approach
to further improve RF estimates. This could be partly explained
by that the RF algorithm has a strong ability to build up nonlinear
relationships between remote sensing indices and SM [48].

The relationship between spectral indices and SM could not be
well described using simple linear or nonlinear functions over
the mountainous regions [49]. The linear/nonlinear functions
used in previous works [38], [39] could result in uncertainties
in the calibrated relationship between SM and optical/thermal
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indices, further decreasing the accuracy of SM estimates. This
could be the main reason for low slope values with a median
value of 0.61 ranging from 0.17 to 1.31 by Fan et al. [38] over
the same study region, relative to the RF estimates of the present
study, with a median slope value of 0.83. The RF model pre-
sented here partly succeeded to overcome the above-mentioned
limitations by using a decision tree rule to accurately describe
the complex and highly nonlinear relationships between the
predictors and the SM predictions [50].

However, poor performance of RFVI+sup can be found at
WSN-23, WSN-25, WSN-37, WSN-38, and WSN-53 sites. This
poor performance of RFVI+sup could be partly attributed to
the uncertainties in the remote-sensed indices [36]. An accu-
rate estimation of remote-sensed predictors is the foundation
for RF prediction. To calculate these predictors, it is assumed
that the study area is free of clouds during the period rang-
ing from sunrise to the satellite overpass time. However, such
cloud-free conditions are not well satisfied due to temporary
cloud cover and cloud movements. The presence of clouds
during the study period is one of the main factors that will
increase the uncertainties in the estimation of remote-sensed
predictors.

Moreover, the available observations of ATI are strongly
limited by the availability of both daytime and nighttime LST
observations (see the calculation of ATI in Table S2). Although
spectral indices were used in the RF models (RFVI+sup) to
provide more SM information over the pixels with missing ATI
data, the cloudy conditions still decrease the available number
of spectral indices, leading to missing RFVI+sup estimates.
Especially, over the mountainous regions with high elevation,
the missing optical indices due to the cloudy conditions resulted
in a low number of RFVI+sup SM estimates. Because the limited
predictors (e.g., VIs or LST) could decrease the number of
trained datasets, further decrease the accuracy of RFVI+sup. For
example, the available VIs observations (∼60 days) at WSN-37
and WSN-38 during 2013–2014 were lower by∼30% than other
sites with good performances having more VIs observations
(∼90 days). In addition, the MODIS product (MCD43A4) is
used to calculate the daily VIs, but note that MCD43A4 is
a 16-day weighted MODIS product. The rapid variations of
vegetation water content and SM at a daily scale could be not
successfully captured by this product.

The missing remote sensing indices will decrease the robust-
ness of the trained RF model, which needs massive training data
so that model training can be “optimal” [72]. The train data exert
a substantial control on the learning process associated with the
relationship between the SM predictions and multiple indices.
To obtain an accurate description of this relationship, the training
data should include numerous pixels encompassing SM values
associated with different surface conditions, such as different
vegetation cover types, terrain slopes, and elevations [73]. Thus,
a limited number of training data could increase uncertainty in
the SM estimation.

Another reason for the inaccurate estimations over these
specific sites could be low spatial representativeness of the
point-scale in situ measurements. In this study, the SM spatial

distribution within each 1-km grid was assumed to be ho-
mogenous. However, strong spatial heterogeneities of SM at a
subkilometer-scale could result in low representativeness of the
in situ measurements for SM conditions at 1-km grid [31]. Espe-
cially, over complex mountainous terrain, SM has much strong
heterogeneities at spatiotemperal dynamics. This mismatch be-
tween the 1-km grid and point-scale field-measurements could
increase uncertainties in the construction of the relationship
between SM and the predictors.

Note that our proposed approach was tested over a semiarid
region with low vegetation cover. Indeed, when dense vegeta-
tion covers the soil, LST and remotely-sensed spectral indices
mostly reflect the status of vegetation, and thus, the ability of
optical/thermal indices to capture the SM dynamics may become
weaker [21]. So, uncertainties in the approach presented here
could be higher in high-density vegetation regions than those
considered in the present study. Also, most spectral indices, such
as drought indices, are sensitive to the water stress conditions,
but not to the wet (or water saturation) conditions [28], [74],
[75]. Thus, the applicability of our proposed approach should be
tested in wet regions. Moreover, the global-scale high-resolution
SM method should be further developed by including the coarse
resolution SM products. How to account for the uncertainties
caused by the coarse resolution SM products will be key to global
high-resolution SM.

Moreover, the SM underestimation was found in this study,
mainly caused by the limited sensitivity of optical-thermal in-
dices to SM. As noted by Fan et al. [38], the limited ability of
optical-thermal indices to the extreme dry/wet SM conditions
could potentially decrease the performance of SM estimations. It
is worth to be noted that passive microwave has a high sensitivity
to estimate SM, albeit with low resolution. However, with the
development of downscaling passive microwave datasets, the
combination of high-resolution passive microwave observations
and optical indices in the proposed framework could improve the
SM estimation over the mountainous regions [17].

Note that it is inevitable that the overlapped information
among vegetation indices. For example, NDVI and SAVI both
were calculated using the reflectance from MODIS bands 1
and 2, potential meaning that the temporal variations in NDVI
could be similar to SAVI, although the importance analysis (see
Fig. 2) showed the different importance between NDVI and
SAVI for predicting SM. In addition, the similar importance
between NDII6 and NDII7 for predicting SM could be explained
by the overlapped information represented by the two indices,
partly due to the close information between MODIS bands 6
and 7, which are used for the calculation of NDII6 and NDII7,
respectively.

Besides the RF method, other ML methods including artificial
neural networks, cubist, deep belief networks, and support vector
machines have various advantages of combining SM informa-
tion [76], which has the potential to improve the SM estimation.
For example, an artificial neural network, as a self-adaptive
and self-learning method, can describe the complex nonlinear
relationship between SM and predictors [77], and the cubist
method can rapidly analyze big data [78]. Thus, different ML
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methods will be tested for improving the SM estimation over
the mountainous regions in the future work.

VI. CONCLUSION

High-resolution SM methods have generally limited perfor-
mance over mountainous regions because of the high spatiotem-
poral variations of SM in a mountainous environment. To over-
come these limitations, we proposed a regional learning strategy
to improve the SM retrievals, by merging optical/thermal remote
sensing data and topography data. Remote sensing albedo, ATI,
NDVI, NDII5, SAVI, and topographical indices (aspect and
elevation) were identified as the optimal predictors for capturing
temporal SM changes at pixel scale. The proposed RF model
developed in this study showed a strong capability to capture
the spatiotemporal patterns of SM, relative to methods only
using optical data or topographical indices. The RF-derived SM
estimates we computed at 1 km exhibited a high estimation
accuracy with overall ubRMSD, R, and slope values of 0.032
m3/m3, 0.75, and 0.83, respectively. Our SM estimates have the
potential to be used for agriculture applications over the Babao
River Basin.

However, our approach is limited by the availability and
accuracy of the used predictors (e.g., optical and thermal in-
dices), mainly influenced by the cloudy condition. To obtain
continuous spatiotemporal SM values, one possible solution is
to consider active microwave data (e.g., Sentinel-1), which are
available in all-weather conditions [13], [15]. Terrestrial Water
Resources Satellite, as a new Chinese mission, would provide
high-resolution continuous L-band observation, which would
provide new opportunities for high-resolution SM mapping in
the mountain areas [79], [80]. This mission concept for produc-
ing multiscale SM products has been demonstrated in the Soil
Moisture Experiment in the Luan River [81]. Finally, the RF
model developed here, as an ML method, could be improved
using longer time series of in situ SM measurements and remote
sensing indices.

REFERENCES

[1] A. Al-Yaari et al., “Assessment and inter-comparison of recently de-
veloped/reprocessed microwave satellite soil moisture products using
ISMN ground-based measurements,” Remote Sens. Environ., vol. 224,
pp. 289–303, Apr. 2019.

[2] L. Fan et al., “Satellite-observed pantropical carbon dynamics,” Nature
Plants, vol. 5, no. 9, pp. 944–951, Jul. 2019.

[3] J. Peng et al., “A roadmap for high-resolution satellite soil moisture
applications-confronting product characteristics with user requirements,”
Remote Sens. Environ., vol. 252, Jan. 2021, Art. no. 112162.

[4] S. I. Seneviratne et al., “Investigating soil moisture–climate interactions in
a changing climate: A review,” Earth-Sci. Rev., vol. 99, no. 3, pp. 125–161,
May 2010.

[5] J.-P. Wigneron et al., “Tropical forests did not recover from the strong
2015–2016 El Niño event,” Sci. Adv., vol. 6, no. 6, 2020, Art. no. eaay4603.

[6] X. Li et al., “Compared performances of SMOS-IC soil moisture and
vegetation optical depth retrievals based on tau-omega and two-stream
microwave emission models,” Remote Sens. Environ., vol. 236, Jan. 2020,
Art. no. 111502.

[7] T. E. Ochsner et al., “State of the art in large-scale soil moisture moni-
toring,” Soil Sci. Soc. Amer. J., vol. 77, no. 6, pp. 1888–1919, Nov. 2013,
doi: 10.2136/sssaj2013.03.0093.

[8] D. Entekhabi et al., “The soil moisture active passive (SMAP) mission,”
Proc. IEEE, vol. 98, no. 5, pp. 704–716, May 2010.

[9] Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, J. Martinuzzi, J. Font, and M.
Berger, “Soil moisture retrieval from space: The soil moisture and ocean
salinity (SMOS) mission,” IEEE Trans. Geosci. Remote Sens., vol. 39,
no. 8, pp. 1729–1735, Aug. 2001.

[10] J.-P. Wigneron et al., “L-band microwave emission of the biosphere
(L-MEB) model: Description and calibration against experimental data
sets over crop fields,” Remote Sens. Environ., vol. 107, no. 4, pp. 639–655,
2007.

[11] J. P. Wigneron et al., “Modelling the passive microwave signature from
land surfaces: A review of recent results and application to the L-band
SMOS & SMAP soil moisture retrieval algorithms,” Remote Sens. Envi-
ron., vol. 192, pp. 238–262, Apr. 2017.

[12] W. A. Dorigo et al., “Evaluation of the ESA CCI soil moisture prod-
uct using ground-based observations,” Remote Sens. Environ., vol. 162,
pp. 380–395, Jun. 2015.

[13] N. N. Das et al., “The SMAP and Copernicus Sentinel 1A/B microwave
active-passive high resolution surface soil moisture product,” Remote Sens.
Environ., vol. 233, pp. 111–380, Nov. 2019.

[14] N. N. Das et al., “The SMAP and Copernicus Sentinel 1A/B microwave
active-passive high resolution surface soil moisture product,” Remote Sens.
Environ., vol. 233, 2019, Art. no. 111380.

[15] H. Mao, D. Kathuria, N. Duffield, and B. P. Mohanty, “Gap filling of
high-resolution soil moisture for SMAP/Sentinel-1: A two-layer ma-
chine learning-based framework,” Water Resour. Res., vol. 55, no. 8,
pp. 6986–7009, Aug. 2019, doi: 10.1029/2019WR024902.

[16] B. Bauer-Marschallinger et al., “Toward global soil moisture monitor-
ing with Sentinel-1: Harnessing assets and overcoming obstacles,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 520–539, Jan. 2019.

[17] J. Peng, A. Loew, O. Merlin, and N. E. Verhoest, “A review of spatial
downscaling of satellite remotely sensed soil moisture,” Rev. Geophys.,
vol. 55, no. 2, pp. 341–366, 2017.

[18] N. Chauhan, S. Miller, and P. Ardanuy, “Spaceborne soil moisture esti-
mation at high resolution: A microwave-optical/IR synergistic approach,”
Int. J. Remote Sens., vol. 24, no. 22, pp. 4599–4622, 2003.

[19] B. Fang, V. Lakshmi, R. Bindlish, T. J. Jackson, M. Cosh, and J. Basara,
“Passive microwave soil moisture downscaling using vegetation index and
skin surface temperature,” Vadose Zone J., vol. 12, no. 3, pp. 1–19, 2013.

[20] W. Zhao and A. Li, “A comparison study on empirical microwave soil
moisture downscaling methods based on the integration of microwave-
optical/IR data on the Tibetan Plateau,” Int. J. Remote Sens., vol. 36,
no. 19/20, pp. 4986–5002, 2015.

[21] O. Merlin, J. P. Walker, A. Chehbouni, and Y. Kerr, “Towards deterministic
downscaling of SMOS soil moisture using MODIS derived soil evaporative
efficiency,” Remote Sens. Environ., vol. 112, no. 10, pp. 3935–3946, 2008.

[22] O. Merlin, C. Rudiger, A. Al Bitar, P. Richaume, J. P. Walker, and Y.
H. Kerr, “Disaggregation of SMOS soil moisture in Southeastern Aus-
tralia,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1556–1571,
May 2012.

[23] J. Wang, Z. Ling, Y. Wang, and H. Zeng, “Improving spatial represen-
tation of soil moisture by integration of microwave observations and the
temperature–vegetation–drought index derived from MODIS products,”
ISPRS J. Photogramm. Remote Sens., vol. 113, pp. 144–154, 2016.

[24] J. Kim and T. S. Hogue, “Improving spatial soil moisture representation
through integration of AMSR-E and MODIS products,” IEEE Trans.
Geosci. Remote Sens., vol. 50, no. 2, pp. 446–460, Feb. 2011.

[25] L. Fan et al., “Evaluation of the airborne CASI/TASI Ts-VI space method
for estimating near-surface soil moisture,” Remote Sens., vol. 7, no. 3,
pp. 3114–3137, 2015.

[26] J. Peng, A. Loew, X. Chen, Y. Ma, and Z. Su, “Comparison of satellite-
based evapotranspiration estimates over the Tibetan Plateau,” Hydrol.
Earth Syst. Sci., vol. 20, pp. 3167–3182, 2016.

[27] J. Peng, J. Niesel, and A. Loew, “Evaluation of soil moisture downscaling
using a simple thermal-based proxy-the REMEDHUS network (Spain)
example,” Hydrol. Earth Syst. Sci., vol. 19, pp. 4765–4782, 2015.

[28] Y. Malbéteau et al., “Normalizing land surface temperature data for
elevation and illumination effects in mountainous areas: A case study using
ASTER data over a steep-sided valley in Morocco,” Remote Sens. Environ.,
vol. 189, pp. 25–39, 2017.

[29] W. Zhao, A. Li, H. Jin, Z. Zhang, J. Bian, and G. Yin, “Performance
evaluation of the triangle-based empirical soil moisture relationship mod-
els based on Landsat-5 TM data and in situ measurements,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 5, pp. 2632–2645, May 2017.

[30] W. T. Crow et al., “Upscaling sparse ground-based soil moisture ob-
servations for the validation of coarse-resolution satellite soil moisture
products,” Rev. Geophys., vol. 50, no. 2, pp. 1–20, 2012.

https://dx.doi.org/10.2136/sssaj2013.03.0093
https://dx.doi.org/10.1029/2019WR024902


FAN et al.: ESTIMATING HIGH-RESOLUTION SOIL MOISTURE OVER MOUNTAINOUS REGIONS 3647

[31] R. Jin, X. Li, and S. Liu, “Understanding the heterogeneity of soil mois-
ture and evapotranspiration using multiscale observations from satellites,
airborne sensors, and a ground-based observation matrix,” IEEE Geosci.
Remote Sens. Lett., vol. 14, no. 11, pp. 2132–2136, Nov. 2017.

[32] Y. Ge, J. Wang, G. B. Heuvelink, R. Jin, X. Li, and J. Wang, “Sampling
design optimization of a wireless sensor network for monitoring ecohydro-
logical processes in the Babao River Basin, China,” Int. J. Geographical
Inf. Sci., vol. 29, no. 1, pp. 92–110, 2015.

[33] J. Kang, R. Jin, and X. Li, “Regression kriging-based upscaling of soil
moisture measurements from a wireless sensor network and multiresource
remote sensing information over heterogeneous cropland,” IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 1, pp. 92–96, Jan. 2015.

[34] J. Wang, Y. Ge, Y. Song, and X. Li, “A geostatistical approach to upscale
soil moisture with unequal precision observations,” IEEE Geosci. Remote
Sens. Lett., vol. 11, no. 12, pp. 2125–2129, Dec. 2014.

[35] S. Gao, Z. Zhu, S. Liu, R. Jin, G. Yang, and L. Tan, “Estimating the spatial
distribution of soil moisture based on Bayesian maximum entropy method
with auxiliary data from remote sensing,” Int. J. Appl. Earth Observ.
Geoinformation, vol. 32, pp. 54–66, 2014.

[36] L. Fan et al., “Mapping high-resolution soil moisture over heterogeneous
cropland using multi-resource remote sensing and ground observations,”
Remote Sens., vol. 7, no. 10, pp. 13273–13297, 2015.

[37] J. Qin, K. Yang, N. Lu, Y. Chen, L. Zhao, and M. Han, “Spatial upscaling
of in-situ soil moisture measurements based on MODIS-derived apparent
thermal inertia,” Remote Sens. Environ., vol. 138, pp. 1–9, 2013.

[38] L. Fan et al., “Mapping soil moisture at a high resolution over mountainous
regions by integrating in situ measurements, topography data, and MODIS
land surface temperatures,” Remote Sens., vol. 11, no. 6, 2019, Art. no. 656.

[39] J. Kang, R. Jin, X. Li, C. Ma, J. Qin, and Y. Zhang, “High spatio-temporal
resolution mapping of soil moisture by integrating wireless sensor network
observations and MODIS apparent thermal inertia in the Babao River
Basin, China,” Remote Sens. Environ., vol. 191, pp. 232–245, 2017.

[40] S. Ahmad, A. Kalra, and H. Stephen, “Estimating soil moisture using
remote sensing data: A machine learning approach,” Adv. Water Resour.,
vol. 33, no. 1, pp. 69–80, Jan. 2010.

[41] J. Im, S. Park, J. Rhee, J. Baik, and M. Choi, “Downscaling of AMSR-E
soil moisture with MODIS products using machine learning approaches,”
Environ. Earth Sci., vol. 75, no. 15, 2016, Art. no. 1120.

[42] H. Jiang, H. Shen, H. Li, F. Lei, W. Gan, and L. Zhang, “Evaluation of
multiple downscaled microwave soil moisture products over the central
Tibetan Plateau,” Remote Sens., vol. 9, no. 5, 2017, Art. no. 402.

[43] P. Song, J. Huang, and L. R. Mansaray, “An improved surface soil
moisture downscaling approach over cloudy areas based on geograph-
ically weighted regression,” Agricultural Forest Meteorol., vol. 275,
pp. 146–158, Sep. 2019.

[44] Z. Wei, Y. Meng, W. Zhang, J. Peng, and L. Meng, “Downscaling SMAP
soil moisture estimation with gradient boosting decision tree regression
over the Tibetan Plateau,” Remote Sens. Environ., vol. 225, pp. 30–44,
May 2019.

[45] I. Ali, F. Greifeneder, J. Stamenkovic, M. Neumann, and C. Notarnicola,
“Review of machine learning approaches for biomass and soil mois-
ture retrievals from remote sensing data,” Remote Sens., vol. 7, no. 12,
pp. 16398–421, 2015.

[46] X. He, N. W. Chaney, M. Schleiss, and J. Sheffield, “Spatial downscaling of
precipitation using adaptable random forests,” Water Resour. Res., vol. 52,
no. 10, pp. 8217–8237, Oct. 2016, doi: 10.1002/2016WR019034.

[47] C. Pelletier, S. Valero, J. Inglada, N. Champion, and G. Dedieu, “Assessing
the robustness of random forests to map land cover with high resolution
satellite image time series over large areas,” Remote Sens. Environ.,
vol. 187, pp. 156–168, 2016.

[48] T. Xu et al., “Evaluating different machine learning methods for up-
scaling evapotranspiration from flux towers to the regional scale,” J.
Geophys. Res., Atmos., vol. 123, no. 16, pp. 8674–8690, Aug. 2018,
doi: 10.1029/2018JD028447.

[49] W. Zhao, N. Sánchez, H. Lu, and A. Li, “A spatial downscaling approach
for the SMAP passive surface soil moisture product using random forest
regression,” J. Hydrol., vol. 563, pp. 1009–1024, 2018.

[50] L. Beriman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[51] X. Li et al., “Watershed allied telemetry experimental research,” J. Geo-
phys. Res., Atmos., vol. 114, no. D22, pp. 1–19, 2009.

[52] X. Li et al., “Heihe watershed allied telemetry experimental research
(HiWATER): Scientific objectives and experimental design,” Bull. Amer.
Meteorol. Soc., vol. 94, no. 8, pp. 1145–1160, 2013.

[53] Z. Li et al., “Environmental significance and hydrochemical processes at
a cold alpine basin in the Qilian mountains,” Environ. Earth Sci., vol. 73,
no. 8, pp. 4043–4052, 2015.

[54] G. Yong, W. Jianghao, W. Jinfeng, J. Rui, and H. Maogui, “Regression
kriging model-based sampling optimization design for the eco-hydrology
wireless sensor network,” Adv. Earth Sci., vol. 27, no. 9, pp. 1006–1013,
2012.

[55] Y. Ge, J. H. Wang, G. B. M. Heuvelink, R. Jin, X. Li, and J. F. Wang,
“Sampling design optimization of a wireless sensor network for monitor-
ing ecohydrological processes in the Babao River Basin, China,” Int. J.
Geographical Inf. Sci., vol. 29, no. 1, pp. 92–110, Jan. 2015.

[56] T. Carlson, “An overview of the “triangle method” for estimating surface
evapotranspiration and soil moisture from satellite imagery,” Sensors,
vol. 7, no. 8, pp. 1612–1629, 2007.

[57] C. Schaaf and Z. Wang, “MCD43A4 MODIS/Terra+ aqua BRDF/Albedo
nadir BRDF adjusted ref daily L3 global-500m V006,” NASA EOSDIS
Land Process. DAAC, 2015.

[58] J. Qin et al., “Inter-comparison of spatial upscaling methods for evaluation
of satellite-based soil moisture,” J. Hydrol., vol. 523, pp. 170–178, 2015.

[59] Z. Wan, Y. Zhang, Q. Zhang, and Z.-L. Li, “Quality assessment and
validation of the MODIS global land surface temperature,” Int. J. Remote
Sens., vol. 25, no. 1, pp. 261–274, 2004.

[60] K. J. Beven and M. J. Kirkby, “A physically based, variable contributing
area model of basin hydrology/Un modèle à base physique de zone d’appel
variable de l’hydrologie du bassin versant,” Hydrological Sci. J., vol. 24,
no. 1, pp. 43–69, 1979.

[61] S. Lei, H. Chen, Z. Bian, and Z. Liu, “Evaluation of integrating topographic
wetness index with backscattering coefficient of TerraSAR-X image for
soil moisture estimation in a mountainous region,” Ecological Indicators,
vol. 61, pp. 624–633, 2016.

[62] F. Schmidt and A. Persson, “Comparison of DEM data capture and topo-
graphic wetness indices,” Precis. Agriculture, vol. 4, no. 2, pp. 179–192,
2003.

[63] A. W. Western, R. B. Grayson, G. Blöschl, G. R. Willgoose, and T. A.
McMahon, “Observed spatial organization of soil moisture and its relation
to terrain indices,” Water Resour. Res., vol. 35, no. 3, pp. 797–810, 1999.

[64] S. Das, R. Chakraborty, and A. Maitra, “A random forest algorithm for
nowcasting of intense precipitation events,” Adv. Space Res., vol. 60,
pp. 1271–1282, 2017.

[65] S. Oliveira, F. Oehler, J. San-Miguel-Ayanz, A. Camia, and J. M. C. Pereira,
“Modeling spatial patterns of fire occurrence in Mediterranean Europe
using multiple regression and random forest,” Forest Ecol. Manage.,
vol. 275, pp. 117–129, Jul. 2012.

[66] K. Rao, W. R. L. Anderegg, A. Sala, J. Martínez-Vilalta, and A. G. Kon-
ings, “Satellite-based vegetation optical depth as an indicator of drought-
driven tree mortality,” Remote Sens. Environ., vol. 227, pp. 125–136, Jun.
2019.

[67] A. Al-Yaari et al., “Testing regression equations to derive long-term global
soil moisture datasets from passive microwave observations,” Remote Sens.
Environ., vol. 180, pp. 453–464, Jul. 2016.

[68] F. A. Busch, J. D. Niemann, and M. Coleman, “Evaluation of an empirical
orthogonal function–based method to downscale soil moisture patterns
based on topographical attributes,” Hydrological Process., vol. 26, no. 18,
pp. 2696–2709, Aug. 2012, doi: 10.1002/hyp.8363.

[69] G. S. Cowley, J. D. Niemann, T. R. Green, M. S. Seyfried, A. S. Jones, and
P. J. Grazaitis, “Impacts of precipitation and potential evapotranspiration
patterns on downscaling soil moisture in regions with large topographic
relief,” Water Resour. Res., vol. 53, no. 2, pp. 1553–1574, Feb. 2017,
doi: 10.1002/2016WR019907.

[70] P. Nasta, D. Penna, L. Brocca, G. Zuecco, and N. Romano, “Downscal-
ing near-surface soil moisture from field to plot scale: A comparative
analysis under different environmental conditions,” J. Hydrol., vol. 557,
pp. 97–108, Feb. 2018.

[71] C. Song, L. Jia, and M. Menenti, “Retrieving high-resolution surface soil
moisture by downscaling AMSR-E brightness temperature using MODIS
LST and NDVI data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 7, no. 3, pp. 935–942, Mar. 2013.

[72] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul.
2006.

[73] W. Zhao, H. Wu, G. Yin, and S.-B. Duan, “Normalization of the temporal
effect on the MODIS land surface temperature product using random forest
regression,” ISPRS J. Photogramm. Remote Sens., vol. 152, pp. 109–118,
Jun. 2019.

https://dx.doi.org/10.1002/2016WR019034
https://dx.doi.org/10.1029/2018JD028447
https://dx.doi.org/10.1002/hyp.8363
https://dx.doi.org/10.1002/2016WR019907


3648 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[74] N. Djamai, R. Magagi, K. Goïta, O. Merlin, Y. Kerr, and A. Roy, “A
combination of DISPATCH downscaling algorithm with CLASS land
surface scheme for soil moisture estimation at fine scale during cloudy
days,” Remote Sens. Environ., vol. 184, pp. 1–14, 2016.

[75] L. Fan et al., “Evaluation of microwave remote sensing for monitoring live
fuel moisture content in the Mediterranean region,” Remote Sens. Environ.,
vol. 205, pp. 210–223, 2018.

[76] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015.

[77] M. Kumar, N. S. Raghuwanshi, R. Singh, W. W. Wallender, and W. O.
Pruitt, “Estimating evapotranspiration using artificial neural network,” J.
Irrigation Drainage Eng., vol. 128, no. 4, pp. 224–233, Aug. 2002.

[78] S. Chen, D. She, L. Zhang, M. Guo, and X. Liu, “Spatial downscaling
methods of soil moisture based on multisource remote sensing data and
its application,” Water, vol. 11, no. 7, 2019, Art. no. 1401.

[79] T. Zhao et al., “Soil moisture retrievals using L-band radiometry from
variable angular ground-based and airborne observations,” Remote Sens.
Environ., vol. 248, no. 20, 2020, Art. no. 111958.

[80] P. Guo, T. Zhao, J. Shi, H. Xu, X. Li, and S. Niu, “Assessing the active-
passive approach at variant incidence angles for microwave brightness tem-
perature downscaling,” Int. J. Digit. Earth, vol. 14, no. 10, pp. 1273–1293,
2021.

[81] T. Zhao et al., “Soil moisture experiment in the Luan river supporting new
satellite mission opportunities,” Remote Sens. Environ., vol. 240, no. 20,
2020, Art. no. 111680.

Lei Fan received the Ph.D. degree in geographic
information system from the State Key Laboratory
of Remote Sensing Science, Aerospace Information
Research Institute, Chinese Academy of Sciences,
Beijing, China, in 2017.

He was a joint Ph.D. and Postdoc with Interac-
tions Sol Plante Atmosphere, Institut National de
Recherche Agronomiques, Bordeaux, France, from
2015 to 2016 and 2017 to 2019, respectively. He is
currently a Professor with the School of Geographical
Sciences, Southwest University, Chongqing, China.

His research interests include the retrieval of soil moisture and vegetation optical
depth, and how the carbon cycle responds to variations in water availability at
large scales, surrounding the role of vegetation water content in predicting plant
carbon fluxes and growth.

Amen Al-Yaari received the B.S. (Hons.) degree in geophysics (with excellent
grade and first rank in the class) from Damascus University, Damascus, Syria,
in 2008, the M.Sc. degree in water resource engineering from Lund University,
Lund, Sweden, in 2011, and the Ph.D. (Hons.) degree in microwave remote
sensing and hydrology from Sorbonne University, Paris, France, in 2015.

From 2015 to 2018, he was with the INRAe (Institut national de recherche pour
l’agriculture, l’alimentation et l’environnement) as a Research Scientist, Bor-
deaux, France. In 2019, he joined Sorbonne University as an Assistant Professor.
He spent one month at Middle East Technical University, Turkey, as a visiting
scholar in 2019. His involvement in Soil Moisture and Ocean Salinity mission
started in 2012, with the validation of soil moisture data and development of the
scientific algorithms and statistical methods to construct long and homogeneous
time series of soil moisture. He has authored or coauthored more than 50 papers
in international peer-reviewed journals. His research interests include the theory
and techniques for microwave remote sensing of the Earth, with emphasis on
hydrology, water resources management, and vegetation monitoring.

Dr. Al-Yaari has been a member of the Editorial Board of Geoscience since
2019.

Frédéric Frappart received the Engineer degree
in oceanography engineer from Ecole Nationale
Supérieure des Techniques Avancées Bretagne (EN-
STA Bretagne, formerly ENSIETA), Brest, France, in
2001, and the Ph.D. degree in geophysics and remote
sensing from the Université de Toulouse, Toulouse,
France, in 2006.

He has been a Researcher with the Observa-
toire Midi-Pyrénées (OMP), Toulouse, since 2010, in
charge of the scientific applications of radar altimetry
over land (hydrology and surface properties) for the

Centre de Topographie des Ocans et de l’Hydrosphère, a French Observation
Service dedicated to radar altimetry studies, and a member of the Scientific
Definition Team of the NASA/CNES InSAR altimeter Surface Water and Ocean
Topography (SWOT) mission for land hydrology from 2012 to 2015 and of the
SWOT Science Team from 2016 to 2020. He is involved in GNSS-R activities
in the Geodesy from space team at GET-OMP.

Jian Peng received the Ph.D. degree in earth sci-
ence from the Max Planck Institute for Meteorology
(MPI-M), Hamburg, Germany, in 2003.

Before joining the University of Oxford, he was
a Research Scientist with the University of Munich
(LMU) and a Postdoc Researcher with MPI-M. He
is currently an Earth System Scientist and the Head
of the Department of Remote Sensing, UFZ, Leipzig.
He is also a Full Professor in hydrology and remote
sensing with the University of Leipzig, Leipzig. His
research interests include the quantitative retrieval of

land surface parameters from remote sensing data, the assimilation of remote
sensing data into climate and land surface process models, understanding
land–atmosphere interactions using Earth system models and observational data,
and quantification of climate change impact on water resources, in particular,
focusing on estimation of high-resolution land surface water and energy fluxes
from satellite observations, and the investigation of hydrological and climatic
extremes as well as their impacts on ecosystems.

Dr. Peng is the Editor-in-Chief of Geoscience Data Journal. He was a recipient
of numerous international awards, most recently in 2019, the Remote Sensing
Young Investigator Award of the Swiss scientific publisher MDPI.

Jianguang Wen received the B.S. degree in geo-
graphic information system and the M.S. degree in
geophysical prospecting and information technology
from Jilin University, Changchun, China, in 2002
and 2005, respectively, and the Ph.D. degree in ge-
ographic information system from the State Key
Laboratory of Remote Sensing Science, Aerospace
Information Research Institute, Chinese Academy of
Sciences, Beijing, China, in 2008.

He was a Research Assistant from 2008 to 2011
and a Research Associate from 2011 to 2018 and since

2018 has been a Research Fellow with Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing. He is the author of one book, more
than 70 articles, and seven inventions. His research interests include multiangle
remote sensing mechanism, remote sensing modeling and parameter inversion,
and remote sensing experiment.

Dr. Wen was the recipient of the First Class of Progress of Surveying and
Mapping Technology Prize in 2018.



FAN et al.: ESTIMATING HIGH-RESOLUTION SOIL MOISTURE OVER MOUNTAINOUS REGIONS 3649

Qing Xiao received the B.S. degree in applied geo-
physics from Jilin University, Changchun, China, in
1993, and the M.S. and Ph.D. degrees in remote sens-
ing from the Institute of Remote Sensing Applica-
tions, Chinese Academy of Sciences (CAS), Beijing,
China, in 1996 and 2002, respectively.

He is currently a Researcher with the Institute of
Remote Sensing and Digital Earth, CAS. His main
research interests include remote sensing radiative
transfer mechanism and inversion, and remote sens-
ing experiment in land surface parameters validation.

Rui Jin photograph and biography not available at the time of publication.

Xiaojun Li photograph and biography not available at the time of publication.

Xiangzhuo Liu photograph and biography not available at the time of
publication.

Mengjia Wang photograph and biography not available at the time of
publication.

Xiuzhi Chen photograph and biography not available at the time of publication.

Lin Zhao received the B.S. degree in hydrogeology
and engineering geology from Hebei GEO University,
Shijiazhuang, China, in 1988, the M.S. degree in
physical geography from the Lanzhou Institute of
Glaciology and Geocryology, Chinese Academy of
Sciences, Lanzhou, China, in 1991, and the Ph.D.
degree in physical geography from Cold and Arid
Regions Environmental and Engineering Research
Institute, Chinese Academy of Sciences, in 2003.

He was a Station Master of the Cryosphere Re-
search Station on the Qinghai-Tibet Plateau, Chinese

Academy of Sciences, Golmud, China, from 2003 to 2020. He is currently
a Professor with the School of Geographical Sciences, Nanjing University
of Information Science and Technology, Nanjing, China. He is the author of
two books and more than 100 articles. His research interests include land
surface process simulation and remote sensing, geographic information system,
meteorological application, and ecological environment remote sensing.

Dr. Zhao was the recipient of the Third Class of Progress of Science and
Technology Prize of Gansu Province and was awarded as a national outstanding
field scientific and technical worker.

Mingguo Ma received the B.S. degree in rural and
urban planning from Resources and Environment
College, Lanzhou University, Lanzhou, China, in
1998, and the Ph.D. degree in cartography from the
University of Chinese Academy of Sciences, Beijing,
China, in 2003.

He was a Research Assistant in 2003, a Research
Associate from 2003 to 2009, and a Research Fel-
low from 2009 to 2014 with Cold and Arid Regions
Environmental and Engineering Research Institute,
Chinese Academy of Sciences, Lanzhou. He is cur-

rently a Professor with the Chongqing Engineering Research Center for Remote
Sensing Big Data Application, School of Geographical Sciences, Southwest
University, Chongqing, China. He has authored or coauthored more than 200
papers. His research interests include remote sensing of ecological and land
surface processes, and processing and application of remote sensing time-series
data.

Dr. Ma has been a member of the Editorial Board of Remote Sensing Technol-
ogy and Application. He is an Associate Editor for Frontiers of Earth Science.

Jean-Pierre Wigneron (Fellow, IEEE) received the
M.Sc./Engineering degree in engineering from Su-
pAéro, Ecole Nationale Supérieure de l’Aéronautique
et de l’Espace, Toulouse, France, in 1987, and the
Ph.D. degree in remote sensing from the University
of Toulouse, Toulouse, in 1993.

He is currently a Senior Research Scientist with
the Institut National de Recherche Agronomiques
(INRA), Bordeaux, France, a Co-Coordinator of re-
mote sensing activities with INRA and within the
Aquitaine Observatoire Aquitain des Sciences de

l’Univers network, a Deputy Director of Ephyse, and the Head of the remote sens-
ing team. He coordinated the development of the L-band microwave emission of
the biosphere model for soil and vegetation in the Level-2 inversion algorithm
of the European Space Agency-Soil Moisture and Ocean Salinity mission. He
has authored or coauthored more than 100 papers in international peer-reviewed
journals. His research interests include microwave remote sensing of soil and
vegetation, radiative transfer, and data assimilation.

Dr. Wigneron has been an Associate Editor for Remote Sensing of Environment
since 2014.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


