
HAL Id: hal-03690953
https://hal.inrae.fr/hal-03690953

Submitted on 8 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Adaptive Cell-Mediated Immunity in the Mammary
Gland of Dairy Ruminants

Pascal Rainard, Gilles Foucras, Rodrigo Prado Martins

To cite this version:
Pascal Rainard, Gilles Foucras, Rodrigo Prado Martins. Adaptive Cell-Mediated Immunity in
the Mammary Gland of Dairy Ruminants. Frontiers in Veterinary Science, 2022, 9, 19 p.
�10.3389/fvets.2022.854890�. �hal-03690953�

https://hal.inrae.fr/hal-03690953
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


REVIEW
published: 05 April 2022

doi: 10.3389/fvets.2022.854890

Frontiers in Veterinary Science | www.frontiersin.org 1 April 2022 | Volume 9 | Article 854890

Edited by:

Lixing Huang,

Jimei University, China

Reviewed by:

Turner H. Swartz,

Michigan State University,

United States

Jayne Hope,

University of Edinburgh,

United Kingdom

William Davis,

Washington State University,

United States

Philip John Griebel,

University of Saskatchewan, Canada

Kieran G. Meade,

University College Dublin, Ireland

*Correspondence:

Rodrigo P. Martins

rodrigo.prado-martins@inrae.fr

Specialty section:

This article was submitted to

Veterinary Infectious Diseases,

a section of the journal

Frontiers in Veterinary Science

Received: 14 January 2022

Accepted: 22 February 2022

Published: 05 April 2022

Citation:

Rainard P, Foucras G and Martins RP

(2022) Adaptive Cell-Mediated

Immunity in the Mammary Gland of

Dairy Ruminants.

Front. Vet. Sci. 9:854890.

doi: 10.3389/fvets.2022.854890

Adaptive Cell-Mediated Immunity in
the Mammary Gland of Dairy
Ruminants
Pascal Rainard 1, Gilles Foucras 2 and Rodrigo P. Martins 1*

1 ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France, 2 IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France

Mastitis is one of the greatest issues for the global dairy industry and controlling these

infections by vaccination is a long-sought ambition that has remained unfulfilled so

far. In fact, gaps in knowledge of cell-mediated immunity in the mammary gland (MG)

have hampered progress in the rational design of immunization strategies targeting this

organ, as current mastitis vaccines are unable to elicit a strong protective immunity.

The objectives of this article are, from a comprehensive and critical review of available

literature, to identify what characterizes adaptive immunity in the MG of ruminants, and

to derive from this analysis research directions for the design of an optimal vaccination

strategy. A peculiarity of the MG of ruminants is that it does not belong to the common

mucosal immune system that links the gut immune system to the MG of rodents, swine

or humans. Indeed, the MG of ruminants is not seeded by lymphocytes educated in

mucosal epithelia of the digestive or respiratory tracts, because the mammary tissue

does not express the vascular addressins and chemokines that would allow the homing

of memory T cells. However, it is possible to elicit an adaptive immune response in the

MG of ruminants by local immunization because the mammary tissue is provided with

antigen-presenting cells and is linked to systemic mechanisms. The optimal immune

response is obtained by luminal exposure to antigens in a non-lactating MG. The

mammary gland can be sensitized to antigens so that a local recall elicits neutrophilic

inflammation and enhanced defenses locally, resulting from the activation of resident

memory lymphocytes producing IFN-γ and/or IL-17 in the mammary tissue. The rational

exploitation of this immunity by vaccination will need a better understanding of MG

cell-mediated immunity. The phenotypic and functional characterization of mammary

antigen-presenting cells and memory T cells are amongst research priorities. Based on

current knowledge, rekindling research on the immune cells that populate the healthy,

infected, or immunized MG appears to be a most promising approach to designing

efficacious mastitis vaccines.

Keywords: mammary gland, mastitis, cell-mediated immunity, vaccine, lymphocytes, hypersensitivity, type 3

immunity, ruminants
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INTRODUCTION

The MG is an ectodermal appendage giving rise to an epithelial
organ the main function of which is to secrete a nutritious liquid
food for the offspring. In ruminants, another important function
is to provide the newborn, which is agammaglobulinemic at birth,
with a crucial humoral immune defense through antibodies to
relevant pathogens. As an organ that communicates with the
body environment, the MG is exposed to invasion by microbial
agents. The lactating MG is prone to infection by bacteria that
can thrive in milk and during involution at cessation of milking.
We can thus expect that evolutionary pressure has endowed
the MG with adapted defenses against infections. Environment-
exposed organs such as mucosa, the skin, and exocrine glands
are protected from infections by the combined action of the
innate and adaptive immune systems. The immune responses
that protect epithelial surfaces present specialized characteristics
that define the common mucosal immune system (CMIS) (1).
Early in the history of research on MG immunity, some basic
questions arose: Is the MG a full member of the CMIS and an
effector site of this system?Or does it rely on its own local system?
Is the MG an inductive site of immunity? What are the relations
of the MG with the systemic immune system? Answers to these
questions have important implications for our understanding
of the response of the MG to infections and for the design
and development of vaccines against mastitis. In this review,
we endeavored to provide answers or elements of answers to
these questions.

Over the last 50 years, a number of articles have dealt with
the subject of adaptive immunity in the MG of ruminants.
They used a variety of approaches: investigations of natural
infections, intramammary inoculation of mammary pathogens,
systemic or local immunization regimens, analysis of the
humoral response and less frequently of the cellular response,
or phenotypic and functional characterization of the cells in MG
secretion or tissue. A synthesis of these sources of information
is not easy due to the disparity of experimental approaches,
the constant evolution of knowledge and concepts in a fast-
evolving scientific field, sometimes contradictory results, and
our limited knowledge of mammary immunity. Despite these
shortcomings, it is possible to identify some clear features
characterizing adaptive immunity in the MG of ruminants.
These characteristics, interpreted and assembled according to
current concepts in adaptive immunology, allowed us to propose
a schematic vision of acquired immunity to MG infections.
However, we did not address in this review the interactions of the
adaptive immunity with the innate immune system. In particular,
the interactions of lymphocytes with mammary epithelial cells
have not been considered, although these interactions are crucial
for the inductive and effector arms of cell-mediated immunity.
Therefore, we have deliberately focused on immune responses
dependent on memory T cells.

Historically, acquired MG immunity has been considered
as a manifestation of delayed hypersensitivity, and it was
realized that its effects could either ameliorate or aggravate
the outcome of infection. Early on, the role of lymphocytes
rather than antibodies was established in the induction of

milk leukocytosis (2, 3). Cell-mediated immunity has long
been known to play a significant role in the pathogenesis of
mastitis. A number of observations and experiments support
this notion. Cows infected with S. aureus showed an increased
reactivity of the MG upon repeated infections (4). A primary
infection of the bovine MG with Mycoplasma dispar induced
an enhanced influx of neutrophils into milk at the onset of a
subsequent reinfection (5). This enhanced milk leukocytosis can
be induced by parenteral immunization with bacterial antigens.
For example, the magnitude of the milk leukocytosis induced
by intramammary infusion of killed staphylococci increased
with the extent of previous experience with staphylococcal
components, such as a previous parenteral immunization of cows
with killed staphylococci (6). The kinetics of the inflammatory
response to inoculation of the MG with Streptococcus agalactiae
was accelerated by sensitization to a streptococcal protein antigen
by subcutaneous immunization (7). From these observations, it
appears that mastitis is conditioned by cell-mediated immunity.
How this happens and how this immunity can be harnessed to
protect theMG through vaccination are major research topics for
improving mastitis control.

THE MAMMARY GLAND AS AN IMMUNE
INDUCTIVE SITE

It Is Possible to Elicit a Local Immune
Response in the MG
Historically, one of the main drivers for exploring the MG
capacity to mount an immune response has been the need
to improve the efficacy of vaccines against mastitis. Early
attempts have been directed to the production of antibodies.
Pioneering studies have been carried out with ewes by Australian
researchers. They focused their work on the local production of
antibodies elicited by the intramammary infusion of antigens.
They convincingly demonstrated that a local antibody response
can be induced in the MG by intraluminal infusion of antigens.
The best results were obtained when antigens were administered
several weeks before parturition, which did not depress milk yield
during the subsequent lactation (8, 9). The authors supposed
that in the weeks following involution after cessation of milking,
the influx of leukocytes equips the MG with the cells necessary
to mount a local immune response. At involution, the MG
is invaded by lymphoid cells whereas during lactation, very
few lymphocytes can be seen in the mammary tissue. The
physical presentation of antigen seemed to make a difference:
Salmonella flagellin in polymeric particulate form induced a
much greater local response (production of IgA) than infusion
with the soluble monomer (10). Whole killed bacteria such
as Brucella abortus induced high local IgA responses (11).
During lactation, particulate antigens (killed Brucella) may not
be able to induce antibodies because, contrary to soluble antigens
(staphylococcal toxoids), they are eliminated during the milking
that follows the infusion (12). In a study comparing the effect
of four immunization schedules of cows on the production
of antibodies (IgA and IgM) in milk, the combination of
systemic immunization with adjuvant during MG involution
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followed by local antigen infusion was the most effective regimen
(13). Systemic immunization at drying-off would allow antigen-
specific lymphocytes to seed the MG. In some cases, local
intramammary immunization with bacterial antigens induced
antibody titers higher in milk than in serum. Antibody titers and
activities were consistently higher in the immunized gland than
in the control unimmunized glands of ewes and cows (9, 14).
From these experiments, we can conclude that it is possible
to elicit a local antibody response in the MG, in particular in
non-lactating glands and with particulate antigens. However, it
has been hypothesized that, in view of the lack of lymphoid
tissue associated with the MG and capable of responding to
locally administered antigen, the precursor cells producing IgA
antibodies arise in mucosal tissues distant from the MG, such as
the oral cavity or the gut and respiratory tracts, before migration
to the mammary tissue (15).

The MG of Dairy Ruminants Does Not
Belong to the CMIS
Once the possibility of inducing a local immune response in
the MG was established, the question arose of the relationship
between the MG and the mucosal and systemic immune
systems. A fundamental observation was that the reactivity
repertoire of lymphocytes isolated from human milk differs
from the repertoire of blood lymphocytes (16). In particular,
milk lymphocytes and antibodies react to enteric pathogens,
representing an immunity that plays an important role for the
passive protection of the neonate. This observation, as well as
other studies carried out in laboratory rodents, led to the notion
of compartmentalization of the immune system, and to the
recognition of the existence of a network of immune responses
linking different mucosal surfaces exposed to microbiota, such
as the enteric, oral, nasopharyngeal, and respiratory mucosae.
This common mucosal-associated lymphoid tissue (MALT) links
two components: the true mucosae that are inductive sites
of immunity for the whole MALT, and secretory glands and
organs that are not directly stimulated by mucosal antigens,
such as the salivary and mammary glands, or the urinary tract
(1). From this perspective, the exocrine glands can mount a
local immune response, but this response does not generalize
to the MALT. According to Parmely and Beer (17), the gut-
associated lymphoid tissue (GALT) and bronchial-associated
lymphoid tissue (BALT) are the sites where T and B cells
that will seed the MG are generated. The gut and the upper
airways possess lymphoid structures that allow T and B cells
to be educated and humoral and cell-mediated immunity to be
elicited. Regarding humoral immunity, the induced cells are IgA
plasmablasts. These two mucosae have the capacity to generate
immune cells that can migrate to their initial location but also
to other organs of the MALT, including the MG and salivary
glands. On the contrary, themammary and salivary glands do not
have the capacity to generate immune cells able to migrate to the
CMIS. This statement is based on observations and experiments
performed on rodents, swine and humans. However, does it apply
to ruminants?

In fact, a number of arguments contradict the view that the
MG of ruminants belongs to the common MALT. Contrary
to what occurs in rodents and humans, IgG1 antibodies, not
secretory IgA, are the major immunoglobulins in the colostrum
and milk of ruminants (9, 18). The intraperitoneal immunization
of ewes with ovalbumin elicits IgA antibody-containing B cells
in the intestine, but not in the MG, an observation that does
not support a relocation of IgA plasma cell precursors from the
GALT to the MG (19). The combination of intraperitoneal and
intramammary immunization has been shown to result in higher
numbers of IgG1 antibody-producing cells in mammary tissue
than intramammary immunization only (19). This enhanced
IgG1-specific response was not reduced, and even increased
when the mesenteric or mammary lymph nodes (LNs) were
removed prior to immunization (20). The authors concluded
that the population of the MG by antigen-specific plasma cells
following peritoneal immunization does not result from the
seeding by precursor cells originating from GALT or mammary
LNs. The results suggest that the plasma cell precursors could
be generated in the LNs of the systemic immune system.
Moreover, most of IgA antibodies in the milk of ruminants
are serum-derived during lactation, not produced locally by
plasma cells (21). There was no evidence for any substantial
translocation of IgA precursor cells from GALT to the MG
at any stage of lactation (20). Most of the IgG1 in colostrum
and milk are transferred from the blood (9, 22). Relevant
information was obtained by immunizing cows a few weeks
before parturition with T4 bacteriophages by different routes:
intramammary (intraductal) into one quarter, intestinal (through
a jejunum fistula), subcutaneous near the right superficial
cervical LN or the superficial inguinal (mammary) LN (23).
Neither IgA nor IgG1 antibodies nor plaque-forming cells were
induced in MG secretions from preparturient cows following
intestinal immunization, contrary to the intramammary route.
The responses to superficial cervical and mammary LN
immunizations were similar regarding the presence of IgA and
IgG1 plaque-forming cells inMG secretions butmuch less intense
than the response induced by the intramammary route. The
authors inferred from these results that in cattle there is no
gut-mammary axis for the seeding of the MG with intestinal
lymphoblasts. Another study supports this view. Radiolabeled
autologous lymphocytes prepared from the mammary or ileal
mesenteric LNs were re-injected into dairy cows (24). A higher
percent of radiolabeled mammary LN cells was found in the
mammary, superficial cervical, and bronchial LNs of non-
lactating heifers or lactating cows than in the ileal and jejunal
mesenteric LNs. Conversely, more radiolabeled ileal mesenteric
cells migrated to the jejunal, ileal and bronchial LNs than to the
mammary and superficial cervical nodes. These data support the
hypothesis that lymphocytes do not migrate efficiently between
the gut and the udder, i.e., that the entero-mammary link is
poorly functional in the cow and in the ewe (25), contrary to the
sow (26). We can conclude that, as a secretory gland, the MG of
ruminants is not an inductive site of the common MALT, and
as a feature of ruminants, its immunity is not dependent on the
gut-associated lymphoid tissue.
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TABLE 1 | Homing determinants: integrins/ligands, vascular addressins and receptors.

Lymphocyte homing

molecule

Distribution Ligands Ligand expression

L-selectin, CD62L, LAM-1 Naïve T cells, Tcm Glycoproteins with sialyl Lexis X, PNAd Endothelium, HEV of peripheral LN

αLβ2, LFA-1, CD11a/CD18 Lymphocytes, granulocytes, monocytes, macrophages ICAM-1, 2, 3, 5 Endothelium, DCs

α4β1, VLA-4, CD49d/CD29 Lymphocytes, granulocytes Dendritic cells VCAM-1, MadCAM-1, fibronectin Endothelium, extracellular matrix

α4β7, LPAM-1,

CD49d/ITGB7

Mucosal lymphocytes, dendritic cells MadCAM-1, VCAM-1, fibronectin HEV of mucosal tissues, extracellular

matrix

αEβ7, HML-1,

CD103/ITGB7

Intra-epithelial lymphocytes E-cadherin epithelium

CD44, Hermes, Pgp-1 Tem cells Hyaluronic acid

E-cadherin Epithelial cells, leucocytes E-cadherin epithelium

PNAd HEV L-selectin Leucocytes

ICAM-1, intercellular adhesion molecule-1; LAM-1, leucocyte adhesion molecule; LFA-1, lymphocyte function associated antigen-1; LPAM-1, Lymphocyte Peyer patches-adhesion

molecule; MadCAM-1, mucosal addressin cell adhesion molecule; PNAd, peripheral node addressin; PSGL-1, P-selectin glycoprotein-1; VCAM-1, Vascular cell-adhesion molecule-1;

Tcm, central memory T cells, Tem, effector memory T cells; DCs, dendritic cells; HEV, high endothelial venules.

The MG of Ruminants Does Not Express
the Addressins of the Mucosal Lymphoid
System
An important issue is that of the homing of lymphocytes

to the MG and the resulting seeding of the MG tissue with

antigen-specific cells. Once naïve lymphocytes have encountered

their cognate antigen presented by APCs and are instructed
to differentiate into effector cells, they engage in a few cycles

of multiplication and migrate to the inflammatory site of

bacterial intrusion. After they have exercised their functions,

most die by apoptosis, and only a few precursor cells become

memory lymphocytes. It is these cells that will be responsible

for the immune memory of the adaptive response. There are
several types of long-lived memory cells that follow distinct

trafficking patterns (27). Circulating memory T cells (Tcirm)

are a heterogeneous population of memory cells that circulate

between the blood and lymphoid organs, and can be mobilized

into non-lymphoid tissues. Resident memory T cells (Trm)

are retained in the tissue, where they can rapidly react to
local antigen re-exposure, but can occasionally recirculate while
keeping a predilection for their tissue of origin (28). The
location of T cell priming dictates homing and differentiation
of naïve T lymphocytes, and eventually the tissue tropism
of memory cells (29). This has been established for the
homing of T cells to the skin, intestine, or respiratory tract.
According to the multistep model of leukocyte migration,
tissue tropism is determined by the combined interactions of
lymphocyte integrins and chemokine receptors with tissue-
specific adhesion molecules including vascular addressins and
chemokines (Table 1). For example, T cells activated in the
GALT upregulate the α4β7 integrin and the CCR9 chemokine
receptor, to interact with the mucosal addressin cell adhesion
molecule-1 (MadCAM-1) and the chemokine CCL25 which is
constitutively produced by small intestine epithelial cells (30).
In the MG of porcine, murine and human species, high levels
of CCL28 mRNA, also named mucosae-associated epithelial
chemokine (MEC), are produced by epithelial cells, and the
corresponding receptor CCR10 is expressed by mammary T

lymphocytes and IgA plasma cells (31–33). In the pig and
the mouse, the recruitment of IgA plasmablasts to the MG
depends on the expression of vascular cell-adhesion molecule-
1 (VCAM-1)/α4β1 and MadCAM-1/α4β7 in conjunction with
CCL28/CCR10 (33). CCL25 also is likely to contribute to the
recruitment of T cells in the MG in swine (34). These results are
compatible with a functional link between the MG and the gut
and upper respiratory tracts (33).

Do these findings apply to the MG of dairy ruminants?
Few studies examined the presence of addressins and homing
receptors in the tissue and cells of the MG in the cow, ewe, and
goat. It has been reported that the vascular addressin α4β7, also
known as the lymphocyte Peyer’s patch-specific homing receptor
LPAM-1, was expressed on a low percentage of all lymphocyte
subsets at all-time points before and after experimental infections
of dairy cows (35). The expression of addressins was investigated
in the bovine MG by immunohistochemistry and RT-PCR
analyses at four different physiological stages: pregnancy,
colostrum formation, lactation, and involution (36). MadCAM-
1 was not detected in mammary tissue at any physiological
stage. VCAM-1 was found in alveolar tissues during the colostral
and lactation phases. VCAM-1 expression was found on both
large and small venules in the mammary LN. Peripheral node
addressin (PNAd) was detected in the mammary LN at all
physiological stages, but it was not found in mammary alveolar
tissue. No lymphocyte expressed the integrin component β7
in alveolar mammary tissues. CD62L (L-selectin) staining of
lymphocytes was detected in mammary LN, but not in mammary
tissue due to non-specific staining. However, L-selectin, a
peripheral lymphocyte homing receptor (37), was found on
MG lymphocytes (38). The local immunization of the MG
during the dry period with Candida albicans induced the local
production of IgA and an increase in the number of lymphocytes
in the mammary alveolar tissue, but no lymphocyte expressed
the integrin component β7 (39). There was no detection of
MadCAM-1 in mammary tissue of immunized quarters, and
the mRNA expression was not detected by RT-PCR. There was
no staining of small venules for VCAM-1 or PNAd in alveolar
tissue. In a flow cytometry analysis of milk lymphocytes of
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cows at different stages of paratuberculosis, a small proportion
of lymphocytes (7–14%) were LPAM-1pos (lymphocyte Peyer
patches-adhesion molecule-1), 85% were CD44pos and 80%
LFA-1pos (40). In conclusion, these studies did not replicate the
findings obtained with mouse or sow MGs. The MG of dairy
ruminants does not share the lymphocyte homing characteristics
of mucosal organs. It may not be surprising that the major
draining LNs, the mammary (superficial inguinal) LNs, which
drains both the MG and the regional skin, connective and muscle
tissues, has been found to express the PNAd and VCAM-1
vascular addressins. These LNs cannot be considered as LNs of
the MALT, as are the mesenteric LNs. The LNs draining the
MG are part of the peripheral lymphoid system, which means
that the MG immune system is linked to the systemic immune
system. This peculiarity of the MG of ruminants is a matter
of speculation.

Ruminants harbor a large stomach reservoir fulfilled with
huge numbers of potentially-pathogenic bacteria. Segmented
filamentous bacteria were the first commensal micro-organism
known to drive the differentiation of Th17 cells in the mouse
intestine, and other bacteria attached to intestinal epithelial
cells have similar priming capacity (41). The absence of an
entero-mammary axis in cattle and ruminants, and the relative
independence of the MG to the CMIS might be an evolutionary
way found by these species to avoid the recruitment into the
mammary tissue of potentially harmful lymphocytes that, if in
excess, have a damaging inflammatory potential upon exposure
to colonizing fecal bacteria.

It appears that we know little about the combination of
homing molecules, selectins, integrins, vascular addressins,
chemokine and chemokine receptors on T cells and mammary
tissue that dictates the homing of T cells to the MG of
ruminants. What are the tissue factors that condition effector
and memory T cell differentiation in situ? We also do not know
much about the MG-specific “area code” that determines the
interaction of T cells with the mammary tissue. This ignorance
has negative implications on our capacity to devise efficient
vaccination protocols.

The Question of Antigen Presentation in
the Mammary Gland
A few studies show that antigen-presenting cells (APCs) are
present in the MG epithelium, suggesting that the MG provides
a suitable environment to initiate an immune response, in
particular during the dry period. Many stellate or spindle-shaped
MHC IIpos cells have been identified in the basal region, in
close apposition to or within the ductal epithelium of non-
lactating ewes (42). Numerous MHC class IIpos cells were found
interspersed between the alveolar and ductal epithelial cells of
fully involuted MG of ewes (43). In all quarters of dry cows
examined, MHC class IIpos cells were seen in the inter-alveolar
and inter-lobular connective tissue (44). Most of the cells had
the morphological appearance of macrophages. Macrophages
(ionized calcium binding adaptor molecule 1 IBA1pos cells) have
been found in the ductal epithelium of pre-pregnancy lambs
with increased density with age (45). Infusion of formalin-killed

S. uberis increased the cellular expression of class II antigen
both in connective tissue and in the epithelium lining the ducts
and particularly the gland cistern. APCs have been found in
the epithelium of the teat sinus, being most numerous at the
Fürstenberg’s rosette (46). At this site, MHC class IIpos cells
were present in the uppermost layer of the epithelial bilayer
and between the two layers, in higher number in dry than
in lactating glands. Another cell type (CD11cpos CD205pos),
possibly dendritic cells, was present almost exclusively in the
bilayer epithelium at the level of the Fürstenberg’s rosette. DCs
identified based on morphology, on low expression of CD14,
and high expression of MHC II and CD11c or CD205 were
found in alveolar and ductal epithelia and in the connective tissue
(47). Scarce in the alveoli, these DCs were more frequent and
regularly spaced in the ductal epithelium.Macrophages identified
based onMHC II expression along with high expression of CD14
and CD11c were also found, and were globally at least two fold
more numerous than DCs in the mammary tissue. These two
cell types were also found in the mammary LNs. Recently, a
category of APCs, tissue-resident ductal macrophages, has been
described in the MG of virgin, pregnant and lactating mice based
on high expression of MHC-II, CD11c and CX3CR1 (48, 49).
Two categories of macrophages constituted the most numerous
immune cells: stromal macrophages and “ductal macrophages”,
the latter located between epithelial and myoepithelial cells.
The epithelium-associated macrophages have a stellar shape,
are distributed in alveoli and ducts, and showed transcriptome
changes through the reproduction cycle. They scavenge apoptotic
epithelial cells during involution, but their contribution to
the immune defense of the MG against infections was not
investigated, although they express anti-inflammatory (IL-10)
and Th17-related (IL-23, IL-22 an IL-17A) modulatory pathways
during lactation (48).

It is therefore likely that the MG is equipped to sample
antigens from the cisternal, ductal, or alveolar lumen by
specialized APCs and to transfer the loaded cells to the
draining LNs, although this has not been formally demonstrated.
The presence of APCs, together with the local inflammatory
response triggered by infection, fulfills the conditions for the
initiation of an immune response. This is supported by studies
showing consistently that immune responses are induced by
intramammary immunizations. Of note, there are two ways the
MG immune system can be stimulated, resulting in different
immune responses. Infusion of killed Brucella into the lactiferous
sinuses (transepithelial antigen exposure) of dry MGs in ewes
induced higher titers of antibodies in milk than the injection of
bacteria into the mammary tissue (interstitial antigen exposure)
near the mammary LN, although titers of circulating antibodies
were similar (50). Moreover, luminal infusion induced more
IgA antibodies, whereas tissue injection induced more IgG2 and
a local granuloma. The author concluded that the interstitial
presentation of antigen probably did not induce local synthesis
of antibodies, contrary to the transepithelial presentation. The
different immune responses may result from the presentation
of the antigen by different types of APCs (intra-epithelial vs.
connective locations) or APCs in a different state of maturation.
Antigen processing by epithelium-associated APCs (dendritic
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cells or macrophages) likely differs from the handling by APCs
like inflammatory monocytes attracted by the local inflammation
caused by the injection of a vaccine in the mammary tissue.
From this perspective, the APCs conditioned by the epithelium
microenvironment would instruct the naïve T lymphocytes in a
way characteristic of the transepithelial presentation of antigen.
Transepithelial antigen exposure would induce both a systemic
and local immune response, while interstitial antigen exposure
would mainly induce a systemic response.

Another feature of the luminal infusion of antigen is that it
elicits an immune response locally restricted in that infusion of
antigen into one gland does not result in the same generalized
response to all udder glands. Several studies have shown that
antibody titers are higher in infused glands than in uninfused
ones. Intramammary immunization of cows with E. coli during
the dry period elicited antibodies in colostrum and milk (14).
Killed Brucella infused into the dryMG of ewes induced antibody
titers in milk mainly in the infused half udder, in particular
agglutinating antibodies, supposed to be IgA and IgM and to
be produced locally (50). When the MG of pregnant ewes was
infused with killed Salmonella in one gland and killed Brucella
in the other, antibody titers were much higher in the milk of
the immunized gland than in the milk of the contralateral gland
for each antigen (51). The combination of peritoneal followed
by local (intramammary in one half udder) immunization with
ovalbumin generated antigen-specific plasma cells only into the
immunized gland, not in the contralateral gland (20). This
supports that there is no “common MG mucosal immune
system” in dairy ruminants. It should be noted that the lymphatic
drainage of the two sides of the MG is separate. Thus, a regional
system (the glands and their draining LNs) might operate to
generate the local response. This is confirmed by the observation
that when antigen (inactivated streptococci) is injected into the
right mammary LN, antibodies appear first in the right quarters
(52). However, the mammary lymphadenectomy experiment
mentioned above (20), which resulted in a higher local immune
response, indicates that mammary LNs are dispensable. It is likely
that upon their stimulation and handling of antigen, the APCs
in the MG migrate to the regional draining LNs, the mammary
(superficial inguinal) LN, the deep inguinal LN and the sacral and
medial iliac LNs, and probably other LNs of the systemic immune
system, where they instruct antigen-specific (naïve) lymphocytes.
Then, the antigen-experienced lymphocytes may circulate and
home to different sites and tissues, including the MG. In this
hypothesis, a systemic immunization has the same potential as
a local intramammary immunization into one gland to share the
response to all mammary glands. We have seen that this does not
hold true for the immunized gland, which strongly suggests that
a local pathway is superimposed on the systemic one to explain
the original restriction of local immunization.

Tissue diffusion and uptake of soluble and particulate antigens
by the MG of dry cows has been studied by infusing a soluble
antigen (high amount, 50mg or 1 g ovalbumin) into a quarter and
particulate antigen (large number of killed S. uberis, 1010 CFU)
into another quarter, before collection of mammary tissue and
draining LNs for evaluation of antigen retrieval (53). Ovalbumin
reached the mammary LNs very early (1 h after infusion) and

was also found in blood and in non-infused quarters. Ovalbumin
was found free in the tissue (paracellular staining) or as small or
large aggregates in the cytoplasm of a proportion of cells of the
luminal layer of the epithelium of the teat. Ovalbumin was also
found in the connective tissue and lymph vessels. It appeared
that the dry MG was quite permeable to low molecular weight
soluble antigen, allowing a wide diffusion of the antigen to the
systemic immune system and, remarkably, to uninfused quarters.
In comparison, few S. uberis were found in the tissue and in the
draining LNs 3 to 6 h after infusion. Cocci were found within
the cytoplasm of epithelial cells of mammary ducts, but also in
the connective tissue without evidence of phagocytosis. It thus
seems that antigens can reach the draining LNs without handling
by mammary APCs. Of note, ovalbumin stimulated a systemic
antibody response (small IgG1 and IgG2 response) but no local
response was detected whereas bacteria induced mainly a local
antibody response (54). This would suggest that a certain degree
of local (mammary) handling of antigen is necessary to induce
the local immune response, along with some inflammation
induced by microbe-associated molecular patterns (MAMPs).
The free diffusion of soluble antigens may contribute to better
efficiency of intramammary immunization during the dry period,
when epithelium tight junctions are leaky, than during the
lactating period, when tight junctions are sealed (55). This is
supported by the observation that fewer lymphocytes are retained
in the draining inguinal LNs of lactating mice compared to
fully involuted or nulliparous mice after intramammary infusion
of ovalbumin, indicating reduced presentation of antigen by
dendritic cells (56).

In healthy MGs, lymphocytes, macrophages and DCs
are distributed diffusively throughout the epithelium, in
subepithelial lamina propria and in the connective tissue.
Leukocytes are most numerous in the stroma of the Fürstenberg’s
rosette at the proximal end of the teat canal, but they usually
do not show organized lymphoid formations. However, there
have been reports where the accumulated leukocytes have taken
the appearance of germinal centers (57, 58). In the folds of the
rosette, accumulations of leukocytes, mainly IgG1 plasma cells,
sometimes resembling germinal centers, were found mainly in
infected glands of lactating or dry cows. Lymphoid aggregates
described as teat nodules have been found at the border
between teat duct and teat cistern of ewes naturally infected or
not (59). These lymphoid cell aggregates, sometimes lymphoid
nodules with germinal center, were more frequent in case of
concomitant infection (60). The lymphoid cell formations were
induced at the junction of the teat canal and cistern by the
introduction of bacteria (Mannheimia haemolytica) in the teat
canal of lactating ewes (61). Immunohistochemical analysis
revealed an influx of CD3pos cells, a few γδ T cells and CD8pos

cells, but no CD4pos cells, in the lamina propria between the
teat canal and cistern. Lymphoid-like structure with CD3pos

cells could be seen at the periphery of a lymphoid follicle-like
structure. These observations are reminiscent of the formation of
inducible tertiary lymphoid structures (TLS). These structures,
also known as ectopic lymphoid tissue, are induced in non-
lymphoid organs by lasting infections and play a role in local
immunity (62, 63). They present a structured cellular architecture
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with separate B and T cell areas, B cell follicles with germinal
centers, follicular dendritic cells, high endothelial venules (HEV)
that express relatively high level of vascular adhesion molecules
(addressins), PNAd complementary receptor for L-selectin and
VCAM-1, lymphocyte homing depending on L-selectin/PNAd,
α4β1/VCAM and LFA-1 migration pathways (63). The activation
of PRR by microbial components could directly activate innate
immune cells involved in the formation of ectopic lymphoid
tissue (64). TLS might comprise inductive sites for immune
responses and permit naïve lymphocyte trafficking. Currently the
information about the tertiary lymphoid structures in the MG is
limited. Their presence is reported at the distal end of the teat
cistern, and they seem mainly related to humoral immunity. In
the experiment aiming at exploring the fate of antigens in the
MG, the bilayer epithelium at the level of the Furstenberg’s rosette
did not take up ovalbumin or S. uberis, and the antigens were not
found in the follicles of the rosette folds, whereas the antigens
were found in some cells of the outer layer of the teat cistern
epithelium (53). The role of the rosette formation in the defense
of the MG remains to be defined. Intriguingly, lymphocyte
aggregates resembling tertiary lymphoid follicles have been found
in the MG of neonatal and 5–9.5 month-old lambs (45). These
formations in the stroma adjacent to the mammary epithelium
exhibit the typical arrangement of central B cells surrounded by
T cells, in association with high endothelial venules expressing
the vascular addressin PNAd. The presence of tertiary lymphoid
structures in the absence of previous lactation, exposure to
antigen, infection or inflammation (no neutrophilic infiltration)
suggests that this is a normal feature ofMGdevelopment. Further
characterization of these formations to delineate their role in
the immune defense of the MG is needed. Besides TLS, which
are associated with HEVs, lymphocyte aggregates, which do not
have HEVs and comprise only antigen-experienced lymphocytes,
have been characterized in non-lymphoid tissues under various
infectious or inflammatory conditions (65, 66). Such aggregates
have also been described in the MG of ruminants. A scheme
depicting the mainmediators of cellular immunity in healthy and
infected MG is shown in Figure 1.

THE MAMMARY GLAND AS AN IMMUNE
EFFECTOR SITE OF ADAPTIVE
CELL-MEDIATED IMMUNITY

Lymphocyte Subsets in the Secretions
From Healthy Glands
Isolation of lymphocytes from the abundant mammary
gland secretion of dairy ruminants is rather easy, and their
characterization can provide indications on the capacity of the
MG to mount an immune response. As a result, many studies
are available on the phenotype of milk lymphocytes. However,
leucocytes are not abundant (usually < 50,000/mL) in the milk
from healthy MGs. Their numbers are higher in foremilk than
in other fractions (67). The proportions of cell types differ as a
function of the milking fraction: there are more macrophages
in cisternal milk, more neutrophils in alveolar fractions, but the
proportion of lymphocytes is rather constant (68, 69).

The relative proportions of lymphocyte subsets vary in
secretions from healthy MGs depending on the lactation stage.
Most studies agree that in dry secretions the CD4/CD8 ratio
is > 1, as in blood, but that this ratio changes dramatically at
parturition to < 1 during lactation (70–76). The same result
applies to ewes (77). The proportion of CD4pos T cells in milk
may increase with parity (78). In milk from heathy glands,
TCRαβ CD3pos CD8pos T cells (cytotoxic/suppressor T cells) are
the most numerous, followed by CD3pos CD4pos helper T cells.
Most of these cells have a memory phenotype (CD45RO+) and a
majority an activated phenotype (CD2pos) (71, 73, 79).

In cattle, γδ T cells comprise two subsets that can be
subdivided based on cell-surface phenotype (80): WC1pos cells
that are CD8neg and CD2neg and WC1neg cells that express CD8
αβ heterodimer and CD2 (81). These two subsets tend to have
tissue-specific functions, consistent with a role in inflammation
for WC1pos cells and a role of sentinel mucosal cells for WC1neg

γδ T cells (82–84). Accordingly, few WC1pos γδ T cells were
found in milk and dry secretions (73, 76, 79). However, sizeable
proportions of γδ T cells have been found at calving (75, 78).

Relatively few B cells have been found in milk throughout
lactation (71, 73, 79) and in the secretions of dry glands (85).
Less than 5% of milk lymphocytes were CD21pos MHC IIpos B
cells (73).

There is a marked increase in cell concentration in MG
secretion during the first week after cessation of milking (up
to 107 cells/mL). In uninfected quarters, the proportion of
neutrophils is initially as high as the proportion of macrophages,
then macrophages predominate and lymphocytes represent one
third of the cells in the secretion of involuted glands (86). In
MG cistern during the dry period, most of the leukocytes are
lymphocytes, with a majority of T cells over B cells, and CD4 over
CD8T cells (87). In the mid-dry period, lymphocyte proportion
dominates over macrophages (88).

It has long been realized that although lymphocytes in
mammary secretions have gained attention as vectors of cell-
mediated immunity, their activity may not truly reflect the
contribution of lymphocytes to MG defenses (89). It is likely
that events taking place in the subepithelial connective tissue
are of higher importance to the orchestration of the immune
response than those that occur in the gland lumen. Interactions
between cells through cell-cell contact and diffusion of their
soluble mediators is much more efficient in the tissue than
dispersed and diluted in a liquid that is shed at each milking. This
is supported by the observation that a much greater proportion
of lymphocytes is seen in the subepithelial connective tissue and
in close association with the epithelium lining than in the MG
lumen during infection or antigen-specific inflammation (90, 91).
Moreover, in the milk of healthy MGs, cell numbers are low, and
the cells can hardly be considered as resident cells asmost of them
are removed from the MG at each milking.

Recruitment of Lymphocytes Under the
Regime of Inflammation
The recruitment of leukocytes into tissues is conditioned by
signals from the inflamed endothelium [reviewed in (92)].
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FIGURE 1 | Steady state immune system in the healthy mammary gland and reactive leukocytosis when infection occurs. The healthy lactating mammary gland is

relatively poor in leucocytes, in the lumen but also in the tissue. The mammary epithelium schematized in the figure is the bilayer epithelium of the cisterns and large

ducts. It is populated with ductal macrophages and a few lymphocytes, mainly CD8pos T cells. In the sub-epithelial stroma, which is richly vascularized, a few

lymphocytes, mainly CD4pos T cells are scattered along with stromal macrophages. By contrast, the infected mammary gland recruits inflammatory cells, mainly

neutrophilic granulocytes, and attracts monocytes and multiple types of lymphocytes. In chronic infections, lymphocytes aggregates and inducible tertiary lymphoid

formations may develop.

Antigen-experienced T cells are poised to migrate to sites of
inflammation. The innate immune response to bacteria releasing
MAMPs generates inflammatory cytokines and chemokines that
induce upregulation of vascular adhesion molecules, such as
VCAM-1, recognized by the integrin α4β1, and the presentation
of chemokines by endothelial cells. Upon stimulation with
MAMPs, mammary epithelial cells produce an array of
chemokines such as CXCL8, CCL2, CCL5, CXCL10, and CCL20
that can attract a variety of leukocytes and antigen-presenting
cells (93, 94).

In the course of natural intramammary infections of cows by
E. coli or streptococci, CD4pos T cells became the predominant T
cells in milk from infected glands (95). The numbers of recruited
lymphocytes increased (both CD4pos and CD8pos cells), more in
samples from E. coli infection than in samples from streptococcal
infections. By RT-PCR analysis on whole cell population IL6 and
IFNG mRNA were found in all samples (healthy and infected),
but not IL2 or IL4 mRNA. Another study of naturally occurring
mastitis showed that αβ and γδ T lymphocytes were recruited
in milk along with the dominant population of neutrophils (38).
The CD4/CD8 ratio changed from 0.68 in normal milk to 1.39 in
milk of staphylococcal mastitis but remained at 0.65 in milk of
streptococcal mastitis. The authors concluded that different αβ

and γδ T-cell subsets are recruited to the udder, depending on

the mastitis pathogen and the host immune status. There was an
increase in γδ /αβ T cell ratio in mastitis milk. Most γδ T cells in
milk were CD8neg, and about one third were CD2pos. L-selectin
expression was reduced on milk lymphocytes and neutrophils,
consistent with previous studies that showed that L-selectin is
shed during exudation. CD18 was upregulated on lymphocytes
and neutrophils (marker of activation) from the blood and milk
of cows with mastitis compared to cells from blood and milk of
healthy cows. After infusion of E. coli into the MG of lactating
cows, there was an early influx of CD8pos T cells, followed by
an increase in CD4pos and B cells (96). Following experimental
infection with S. uberis, the increase in somatic cells count (SCC)
started at 30 hpi and peaked at 48 hpi, mainly with neutrophils
(97). Influx of CD3pos cells was minimal at 48 hpi, but high at
96 hpi with a majority of CD4pos cells over CD8pos cells. Later
on, the influx of CD8pos cells increased so that by 312 hpi they
predominated over CD4pos cells. γδ T cell numbers increased
after 96 hpi but remained in the minority throughout the follow-
up period. Infection of MG with Streptococcus dysgalactiae was
associated with an increase in the proportion of CD3pos T cells,
CD4pos, CD8pos, and CD4neg-CD8neg, but hardly of CD21pos B
cells (98). Among T cells, the most numerous were CD8pos, then
CD4neg-CD8neg (likely γδ T cells), then CD4pos. In milk samples
with elevated SCC, the proportion of CD8pos increased, and also
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the proportion of CD4neg-CD8neg (supposed γδ T cells) (99). The
proportion of CD4pos cells also increased, but the CD4/CD8 ratio
remained< 1. The ratio was highest in “no-growth” milk samples
(elevated SCC with bacteriological analysis negative), suggesting
to the authors that CD4pos cells were associated with low bacterial
shedding, i.e., a more efficient immune response.

Several studies have dealt with S. aureus mastitis. Following
infection by S. aureus, most of the lymphocytes that infiltrated the
mammary tissue were located in close apposition to the alveolar
and ductal epithelium (90). The comparatively low number
of these cells in the alveolar lumen suggests that lymphocytes
tend to remain associated with the epithelium. A preferential
recruitment of CD4pos cells over CD8pos cells in milk was also
reported in the course of experimentally induced infections with
S. aureus (100). This was also true of chronic S. aureus infections,
CD4pos cells exceeding CD8pos lymphocytes in milk, most of
them expressing CD45RO, a marker of effector/memory cells
(79). A 36-day follow-up study of experimentally induced S.
aureus infection in lactating cows showed an inversion of the
CD8/CD4 ratio during the initial acute clinical episode, then
the proportion of CD4pos cells decreased but remained higher
than that of CD8pos cells (101). A prominent feature was the
progressive increase in the proportion of B cells, as observed
in Riollet et al. (79). However, the preferential recruitment of
CD4pos cells during S. aureus mastitis has not been consistently
reported (102). Cows resistant or susceptible to S. aureusmastitis
differed in their CD4/CD8 ratio both in blood and in milk (103).
The authors suggested that CD4T cells were important in the
resistance to S. aureus infection.

We can conclude from the available literature that all types of
lymphocytes are recruited into the MG lumen during infection:
CD4pos and CD8pos αβ T lymphocytes, γδ T cells, and few B
lymphocytes. Most of the T lymphocytes in milk have an effector
or memory (CD45ROpos) and activated (CD2pos or ACT2pos)
phenotype. Some of their functions have been identified, but we
lack information on their antigen repertoire, and importantly, we
need information on the functions of the T cells that populate
the MG tissue. Recently, mucosal-associated invariant T cells
(MAIT) have been found in human and bovine milk (104,
105). These cells recognize bacterial components through the
interaction of their invariant TCR with the MHC-related protein
MR1. They are preferentially found in the mucosae and are
endowed with antibacterial properties (106). Bovine MAIT cells
are recruited in milk of inflamed glands and they react to E. coli
and S. aureus exposure by secreting IFN-γ and TNF-α, suggesting
that they play an active role in the response toMG infection (105).

The Known Functions of MG Lymphocytes
Earlier studies showed thatMGmononuclear cells have a reduced
capacity to proliferate in response to non-specific mitogens
(Phytohemagglutinin, concanavalin A and pokeweed mitogen)
when compared to blood lymphocytes (71, 102, 107), which could
suggest that they are hyporesponsive. This is particularly true at
parturition (108). However, milk cells produce IL-2, chemokines
and IFNγ (107). Some reasons can be invoked to explain the
reduced response to mitogens. Dry secretions and colostrum,
but not milk, are able to inhibit the proliferative responses of
peripheral blood mononuclear cells to mitogens (107). Milk

CD8pos T lymphocytes have been reported to have a suppressor
function just after parturition compared to cytotoxic function in
mid- and late lactation (109). The reduced proliferative response
of milk CD4pos T cells from MGs infected by S. aureus was
attributed to the presence of suppressor effect of ACT2pos CD8pos

T cells (102). Another explanation is that memory T cells, which
are predominant in milk, tend to react less intensely to mitogens
that do naïve T cells, which are predominant in blood (71).
Little is known about the activities of MG lymphocytes. Milk
CD2pos lymphocytes have been shown to exert bactericidal and
cytotoxic activities after stimulation with IL-2 (110). T cells from
MG secretion incubated with autologous blood monocytes as
APC proliferated in response to S. uberis exposure, irrespective
of known previous MG infection by this pathogen (111). The T
cells produced high levels of IFN-γ, and low levels of IL-10. A
high proportion of responding cells were CD45ROpos. In vitro
expanded cells with IL-2 were mostly CD8pos, released IFN-γ and
some lineages could kill S. uberis.

Some information on the potential activities of milk
lymphocytes was derived from transcriptomic studies. Milk cells
from natural mammary infections expressed IFNG but not IL2
or IL4mRNA (95). Milk cells from healthy cows in late lactation
expressed IFNGmRNA but little IL2 (112). Milk leukocytes from
uninfected MGs did not express cytokine mRNA, whereas cells
from S. aureus infected glands did: mRNA for IL-1α, IL1β, IL-
6, TNF-α, IL-10, IL-12, but not IL-2 or IL-4 were found (79).
Interesting information was derived from the measurement by
RT-PCR of cytokine expression after stimulation with antibodies
to CD3 or CD4pos, CD8pos and γδ T cells isolated from milk
and cisternal lavage of dry glands by magnetic cell sorting (113).
CD4 and CD8 cells expressed mRNA for IFN-γ, IL-2, GM-CSF,
TGF-β, and TNF-α. Expression was higher in cells from lactating
than from dry MGs for CD4pos T cells. γδ T cells substantially
expressed mRNA of IFN-γ, GM-CSF, TGF-β, TNF-α, c-kit and
IL-2R, but not mRNA of IL-2, IL-4, IL-6, IL-10, CD40L or
FasL. Interestingly, c-kit encodes the stem cell factor (SCF)
receptor, produced by mammary epithelial cells. As SCF acts
synergistically with IL-2, IL-7 and IL-15 to induce proliferation
and cytokine production by intraepithelial lymphocytes, c-kit
production suggests a possible interaction between epithelial cells
and γδ T cells in the bovine MG. CD4pos and CD8pos cells
expressed TGF-β mRNA, but γδ T cells had the highest level
of expression. The authors suggested that the activation of γδ

T cells via the SCF receptor exerted a suppressive effect on the
production of cytokines by other T cells during lactation.

Another source of information on the effector lymphocytes
activated in or recruited to the MG has been gained from
mouse models, keeping in mind that the translation to the MG
of ruminants requires verification, due to differences relating
among other things to development, involution, and link with
the MALT. Investigations on healthy non-infected mouse MG
have yielded results pertinent to the handling of antigens in the
MG (56). Mammary DCs are able to process a protein antigen
like ovalbumin and to cross-present it to lymphocytes. However,
their limited expression of co-stimulatory molecules (CD80 and
CD86)may give them the function of tolerogenic DCs.Moreover,
during lactation and early involution, but not in fully involuted
glands, there is a limited presentation of antigens (ovalbumin)
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to antigen-specific naïve T cells in the draining inguinal LN.
Relatively few CD4pos T cells were present in the lactating
MG, but their numbers increased during the post-weaning
involution. A proportion of these cells were RORγ Tpos (Th17
cells) during lactation, in increasing numbers at the beginning of
involution, whereas FoxP3pos T cells (Treg cells) were very few
during lactation but increased markedly in numbers at the late
phase of involution. Gata3pos cells (Th2 lymphocytes), RORγTpos

Foxp3pos (Th17-Treg lymphocytes), and RORγ Tpos Gata3pos

cells (Th17-Th2 lymphocytes) were also present. The authors
concluded that some form of immune tolerance was present
to prevent the lactating and involuting MG from developing
self-reactive immunity against milk components. Mouse mastitis
models were used to characterize the lymphocytes recruited
in the MG by infection. Inoculation of S. aureus into the
MG through the teat canal induced the recruitment of IL-
17-producing γδ T cells, IL-17pos (Th17) and IFN-γpos (Th1)
lymphocytes, followed 5 days post-infection by an influx of
CD4pos CD25pos (Treg) cells (114, 115). Similar observations
were made after infection of the MG with E. coli (116). There
was an influx of IL-17-producing cells into the MG as soon
as 24 h post-infection, with a further increase at 48 h post-
infection. The increases were due to γδ T cells and mainly to
CD4pos (Th17) cells. Of note, Th17 cells were also present in
control glands, although in lower numbers than in inoculated
glands, and IL-17 was detected, in accord with the reported
influx of Th17 lymphocytes early in involuting glands after
weaning (56), as the pups were removed from the mothers before
inoculation. Neutralization of IL-17 with antibodies reduced the
recruitment of neutrophils to the MG, strongly suggesting that
IL-17-producing cells play a major role in the defense of the
MG against infections (115, 116). Experiments with immunized
mice are awaited to unravel the role of T cell immunity in the
anamnestic response of the MG to infections. The relevance of
the mouse mastitis model is supported by the observation that
local immunization of the MG of cows during the dry period
after priming by the intramuscular route elicited resident Th17
cells in the mammary tissue and an increased production of IL-
17 in the tissue compared to unimmunized control glands upon
infection challenge with E. coli (117). This immune response was
associated with an improved control of infection (118).

The Telltale Story of the Antigen-Specific
Recruitment of Leukocytes to the MG
Early observations suggested that some form of hypersensitivity
developed in the MG after an initial infection or exposure
to bacteria. One month after an initial clinical infection by
Mycoplasma dispar, when bacteria were no longer isolated
and SCC had returned to normal, the inoculated quarter was
able to eliminate the infection, contrary to the uninoculated
quarters (5). In protected quarters, the influx of neutrophils was
markedly amplified at the onset of infection. Milk leukocytosis
andmastitis severity were intensified in response to intracisternal
infusion of staphylococcal material (killed bacteria or cell wall
extract) after a previous parenteral injection of heat-killed S.
aureus (6). The authors concluded, “Cell-mediated immunity

has a significant part in the pathogenesis of staphylococcal
infection.” Thus, it appears that sensitization of the MG to
bacterial antigens can either induce protection or aggravate
the disease. The sensitization of the MG was not due to
antibodies. The enhanced neutrophil influx in response to S.
aureus infection in MG of ewes systemically immunized with
live staphylococci was not transferred to non-immunized ewes
by intramammary infusion of immune serum at the time
of infection (50). Sensitization of cows to ovalbumin during
lactation by subcutaneous injection of the antigen in incomplete
Freund’s adjuvant elicited a milk leukocytosis upon intracisternal
infusion of soluble ovalbumin, which was not reproduced by
infusion of antigen-antibody complexes (2). The demonstration
of the role of lymphocytes in antigen-specific milk leukocytosis
was obtained by adoptive transfer of cells from antigen-
sensitized guinea pigs to naïve recipients (119, 120). The MG
leukocytosis occurred only in animals that presented a delayed-
type cutaneous hypersensitivity to the sensitizing antigen (119).
In these experiments, most of the recruited cells were neutrophils,
but macrophages and lymphocytes were also recruited, contrary
to eosinophils. Interestingly, the influx of eosinophils into the
MG lumen of heifers or sensitized ewes can be elicited by
intraluminal infusion of nematode antigens (121–123). The route
of immunization may be of consequence. When the antigen-
induced MG response of guinea pigs was triggered with killed
S. aureus, sensitization with this antigen by the intradermal
route induced a stronger response than sensitization by the
intramammary route, but when the intramammary challenge was
with live S. aureus, milk leukocytosis occurred more rapidly in
locally vaccinated animals and the severity of infection was less
than with intradermal vaccination (124). The authors concluded
that the intradermal route induced primarily a delayed type
hypersensitivity but not an optimal protection. The magnitude
of the milk leukocytosis and the cutaneous reaction to killed
staphylococci were related, but the cellular composition was
different: neutrophils dominated in milk whereas mononuclear
cells were predominant in the skin at 24 h post-challenge.

The phenotype of the cells migrating to the MG lumen
upon luminal challenge with antigen was investigated in cows
sensitized by subcutaneous immunization with purified S. aureus
α-toxin (125). Neutrophils represented the dominant cell type
during the first 72 h post-challenge. Their expression of CD11b
and CD18 was higher than on blood neutrophils, which
attested a stimulated phenotype, supported by an efficient milk
phagocytic bactericidal activity (126). CD8pos T lymphocytes
were recruited as soon as 12 h post-challenge, before CD4pos

T cells that peaked at 96 h. There was more N12pos (WC1-)
than WC1pos γδ T cells in milk before and after challenge,
but the proportion did not change after challenge. Most milk
lymphocytes were CD45ROpos. Intriguingly, no TNF-α or IL-1β
was detected in milk by ELISA, and there was very little increase
in milk serumalbumin concentration even at peak leukocytosis,
showing a disconnection between blood/milk barrier leakage
and diapedesis and transepithelial migration of leukocytes. More
recently, the enrichment of the bovine immunology toolbox
enabled a more in-depth analysis. IL-17A and IFN-γ were
detected at the onset of the neutrophilic inflammatory response
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in the milk of ovalbumin-induced immune response of sensitized
cows, whereas IL-1β and IL-6 were found in only a few samples
(127). The analysis by RT-qPCR of cytokine expression by the
recruited milk cells showed that the genes encoding IL-17A, IL-
17F, IL-21, IL-22 and IFN-γ were overexpressed with a peak at
8 h post-challenge, at the very beginning of the cell influx. These
genes were also overexpressed in the tissue of the challenged
compared to the control unchallenged glands. mRNAs encoding
the chemokines CCL2, CCL5, CCL20 and CXCL10 were also
overexpressed. Examination of the tissue of reactive MGs by
immunohistochemistry revealed the presence of small numbers
of IL-17A-reactive cells, most of them in subepithelial position
or closely associated with the epithelial lining. Overall, these
results suggest that type 3 and type 1 immunity are associated
with the mammary antigen-specific immune response (mASR).
This was confirmed by the finding that the mASR elicited
following sensitization by the parenteral route correlates with
the generation of circulating blood CD4pos lymphocytes that
produce IL-17A and IFN-γ (128). The protective role associated
with the presence of Th17 cells in the MG (117) fits with these
findings and the better protection against E. coli endowed by local
immunization (118) is in accordance with the intramammary
route for best protection as reported previously with S. aureus
mastitis (124).

The experiments that uncovered the antigen-specific MG
immune response gave us revealing insight into the mechanisms
of cell-mediated immunity in the udder of ruminants. They
showed that the MG can be sensitized to antigens without
local immunization (even though protection is better with
local infusion of antigen), and during lactation (whereas local
immunization is efficient during the dry period). The response
is systemic, including the skin and the MG. The mammary
response can be induced in lactating MGs with small amounts of
antigens that are inert in the MG of naïve animals. This means
that recognition by the innate immune system of the MG is
dispensable to trigger the reaction. As epithelial cell junctions
are tight during lactation, this supposes that the luminal antigen
is taken up by APCs able to sample the lumen, processed,
and presented to antigen-specific lymphocytes. These antigens
trigger the response in the absence of MAMPs, which could
stimulate the APCs. The reaction of lymphocytes in the absence
of strong co-stimulation by APCs supposes that these responding
lymphocytes are not naïve. The promptitude of the milk
leukocytosis and absence of pre-existing inflammation indicate
that these lymphocytes are present in the mammary tissue
before antigen exposure. The type of response (neutrophilic
inflammation) strongly suggests that these memory lymphocytes
are effectors of the type 3 immunity. The inferred sequence of
events is schematized in Figure 2.

A CURRENT VISION OF MG
CELL-MEDIATED ADAPTIVE IMMUNITY
AND IMPLICATIONS FOR VACCINATION

The current model of adaptive immunosurveillance proposes
that several memory T cell subsets perform distinct roles. These

subsets are defined based first on trafficking patterns, and
second on other features such as cytokine, surface markers,
and transcriptional signatures (27, 129). Two main groups are
distinguished: the Trm cells that establish long-term residence
in non-lymphoid tissues and are frontline responders, and
the circulating memory T cells that traffic between the blood
and secondary lymphoid organs and can be recruited to non-
lymphoid tissues in case of inflammation. This distinction is
not absolute, because some Tcirm may patrol peripheral tissues,
and some Trm may recirculate. It is also clear that there are
a number of subsets in each group. A subset of Tcirm, termed
central memory T cells (Tcm), have a high proliferative potential
and generate cohorts of antigen-specific effector T cells when
reactivated, but do not patrol non-lymphoid organs. Another
subset, the effector memory T cells (Tem), has limited expansion
potential but can rapidly turn into effector T cells with a high
degree of functionality upon antigenic encounter. Another subset
of Tcirm, peripheralmemory cells (Tpm), can recirculate between
lymphoid and non-lymphoid tissues and contributes to the
surveillance of body tissues (130). Trm differentiation is at least
partially executed after migration to non-lymphoid tissues, and
can thus be conditioned there (28). These processes ensure a
greatly enhanced adaptive immune response upon reinfection.

Most of the studies that defined memory T cell subsets dealt
with CD8+ T cells. There are differences in the migration
patterns of CD4 and CD8 memory T cells to different
compartments of barrier tissues. The CD8pos Trm are found
primarily in epithelial layers, while CD4pos Trm are found
in the lamina propria and parenchyma (131, 132). We have
seen that this hold true with the MG. After arriving in
their tissue of destination, Trm cells remain in situ for long
periods. A number of chemokines and their receptors, or
integrins and their matrix or epithelial cell ligands, have been
incriminated in the attraction and retention of Trm cells (132).
Their importance varies according to the tissue, and none
seems to be an absolute requisite. We lack knowledge about
the local molecular microenvironment that makes mammary
tissue special for lymphocytes. The cytokine TGF-β has been
shown to contribute to CD8 terminal differentiation and intra-
epithelial maintenance through induction of CD103 (integrin
αE interacting with the epithelial E-cadherin) in mice intestine
(133, 134). Another possible survival and retention signal shared
by several epithelia is the production of serum amyloid A (SAA).
SAA is produced constitutively by the MG, in particular at the
duct level (135). Porcine milk SAA is a chemoattractant for sow
B lymphoblasts (136). Also, SAA promotes local Th17 responses
(137). A signal specific to the MG might be casein. Casein has
been found in the macrophages that populate the MG epithelium
(49), and has been shown to induce monocyte differentiation
and production of GM-CSF (138). The chemokine CXCL3 is
produced constitutively by MECs (139) and could play a role in
the attraction of patrolling cells that express the cognate receptor
CXCR2. Much remains to be learned about the homing and
retention of Trm cells in the MG.

Owing to their location, Trm cells are at the frontline to
perform tissue immunosurveillance. Trm cells are not immobile.
Both intraepithelial and stromal cells can move, although slowly,

Frontiers in Veterinary Science | www.frontiersin.org 11 April 2022 | Volume 9 | Article 854890

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Rainard et al. Mammary Cell-Mediated Immunity

FIGURE 2 | Schematic representation of the antigen-specific mammary inflammatory response. The antigen-naïve MG does not react to the intraluminal infusion of

pyrogen-free antigen such as purified ovalbumin (OVA). By contrast, when OVA is infused in the lumen of antigen-experienced MGs, an intense neutrophilic

inflammation develops. This reaction depends on the presence of Th17 cells in the mammary tissue and involves the local production of IL-17A and IL-17F. In turn,

mammary epithelial and endothelial cells secrete chemokines such as CXCL8 and CCL20 that attract neutrophils and lymphocytes, and express adhesion molecules

that facilitate diapedesis and transepithelial migration. Additionally, IL-17 in conjunction with pro-inflammatory cytokines induces mammary epithelial cells to produce

antimicrobial peptides (AMPs).

and random migration along with cytoplasmic extensions allow
them to scan their environment, establishing contact with
epithelial and stromal cells (66). In the MG, they are bound to
contact and interact with the network of ductal macrophages.
Trm cells trigger protective innate and adaptive immune
responses. Upon antigen re-exposure, memory T cells turn into
effector memory T cells with a high degree of functionality. These
processes ensure a greatly enhanced adaptive immune response
upon reinfection.

The modes of action of Trm cells are potentially diverse,
and much remains to be discovered on this subject. CD8pos

Trm could perform cytotoxic or suppressive activities, but they
can also operate through cytokine (IFNγ, TNF-α) secretion,
activation of DCs and recruitment of B and T cells (140). There
is now evidence for the role of CD4pos Trm in protection against
pathogens in multiple epithelial barrier sites (141). CD4pos Trm
exhibit rapid recall function and can produce cytokines such as
IFN-γ and IL-17, triggering chemokine production and broad
immune activation, orchestrating local recall responses (142).
Resident memory lymphocytes can play a prominent role not
only in immediate response to infection, but they are also
particularly adept at controlling latent and persistent infections
(143). A main asset of Trm cells is that they are in a position to
intercept the pathogens at the very beginning of infection (29).
They can react as soon as APCs such as ductal macrophages have
processed and presented the cognate antigens to the Trm and
patrolling Tcm cells present in the epithelium and the lamina
propria. Later on, accumulation of recirculating memory T cells
and finally the wave of the secondary effector lymphocytes give
full magnitude to the adaptive immune response (Figure 3).

Now we can postulate how MG immunity fits into current
concepts of peripheral tissue monitoring by memory T cells and
draw implications for an effective vaccination. The neutrophilic

inflammation induced by luminal infusion of antigen into the
MG of sensitized animals can be explained by the induction
of Trm cells in the epithelium and sub-epithelial locations.
Systemic immunization elicits the antigen-specific mammary
response because circulating precursors of memory T cells visited
the MG and matured there into Trm cells. However, local
(intramammary) immunization is more efficient because the
local inflammation will attract more circulating T cells than in
non-infused uninflamed glands. Transepithelial antigen exposure
is more efficient than interstitial antigen exposure because the
antigen is taken over by epithelial or sub-epithelial APCs that
are conditioned by the mammary microenvironment. In turn,
the mammary APCs will instruct the antigen-specific naïve T
cells encountered in the MG draining lymph nodes. This will
orient the development of the CD4pos and CD8pos T cells both
in terms of effector/memory, recirculation/location, and immune
types (129, 132).

Local immunization is more efficient in dry than in lactating
period because the epithelium is more permeable, and more
APCs and lymphocytes are present in the mammary tissue. The
recurring observation that the best way to induce a local immune
response is the combination of systemic immunization followed
by local intramammary infusion of antigen can be explained
if we consider that memory T cells achieve their maturation
in their destination tissue and can multiply upon antigen-re-
exposure (28). The antigen-experienced lymphocytes elicited
by the primary systemic immunization circulate in the body,
including the MG. The inflammation caused by the antigen
boost (resulting from the use of whole bacteria or MAMPs)
will attract more lymphocytes. Inflammation recruits effector T
cells regardless of antigen specificity, but the antigen-specific
lymphocytes will be retained and induced to replicate before
maturing into resident memory cells (145). Both CD4pos and
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FIGURE 3 | Contribution of memory T cell subsets to the control of MG infection. Immediate response to pathogen intrusion is achieved by memory T cells present in

the tissue at the onset of infection, namely the resident memory T cells. If the infection is not cleared at this stage, the early local inflammation recruits circulating

memory T cells that amplify the immune response. Meanwhile, bacterial antigens are presented by APCs migrating from the infected tissue to the draining lymph

nodes, where central memory T cells begin to proliferate and generate new effector T cells. After a few days, these effector T cells will migrate to the site of infection in

great numbers, making a delayed but robust contribution to pathogen control [Modified from (144)].

CD8pos Trm cells could be elicited, as cross-presentation by
mucosal APCs might present soluble antigens through MHC
class I (146). As a result, many more antigen-specific Trm cells
will populate the locally vaccinated gland. Due to the importance
of local tissue imprinting by adjuvant-induced inflammation and
antigen-dependent replication of memory T cells, all glands will
have to receive the vaccine. The time-window most favorable
to maximizing the magnitude of the immune response, when
memory precursors circulate, is likely to be an important
parameter of success. A new strategy for generating Trm cells
in the peripheral tissues involves a “prime and pull” protocol
in which parenteral vaccination (prime) is followed by the
recruitment and activation of antigen-experienced T cells with
local application of vaccine (pull) (Figure 4). This approach
has been used to immunize cows against E. coli (118). The
combination of systemic and local routes of immunization
induced a protective immune response involving Th17 cells in
the tissue of locally immunized MG (117).

CONCLUSIONS AND
RECOMMENDATIONS

It follows from many studies that the MG is a site of induction
of local and systemic immunity that can be activated with best

efficacy during or after MG involution. The gut-MG axis is not
operational in dairy ruminants, and the MG does not belong
to the CMIS. It does not accommodate organized lymphoid
formations, except a few lymphocyte aggregates that appear
during its development or in the course of chronic infections.
However, the epithelium of healthy MGs is populated with many
macrophages, a few CD8T cells, perhaps a few DCs, while
the connective subepithelial tissue contains a few CD4T cells.
The MG can be seeded with antigen-experienced T cells by
appropriate vaccination strategies. Due to the crucial importance
for the outcome of infection of a swift immune reaction to
intrusion of pathogens into the MG lumen, induction of resident
memory T cells is the best way to enhance the epithelial
barrier and neutrophilic inflammation efficacy. This will control
infection before bacteria establish a persistent infection.

In spite of the many studies and recent advances in
MG immunity, there is still a lot to be discovered before
we can rationally design mastitis vaccines (147). Progress
in understanding the mechanisms underlying the generation,
maintenance, and function of memory T cells in the MG will
be essential. One implication of lymphocyte tissue residence is
that most of the MG adaptive immune system remains hidden
from view if we restrict studies to easily accessible milk cells.
Using the induction of Trm cells as correlate of protection is
loaded with difficulties linked to small numbers, heterogeneity
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FIGURE 4 | How the prime and pull vaccine strategy would populate the MG with memory lymphocytes. 1) A parenteral immunization (prime) elicits circulating

antigen-specific T cells, some of which seed the MG tissue and mature into resident memory T cells. 2) A booster injection of antigen in the gland lumen causes local

APCs to stimulate the resident memory T cells cells, which in turn induces an enhanced recruitment of circulating T cells, boosts the systemic immune response, and

induces replication of the local Trm cells. These responses maximize the generation of local resident memory T cells.

and difficulty to collect them in sufficient numbers without
activation or damage (66). Yet, we lack reliable correlates
of protection for mastitis vaccines (148). Besides the relative
proportions of T lymphocyte subpopulation phenotypes, we have
little information on their functions, particularly on the cells
that populate the MG tissue. We have little information on the
functions of the intraepithelial CD8pos T cells (αβ and γδ T cells)
that are at the frontline of MG infections. The same question
applies to the role of ductal macrophages during infection or
local immunization. The phenotype of milk and mammary tissue
lymphocytes and APCs deserves better characterization with the
newly available reagents. Above all, the functional capacity of
mammary lymphocytes need to be investigated and compared
to their blood counterparts. Gaps in our knowledge of adaptive
immunity to the MG are numerous (Table 2), filling them would
greatly assist researchers in designing novel mastitis vaccines.

The orientation to be given to the immune response for
the best possible protection is still open to question, even
though arguments in favor of Th17 cells and type 3 immunity
for the defense of the MG against infections have been put
forward (149). Several other questions call for an answer.
How does the balance between adaptive pro-inflammatory and
regulatory immunity should be tipped? This is a key point to
avoid increasing the damages caused by the pathogen and the
accompanying inflammatory response. How long is the long-
lived epithelial immunity conferred by Trm cells in the MG?
This will determine the recurrence interval for vaccination
boosters. Does the shedding of lymphocytes (CD45ROpos) in
milk corresponds to a physical loss of memory as it equates to
a loss of MG memory T cells, which would result in short-lived
adaptive immunity in the MG? The new powerful tools that are
available to investigate the immune pathways and mechanisms

TABLE 2 | Knowledge gaps that hinder the design of efficacious mastitis vaccines.

Molecular determinants of the homing of lymphocytes to the MG of

ruminants

Nature of the vascular addressins and chemokines

Nature of lymphocytic integrins and chemokine receptors

Detailed phenotype of lymphocytes that populate the mammary tissue

In healthy MG

During and after infection

In immunized MGs

Nature and functions of the APCs that condition the immune response to

luminal antigens

Role of ductal macrophages in the sensing of bacteria

Role of stromal macrophages

Nature of the tissue factors that condition effector and memory T cell

differentiation and maintenance in situ

Functions of tissue and milk lymphocytes

Nature of the interactions of Trm cells with mammary epithelial cells and

ductal macrophages

Roles of γδ T cells in adaptive immunity

Roles of intraepithelial CD8pos cells in the defense of the MG epithelium

make the search for answers to these questions feasible. Based on
current knowledge, rekindling research on the immune cells that
populate the healthy, infected, or immunized MG appears to be
a most promising approach for the design of efficacious mastitis
vaccines. However, this requires the mobilization of significant
resources that are not easy to implement in the field of mastitis
research. It is regrettable that during the last decades the funding
of research on mammary immunity has been so parsimonious,
which has discouraged researchers and hindered collaborations.
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We hope that this enticing field of research will attract new
researchers and funding.
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