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Abstract—A surface soil moisture (SM) condition at high spa-
tiotemportal resolutions is required by regional Earth system appli-
cations. Here, we mapped daily 1-km SM in the Babao River Basin
in the northwest of China during the summers from 2013 to 2015
using a random forest (RF) method by merging SM information re-
trieved from in situ measurements, optical/thermal remote sensing,
and topographical indices. Relative importance analysis was used
to determine the optimal predictors for estimating high-resolution

Manuscript received December 9, 2021; revised February 23, 2022; accepted
April 8, 2022. Date of publication April 26, 2022; date of current version May
18, 2022. This work was supported in part by the National Key Research and
Development Program of China under Grant 2020YFA0608703, in part by the
National Natural Science Foundation of China under Grant 42171339, Grant
41830648, and Grant 41801247, and in part by the Postdoctoral Start-Up Project
of Southwest University under Grant SWU020016. (Corresponding author: Lei
Fan.)

Lei Fan and Mingguo Ma are with the Chongqing Jinfo Mountain Karst
Ecosystem National Observation and Research Station, School of Geograph-
ical Sciences, Southwest University, Chongqing 400715, China (e-mail: fan-
lei20088@163.com; mmg@swu.edu.cn).

Amen Al-Yaari is with University of Grenoble Alpes, IRD, CNRS, Grenoble
INP, IGE, Grenoble, France (e-mail: amen.alyaari@gmail.com).

Frédéric Frappart is with UMR 1391 ISPA, INRAE, F-33140 Villenave
d’Ornon, France, and also with the Laboratoire d’Etudes en Géophysique
et Océanographie Spatiales (LEGOS), 31400 Toulouse, France (e-mail: fred-
eric.frappart@gmail.com).

Jian Peng is with the Department of Remote Sensing, Helmholtz Centre for
Environmental Research−UFZ, 04318 Leipzig, Germany, and also with the
Remote Sensing Centre for Earth System Research, Leipzig University, 04103
Leipzig, Germany (e-mail: jian.peng@ufz.de).

Jianguang Wen and Qing Xiao are with the State Key Laboratory of Remote
Sensing Science, Aerospace Information Research Institute, Chinese Academy
of Sciences, Beijing 100049, China, and also with the University of Chinese
Academy of Sciences, Beijing 100049, China (e-mail: wenjg@radi.ac.cn; xiao-
qing@radi.ac.cn).

Rui Jin is with the Key Laboratory of Remote Sensing of Gansu Province,
Heihe Remote Sensing Experimental Research Station, Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou
730000, China (e-mail: jinrui@lzb.ac.cn).

Xiaojun Li, Xiangzhuo Liu, Mengjia Wang, and Jean-Pierre Wigneron
are with UMR 1391 ISPA, INRAE, F-33140 Villenave d’Ornon, France
(e-mail: xiaojun.li@inra.fr; xiangzhuo.liu@inrae.fr; mengjia.wang@inrae.fr;
jean-pierre.wigneron@inra.fr).

Xiuzhi Chen is with the Guangdong Province Key Laboratory for
Climate Change and Natural Disaster Studies, School of Atmospheric
Sciences, Sun Yat-sen University, Guangzhou 510275, China (e-mail:
chenxzh73@mail.sysu.edu.cn).

Lin Zhao is with the School of Geographical Sciences, Nanjing Univer-
sity of Information Science and Technology, Nanjing 210044, China (e-mail:
lzhao@nuist.edu.cn).

This article has supplementary downloadable material available at https://
ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/JSTARS.2022.3166974

SM. A specific RF model (RFVI+sup) was constructed using the
optimal predictors including remote sensing albedo, apparent ther-
mal inertia (ATI), normalized difference vegetation index, normal-
ized difference infrared index 5, soil adjusted vegetation index, and
topographical indices (aspect and elevation). The RFVI+sup also
accounted for missing observations of the thermal index (e.g., ATI)
over the mountainous regions. In the comparison between the SM
estimates using the new RFVI+sup model and other RF models, the
spatial coverage of available estimates increased from 14% to 64%
over the study region, the correlation coefficient values were im-
proved to 0.75, the unbiased root-mean-squared difference values
decreased to 0.032 m3/m3. Thus, the proposed RF method provided
accurate SM estimates with high spatiotemporal resolution over
the mountainous regions, by merging multiresource datasets from
in situ measurements, remotely-sensed, and topographical indices.

Index Terms—High resolution, mountainous regions, optical
index, random forest (RF) method, soil moisture (SM), thermal
index.

I. INTRODUCTION

SURFACE soil moisture (SM) is the key to adjusting land
surface energy partition, controlling vegetation transpira-

tion, and surface runoff [1]–[5]. As a consequence of these
needs, many microwave remote sensing observations were used
to estimate SM time series at a global scale [6], [7]. The ap-
plication of passive microwaves at L-band has been considered
one of the most promising methods [8]–[11], although higher
frequencies of passive and active microwave observations also
demonstrated good potential [12]. However, current passive mi-
crowaves missions (e.g., SMOS [9] and SMAP [8]) are limited in
spatial resolution (lower than 25 km), greatly limiting potential
applications at regional scales (1–10 km). In an effort to produce
higher resolution SM datasets, the SMAP and active microwave
Sentinel-1 observations were merged to produce the most recent
3-km SM product (L2_SM_SP) [13], [14]. However, these SM
products using active microwave observations are limited over
the mountain regions, which can be attributed to two aspects: 1)
Sentinel-1 has a low temporal resolution (6 or 12 days), which
results in the low temporal resolution (equal or larger than 12
days over China) [15]. Especially over the Northwest regions of
China, very few high-quality SM information from L2_SM_AP
is available; 2) the effect of mountains on the backscatter of
SAR or Sentinel-1 is too complex to be modified, which leads
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to the high uncertainties in the backscatter, further decreases the
accuracy of high-resolution SM [16].

Currently, downscaling microwave-derived coarse-resolution
SM products by the synergistic coupling of optical/thermal-
infrared datasets is the widely used approach to estimate high-
resolution (∼1 km) SM information [17]. These downscaling
approaches can be classified as empirical regression methods
[18]–[20] and semiphysical methods [21], [22], both relying
on the indirect relationships between SM and optical/thermal-
infrared indices. In the downscaling method, a range of indices
are used to provide high-resolution SM proxies, such as sur-
face albedo, apparent thermal inertia (ATI), optical vegetation
indices, land surface temperature (LST), temperature vegetation
dryness index [23]–[25], vegetation temperature condition index
[26], [27], and the soil evaporative efficiency [21], [22], [28].

The performance of downscaling approaches is limited by the
following two issues.

1) the mathematical functions could not describe the complex
relationship between SM and optical/thermal-infrared in-
dices over the mountainous regions. Previous analysis in-
dicated high variations in the relationship between SM and
optical/thermal-infrared indices [20], [27], [29]. More-
over, the relationship between SM and optical/thermal-
infrared indices could be more complex over mountainous
regions, because of the complex interactions among me-
teorological, topographical, and vegetation factors [30].
Few studies were made to evaluate these optical/thermal-
infrared indices on the estimation of SM over the moun-
tainous regions.

2) uncertainties associated with the coarse-resolution mi-
crowave SM products may degrade the accuracy of the
downscaled high-resolution SM [17]. In particular, over
mountainous regions, topographic effects could further in-
crease the uncertainties in the optimization of some param-
eters (e.g., vegetation properties and surface roughness)
used in the retrieval models for estimating microwave SM
products [9].

A promising alternative strategy to estimate high-resolution
SM is to extrapolate the in situ measurements to larger scales by
using geostatistical techniques [30]. Using the wireless sensor
networks (WSNs) [31], [32], several upscaling methods were
proposed to retrieve high-resolution SM, including block kriging
[33], [34], the Bayesian maximum entropy method [35], [36],
and the Bayesian linear regression (BLR) method [37]–[39]. The
latter was successfully used to estimate high-resolution SM over
the mountainous regions [38], [39], due to its ability to overcome
the issue of temporal discontinuity in high-resolution SM prod-
ucts. Note that all upscaled methods require the representative
in situ measurements, for instance, to be located in the shady
and sunny slopes for different elevations.

For BLR upscaling approach, a reference map of “true” SM
was first calculated as the ATI-retrieved SM, then the calibrated
relationship between the field-measured SM and the reference
SM was used to obtain high-resolution (1-km) SM [37], [39]. A
simple mathematical function with fixed empirical coefficients
was used to retrieve SM using ATI. This function could not be an
optimum expression reflecting the actual relationship between

SM and ATI as it is likely that the SM patterns are not spatially
uniform due to heterogeneity in the meteorological conditions,
the local land use types, and the vegetation cover, especially
in mountainous regions. This could increase the uncertainties
in the reference ATI-retrieved SM, which is a key to the BLR
estimation [38].

An alternative method to compute high-resolution SM maps
is machine learning (ML) techniques [e.g., artificial neural net-
work and random forest (RF)] [40], [41]. ML techniques started
to be used for downscaling satellite SM products [41]–[44],
due to its ability to merge the SM information derived from
several optical-derived variables [45]. Previous investigations
have found, in particular, that the RF algorithm can be used
to merge multisource observations and address the issue of a
nonlinear relationship between predictors and predictions [46],
[49]. The RF method is able to overcome the overfitting issues
by generating independent regression trees through randomly
selecting training samples, due to the low correlation between
each independent tree [50].

This study aims to estimate the daily 1-km resolution SM over
Babao River Basin, by proposing a framework to combine SM
information from multispectral images and topographic infor-
mation. The proposed method is to decrease the potential un-
certainties in the SM estimations over the mountainous regions.
Our approach relies on remote sensing and field-measurement
information (e.g., WSN measurements, aspect, and elevation
from ASTER digital elevation model and MODIS reflectance
and LST data). The WSN measurements, MODIS reflectance
and LST, and topography data are presented in Section II;
the proposed RF method and the metrics for evaluating the
RF-derived SM are given in Section III; and results, discussions,
and conclusions are given in Section IV–VI, respectively.

II. STUDY AREA AND DATASETS

A. Study Area and Field Campaigns

The Babao River Basin, located upstream of the Heihe River
Basin [see Fig. 1(a)], is the main water source for agriculture
in the mid- and downstream areas of the Heihe River Basin
[51], [52]. The developments of the Heihe River Basin have
been limited by the scarcity of water resources [51]. Thus, high-
resolution SM information of the Babao River Basin will be
critical for the water resource management in the whole Heihe
River Basin.

The Babao river basin, mainly covered with grasslands [see
Fig. 1(b)], has an area of about 2500 km2 and an elevation
ranging from∼2600 to 5100 m [see Fig. 1(a)] [53]. The runoff in
summer-wet months is mostly from precipitation. The spatial–
temporal variability of SM is mainly affected by the hetero-
geneous spatial distribution of precipitation and topographic
conditions, such as shady and sunny slopes [32].

As one of the core study areas in the Heihe Watershed Al-
lied Telemetry Experimental Research (HiWATER) project, the
whole Babao River Basin was instrumented with the Ecological
and Hydrological WSN [EHWSN; Fig. 1(a) and Table S1] for
monitoring SM and soil temperature [31]. EHWSN, consisting
of 37 in situ stations, was deployed according to an optimal
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Fig. 1. Study region. The spatial distributions of in situ measurements stations
of the study region were shown in (a), the corresponding land cover, terrain
aspect, and TWI were indicated in (b), (c), and (d), respectively. In (a), elevation
information is also shown and the WSN sites are marked as black points.
In (b), land cover types data at a spatial resolution of 30 m provided by the
HiWATER project [52].

design to better capture the spatial variations of SM [54]. The op-
timal sampling design of the network is obtained using a spatially
simulated annealing algorithm by considering the multivariate
(cross-) correlation and spatial trend. The results demonstrate
that this sampling method can capture the SM dynamics over
the mountainous regions [55].

SM and soil temperature at depths of 4, 10, and 20 cm at
5-min intervals were measured by EHWSN from 2013 to 2015.
The study period was 15th July to 15th October of 2013, 2014,
and 2015 to avoid snow periods covering from November to
May [33]. In situ measurements at a depth of 4 cm within a time
window of 1 h were matched with the instantaneous overpass
times of the MODIS LST product. In situ measurements from
2013 to 2014 were used for training the SM model, and in situ
measurements in 2015 were used to validate the SM estimates.

B. Optical/Thermal-Infrared Indices

Optical vegetation indices can be used for monitoring the
vegetation water status, which indicates an increase or de-
crease in the spatial variability of SM, due to that vegetation
can affect the upward/downward flow of water vapor [56].
MODIS 500-m daily nadir BRDF-Adjusted surface reflectance
product (MCD43A4) [57] was used here to calculate several
spectral indices (see Table S2) that are impacted directly or
indirectly by SM: NDVI, albedo, soil adjusted vegetation in-
dex (SAVI), visible atmospheric resistant index (VARI), nor-
malized difference water index (NDWI), normalized difference
infrared index 6 (NDII6), normalized difference infrared index
7 (NDII7), and global vegetation moisture index (GVMI). The
lower NDWI/NDII6 values indicate the lower leaf vegetation
water content. The 500-m resolution spectral indices were ag-
gregated into 1 km to match the spatial resolution of the LST
product by a simple average method.

The thermal-infrared indices, such as the difference between
LST at daytime and nighttime (ΔLST ) and ATI, have been
proved to be related to SM over regions with low vegetation
density [33], [38], [58]. ΔLST was calculated using the day-
and night-time daily LST provided by the MODIS 1-km Terra
LST product (MOD11A1) [59]. Higher SM content has high
thermal inertia, determining its higher resistance to temperature
variations. Thus, higher SM has lower ΔLST values. ATI was
retrieved using LST from MOD11A1 and albedo derived from
MCD43A4.

C. Topographic Indices

Over the mountainous regions, the spatial patterns of SM
are also influenced by the topographic conditions, such as
terrain aspect and elevation [30], thus topographic indices
could reflect SM information. The topographic wetness index
(TWI) [60] has been proved to be a good indicator of SM over
the mountainous regions where surface flow dominates the
processes of water transportation [61]–[63]. It is defined as
ln(a/tanβ) where a is the local upslope area draining through
a certain point per unit contour length and tanβ is the local
slope [60]. TWI combines local upslope contributing area and
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slope and has been commonly used to quantify topographic
control on hydrological processes. This potentially suggests that
TWI can better represent the distribution of SM than the slope.
Furthermore, the calculation of TWI was based on slope, namely
that TWI has included the slope information. TWI is not directly
related to the variability of SM but can identify hydrological
flow paths which generally are related to the spatial distribution
of SM. Thus, TWI was selected in this study instead of a slope.

Aspect, elevation, and TWI (see Table S2) were calculated
using 30-m Advanced Spaceborne Thermal Emission and Re-
flectance Radiometer (ASTER) Global Digital Elevation Model
(GDEM). These topographic indices were aggregated into the
1-km resolution data to match the spatial resolution of LST
product using a simple average method.

III. METHOD

A. RF Algorithm

The ML RF method has been applied to retrieve various
climate variables (e.g., SM, evapotranspiration, precipitation
and fire) [46], [50], [64]–[66]. The complex and highly nonlinear
relationship between the predictors and the response variable
can be described by the RF method due to its advantage in
involving the adaptive and decorrelated decision rules [50]. In
the RF algorithm, the relationship between the predictors and
the response was described using lots of decision trees. The RF
algorithm produces these decision trees in the training phase,
by dividing the input dataset into a number of regression trees,
known as forest, where each tree is generated using a bootstrap
sample method. Then, the mean prediction of the individual
trees is generated as the output. A bootstrap sample includes
two-thirds of the training input data, and the remaining samples
(about one-third) are used for the validation of each tree. This is
one of the key features of the RF algorithm to estimate the model
generalization error. This approach solves the overfitting issue
usually occurring in the traditional regression methods, with the
help of the bagging method that merges the information from
lots of decision trees.

Also, the RF method provides an analysis of the relative
importance of each predictor for the response variable. Each
predictor is permuted using the out-of-bag observations to esti-
mate the importance of each predictor. It is performed for every
tree in the RF framework, and changes in the prediction error
are estimated. The performance of the new model is improved
significantly, suggesting that the predictor is important for the
performance of the original model used to estimate the response
variable. The overall average of this measure is usually divided
by the standard deviation value of the overall ensemble, in order
to obtain a normalized measure of the predictor importance [50].

In this study, the optimal predictors (remote sensing indices,
Table S2) as input of the RF model were determined based
on their relative importance to the SM prediction. Then the
relationship between WSN-measured SM and SM predictors
was trained in the framework of the RF model. Last, the
trained RF model was used to estimate the high-resolution
(1-km) SM.

Fig. 2. Flowchart of the framework in this study.

B. RF-Derived SM

The RF-derived SM algorithm is presented in Fig. 2. First, to
build the optimal model for the high-resolution SM estimates,
a selection was first performed to identify an optimal set of
predictors representing the spatial and temporal variability of
SM. Thirteen remote sensing indices, tested as predictors, were
extracted from the pixels where the WSN nodes are located.
These predictors were ranked based on their relative importance
to SM mapping using the RF algorithm.

Based on the relative importance of the SM predictors, all
predictors were reassembled as 13 sets to estimate SM: The first
ranked variable was used to predict SM using the RF model,
defined as RFI; the second, third, …, thirteenth ranked variable
was added successively in the RF model to predict SM, defined
as RFII, RFIII, …, RFXL, respectively. The relationship between
the predictors and the in situ measured SM was calibrated using
the RF regression model. The calibrated relationship was used in
the RF model to predict SM. To determine the optimal RF model,
the performances of the 13 RF predictions were evaluated by
comparing them against the in situ measured SM, using statis-
tical metrics including the correlation coefficient (R), unbiased
root-mean-squared difference (ubRMSD), bias, and slope (see
Section III-D).

Based on the statistical metrics, a model (referred to as RFVI)
using six predictors [aspect, elevation, albedo, ATI, normalized
difference vegetation index (NDVI), and normalized difference
infrared index 5 (NDII5)] was determined to retrieve SM (as
presented in Section IV-A). In the RFVI model, the linking
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model (f ) between SM and the predictors is expressed as fol-
lows:

RFVI = f (aspect, elevation, albedo, ATI, NDVI, NDII5)
(1)

where RFVI is the retrieved SM value.
Note that the calculation of ATI, as a predictor, requires the

high-quality albedo and LST observations from both daytime
and nighttime, resulting in lower availability of ATI than other
optical indices. Namely, the optical indices could be obtained
when ATI is missing. Accounting for the missing ATI data due
to the missing LST observations affected by clouds [38], an RF
model (RFsup

VI ), as a supplementary model of RFVI, was trained
using the predictors without ATI to provide SM estimates at
the pixels where there are missing estimates from RFVI. The
supplementary RF model RFsup

VI was written as

RFsup
VI =f (aspect, elevation, albedo, NDVI,NDII5, SAVI)

(2)
where SAVI, ranked as the seventh importance prediction index
of SM, was added to replace ATI. RFVI was used in all pixels,
except the pixels without ATI observations, where RFsup

VI was
used instead. The combined model merging RFVI and RFsup

VI
was defined as RFVI+sup (3) and was used to estimate 1-km
resolution SM during the study period

RFVI+sup= merging (RFVI ,RF
sup
VI ) . (3)

C. Validation

An independent validation method was used to evaluate SM
estimates against in situ measurements: The in situ measure-
ments from 37 WSN sites during 2013–2014 were used to
calibrate the RFVI+sup model, and the in situ measurements in
2015 were used to validate the SM estimates using theRFVI+sup

model.

D. Evaluation Metrics

The performance of the proposed RF models was evaluated
using the following.

1) The ubRMSD. A nonbiased root-mean-squared error
(ubRMSE) was proposed to remove the mean bias caused
by the mean of the estimates or the amplitude of fluc-
tuations in the estimates. Accounting for that the spatial
SM distribution within each 1-km grid is heterogeneous,
and the in situ measurements also include measurement
uncertainties, the term “error” of ubRMSE was replaced
by “difference,” that is, ubRMSD [67], which was obtained

using (4) shown at the bottom of this page, in a unit of
m3/m3.

2) The correlation coefficient (R), which was used to evaluate
the consistency between the field measurements and SM
estimates, can be calculated using (5) shown at the bottom
of this page.

3) Slope, which was used to evaluate the agreement between
the field measurements and SM estimates at each grid, can
be calculated using simple linear regression (6)

θIn situ = slope · θupscale + intercept (6)

where N is the number of the WSN-measured SM in the
time series. θIn situ

t and θupscale
t are the WSN-measured and

the RF estimated SM on date t, respectively. θIn situ and
θupscale are the average SM values of the corresponding
time series.

IV. RESULTS

A. Predictor Selection

Aspect and elevation, as topography indices, were identified
as the first and second most important predictors of the RF-based
SM estimation, with mean relative importance of 33% and 18%
out of 100%; thus much more important than other predictors
(see Fig. 3). The results about the important role of topographic
indices in the spatial pattern of SM were also reported by previ-
ous studies related to the SM disaggregation using topographic
data [68]–[70]. By contrast, another topography index, TWI,
was only the eighth most important predictor of SM in this area.
The importance of optical and thermal indices (e.g., albedo, ATI,
NDVI, NDII5, and SAVI) for predicting SM is higher than that
of TWI, followed by VARI, NDII7, NDII6, ΔLST, and GVMI.

Thirteen sensitivity tests were made to evaluate the perfor-
mances of RF models on the SM estimates, by using different
groups of predictors based on the order of importance of the
predictors (see Fig. 4). The aspect was as the input used in RFI,
the elevation, albedo, ATI, NDVI, NDII5, SAVI, TWI, VARI,
NDII7, NDII6,ΔLST, and GVMI were added successively from
RFII to RFXL. The model with the best predictive performance
was determined by statistical metrics (e.g., lowest ubRMSD
and bias, highest R values, and slope values closer to one),
which were calculated by comparing the RF-derived estimates
against the in situ measured SM. With increasing the number
of predictors in the RF model, the R values between the SM
estimations and the field measurements were improved from
0.87 (RFI) to 0.93 (RFVI) with ubRMSD values decreasing
from 0.06 (RFI) to 0.043 m3/m3 (RFVI), albeit slope and bias

ubRMSD =

√
1

N

∑N

t=1
(θupscale

t − θupscale)
2 −

(
1

N

∑N

t=1
(θIn situ

t − θIn situ

)
)2 (4)

r =

∑N
t=1

(
θupscale
t − θupscale

)(
θin situ
t − θin situ

)
√∑N

t=1

(
θupscale
t − θupscale

)2

·∑N
t=1

(
θin situ
t − θin situ

)2
(5)
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Fig. 3. Relative importance in the model. Error bars represent the standard
deviation (SD; variability) of the relative importance (median+SD).

Fig. 4. Sensitivity tests of SM predictions by using different predictors based
on their relative importance for SM prediction.

values were almost similar by comparing the RFI and RFVI

estimates. Also, it can be seen (see Fig. 4) that all statistical
metrics, except bias, did not improve much from RFVI to RFXL,
indicated by the approximately constant R, ubRMSD, and slope
values. This implies that RFVI is very close to the optimal model
for estimating high-resolution SM over the study region.

Fig. 5. Performances of RF models and the supplementary RF models using
different predictors.

To evaluate the behaviors of RFI, RFII, RFIII, RFIV, RFV,
and RFVI for SM prediction, the scatter plots between the
RF-derived SM estimates and the in situ measurements are
shown in Fig. 5(a)–(f), together with the corresponding R and
ubRMSD values. Relative to RFI [see Fig. 5(a)] and RFII [see
Fig. 5(b)] estimations, RFIII [see Fig. 5(c)] agreed well with in
situ measurements with SM predictions close to the 1:1 line,
with improved metrics (R = 0.98 and ubRMSD = 0.56 m3/m3).
The performance of the RFVI model [see Fig. 5(f)] to estimate
SM was found to be the best with the highest R of 0.99 and
lowest ubRMSD of 0.0083 m3/m3. Thus, SM patterns could be
accurately captured by RFVI using six predictors: 1) aspect, 2)
elevation, 3) albedo, 4) ATI, 5) NDVI, and 6) NDII5.

Accounting for the missing ATI observations, three supple-
mentary RF models that did not include the ATI predictor were
evaluated. These three supplementary RF models were defined
as RFsup

IV [see Fig. 5(g)], RFsup
V [see Fig. 5(h)], and RFsup

VI [see
Fig. 5(i)] using the inputs of aspect, elevation, albedo, NDVI,
NDII5, and SAVI. Relative to RFIV [see Fig. 5(g)] and RFV [see
Fig. 5(h)], the corresponding supplementary RF models [see
Fig. 5(g) and (h)], which did not include the ATI predictor have
slightly lower statistical metrics. However, as the supplementary
model of RFVI, RFsup

VI [see Fig. 5(i)] has an identical performance
(R=0.99 and ubRMSD=0.0095 m3/m3) relative to RFVI. Thus,
the model combining RFVI and RFsup

VI (hereafter, RFVI+sup)
could be used to estimate accurately the SM patterns over the
study region.
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Fig. 6. Hovmöller diagrams showing available observations from the
(a) RFVI, (b) RFVI,sup , and (c) RFVI+sup estimates in the Babao River
Basin. Available observations are in the unit of percent, calculated using the
ratio between available estimates and the whole area in each latitude.

B. RF-Based SM Estimation

The 1-km SM estimates over the Babao River Basin were
derived using the RFVI model (using predictors including aspect,
elevation, albedo, ATI, NDVI, and NDII5), the RFsup

VI model
(using predictors including aspect, elevation, albedo, NDVI,
NDII5, and SAVI) and the RFVI+sup model combining the
RFVI and RFsup

VI models, respectively. The RFVI estimations
[see Fig. 6(a)] were found to be often missing over the study
period (with low spatial coverage of 14% over the study regions),
especially in September. Besides, the SM patterns are difficult
to observe over the southernmost and northernmost parts of the
study area using the RFVI model due to many missing data. The
missing RFVI estimates can be attributed to the missing ATI
observations. This is due to the limited availability of LST, used
in the calculation of ATI, because of the presence of clouds
and rain over the study region most of the year [38]. As a
supplementary estimate of the missing RFVI estimations, the
RFsup

VI model [see Fig. 6(b)] provided a higher spatial coverage
(62%) of SM estimates, albeit with missing observations over the
northernmost of the study region. To replace the missing RFVI

estimates with the corresponding RFsup
VI estimates at pixel-scale,

the RFVI+sup estimates [see Fig. 6(c)] have a high spatial
coverage, in good agreement with that of RFsup

VI .
To illustrate the performance of the RF models, the SM

estimates using RFVI+sup [see Fig. 7(c), (f), and (i)] over 3 days
(8th August, 12th August, and 4th October in 2013) are shown
in Fig. 7, together with the RFVI [see Fig. 7(a), (d), and (g)]
and RFsup

VI [see Fig. 7(b), (e), and (h)] estimates. It can be seen
that RFVI is able to provide detailed spatial SM patterns, but
only covering 79% [see Fig. 7(a)], 74% [see Fig. 7(d)], and
58% [see Fig. 7(g)] of the study region. In contrast to RFVI, the

Fig. 7. Spatial distribution of the SM estimates from the RFVI, RFVI, sup,

and RFVI+sup models on (a), (d), and (g) 4th October, (b), (e), and (h) 8th
August, and (c), (f), and (i) 12th August in 2013 over the Babao River Basin. The
corresponding SM differences between RFVI+sup and RFVI, sup were shown
in (j), (k), and (m), respectively. The spatial coverages of the RFVI estimates are
79% [see Fig. 4(a)], 74% [see Fig. 4(d)], and 58% [see Fig. 4(g)] of the study
region, respectively.

RFVI+sup model provided a higher spatial coverage, covering
98%, 98%, and 96% of the study region. Additionally, the spatial
distribution ofRFVI+sup [see Fig. 7(b), (e), and (h)] agreed well
with that of RFVI [see Fig. 7(a), (d), and (g)], suggesting that
RFsup

VI can be a good substitute of RFVI to capture the spatial
distribution of SM. Moreover, compared with RFVI and RFsup

VI ,
we can observe that RFVI+sup is able to provide more SM
information related to its spatiotemporal distribution. The SM
differences between RFsup

VI+sup and RFsup
VI showed that the spatial

pattern of SM estimates using RFsup
VI are generally close to that

using RFsup
VI+sup [see Fig. 7(j), (k), and (m)], except RFsup

VI have
higher SM estimates than RFsup

VI+sup in the middle of the study
region.

C. Evaluation of the RF Performance

The accuracy of the SM values estimated using the RFVI+sup

model was evaluated quantitatively by comparing them with
in situ measured SM in 2015 using an independent validation
method (see Fig. 8). The SM estimates had a good overall
correlation with the in situ measurements with a median R-value
of 0.75 and a range of 0.67 to 0.80 for all stations, relative to
the RFI estimates that present no correlation with the in situ
measured SM. Also, the overall ubRMSD values were improved
from 0.071 m3/m3 (RFI) to 0.030 m3/m3 (RFVI+sup), except
over WSN-25 (ubRMSD = 0.049 m3/m3), WSN-37 (ubRMSD
= 0.046 m3/m3), and WSN-38 (ubRMSD = 0.045 m3/m3). The
SM estimates had slope values closer to one for all stations,
with a median value of 0.83, ranging from 0.72 to 1.5. These
statistical metrics indicated that the RFVI+sup model provides
accurate estimates of SM.
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Fig. 8. Statistical metrics of the SM estimations based on the combined
model of RFVI and RFVI, sup (hereafter, RFVI+sup) against the in situ SM
measurements. Red dotted line represents the median value of the statistical
metrics.

Fig. 9. SM estimates using several RF models against the in situ data from
WSN-35 in shady slopes and WSN-10 in sunny slopes.

As an example, the time series of RF predictions (e.g., RFI,

RFII, RFIII, RFIV, RFVI, and RFVI+sup) and in situ measure-
ments at the WSN-35 site in shady slopes and WSN-10 site
in sunny slopes were presented in Fig. 9. In comparison with
the estimates based on RFVI+sup model and other RF models
at WSN-35 site [see Fig. 9(a)], the ubRMSD value decreased

from 0.086 to 0.038 m3/m3 while the R-value increased from
no-correlation to 0.76 (P-value<0.01). The improved perfor-
mance of RFVI+sup was also found at the WSN-10 site [see
Fig. 9(b)], providing higher R values and lower ubRMSD values
than the other SM estimates. Moreover, better agreements were
observed between the time series of the in situ measured SM
and the RFVI+sup estimates, compared with other estimates at
both WSN sites (see Fig. 9).

However, SM underestimation by RFVI+sup can be observed
at most sites (except WSN-25 and WSN-53 sites), as indicated by
slope values < 1 (ranging from 0.72 to 0.94). Note that WSN-25
also has a high ubRMSD value, indicating inaccurate estimations
by RFVI+sup. The poor performance of RFVI+sup over these spe-
cific sites could be attributed to the high uncertainties in optical
indices and the low repressiveness of the in situ measurements
(see Section V).

V. DISCUSSION

Here, the RF method was proposed to improve SM estimates
over mountainous areas, by merging remotely-sensed multispec-
tral and topographic data. The proposed RF model produced
accurate SM estimates over mountainous regions in the Babao
River Basin. Aspect and elevation were identified as the two
most important predictors to estimate SM over the mountainous
region, implying that topographic factors are the key to the
spatial distribution of SM over the study region associated with
precipitation, which affects the SM patterns, as noted by the
previous study in the same study region [38]. According to
Fig. 5 in Fan et al. (2019), at low elevation, the average values
of SM from the shady slope were 0.33 m3/m3, higher than the
sunny slope (0.23 m3/m3). Similar results also were observed
at high elevations that the SM from shady (0.31 m3/m3) was
higher than the sunny slope (0.21 m3/m3). Based on the in situ
measurements above, the SM at high elevation (0.31 m3/m3 and
0.21 m3/m3 from shady and sunny slopes) generally are lower
than low elevation (0.33 m3/m3 and 0.23 m3/m3 from shady and
sunny slopes) regions. These results indicated that the elevation
and aspect are the key factors for the distribution of SM at the
basin scale.

However, it is worth to be noted that the SM estimates using
the aspect and elevation have the worst accuracy. This could be
partly attributed to that aspect and elevation, as static predictors,
cannot capture the SM dynamics, although the spatial pattern
of SM could be determined by aspect and elevation over the
mountainous regions [71]. This further suggests the important
analysis of the RF method could be more related to the spatial
pattern of SM than temporal patterns. Furthermore, spectral
indices at high-resolution (1-km) were used in the RF approach
to further improve RF estimates. This could be partly explained
by that the RF algorithm has a strong ability to build up nonlinear
relationships between remote sensing indices and SM [48].

The relationship between spectral indices and SM could not be
well described using simple linear or nonlinear functions over
the mountainous regions [49]. The linear/nonlinear functions
used in previous works [38], [39] could result in uncertainties
in the calibrated relationship between SM and optical/thermal
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indices, further decreasing the accuracy of SM estimates. This
could be the main reason for low slope values with a median
value of 0.61 ranging from 0.17 to 1.31 by Fan et al. [38] over
the same study region, relative to the RF estimates of the present
study, with a median slope value of 0.83. The RF model pre-
sented here partly succeeded to overcome the above-mentioned
limitations by using a decision tree rule to accurately describe
the complex and highly nonlinear relationships between the
predictors and the SM predictions [50].

However, poor performance of RFVI+sup can be found at
WSN-23, WSN-25, WSN-37, WSN-38, and WSN-53 sites. This
poor performance of RFVI+sup could be partly attributed to
the uncertainties in the remote-sensed indices [36]. An accu-
rate estimation of remote-sensed predictors is the foundation
for RF prediction. To calculate these predictors, it is assumed
that the study area is free of clouds during the period rang-
ing from sunrise to the satellite overpass time. However, such
cloud-free conditions are not well satisfied due to temporary
cloud cover and cloud movements. The presence of clouds
during the study period is one of the main factors that will
increase the uncertainties in the estimation of remote-sensed
predictors.

Moreover, the available observations of ATI are strongly
limited by the availability of both daytime and nighttime LST
observations (see the calculation of ATI in Table S2). Although
spectral indices were used in the RF models (RFVI+sup) to
provide more SM information over the pixels with missing ATI
data, the cloudy conditions still decrease the available number
of spectral indices, leading to missing RFVI+sup estimates.
Especially, over the mountainous regions with high elevation,
the missing optical indices due to the cloudy conditions resulted
in a low number of RFVI+sup SM estimates. Because the limited
predictors (e.g., VIs or LST) could decrease the number of
trained datasets, further decrease the accuracy of RFVI+sup. For
example, the available VIs observations (∼60 days) at WSN-37
and WSN-38 during 2013–2014 were lower by∼30% than other
sites with good performances having more VIs observations
(∼90 days). In addition, the MODIS product (MCD43A4) is
used to calculate the daily VIs, but note that MCD43A4 is
a 16-day weighted MODIS product. The rapid variations of
vegetation water content and SM at a daily scale could be not
successfully captured by this product.

The missing remote sensing indices will decrease the robust-
ness of the trained RF model, which needs massive training data
so that model training can be “optimal” [72]. The train data exert
a substantial control on the learning process associated with the
relationship between the SM predictions and multiple indices.
To obtain an accurate description of this relationship, the training
data should include numerous pixels encompassing SM values
associated with different surface conditions, such as different
vegetation cover types, terrain slopes, and elevations [73]. Thus,
a limited number of training data could increase uncertainty in
the SM estimation.

Another reason for the inaccurate estimations over these
specific sites could be low spatial representativeness of the
point-scale in situ measurements. In this study, the SM spatial

distribution within each 1-km grid was assumed to be ho-
mogenous. However, strong spatial heterogeneities of SM at a
subkilometer-scale could result in low representativeness of the
in situ measurements for SM conditions at 1-km grid [31]. Espe-
cially, over complex mountainous terrain, SM has much strong
heterogeneities at spatiotemperal dynamics. This mismatch be-
tween the 1-km grid and point-scale field-measurements could
increase uncertainties in the construction of the relationship
between SM and the predictors.

Note that our proposed approach was tested over a semiarid
region with low vegetation cover. Indeed, when dense vegeta-
tion covers the soil, LST and remotely-sensed spectral indices
mostly reflect the status of vegetation, and thus, the ability of
optical/thermal indices to capture the SM dynamics may become
weaker [21]. So, uncertainties in the approach presented here
could be higher in high-density vegetation regions than those
considered in the present study. Also, most spectral indices, such
as drought indices, are sensitive to the water stress conditions,
but not to the wet (or water saturation) conditions [28], [74],
[75]. Thus, the applicability of our proposed approach should be
tested in wet regions. Moreover, the global-scale high-resolution
SM method should be further developed by including the coarse
resolution SM products. How to account for the uncertainties
caused by the coarse resolution SM products will be key to global
high-resolution SM.

Moreover, the SM underestimation was found in this study,
mainly caused by the limited sensitivity of optical-thermal in-
dices to SM. As noted by Fan et al. [38], the limited ability of
optical-thermal indices to the extreme dry/wet SM conditions
could potentially decrease the performance of SM estimations. It
is worth to be noted that passive microwave has a high sensitivity
to estimate SM, albeit with low resolution. However, with the
development of downscaling passive microwave datasets, the
combination of high-resolution passive microwave observations
and optical indices in the proposed framework could improve the
SM estimation over the mountainous regions [17].

Note that it is inevitable that the overlapped information
among vegetation indices. For example, NDVI and SAVI both
were calculated using the reflectance from MODIS bands 1
and 2, potential meaning that the temporal variations in NDVI
could be similar to SAVI, although the importance analysis (see
Fig. 2) showed the different importance between NDVI and
SAVI for predicting SM. In addition, the similar importance
between NDII6 and NDII7 for predicting SM could be explained
by the overlapped information represented by the two indices,
partly due to the close information between MODIS bands 6
and 7, which are used for the calculation of NDII6 and NDII7,
respectively.

Besides the RF method, other ML methods including artificial
neural networks, cubist, deep belief networks, and support vector
machines have various advantages of combining SM informa-
tion [76], which has the potential to improve the SM estimation.
For example, an artificial neural network, as a self-adaptive
and self-learning method, can describe the complex nonlinear
relationship between SM and predictors [77], and the cubist
method can rapidly analyze big data [78]. Thus, different ML
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methods will be tested for improving the SM estimation over
the mountainous regions in the future work.

VI. CONCLUSION

High-resolution SM methods have generally limited perfor-
mance over mountainous regions because of the high spatiotem-
poral variations of SM in a mountainous environment. To over-
come these limitations, we proposed a regional learning strategy
to improve the SM retrievals, by merging optical/thermal remote
sensing data and topography data. Remote sensing albedo, ATI,
NDVI, NDII5, SAVI, and topographical indices (aspect and
elevation) were identified as the optimal predictors for capturing
temporal SM changes at pixel scale. The proposed RF model
developed in this study showed a strong capability to capture
the spatiotemporal patterns of SM, relative to methods only
using optical data or topographical indices. The RF-derived SM
estimates we computed at 1 km exhibited a high estimation
accuracy with overall ubRMSD, R, and slope values of 0.032
m3/m3, 0.75, and 0.83, respectively. Our SM estimates have the
potential to be used for agriculture applications over the Babao
River Basin.

However, our approach is limited by the availability and
accuracy of the used predictors (e.g., optical and thermal in-
dices), mainly influenced by the cloudy condition. To obtain
continuous spatiotemporal SM values, one possible solution is
to consider active microwave data (e.g., Sentinel-1), which are
available in all-weather conditions [13], [15]. Terrestrial Water
Resources Satellite, as a new Chinese mission, would provide
high-resolution continuous L-band observation, which would
provide new opportunities for high-resolution SM mapping in
the mountain areas [79], [80]. This mission concept for produc-
ing multiscale SM products has been demonstrated in the Soil
Moisture Experiment in the Luan River [81]. Finally, the RF
model developed here, as an ML method, could be improved
using longer time series of in situ SM measurements and remote
sensing indices.
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