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Abstract

We develop a piecewise deterministic control model to study optimal lockdown and vaccination policies

to manage a pandemic. Lockdown is modeled as an impulse control that allows the system to switch from

one restriction regime of restrictions to another. Vaccination policy is a continuous control. Decisions

are taken under the risk of mutations of the disease, with repercussions on the transmission rate. The

decision maker follows a cost minimization objective. We first characterize the optimality conditions for

impulse control and show how the prospect of a mutation affects the decision maker’s choice by inducing

her to anticipate the relative benefit of a regime change after a mutation has occurred. Under some

parametric conditions, our problem admits infinitely many value functions. We show the existence of

a minimum value function that is a natural candidate to the solution given the nature of the problem.

Focusing on this specific value function, we finally study the features of the optimal policy, especially the

timing of impulse control. We prove that uncertainty surrounding future “bad” vs. “good” mutation of

the disease expedites vs. delays the adoption of lockdown measures.

Keywords: pandemic, lockdown, vaccination, mutation, impulse control, uncertainty

JEL classification: C61, D81, I18

1 Introduction

The onset of the COVID-19 pandemic marked the renewed interest of economists for the analysis of the

impacts of epidemics and the design of public policies to cope with them. This is best illustrated by the

impressive number of papers that have been published on these topics over the course of the last two years.
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Most contributions throughout the first year of the pandemic have been devoted to the analysis of lockdown,

or quarantine or more generally restriction measures, as the main instrument to control the evolution of

the epidemic. This was of course primarily motivated by the absence of alternative intervention (before the

discovery of vaccines, and still in the absence of cure). But even after the widespread use of vaccination,

lockdown measures remain a credible policy tool in the eyes of policy-makers, and are considered as such in

the current paper.

Specifically, our aim is to develop an original piecewise deterministic optimal control model to study

optimal lockdown and vaccination policies to manage an infectious disease. Our approach is original is that

it combines the following three main ingredients. First, we consider two alternative options to control the

spread of the pandemic: vaccination and lockdown. Second, we take lockdown measures as impulse controls

to echo the evidence that policy makers are subject to a wide set of (administrative, political, economic)

constraints that prevent them from changing the level of restrictions on an everyday basis. Last but not least,

again motivated by COVID-19, we account for the uncertainty that surrounds the severity of the disease

and results from the frequent mutations of the virus. As perfectly outlined by Boucekkine et al. (2021), this

together with policy interventions are the fundamental drivers of the rate of transmission of the disease, and

its resulting economic and health impacts. In this setting, our primary concern has to do with the study

of the interplay between lockdown restrictions, as impulse controls, and mutations modeled as random and

discrete shifts in the virus contagiousness. We especially seek to determine whether lockdown should be used

as a prevention policy in the prospect of handling better a future (potentially more severe) mutation, or as

an adaptation policy to such event, once and if realized. In addition, we are also interested in the effect of

possible mutation on the timing of the lockdown policy: does the prospect of a mutation delay, or on the

contrary expedite the lockdown policy? The second issue we want to address is about the interplay between

the vaccination and lockdown policies: Are they substitute or complement tools in the hands of the policy

makers?

It goes without saying that any attempt to provide a comprehensive review of the literature on epi-

demics and COVID-19 would be a vain exercise given how fast it grows. Rather, we more modestly give a

brief overview of both the “classics,” that is the pre-COVID reference papers merging epidemiological and

economic models, and the most recent and relevant post-COVID papers dealing with topics similar to ours.

Gersovitz and Hammer (2004) are the first to investigate the connection between the spread of an in-

fectious disease and economic outcomes. By comparing a representative agent problem with the optimal

solution, they discuss how standard economic instruments work to internalize the externalities surrounding

the epidemic propagation. In a series of excellent papers, Goenka and Liu (2012, 2020) and Goenka, Liu and
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Nguyen (2014) develop full-fledged analyses of the impact of an epidemic on the macro-economy. For that

purpose, they consider several versions of a model merging SIS dynamics and neoclassical growth. Goenka

and Liu (2012) focus on the impact of the pandemic on endogenous labor supply, show how the pandemic

dynamics can generate chaos and cycles, and discuss the type of policy intervention capable of stabilizing

endogenous fluctuations. Goenka, Liu and Nguyen (2014) go a step further by taking account of the two-way

interaction between the economy and the pandemic. On the one hand, the disease negatively affects the

(exogenous here) labor supply and production, while health expenditure are meant to slow down the virus

transmission. Both papers adopt a social planner perspective by characterizing either the optimal growth

path, or the optimal policy. Finally, in a similar framework, Goenka and Liu (2020) analyze the decentral-

ized equilibrium when private agents also invest in human capital. They emphasize the existence of multiple

balanced growth paths, with very distinct features in terms of economic performance and disease prevalence.

As to the post-COVID-19 literature, our attention was drawn to the contributions that consider lockdown

measures as the single instrument to control the evolution and severity of the epidemic situation. Alvarez et

al. (2021) is an excellent representative of this line of research. They authors study the optimal control of

a pandemic thanks to lockdown restrictions. They consider lockdown as a continuous control, the decision

maker choosing the intensity of the lockdown, or the share of population subject to a lockdown, at every

instant. They capture the basic trade-off between the economic cost and health benefit of lockdown (reduction

of the transmission rate). In addition, they model the pandemic dynamics with the SIR model, and adopt a

short run perspective by assuming that the planning horizon is finite but unknown as it is determined by the

arrival of a vaccine. They investigate the features—timing, duration and intensity—of the optimal policy

both analytically and by means of a calibrated model. Other related papers differ from this approach along

several ways.1 The most relevant to our approach are those i/ that depart from the modeling of lockdown

as a continuous control, and ii/ that introduce uncertainty in the analysis. Aspri et al. (2021) observe

that in the real world, policies such as lockdown cannot be revised instantaneously and further, cannot be

revised before a certain amount time elapses. Based on this observation, they study the optimal design of

1Goenka, Liu and Nguyen (2021) study optimal lockdown by accounting for the waning immunity (thereby using a SIRS
model). They keep working with a neoclassical growth model and focus on long run outcomes. Loerstcher and Miur (2021)
do not take an optimal policy perspective. Rather they assume that the decision maker’s objective is to make sure that the
health system capacity cannot be overwhelmed because of the increase in the number of infected people requiring special care.
The limited capacity constraint of the health system is also present in Jones et al. (2021), where the authors compare the
representative agent equilibrium with the optimal solution. They use an aggregate transmission rate defined as a function
of consumption and working decisions and analyze the reactions, in terms of social distancing and remote working, following
the announcement of an outbreak of the pandemic. See Eichenbaum et al. (2021) for a similar approach but with different
perspective. Caulkins et al. (2021) also consider the optimal design of lockdown policy by incorporating several novelties such as
dealing with the level of economic activity and lockdown “fatigue” as additional states of the system. The analysis of the quite
complex dynamics generated by their model notably show the existence of multiple Skiba points. It is also worth mentioning
the contribution of Acemoglu et al. (2021) who develop a multi-group SIR model where the population is divided into three
age classes (youth, middle age, old) to assess the performance of targeted lockdown policy. Gollier (2020a) investigates the very
same topic. He does not analyze the optimal solution, though. Rather he considers two types of lockdown interventions, strong
vs. softer.
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lockdown policies, when available policies remain constant along some time interval, within a SEIRAD model

(that is they also take care of the asymptomatic health status). In a more standard model, Caulkins et al.

(2020) also choose to deal with lockdown policies as impulse rather than continuous controls. Adopting this

perspective, they are able to address the issue of the optimal timing, onset and exit, of a one-shot lockdown

regime.

As mentioned above, uncertainty seems like an essential feature not only for the management of pandemic

situations, but also and more generally for the understanding of both individuals behaviors and policy

performance in many economic problems (ranging from finance, to investment and resource management

problems). Yet there are very few studies that have incorporated this dimension into the analysis of optimal

policy to fight against COVID-19. Exceptions are Bandyopadhyay et al. (2021), Gollier (2020b), and

Federico and Ferrari (2021). Gollier (2020b) studies the impact of uncertainty surrounding the transmission

rate when lockdown restrictions are lifted and the role of learning about it on the optimal lockdown policy

within a two-stage decision problem. He shows that introducing uncertainty tends to reduce the optimal rate

of lockdown by lowering the expected cost of a less strict lockdown. Bandyopadhyay et al. (2021) conduct

the same kind of analysis in terms of uncertainty and learning in a three-period problem. They consider

that imposing a lockdown prevents the decision maker from learning about the actual contagiousness of the

disease. Moreover, they introduce an additional cost of delaying lockdown, namely the lost opportunity of

habit formation.2 On the other hand, Federico and Ferrari (2021) develops a stochastic optimal control

problem where the decision maker has to choose the lockdown policy while being subject to an uncertainty

not about the level but the evolution of the transmission rate. For that purpose, they model the dynamics

of the transmission rate thanks to a diffusion (Wiener) process and take lockdown as a means to reduce

the trend (deterministic part) of the process. In this setting, they conduct numerical experiments that help

highlight the features of the lockdown policy.

In sum, there is no study that combines lockdown as an impulse control, uncertainty surrounding the

evolution of the transmission rate, and consider both lockdown and vaccination policies. This exactly where

the contribution of our paper lies. Precisely, we first develop a general optimal control model to study

optimal lockdown and vaccination policies in pandemic times. Lockdown is modeled as an impulse control

that allows the system to switch from one regime of restrictions to another (stricter or softer). Vaccination

policy, on the other hand, is a continuous control. Decisions are taken under the risk of mutations of

the disease, with repercussions on the transmission rate. The decision maker follows a cost minimization

objective. Moving to a simplified model where the virus can mutate only once and there exist only two

2Their argument being that habit formation should normally take place during a lockdown and give people incentives to
behave more cautiously once it ends.
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lockdown regimes, with the possibility to go back and forth between them, allows us to draw a series of

interesting results. We first characterize the optimality conditions for impulse control and show how the

prospect of a mutation affects the decision maker’s choice. In fact, it induces her to anticipate the relative

benefit of a regime change after a mutation has occurred, which may or may not increase the incentive to

set a lockdown. Under some parametric conditions, our problem admits infinitely many value functions. We

then show the existence of a minimum value function that is a natural candidate to the solution given the

nature of the optimization program. Focusing on this specific value function, we finally study the features

of the optimal policy, especially the timing of impulse control. We prove that uncertainty about future

possible “bad” vs. “good” mutation (in terms of contagiousness) of the disease tends to expedite vs. delay

the adoption of lockdown measures. This conclusion closely parallels those of the two strands of literature

on decision making under uncertainty. The first one analyzes the impact of the occurence of costly events

(Crepin and Naedval, 2020, for a review), whereas the second one emphasizes the role of uncertainty and

learning (Dixit and Pyndick, 1994).

The paper is organized as follows. Section 2 is devoted to our modeling strategy. Section 3 deals with

the optimality conditions for impulse controls and emphasize the difference of deciding before or after a

mutation. Section 4 conducts a dynamic analysis and show how the dynamic behavior is intricately linked

to the features of the value function. Section 5 addresses the issue of the timing of impulse control, reviews

the different cases possible and illustrates them numerically. Section 6 concludes.

2 Model

2.1 The general problem

Following the vast majority of the literature (Goenka and Liu, 2012, Alvarez et al., 2021, Federico and

Ferrari, 2021, among others), we adopt the fully centralized perspective of a decision maker (DM) who has

to manage a pandemic. It means that we do not address externality problems associated with the disease

transmission. It sounds like a natural starting point for the study of the optimal management of epidemics.

2.1.1 Pandemic dynamics and control variables

As discussed in the Introduction, most analyses that conducts an economic analysis of the optimal control

of an epidemic make use of SIS and SIR models, and some variations of these. The main pre-COVID-19

contributions, that merge epidemiological and economic models, are based on the SIS model (Goenka and

Liu, 2012, Goenka, Liu and Nguyen, 2014). In the SIS model, the (constant) population is split into two
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groups, the “susceptible” and the “infected” and two state equations described changes in the health status.

Most recent post-COVID-19 papers rather rely on the SIR model, whereby upon infection people get full

or partial immunity and enter the third category of “recovery,” or die (Acemoglu et al., 2021, Jones et al.,

2021).

In what follows, we model the epidemic evolution along the line of a SIS, instead of a SIR, model. The

reason for this choice is threefold. Firstly, based on the latest evidence on COVID-19, it is now clear that

immunity acquired through an infection is not permanent, and actually lasts for a short period. This makes

the standard SIR model inadequate to reproduce the dynamics of pandemic such as COVID-19. One may

then opt for the more general SIRS model which allows recovered people to return to the susceptible health

status after a while (Caulkins et al., 2021, Goenka, Liu and Nguyen, 2021). But the SIS model then looks

like an acceptable simplification of the problem because it keeps the dynamical system one-dimensional.

Secondly, the other advantage of the SIR model, over the SIS, is that it takes account of disease induced

mortality. But again, since we do not account for demographic aspects and the actual average death rate

by COVID-19 is very low, the SIS alternative may seem more attractive based on the same tractability

argument. Last but not least, we want to incorporate vaccination decision, as an alternative to lockdown

restrictions. Now, we know that COVID-19 vaccines do not obtain long lasting immunity either, especially

in the event of a mutation of the virus. This means that we cannot use standard epidemiological models that

deal with vaccinated people as an additional state of the system (see for instance, Choi and Shim, 2020),

and have to find an alternative.

Precisely, as in Goenka and Liu (2012) and Goenka, Liu and Nguyen (2014), we abstract from disease

related mortality. We assume a constant population, whose size is normalized to one. Then we adapt the

SIS model in a way that is consistent with the logistic approach. Following the logistic approach boils down

to working with only one state variable, the number of infected people. It produces similar dynamics as

the SIS model, once reduced to a one dimension problem too (Burger et al., 2021). In addition, it has the

advantage of being flexible. By flexibility, we mean that it allows us to model the vaccination control pretty

simply. Let s(t) ∈ [0, 1] be the share of infected population. Its dynamics are given by:

ṡ(t) = θs (t) (a (r(t),K)− s (t)) , with a (r(t),K) = 1− r(t)− K

θ
, (1)

with θ the infection rate, and K the quality of the health system. The quality of the health system encom-

passes both the qualitative and quantitative dimensions of hospital infrastructure and medical staff that of

course partly determine the ease with which a country can cope with the pandemic.3 In the coming analysis

3The role of the quality and/or capacity of the health system has been analyzed in a series of contributions by Goenka, Liu
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it is taken as given because we choose to focus on policies and shocks affecting the infection rate.4

Beside θ whose crucial role is explained just below, we first define the rate of vaccination, r(t) ≥ 0. We

assume that the DM chooses this rate, this decision being modeled as a continuous control as the DM can

progressively make people get vaccinated by means of a wide set of more or less coercitive measures and

incentives. Then, we can interpret a(.) as the population at risk of getting infected and of transmitting the

virus. This population is negatively affected by r, the vaccination rate, or the share of the population that

is not sick and receives the vaccine.5

The important variable in state equation (1) is the rate of diffusion of the pandemic, θ. This rate changes

across time thanks to the second DM’s control variable and random shifts: θ = θ(Lk, ω). This approach

is very much in line with Jones et al. (2021)’s observation that ”Infected people transmit the virus to

susceptible people at a rate that depends on the nature of the virus and the frequency of social interactions.”

As to the second control variable, we assume that the DM can decide on the lockdown regime Lk,6 with

k taken within a finite set of integers, imposed upon the economy. By convention, we say that lockdown

regime Ln is stricter than Lm if and only if Lm < Ln and θ′Lk
< 0 for all k. This is line with evidence

supporting that imposing a stricter lockdown allows health authorities to reduce the infection rate and slow

down the virus diffusion. More importantly, we choose to model this second decision as an impulse control.

Accordingly, we denote as tk ∈ [0,∞), for all k, the date of moving to lockdown regime Lk. This is the actual

control variable. The reason for this modeling option is twice. Most of the literature on lockdown defines

this policy as a continuous control (Acemoglu et al., 2021, Alvarez et al., 2021, Goenka, Liu and Nguyen,

2021). This means that the decision maker chooses, at every instant, the intensity of the lockdown, or the

share of the population subject to it.7 However, it is clear that policy makers cannot adjust such policy

decisions on a daily basis. This is perfectly acknowledged by Aspri et al. (2021) who argue that policies are

not adjusted instantaneously, and further that there exists some inertia. Considering lockdown measures as

impulse controls follows this observation. This is also the avenue taken by Caulkins et al. (2020). Moreover,

the impulse control nature of this decision remarkably echoes the other type of discrete change that the

system can experience, which we introduce now.

and Nguyen (2014), Caulkins et al. (2021), Jones et al. (2021) and Loertscher and Miur (2021), among others.
4So we do not consider any other type of control capable of changing K, like investment in the health system. But this is a

potential interesting extension of the analysis.
5Taking r as a continuous control certainly is a strong simplification. As explained later, we introduce a cost of vaccination

cr = c(r). So a mathematically equivalent formulation would consist in defining c as vaccination expenditure, a continuous
control, and re-interpret r = c−1(cr) as the return on vaccination. In any event, we do not account for the possibility to build
a protection capital, or shield, for the population thanks to vaccination.

6Hereafter we use the terms regime or mode interchangeably.
7This introduces an additional quadratic term in the dynamical system, which is crucial to understand the effect of such a

policy on the epidemic and the economy.
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2.1.2 Stochastic events

As recent experience has shown, there are many uncertainties surrounding COVID-19 pandemic, more than

two years after its outbreak. However most contributions on the optimal design of lockdown policies get

rid of uncertainty (or at best conduct sensitivity analyses of calibrated models). The noticeable exceptions

are Gollier (2020b), Bandyopadhyay et al. (2021), and Federico and Ferrari (2021). In different settings,

the first two contributions account for the uncertainty in the transmission rate and analyze how uncertainty

and the possibility of learning about the exact severity of the disease shape the decision maker decision.

The last paper is the closest to ours because the authors model the transmission rate as a random variable

whose evolution is driven by a diffusion process (and where lockdown measures affect the trend part of

it). Dealing with the random evolution of the disease is seems to be very important, again in light of the

COVID-situation. We however believe that virus mutations are better described by jump processes, such as

the Poisson process, as they do not occur continuously but rather at certain points of time. This is where

our approach differs from the contributions above.

Indeed, we consider that the DM, when designing her policy, may be subject to two kinds of uncertainty.

Both affect the severity and evolution of the pandemic. Specifically, we take account of the possibility of

the virus mutates, while spreading across the population, with repercussions on its infectious power. As a

result, there is uncertainty surrounding not only the time when a mutation occurs, but also the nature of

this mutation (contagiousness of mutated virus). Let us define as ω the virus regime, with ω ∈ Ω, the finite

set of possible mutations, and tω ∈ [0,∞) the date of occurrence of mutation ω. Mutations can positively

or negatively affects the rate of diffusion of the pandemic, θ. Again by convention, the pandemic regime is

supposed to get worse if and only if for any two successive realizations of the random variable {ω, ω′}, we

have ω < ω′ and θ′ω > 0 for all ω.

In addition, as seen from instant tω when the regime with mutation ω starts, the available information

about a possible new shift from mutation ω to ω′ at t ≥ tω is summarized by a probability distribution

function (PDF): F (t;ω) = Pr(tω′ < t|t ≥ tω;ω), defined over the support [tω,∞), and density f(t;ω).8 Then

considering any two successive realizations of the random variable {ω, ω′}, the second source of uncertainty

is depicted by another PDF, G(. | ω). It represents the conditional distribution of the next regime ω′ defined

over Ω, which only depends on the preceding regime ω.9

8We could endogenize the PDF by making it dependent of the state of the system s.
9This second source of uncertainty, that has to do with the intensity of the mutation, has been introduced by Sakamoto

(2014), within a different context.
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2.1.3 Objective function

Here our aim is to capture the basic cost-benefit analysis underlying the choice of the vaccination and

lockdown policies. For that purpose, we adopt a cost minimization (of the pandemic) perspective, like in for

instance Aspri et al. (2021) and Gollier (2020b). The DM wants to minimize the total cost of the pandemic,

which is regime dependent. In the economy a regime is defined by the pair {ω,Lk}. Then, the cost has two

components. First, there is an instantaneous cost that depends on both vaccination policy, lockdown policy

and number of infected people. For simplicity, we shall work with a separable cost function whose arguments

are r, Lk and s:

C(r, Lk, s) = c(r) + hk + d(s), (2)

with c(.), d(.) strictly increasing and convex for r, s > 0. The trade-off associated with the vaccination

policy is as follows: Vaccination policy is costly because it requires to purchase vaccine doses, and develop

temporary vaccination infrastructure. But it allows the DM to reduce the social cost of sickness by reducing

the spread of the pandemic.10 The benefit of the lockdown policy is of the same nature, while the term

hk ≥ 0 captures the economic costs inherent in operating lockdown regime Lk. Depending on the level

of restrictions, the DM faces additional expenditure to take care of people working remotely or no longer

working, the level of economic activity shrinks etc. In general, we may consider that the cost of a lockdown

measure is increasing over time because the longer it lasts the costlier it is all the involved dimensions. But

as a starting point, we can take hk constant for given Lk.

Beside the instantaneous cost of lockdown measures, we also introduce a second lump-sum cost incurred

when changing the lockdown regime from Lm to Ln, and denote it by Γn ≥ 0. This cost is in essence of

political or social nature. This is in the line with the “lockdown fatigue” approach developed by Caulkins

et al. (2021), or with the argument of “political backslash” put forward by Bandyopadhyay et al. (2021).

People get angry when the level of freedom is impaired. It is meant to account for the asymmetry that exists

between imposing a lockdown measure and removing the very same measure.

Within any regime {ω,Lm}, the general optimization problem can be written as:

V (s;ω) = min
r(·),05tk5∞

E
{∫ tω′

tm

C(r, Lm, s)e
−ρ(t−tm)dt+ e−ρ(tω′−tm)E [V (s(tω′);ω

′)|ω)]

}
+

n∑
k=1

e−ρ(tk−tm)Γk

for all tk ≤ tω′ 5 ∞ and where V (.) is the value function, the first expectation operator refers to the

random date of an epidemic change and the second one to the random realization of the next mutation:

10Infected people incur both economic (reduced income) and psychological costs. They may also impose a cost to society,
especially where the health care system is publicly funded.
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E [V (s(tω′);ω
′)|ω)] =

∫
Ω
V (s, ω′)dG(ω′ | ω). The optimization is subject to (1) with θm(ω) = θ(Lm, ω) and

s(tk) = sk > 0, given.

Now, we know that it is possible to re-express this optimization problem as a deterministic problem

within any mutation regime. This gives:

min
r(·),05tk5∞

∫ ∞
tm

(C(r(t), Lm, s(t))(1− F (t;ω)) + f(t;ω)E [V (s(t);ω′)|ω)]) e−ρ(t−tm)dt+

n∑
k=1

e−ρ(tk−tm)Γk

subject to the same set of constraints. Or,

min
r(·),05tk5∞

∫ ∞
tm

(1−F (t;ω))
(
C(r(t), Lm, s(t))e

−ρ(t−tm) + λ(t;ω)e−ρ(t−tm)E [V (s(t);ω′)|ω)]
)
dt+

n∑
k=1

e−ρ(tk−tm)Γk

with λ(t;ω) the hazard rate generically defined as: λ(t;ω) = f(t;ω)
1−F (t;ω) .

At this stage, one can already notice that our approach is original in that it combines both impulse

controls, that is controlled regime shifts, and random shifts. The key contribution of the paper is actually

to study the interplay between these two relevant characteristics of the optimal control of pandemics. Given

this objective, and in order to have a chance to get analytical insights, we now present a simplified model

that will serve as a vehicle for the coming analysis.

2.2 A simplified problem

Hereafter we make a series of simplifications in order to identify the fundamentals drivers of the optimal

management of the pandemic.

As a first step toward tractability, we shall work with an exponential PDF, that yields a constant hazard,

λ (F (t) = 1 − e−λt). Next, we restrict the analysis to the case where there are two pandemic regimes and

two lockdown regimes. As to the pandemic, it is assumed that there are two states of the virus only, and at

most one mutation from one to the other: Ω = {ω, ω} with ω > ω. So, pandemic under ω is supposed to be

more severe than under ω. Those two states are known. This means that we switch-off the second source of

uncertainty. In addition, in order to handle a mutation in the virus, if any, the DM can choose between two

lockdown regimes, {Lm, Ln}, one stricter than the other. For instance, we may have Lm < Ln. For now, we

do not need to impose a particular ranking. Finally, we allow the DM to go back and forth between these

two regimes.11 In terms of model specification, we choose a quadratic specification of the cost function (as

in Federico and Ferrari, 2021):

C(r, Lk, s) =
r2

2
+ hk + β

s2

2
.

11Actually, we can simply oppose two regimes. The one in which the economy is locked-down and the one where it is “open.”
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In the following sections, our aim is to analyze this pandemic situation characterized by four regimes,

denoted by (Lm, ω), (Ln, ω), (Lm, ω) and (Ln, ω). We use V k (s) and V k (s) to denote the value function

in regime (Lk, ω) and (Lk, ω), respectively, for k ∈ {m,n}. Similarly, the infection rate in regime (Lk, ω) is

denoted by θ(Lk, ω) = θk and in regime (Lk, ω) by θ(Lk, ω) = θk for k = m,n.

3 Optimality conditions

We first state the optimality conditions for both continuous and impulse controls. In particular, particular

attention is paid to the ones characterizing the latter type of control. All of the proofs are gathered in the

Appendix.

3.1 Continuous and impulse controls

In regime(Lm, ω), by dynamic programming, V m (s) satisfies the inequality

ρV m (s) ≤ H∗m
(
s, V

′
m (s)

)

where

H
∗
m (s, µ) = sµ

[
θm (1− s)−K

]
−
[
θmsµ

]2
2

+ hm +
β

2
s2 (3)

is the current value Hamiltonian, and the minimizer r∗ satisfies

r∗ = V
′
m (s) θms. (4)

In order for the solution to be well-behaved, one must have V
′
m (s) ≥ 0. Then, how exactly the vaccination

rate changes with s depends on the particular shape of the value function. If it is convex, then the larger

the infection rate, the larger the vaccination rate. In addition, any impulse control Lm → Ln, satisfying

Lm < Ln (case of a stricter lockdown), will induce a drop in the vaccination rate. This is the first evidence

of the substitutable nature of the two controls.

The DM does not take the impulse control Lm → Ln if doing so is not profitable. Hence, mode m

continues if

V m (s) ≤ V n (s) + Γn.
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Since at least one of the inequalities must hold true, we can formulate the quasi-variational inequality (QVI):

max
{
ρV m (s)−H∗m

(
s, V

′
m (s)

)
, V m (s)− V n (s)− Γn

}
= 0 for s ∈ (0, 1) . (5)

Similarly, in regimes (Lm, ω), the value functions V m (s) satisfies

(ρ+ λ)V m (s) ≤ H∗m
(
s, V ′m (s) , λV m (s)

)
with

H∗m (s, µ,W ) = sµ [θm (1− s)−K]− [θmsµ]
2

2
+ hm +

β

2
s2 +W (6)

and minimizer r∗ given by

r∗ = V ′m (s) θms. (7)

Also, condition

V m (s) ≤ V n (s) + Γn

holds for mode m to remain unchanged. Thus, the second QVI:

max
{

(ρ+ λ)V m (s)−H∗m
(
s, V ′m (s) , λV m (s)

)
,

V m (s)− V n (s)− Γn} = 0 for s ∈ (0, 1) .

(8)

In particular, at a value s∗n where the impulse control Lm → Ln is taken, we have

V m (s∗) = V n (s∗) + Γn (9)

after mutation, and

V m (s∗) = V n (s∗) + Γn (10)

before mutation.

We now prove the following criteria for the timing of an impulse control.

Theorem 1 Suppose the DM takes the impulse control Lm → Ln after mutation at an interior point s∗n ∈

(0, 1). If value functions V m (s) and V n (s) are both differentiable in (0, 1), then s∗n satisfies the equation

ρ
[
V n (s∗n) + Γn

]
= H

∗
m

(
s∗n, V

′
n (s∗n)

)
. (11)
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Similarly, suppose the impulse control is taken before mutation at an interior point s∗n ∈ (0, 1). If V m (s)

and V n (s) are differentiable in (0, 1), then s∗n is defined by

(ρ+ λ) [V n (s∗) + Γn] = H∗m
(
s∗n, V

′
n (s∗n) , λV m (s∗n)

)
. (12)

Conditions (11) and (12) are essentially transversality conditions that govern the optimal transition

between different regimes. In (deterministic) optimal control literature, they are usually stated in terms

of the maximized Hamiltonians, holding before and after the regime change (see for instance Boucekkine

et al. 2013). In the absence of lump-sum cost, these optimality conditions impose the continuity of the

Hamiltonians at the date of regime switching, when the impulse control is taken, and the continuity of the

co-state variable(s) as long as the level of the state variable(s) at which the decision is taken is free. In

dynamic programming, these correspond to the well-known value matching and smooth pasting conditions,

expressed in terms of value functions and their first order derivative. Here, we merge both approaches

because of the specificity of our problem. Indeed, the comparison between conditions (11) and (12) reveals

how the prospect of a mutation affects the impulse control. Indeed, we observe that both the hazard rate and

the marginal value following a mutation in lockdown regime Lm, V m(.), show up in the optimality condition

before any mutation.

For further discussion, let us express these conditions in the specified model. Because V n and V n are

differentiable at s∗n and s∗n respectively, they satisfy the HJB equations

ρV n (s∗n) = H
∗
n

(
s∗n, V

′
n (s∗n)

)
and

(ρ+ λ)V n (s∗n) = H∗n
(
s∗n, V

′
n (s∗n) , λV n (s)

)
.

By subtracting the corresponding sides in (11) and (12), we obtain

H
∗
m

(
s∗n, V

′
n (s∗n)

)
= H

∗
n

(
s∗n, V

′
n (s∗n)

)
+ ρΓn,

and

H∗m
(
s∗n, V

′
n (s∗n) , V m (s∗n)

)
= H∗n

(
s∗n, V

′
n (s∗n) , λV n (s∗n)

)
+ (ρ+ λ)Γn.

Using the specific forms of H
∗
m and H∗m in (3) and (6), respectively, the equations become

s∗nV
′
n (s∗n)

(
θn − θm

)
(1− s∗n)− 1

2

[
s∗nV

′
n (s∗n)

]2 (
θ

2

n − θ
2

m

)
+hn − hm + ρΓn = 0,

(13)
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and

s∗nV
′
n (s∗n) (θn − θm) (1− s∗n)− 1

2

[
s∗nV

′
n (s∗n)

]2 (
θ2
n − θ

2
m

)
+hn − hm + λ

(
V n (s∗n)− V m (s∗n)

)
+ (ρ+ λ) Γn = 0,

(14)

respectively.

We immediately notice that the optimality condition before a mutation is modified in two ways, compared

to the condition after. First, we get that being subject to uncertainty induces the DM to use an augmented

discount rate, that is the sum of the pure rate of time preference and the hazard rate. This is a well-known

effect of considering the occurence of stochastic (exogenous) events in optimal control problems. To stay

close to the topic under scrutiny, this is actually similar to what is obtained in the “short-term analyses” of

optimal lockdown policy that assume that the planning horizon is finite but uncertain (Alvarez et al. 2021,

Jones et al., 2021 etc.), except that the source of uncertainty is different.12 Second, there is an extra term

that involves the difference of the value functions obtained in the two lockdown regimes, after the mutation.

This term represents the net benefit of operating under lockdown regime Ln, instead of Lm (the former being

the stricter regime iff Ln > Lm). It means that when contemplating the opportunity to take a lockdown

measure before a mutation, the DM has to take into account the net gain to be in a different lockdown

regime if and once a mutation occurs. This feature is very much in line with what Long et al. (2017) have

shown in different context.

The influence of stochastic mutation on impulse control raises a series of questions: how does the DM

adapt her policy to the risk of virus mutation? Is there an incentive to use lockdown as a prevention to a

potential mutation, or as an adaptation to an actual one? Does the prospect of a mutation hasten, or on

the contrary, delay lockdown measures? The next sections address these issues. To start with, we provide

necessary conditions for a lockdown measures and discuss them, then we also show sufficient conditions for

impulse controls.

3.2 Necessary conditions for impulse control

We investigate under which conditions the DM may want to take an impulse control Lm → Ln in mode m,

whatever the pandemic state. That is, we provide necessary conditions for an impulse control.

Theorem 2 If the impulse control Lm → Ln is taken for some s∗n ∈ (0, 1) after mutation, then

θm − θn
2(θm + θn)

≥ hn − hm + ρΓn. (15)

12These papers typically assume that the horizon is given by the arrival of a vaccine, modeled as a Poisson process, which
boils down to working with a deterministic infinite horizon optimal control problem with an increased discount rate (equal to
the sum of the rate of time preferences and the constant hazard rate) and salvage value function.
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If the impulse control Lm → Ln is taken for some s∗n ∈ (0, 1) before mutation, then

θm − θn
2(θm + θn)

≥ hn − hm + (ρ+ λ) Γn + λ
(
V n (s∗n)− V m (s∗n)

)
(16)

After a mutation, the necessary condition involves the net total cost, which is the sum of the lump-sum

cost and of the difference between operation costs (hn−hm), and the health net gain (θm− θn) of switching

lockdown regime. Then ,we observe that using the impulse control after a mutation has occurred can be

worth only when the health gain is sufficiently large and/or the cost imposed to society is low enough.

In the second scenario in which adopting lockdown measure is considered as a policy option before the

mutation is realized, the necessary condition is changed. Suppose first that the value functions after mutation

are the same. The eventuality of a lockdown regime switching in that scenario requires the health gain be

much larger. With different value functions, what happens after the mutation also matters. If the DM

expects that the overall cost of the pandemic is going to be larger (V n (.)− V m(.) > 0), once the mutation

occurs, in the new lockdown regime Ln, then the necessary condition becomes even harder to meet. If on

the contrary, the DM considers that the economy will be better prepared to handle the pandemic with the

new regime (V n (.)− V m(.) < 0), then the necessary condition for impulse control is less demanding.

For the sake of completeness, we can also provide sufficient conditions for an impulse control in any

regime. For that purpose, we need to introduce a couple of additional concepts. Let Uk (s) and Uk (s), for

k = m,n, be the solutions to the following HJB equations:

ρUk (s) = H
∗
k

(
s, U

′
k (s)

)
, for s ∈ (0, 1) , (17)

and

(ρ+ λ)Uk (s) = H∗k
(
s, U ′k (s) , λV k (s)

)
for s ∈ (0, 1) , (18)

where H
∗
k and H∗k are defined in (3) and (6), respectively, and V k is the value function in mode k after

mutation. We remark that Uk (s) and Uk (s) need not be the value functions. These are optimal values

without possibility of impulse control. Hence, by optimality of the value functions, it is necessary that

V k (s) ≤ Uk (s) , V k (s) ≤ Uk (s) for s ∈ (0, 1) , k = m,n.

Then, we can establish that:13

13Note that the results are presented in the most general way, i.e., hold for any pandemic regime
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Theorem 3 Suppose Γm+Γn > 0. Let Uk be either Uk after mutation, or Uk before mutation, for k = m,n.

The following claims are true.

1. If

hn − hm + ρΓn < 0 (19)

and

Um (1) < Un (1) + Γn. (20)

Then impulse control Lm → Ln must occur at some s∗ ∈ (0, 1).

2. If

hn − hm + ρΓn > 0 (21)

and

Um (1) > Un (1) + Γn (22)

Then Lm → Ln must occur at some s∗n ∈ (0, 1).

These sufficient conditions all sound pretty natural. For an interpretation, it is enough to focus on part

2. of Theorem 3. Consider that the impulse control Lm → Ln corresponds a tightening of the lockdown

policy. Then, logically the total net cost of the measure should be positive (hn−hm + ρΓn > 0). Given this,

condition (22) simply states that the DM has to find it worth to place the economy under the most restrictive

lockdown regime in the worst case scenario where a hundred percent of the population gets infected.

4 Dynamical system

Hereafter, we summarize the basic features of the dynamical system in any regime. This is a prerequisite for

the coming analysis of the potential outcomes for our problem.

4.1 General insights

The system dynamics in regime k before or after mutation is governed by the differential equation

ṡ = s
[
θk (1− s)−K − θ2

ksV
′
k (s)

]
(23)
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where θk and Vk are either θk and V k, or θk and V k, k = m,n. Since V ′k ≥ 0, from (4) and (7), s (t) is

decreasing over time if

θk (1− s) ≤ K. (24)

Hence, if θk ≤ K then s (t) monotonically decrease to 0 as t→∞.

If on the contrary, θk > K, the dynamic and the steady state analyses are more complicated as they

depend on the shape of the value function, vaccination policy, and of course are regime-dependent. Moreover,

as there is no boundary condition to the HJB equation, there may be infinitely many solutions, which makes

the study even more complicated. We come back to this issue in the next section. In the meantime, we

simply analyze the features of the dynamics within a particular regime and for a particular value function.

This will be enough to discuss the possible timing of impulse controls.

From equation (23), s = 0 is always one unstable steady state when θk > K. The other possible steady

states solve

θk(1− s) = K + θ2
ks V

′
k(s).

Denote the left hand side as f(s) = θk(1 − s) and right hand side as g(s) = K + θ2
ks V

′
k(s). At s = 0, we

have g(0) = K < f(0) = θk, while at s = 1, g(1) = K + θ2
kV
′
k(1) > K > f(1) = 0. So there exists at least

one non trivial (s 6= 0) steady state as well. Furthermore f ′(s) = −θk < 0, and

g′(s) = θ2
kV
′
k(s) (1− ε(s)) ≥ 0⇔ 1 ≥ ε(s)

where ε(s) = − sV
′′
k(s)

V ′k(s) (> 0) is the elasticity of marginal value function with respect to s. We observe that if

this elasticity is sufficiently low for all s ∈ [0, 1], which means that the DM is not too sensitive to a change in

the number of infected, then g(s) is monotonically increasing and thus the steady state is unique, ŝk ∈ (0, 1),

and is at least locally asymptotically stable.

In general however, there is an odd number of non trivial steady states. The infimum and the supremum

of the set of steady states, ŝk, s̃k, are such that 0 < ŝk ≤ s̃k < 1 and

lim
t→∞

s (t) = ŝk if 0 < s (0) < ŝk,

lim
t→∞

s (t) = s̃k if s̃k < s (0) ≤ 1.

Furthermore, since s̃k is a positive root of function on the right-hand side of (23), it follows that

θk (1− s̃k) = K + θ2
ks̃kV

′
k (s̃k) ≥ K.
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Hence,

s̃k ≤ 1− K

θk
≡ sk.

As apparent from the discussion above, the ranking between the θks and parameter K (efficiency of the

health system) is quite important when it comes to the pandemic dynamics. When θk < K, the share of

infected people decreases even in the absence of vaccination policy, r. This implies that this policy is only

useful to control the speed of decrease of the contagion. This may not sound like the most interesting case to

study. However, even in this case we cannot conclude that the public policy is of lesser importance because

it may well be that θk falls below K as a result of the lockdown measure. This would be the case if for

instance, after a mutation, θm > K > θn. Anyway, for the sake of completeness of the analysis, we consider

all of the possible cases.

4.2 Minimum value function and corresponding dynamical system

Hereafter we show the existence of a minimum value function when θm > K. This value function is partic-

ularly appealing given the nature of the optimization program. Selecting this one, that displays interesting

dynamic properties, will prove to be very useful for the analysis conducted in the next Section, and devoted

to the features of the optimal policy.

As mentioned above, in the case θm > K, the value function Um is not unique. For example, in a regime

after mutation, at a point s such that

Ūm (s) > qm (s) ≡ hm
ρ

+
β

2ρ
s2

the HJB equation

ρŪm = sθ̄mŪ
′
m (s) (sm − s)−

[
θ̄msŪ

′
m (s)

]2
2

+ ρqm (s)

leads to two possible vaccination rates,

r̄m (s) = θ̄msŪ
′
m (s) = sm − s±

√[
(sm − s)2

+ 2ρ
[
qm (s)− Ūm (s)

]]
,

which are both positive. Even if we choose r̄m (s) to be the smaller nonnegative root for any s, there are

still infinitely many solutions to the HJB equation.

Nonetheless, it can be shown that there exists a minimum solution among all possible solutions to the HJB

equation. This particular value function has the advantage of generating much simpler dynamics, thereby

allowing us to provide a clear characterization of outcomes in the long run. Lemma 1, in the Appendix D,
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constructs this minimum value function in the following way:

Suppose θm > K and either the regime is after mutation or before mutation with λ = 0. Let

s′m =
2sm

1 +
√

1 + 2β
ρ θmsm

(< 1) .

Denote Um (s) = Um (s; s′m) the solution of HJB (a nonlinear differential equation)

ρUm (s) = sθmU
′
m (s) (sm − s)−

[θmsU
′
m (s)]

2

2
+ ρqm (s) (25)

with boundary condition

Um (s′m; s′m) = qm (s′m) . (26)

Then, Lemma 1 establishes the following result: for 0 < s < 1, the function Um (s; s′m), that satisfies

U ′m (s; s′m) =
1

θms

[
sm − s−

√
(sm − s)2

+ 2ρ [qm (s)− Um (s; s′m)]

]
, (27)

is the minimum value function among all solutions to the HJB equation, and is associated with the minimum

(nonnegative) vaccination rate rm (s) = θmsUm (s; s′m) at all s.

Equipped with this minimum value function, we can conduct the analysis of the dynamical system to

obtain (Appendix E):

Proposition 1 Suppose θm > K, and either the regime is after mutation or before mutation with λ = 0.

For the value function Um (s; s′m), that is the solution of (25), we have

ds

dt

 > 0 if s < s′m,

< 0 if s > s′m.

In addition, s (t) reaches s′m in finite time from any point s > 0.

Obviously, under the assumption of the above proposition, s′m is the globally asymptotically stable long-

run steady state, which checks s′m ∈ (0, 1). This result will be extensively used in the next Section, where

we especially want to understand if being subject to a risk of mutation induces the DM to delay, or on the

contrary expedite the lockdown decision.
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5 Features of the optimal policy

From now one, for the ease of exposition, we pay attention to the following specific scenario (and replace

general indexes m,n with 0, 1):

h1 > h0, Γ1 > 0 = Γ0, θ0 > θ1, θ0 > θ1. (28)

All in all, this means that L0 is the reference situation with no lockdown constraints imposed upon

society, while L1 refers to the situation in which the economy is locked-down. Accordingly, the move

L0 → L1 corresponds to a lockdown of the economy (introduction of some constraints), whereas L1 → L0

captures a reopening (removal of these constraints). The ranking between cost and infection rate parameters

follow directly from this characterization.

In what follows, we first state some results—from general to more specific—about the features of the

solution, especially the timing for impulse controls. Then, we present the potential outcomes, and how they

relate to the evolution of the number of infected across time. Finally, we provide a numerical illustration to

highlight the main characteristics of the solution.

5.1 Timing for impulse control

Based on Theorem 2 and conditions (15)-(16), we can define critical levels for lockdown in every possible

regime:

δ1 = 2
θ0 + θ1

θ0 − θ1

[h1 − h0 + ρΓ1] ,

δ1 = 2
θ0 + θ1

θ0 − θ1

[
h1 − h0 + ρΓ1 + λ max

{0≤s≤1}

(
V 1 (s) + Γ1 − V 0 (s)

)]
,

δ0 = 2
θ0 + θ1

θ0 − θ1

[h1 − h0] ,

δ0 = 2
θ0 + θ1

θ0 − θ1

[
h1 − h0 + λ max

{0≤s≤1}

(
V 1 (s)− V 0 (s)

)]
.

Then, we obtain some general results connecting lockdown with reopening type of impulse controls’

occurrence (Appendix F):

Proposition 2 Suppose (28) holds. Let s∗0, δ0, V0 and U0 be either s∗0, δ0, V 0, and U0 after mutation,

respectively, or s∗0, δ0, V 0, and U0, respectively. The following are true.

1. If lockdown occurs at a point s∗1 ∈ (0, 1), then δ1 < 1. In this case, s∗1 that satisfies

s∗1 ≤ 1−
√
δ1. (29)
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Conversely, if lockdown does not occur at an interior point, then V0 (s) = U0 (s) for all s ∈ [0, 1]. In

this case, either V1 (s) = V0 (s) for all s ∈ [0, 1], or there is s∗0 ∈ (0, 1) such that

V1 (s) = V0 (s) for s ≤ s∗0,

V1 (s) < V0 (s) ≤ V1 (s) + Γ1 for s∗0 < s ≤ 1.
(30)

In the latter case reopening occurs at s = s∗0.

2. If reopening occurs at a point s∗0 ∈ (0, 1), then δ0 < 1. In this case, s∗0 that satisfies

s∗0 ≤ 1−
√
δ0. (31)

Conversely, if reopening does not occur at an interior point, then lockdown also does not happen at an

interior point. In this case

V1 (s) = V0 (s) = U0 (s) for 0 ≤ s ≤ 1. (32)

Proposition (2) has two parts, divided into two claims. The first claim in each part (conditions for

lockdown and reopening at an interior point) follows directly from Theorem 2. Let us then discuss the

second one. If a lockdown does not happen at an interior point where some individuals are infected, then

the DM does not impose lockdown at the current regime. In this case, by definition the value function

U0(s) yields the lowest social cost (V0(s) = U0(s)), and as lockdown is never beneficial. Then, there are

two possibilities. Either the social cost of lockdown is higher than that without lockdown, or the social cost

of lockdown is lower but adding the lumpsum start up cost the total cost is too high. In the former case

naturally the DM will never impose lockdown in the current regime, and if the regime is after mutation and

the state is locked down before mutation, once mutation occurs, the DM will immediately reopen. The latter

case can only happen if the share of the infected population is already high (s∗0 < s ≤ 1). In the case where

lockdown is imposed before mutation when the infected population is low, i.e., at some s ≤ s∗0, the DM

would immediately reopen when the mutation occurs. If the mutation occurs with high infected population,

i.e., at some s > s∗0, since the social cost with lockdown is lower, the DM will keep the state locked down

until the share of the infected people drops to s∗0, and then reopen at this moment.

Finally, if reopening does not occur at an interior point, the only possibility is that s∗0 = 1. This means

even if the entire population is infected, lockdown is not a choice. So, certainly lockdown does not happen

for any size of infected population.
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For an impulse control L0 → L1 to occur at an interior point, it is necessary that δ1 < 1 or δ1 < 1. Since

by (5)

V 1 (s) ≤ V 0 (s) ≤ V 1 (s) + Γ1

for all s ∈ [0, 1], it follows that δ0 is nonincreasing in λ whereas δ1 is nondecreasing in λ. Hence, reopening at

an interior point before mutation can be impossible without mutation, but becomes possible with mutation,

and lockdown can be possible without mutation, but becomes impossible with mutation. To be more precise,

based on the above results, we see that if reopening at an interior point is not possible after mutation, then

δ0 = 2
θ0 + θ1

θ0 − θ1

(h1 − h0)

is independent of λ, but

δ1 = 2
θ0 + θ1

θ0 − θ1

[h1 − h0 + (ρ+ λ) Γ1]

is strictly increased by a multiple of λ. This means lockdown before mutation can become less possible.

In addition, under specific conditions, we can show that the prospect of mutation delays both types of

impulse control before mutation (Appendix G).

Proposition 3

1. Suppose lockdown occurs before mutation at an interior point s∗1 (0) ∈ (0, 1) with λ = 0 which is less than

the least positive steady state. If after mutation lockdown does not occur at some s∗1 ≤ s∗1 (0), then there

is ε > 0 such that lockdown occurs at some s∗1 (λ) > s∗1 (0) for 0 < λ < ε. If after mutation lockdown

occurs at some s̄∗1 < s∗1 (0), then there is ε > 0 such that lockdown occurs at some s∗1 (λ) ≤ s∗1 (0) for

0 < λ < ε.

2. Suppose θ1 < K and that reopening occurs before mutation at an interior point s∗0 (0) ∈ (0, 1) with

λ = 0. If after mutation reopening occurs at some s̄∗0 < s∗0 (0), then there is ε > 0 such that reopening

occurs at some s∗0 (λ) < s∗0 (0) for 0 < λ < ε. If after mutation reopening occurs at some s̄∗0 > s∗0 (0),

then there is ε > 0 such that reopening occurs at some s∗0 (λ) ≥ s∗0 (0) for 0 < λ < ε.

The proof is built on the comparison between threshold levels for impulse control, in the absence of

uncertainty, in the pandemic conditions of before vs. after a mutation. Based on this comparison, we can

then determine whether being subject to a risk of mutation makes one delay or on the contrary expedite

impulse control. We further consider scenarios in which in the absence of policy intervention, the share of

infected would increase in every pandemic regime. The first part of Proposition 3 deals with the impact of
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uncertainty about the virus on the lockdown decision. We obtain that if in the absence of uncertainty, it

would be optimal for the DM to take the lockdown decision “sooner” in the worst case scenario (in terms of

infectivity) than in the best case one, then uncertainty expedites lockdown. Put differently, the prospect of

a “bad mutation” at some uncertain future date induces the DM to act more cautiously. In this particular

context, this boils down to imposing a lockdown sooner (than in the absence of risk of mutation) in order

to be better prepared to the future likely event of a mutation. On the contrary, the risk of experiencing a

good mutation delays lockdown measures. In this case, given the costs of this policy (that are known for

sure) and its uncertain, yet likely low, benefit, the DM prefers to wait and see the evolution of the pandemic

situation before taking this kind of decision. The second part of the Proposition provides symmetric results

for reopening decision: a bad mutation delays reopening before it happens and then decision is surrounded

by uncertainty, and a good one does the opposite.

We can draw a parallel between our conclusions and the two main strands of the literature on decision

making under uncertainty. First and foremost, there is a long tradition of papers studying the impact of

the occurrence of random events on optimal decision making dating back to Dasgupta and Heal (1974)

and Cropper (1976). Many papers precisely ask how being subject to costly (sometimes catastrophic) events

shapes decisions, with many applications in environmental and resources economics (see Crepin and Naedval,

2020, for a recent overview of the literature). One of the main messages is that the optimal response to

a risk of costly event is to behave more cautiously (in terms of resource extraction or polluting emissions

for instance). Our result in the bad mutation case clearly echoes those obtained in the literature, and

extends them to the class of impulse controls. Second, these results also have a broader connection with the

real option value literature (Dixit and Pindyck, 1994) that emphasizes the role of uncertainty and learning

in forming decisions (see Bandyophadyay et al., 2021, Gollier, 2020b, for contributions on the control of

epidemics). In our setting, because the DM can take the lockdown and reopening decisions whenever she

wants, there exists (at least in the good mutation case) an incentive to wait and possibly experience the

mutation before acting, as upon a mutation, the information about the disease contagiousness is revealed.

5.2 Possible outcomes

Assuming (28), then by (5) and (8),

V1 (s) ≤ V0 (s) ≤ V1 (s) + Γ0 for s ∈ [0, 1]
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for both before and after mutation, where Vk is either V k or V k for k = 0, 1. Furthermore, since h1 > h0,

and

Uk (0) =
hk
ρ

for k = 0, 1,

it follows that

V1 (0) ≤ V0 (0) ≤ h0

ρ
< U1 (0) .

Hence, V1 (s) 6= U1 (s) for small s. This implies that

V1 (s) = V0 (s) (33)

for s sufficiently small. Either (33) holds for all s ∈ [0, 1] or there is s∗0 ∈ (0, 1) such that (33) holds only for

0 ≤ s ≤ s∗0.

In case s∗0 exists,

V1 (s) < V0 (s) < V1 (s) + Γ1 (34)

holds for s > s∗0 and is near s∗0. Either (34) holds for all s ∈ (s∗0, 1] or there is s∗1 < 1 such that (34) only

holds for s∗0 < s < s∗1. For s > s∗1 the relation

V0 (s) = V1 (s) + Γ1

must hold.

With this in mind, we can discuss the features of the solution, in terms of impulse control and induced

evolution of the pandemic. This discussion is conducted whatever the pandemic regime. In order to have

a full picture of the optimal, one will then have to combine the properties of the solution before mutation,

given that a mutation will occur eventually (i.e. before the steady state is achieved), with the ones of the

solution after, when there is no more room for a mutation of the virus. There are three possible scenarios. In

all scenarios, we provide figures representing the ranking between value functions and how it evolves across

time.

5.2.1 Case 1: Neither s∗0 nor s∗1 exists

Since neither s∗0 nor s∗1 exists, V0 (s) = V1 (s) for all s ∈ [0, 1].

If at t = 0 the economy is locked down, then it is optimal for the DM to reopen immediately. In the

un-locked down regime, lockdown will never happen. If θ0 ≤ K, the s (t) decreases to zero as t → ∞. If
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Figure 1: Neither s∗0 nor s∗1 exists

θ0 > K, then

lim
t→∞

s (t) = s̃0 if s (0) > s̃0,

lim
t→∞

s (t) = ŝ0 if s (0) < ŝ0.

This is the situation in which the impact of the pandemic is not so severe and/or the economic and social

cost of a lockdown is too large for the DM to find it optimal to place the economy under a lockdown for a

non-degenerated period of time (see the reverse conditions of those imposed in Theorem 2). There is also

no room for reopening at an interior point, t ∈ (0,∞).

5.2.2 Case 2: Only s∗0 exists

In this case, for s ≤ s∗0, V1 (s) = V0 (s) and for s∗0 < s ≤ 1,

V1 (s) < V0 (s) < V1 (s) + Γ1. (35)

Then depending on the initial state of the pandemic, the impulse control decision can be the following.

If at t = 0 the state is locked down and s (0) ≤ s∗0, reopening immediately occurs. The state of the

pandemic is so low that it is optimal to remove the lockdown as soon as possible. Then s (t) → ŝ0 if

s (0) < ŝ0 and s (t) → s̃0 if s (0) > s̃0. On the other hand, if s (0) > s∗0 while the state is locked down,

s (t) converges to a steady state or decreases to s∗0. In the latter case reopening occurs as s (t) reaches s∗0,

and then the state remains open and s (t) converges to a steady state. So, when the initial share of infected

people is sufficiently high, it is optimal for the DM to keep the lockdown in operation until the pandemic

situation is under control again. A permanent lockdown is possible otherwise.

As in Case 1, if at t = 0 the state is not locked-down, lockdown will not occur, and s (t) will converge to
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a steady state. In the case θ0 ≤ K, s (t) decreases to zero. Otherwise, s (t) converges to a nonzero steady

state. The value functions are now depicted by Figure 2.

Figure 2: Only s∗0 exists

5.2.3 Case 3: Both s∗0 and s∗1 exist

This is the richest case that provides the most diverse scenarios, as depicted by Figure 3.

Figure 3: Both s∗0 and s∗1 exist

As shown in the graph, for s ≤ s∗0, V1 (s) = V0 (s). For s∗0 < s < s∗1, (35) holds, and for s∗1 ≤ s ≤ 1,

V0 (s) = V1 (s) + Γ1.

If at t = 0 the state is locked down and s (0) ≤ s∗0, reopening immediately occurs. After that, either

s (t) approaches to a steady state and the state remains un-locked down, or s (t) approaches to s∗1 triggering

lockdown. In the latter case, either s (t) approached a steady state while the state remains locked down, or

it approaches s∗0 triggering reopening. In the latter case s (t) will approach to s∗1 and trigger lockdown again.

The pattern repeats until the virus mutate if one considers the situation before a mutation. So in the case,

we obtain a quite sophisticated whereby the DM adapts to the evolution of the pandemic by switching-on

and off the lockdown button. As expected, beside the vaccination policy, the DM uses the impulse control to
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manage the spread of the virus across the population. When the situation gets worse, she take the lockdown

decision that is later removed when it improves.

Before we move to a numerical example, let us conclude this discussion with an additional result regarding

the asymptotic behavior of the system (Appendix H).

Proposition 4 Suppose (28) holds. If θ0 > K, then s (t) does not converge to zero. If θ0, θ1 ≤ K, then the

state is un-locked down for large t and s (t) converges to zero.

Going back to a previous remark, the ranking between the θks, and especially θ0 the infection rate in the

absence of lockdown, and K is crucial to characterize the asymptotic behavior of the optimal solution. When

θ0 > K, the share of infected people will converge to a positive value whatever the case. The public policy

proves itself worth for controlling the pandemic, but it never allows the system to erase it. By contrast,

in the best case scenario where the health system is very efficient, θ0, θ1 ≤ K, the pandemic will necessary

vanish eventually, making the vaccination and lockdown policy less essential.

5.3 Numerical example

For the illustration, we consider two examples. In line with the discussion above, we compare the situation

where imposing a lockdown allows the economy to bring back the infection rate below K whatever the

pandemic regime with the situation where it does not.

5.3.1 Example 1

Here we use the following set of parameter values:

K = 0.4, ρ = 0.2, β = 0.5,

λ = 0.3, Γ1 = 0.2, h0 = 0, h1 = 0.04.

We first consider the case in which the disease transmission rates are

θ̄0 = 2, θ1 = 0.2, θ0 = 1.75, θ1 = 0.1.

Thus, after mutation, the transmission rates with and without lockdown are both increased.

The graphs of the value functions V 0 and V 1 after mutation are shown below (see Figure 4). The value

functions before mutation have similar graphs.
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Figure 4: Value functions in example 1

Dynamics: The point of intersection between V̄0 and V̄1 + Γ1, at which the lockdown comes into force, is

s̄∗1 ≈ 0.345, whereas the point for reopening is s̄∗0 ≈ 0.00048. Computation shows that

ds

dt
=

 θ̄0 (1− s)−K − θ̄0sV̄
′
0 (s) > 0 for s < s̄∗1, and

θ̄1 (1− s)−K − θ̄1sV̄
′
1 (s) < 0 for s ∈ [0, 1] .

(36)

Therefore, before lockdown, s (t) increases to s̄∗1, triggering lockdown, and after lockdown, s (t) decreases to

s̄∗0, triggering reopening.

A similar pattern is observed before a mutation, however with different switching points. The lockdown

point is s∗1 ≈ 0.4 and the reopening point is s∗0 ≈ 0.0095. The dynamics are still given by (36), when replacing

upper bars by lower bars. So s (t) increases to s∗1 triggering lockdown, and after lockdown, s (t) decreases to

s∗0 triggering reopening.

Vaccination rates: The numerical illustration is interesting because it allows us to investigate further

the interplay between lockdown and vaccination policies. For both before and after mutation, computations

show that the vaccination rates, rk (s) ≡ θksV ′k (s) are increasing in s, and r0 (s) is much greater than r1 (s).

This perfectly illustrate what we already noticed: lockdown and vaccination policies are substitutes in the

eyes of the DM. One indirect benefit of imposing a lockdown is that the need for vaccination becomes urgent.

See the illustration below, for the regime after a mutation.

Effect of mutation on impulse controls before mutation: Finally, we highlight the impact of the

risk of mutation on the impulse control by comparing lockdown and reopening points with and without the
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Figure 5: Comparison between vaccination rates with and without a lockdown

risky mutation. If there is no possibility of mutation, the point of lockdown changes to s∗1(0) ≈ 0.425, and

the point of reopening changes to s∗0(0) ≈ 0.001. So both thresholds are smaller with λ = 0.3 than with

λ = 0 (no mutation). This means the prospect of mutation expedites lockdown and delays reopening before

mutation. These results clearly confirms Part 1 of Proposition 3 regarding the case where s̄∗1 < s∗1 (0) (note

that s∗1 ≈ 0.345 < 0.425 ≈ s∗1(0)) and Part 2 of Proposition 3 (note that s̄∗0 ≈ 0.00048 < 0.001 ≈ s∗0 (0)).

For comparison, let us consider a case of “good” mutation with the disease transmission rates

θ̄0 = 1.8, θ̄1 = 0.2, θ0 = 1.75, θ1 = 0.3.

So, after mutation the transmission rate without lockdown is somewhat increased, but that with lockdown

is decreased. Computations show that in this case the lockdown point after mutation is s̄∗1 ≈ 0.39. On the

other hand, the lockdown point before mutation when there is no risk of mutation is s∗1 (0) ≈ 0.385, and

with risk of mutation when λ = 0.3 is s∗1 (0.3) ≈ 0.43. Hence, the prospect of mutation delays the lockdown

before mutation. This confirms Part 1 of Proposition 3 regarding the case where s̄∗1 > s∗1 (0). It is interesting

to note that the steady state before mutation is approximately 0.408, which is between s∗1 (0) and s∗1 (0.3).

Hence, without prospect of mutation the DM will lockdown before the number of infected people reaches the

steady state, but with prospect of mutation the DM would delay lockdown so much as to letting the number

of infected people reaches the steady state. After mutation, the steady state is approximately 0.406, which

exceeds the lockdown point (0.39). Hence, the steady state is never reached.

The reopening points also confirms the result in Proposition 3, with

s̄∗0 ≈ 0.0011 < 0.0018 ≈ s∗0 (0) ≈ s∗0 (0.3) .
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5.3.2 Example 2

We now present an example such that after mutation, θ0 > θ1 > K. Using the same parameter values for

K, ρ, and β, and further supposing

θ0 = 0.8, θ̄1 = 0.6, Γ1 = 0.03, h0 = 0, h1 = 0.02.

By computation, lockdown occurs at an interior point s∗1 ≈ 0.13 and the graph of the value functions

V 0 and V̄1 are depicted in Figure 6. Without possibility of lockdown, there exists a unique steady state is

Figure 6: Value functions, example 2

s̄ ≈ 0.37. After lockdown, the unique steady state is changed to s ≈ 0.28. Then, there are three possible

outcomes:

Case 1. Mutation occurs when the state is not locked down and with s0(tω) < s̄∗1, where tω is the time when

mutation occurs. In this case s (t) first increases to s̄∗1, which triggers lockdown. Then s (t) continue

to increase to the steady state s̄.

Case 2. Mutation occurs when the state is not locked down and at s0(tω) ≥ s̄∗1. In this case lockdown

immediately happens, and s (t) approaches to the steady state s̄.

Case 3. Mutation occurs when the state is locked down. Then the state remains locked down while s (t)

converges to s̄.

In this second example, we take the worst case scenario (infection rate always larger than K, inducing a

worsening of the pandemic), and observe that the system is always locked down eventually.
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6 Conclusion

This is the first paper that combines lockdown as an impulse control, vaccination and uncertainty surrounding

the evolution of the transmission rate to analyze the optimal control of a pandemic. The aim of the paper

is to analyze the interplay between lockdown decisions and random mutations. Lockdown is modeled as

an impulse control that allows the system to switch from one regime of restrictions to another (stricter or

softer). This can be a valuable option, together with vaccination, to control the spread of the disease. More

fundamentally, in our setting, lockdown can serve as a way to anticipate a mutation or to respond to it.

Indeed, decisions are taken under the risk of mutations of the disease, with repercussions on the transmission

rate. The decision maker follows a cost minimization objective. In a simplified model where the virus can

mutate only once and there exist only two lockdown regimes, we first characterize the optimality conditions

for impulse control and show how the prospect of a mutation affects the decision maker’s choice. In fact, it

induces her to anticipate the relative benefit of a regime change after a mutation has occurred, which may

or may not increase the incentive to set a lockdown. Under some parametric conditions, our problem admits

infinitely many value functions. We then show the existence of a minimum value function that is a natural

candidate to the solution given the nature of the optimization program. We finally study the features of

the optimal policy and notably prove that uncertainty surrounding future mutation of the disease expedites

lockdown intervention whenever mutation increases contagiousness. This conclusion strikingly echoes those

of the literature dealing with the impact of the occurrence of (random) costly events on decision making,

and extends them to the classe of impulse control.
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A Proof of Theorem 1

Suppose DM takes the impulse control Lm → Ln after mutation at s∗ ∈ (0, 1). Then the value function

V m (s) satisfies the HJB equation

ρV m (s) = H
∗
m

(
s, V

′
m (s)

)
(37)

where H∗m (s, µ) is given by (3). The differential equation is supplemented by the boundary condition (9).

The HJB equation is quadratic in V
′
m (s). Let Qm (s, ν) be the minimum positive root, µ, of the equation

ρν = H∗m (s, µ)

if solution exists, we can write the equation in the form

V
′
m (s) = Qm

(
s, V m (s)

)
Thus V m (s) satisfies the integral equation

V m (s) = V n (s∗) + Γn +

∫ s

s∗
Qm

(
u, V m (u)

)
du

for s on the side of s∗ on which the HJB equation holds equal. Since the DM chooses s∗ to maximize V m (s),

the derivative of the right-hand side with respect to s∗ vanishes. Hence

V
′
n (s∗)−Qm

(
s∗, V m (s∗)

)
= 0.

By the terminal condition (9), we also have

V
′
n (s∗)−Qm

(
s∗, V n (s∗) + Γn

)
= 0

which is equivalent to (11). This proves the first part of the proposition.

Suppose the impulse control Lm → Ln is taken before mutation at s∗ ∈ (0, 1). Then for s on the side of

s∗ the value function V m (s) satisfies the HJB equation

(ρ+ λ)V m (s) = H∗m
(
s, V ′m (s) , V m (s)

)
(38)

for s on the side of s∗ before the impulse control is taken, where H∗m (s, µ,W ) is given by (6). In addition,

V m also satisfies the boundary condition (10). Let Q
m

(s, ν,W ) be the minimum positive root, µ, of the
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equation

(ρ+ λ) ν = H∗m (s, µ,W ) ,

if the root exists. Then

V m (s) = V n (s∗) + Γn +

∫ s

s∗
Q
m

(
u, V m (u) , V m (u)

)
du.

Differentiate the right-hand side with respect to s∗. It follows from the terminal condition that

V ′n (s∗)−Q
m

(
s∗, V n (s∗) + Γn, V m (s∗)

)
= 0.

This leads to (12). The proof is complete.

B Proof of Theorem 2

To prove (15), we note that equation (13) is quadratic in s∗nV
′
n (s∗n). For this equation to be solvable, it is

necessary that

(1− s∗n)
2

+ 2
θm + θn

θn − θm
[hn − hm + ρΓn] ≥ 0.

As s∗n ∈ (0, 1), we further need to impose that the RHS is not greater than 1, which leads to (15).

Similarly, equation (14) is quadratic in s∗V ′n (s∗). To have a real root, it is necessary that

(1− s∗n)
2

+ 2
θm + θn
θn − θm

[
hn − hm + (ρ+ λ) Γn + λ

(
V n (s∗n)− V m (s∗n)

)]
≥ 0.

Again, because s∗n ∈ (0, 1), the RHS must be no greater than 1, so we get (16).

C Proof of Theorem 3

Part 1. Suppose (19) and (20) both hold but Lm → Ln does not occur at an interior point s∗ ∈ (0, 1). We

first show that Vm (0) 6= Um (0). From HJB equations (17) and (18) we find

Um (0) =
hm
ρ
, Um (0) =

hm + λV m (0)

ρ+ λ
for m = 0, 1. (39)
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In the case after mutation, by (19) V m (0) 6= Um (0) since otherwise

V m (0) =
hm
ρ

>
hn
ρ

+ Γn ≥ V n (0) + Γn,

violating (5) at s = 0. In the case before mutation, since

V m (0) =
hn
ρ

+ Γn, V n (0) =
hn
ρ
,

by (39)

Um (0) =
hm + V m (0)

ρ+ λ
>
hn
ρ

+ Γn, Un (0) =
hn + λhn/ρ

ρ+ λ
=
hn
ρ
.

Hence, we again have V m (0) 6= Um (0).

Since the regime change does not occur, we must have Vm (s) = Vn (s) + Γn for s ∈ [0, 1]. This equivalent

to

Vn (s) = Vm (s)− Γn < Vm (s) + Γm.

By (5) or (8) with n and m interchanged, we have satisfies

ρV n (s) = H
∗
n (s, V ′n (s)) or ρV n (s) = Hn

(
s, V ′n (s) , λV n (s)

)
(40)

for s ∈ (0, 1). Therefore, Vn (s) = Un (s) for s ∈ (0, 1). However, by (20),

Vm (1) ≤ Um (1) < Un (1) + Γn = Vn (1) + Γn.

This is a contradiction.

Part 2. Suppose (21) and (22) both hold but Lm → Ln does not occur at an interior point. We show

that Vm (0) 6= Vn (0) + Γn. If Vm (0) = Vn (0) + Γn holds, then

Vn (0) = Vm (0)− Γn < Vm (0) + Γm.

In the case after mutation, V n (s) satisfies the first equation in (40). Therefore V n (0) = hn/ρ. However, by

(21)

V m (0) ≤ Um (0) =
hm
ρ

<
hn
ρ

+ Γn = V n (0) + Γn.

This is a contradiction. Hence V m (0) < V n (0) + Γn. In the case before mutation, Since V m (0) = hm/ρ
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and V n (0) = hn/ρ, by (39)

Um (0) =
hm + λV m (0)

ρ+ λ
=
hm
ρ
, Un (0) =

hn + λV n (0)

ρ+ λ
=
hn
ρ
.

Since V n (s) satisfies the second equation in (40), it follows that V n (0) = Un (0) = hn/ρ. This again leads

to

V m (0) ≤ Um (0) =
hm
ρ

<
hn
ρ

+ Γn = V n (0) + Γn,

contradicting the assumption. Hence, in any case Vm (0) 6= Vn (0) + Γn.

By (5) and (8), Vm (s) satisfies either

ρV m (s) = H
∗
m

(
s, V

′
m (s)

)
or (ρ+ λ)V m (s) = H∗m

(
s, V ′m (s) , λV m (s)

)
(41)

for s near 0. Since Lm → Ln does not occur, it follows that Vm (s) ≤ Vn (s) + Γn. In particular, Vm (1) ≤

Vn (1) + Γn. Furthermore, Vm (s) satisfies (41) for all s ∈ (0, 1). Thus Vm (s) = Um (s) for all s ∈ (0, 1).

Therefore, by (22),

Vm (1) = Um (1) > Un (1) + Γn ≥ Vn (1) + Γn.

This is a contradiction. Thus Lm → Ln must occur at an interior point.

The proof is complete.

D Minimum value function

Lemma 1 Suppose θm > K and either the regime is after mutation or before mutation with λ = 0. Let

s′m =
2 (θm −K)

θm

[
1 +

√
1 + 2β

ρ (θm −K)
] .

Then, there is s′′m > s′m such that for any s0 ∈ (s′m, s
′′
m) the HJB equation

ρUm (s) = sU ′m (s) [θm (1− s)−K]− [θmsU
′
m (s)]

2

2
+ ρqm (s) (42)

has a solution Um (s; s0) that satisfies

Um (s0; s0) = qm (s0) (43)
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and

U ′m (s; s0) =
1

θms

[
sm − s−

√
(sm − s)2

+ 2ρ [qm (s)− Um (s; s0)]

]
for 0 < s < s0. (44)

Furthermore, Um (s; s0) is increasing in s0.

To prove this, let

M = min
0≤s≤1

{
(sm − s)2

2ρ
+ qm (s)

}

with sm = 1−K/θm, and let s′′m satisfies

qm (s′′m) = M.

It can be shown that s′m < s′′m < sm. Let Um (s; s0) be the solution to the HJB equation (42) with the initial

condition (43), where s0 satisfies s′m ≤ s0 ≤ s′′m.

We first show that Um (s; s0) exists and is positive for all s ∈ (0, s0). To see that Um (s; s0) exists for all

s ∈ (0, s0), it suffices to show that the right-hand side of (44) is real for such s. If not, then there is some

s1 ∈ (0, s0) such that the quantity in the square root is positive for s1 < s < s0 and it becomes zero at

s = s1. This implies that

Um (s1; s0) =
(sm − s1)

2

2ρ
+ qm (s1) < Um (s0; s0) = qm (s0) .

However, since qm (s) is increasing and s0 ≤ s′′m, it follows that

qm (s0) ≤ qm (s′′m) = min
0≤s≤1

{
(sm − s)2

2ρ
+ qm (s)

}
≤ (sm − s1)

2

2ρ
+ qm (s1) .

This is impossible. Therefore, the right-hand side of (44) is real for all 0 < s ≤ s0.

We next show that Um (s; s0) > qm (s) for 0 < s < s0. If this is not true, then there is s2 ∈ (0, s0) such

that Um (s; s0) > qm (s) for s2 < s < s0 and Um (s2; s0) = qm (s2). Therefore,

U ′m (s2; s0) = lim
h→0

Um (s2 + h; s0)− Um (s2; s0)

h

≥ lim
h→0

qm (s2 + h)− qm (s0)

h
= q′m (s2) =

β

ρ
s2 > 0.

However, by (44), U ′m (s2; s0) = 0, contradicting the above inequalities.

This proves the existence and positivity of Um (s; s0) for 0 < s < s0.

At s = s0, the right-hand side of (44) vanishes, while q′m (s0) > 0. Hence, if Um continue to satisfy (44),

one would have Um (s; s0) < qm (s) for s > s0 and is near s0. However, this would lead to U ′m (s; s0) < 0.
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Hence it is necessary that

U ′m (s; s0) =
1

θms

[
sm − s+

√
(sm − s)2

+ 2ρ [qm (s)− Um (s; s0)]

]
for s > s0. (45)

It follows that

lim
s→s+0

U ′m (s; s0) =
2 (sm − s0)

θms0
.

To ensure Um (s; s0) ≤ qm (s) for s > s0, it is necessary that the above slope is less than that of qm at s0.

I.e.,

2 (sm − s0)

θms0
≤ q′m (s0) =

β

ρ
s0.

Hence

βθms
2
0 ≥ 2ρ (sm − s0) .

This inequality leads to

s0 ≥
2 (θm −K)

θm

[
1 +

√
1 + 2β

ρ (θm −K)
] = s′m.

We next show the solution of (45) with initial condition (43) exists for all s0 ≤ s ≤ 1. We first show

that Um (s; s0) < qm (s) for s > s0. If it is not true, then there is s3 > s0 such that Um (s; s0) < qm (s) for

s0 < s < s3 and Um (s3; s0) = qm (s3). Hence

U ′m (s3; s0) = lim
h→0

qm (s3)− Um (s3 − h; s0)

h

≥ lim
h→0

qm (s3)− qm (s3 − h)

h
= q′m (s3) =

β

ρ
s3.

On the other hand, by (45)

U ′m (s3; s0) =
2 (sm − s3)

θms3
if s3 < sm or U ′m (s3; s0) = 0 if s3 ≥ sm.

The latter case is obviously impossible. The former case leads to

θmβs
2
3 ≤ 2ρ (sm − s3)

and so s3 ≤ s′m ≤ s0. It is also impossible. So, no such s3 exists.

Since Um (s; s0) < qm (s) for all s > s0, the right-hand side of (45) exists and is positive for such s. This

proves that Um (s; s0) exists and is increasing for s > s0.
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It remains to show that Um (s; s0) is increasing in s0. Suppose s′m ≤ s′0 < s′′0 ≤ s′′m. By definition,

Um (s′0; s′0) = qm (s′0) < Um (s′0; s′′0) .

Suppose there is an s4 ∈ (0, 1) such that Um (s4; s′0) = Um (s4; s′′0). If s4 < s′0, then both Um (s; s′0) and

Um (s4; s′′0) are solutions to the initial value problem

Y ′ (s) =
1

θms

[
sm − s−

√
(sm − s)2

+ 2ρ [qm (s)− Y (s)]

]
for s < s4,

Y (s4) = Um (s4; s′0) = Um (s4; s′′0) .

This contradicts the uniqueness of solution. (Note that the right-hand side of the differential equation

satisfies the Lipschitz condition.) If s > s′′0 , then both Um (s; s′0) and Um (s4; s′′0) are solutions to the initial

value problem

Z ′ (s) =
1

θms

[
sm − s+

√
(sm − s)2

+ 2ρ [qm (s)− Z (s)]

]
for s < s4,

Z (s4) = Um (s4; s′0) = Um (s4; s′′0) ,

again violating the uniqueness of solution. Finally, for any s′0 < s < s′′0 we have

Um (s; s′0) < qm (s) < Um (s; s′′0) .

So no such s4 exists. This proves the monotonicity of Um (s; s0) with respect to s0.

The proof of the lemma is complete.

Based on the above lemma, Um (s; s′m) is the minimum value function among all solutions to the HJB

equation with least nonnegative vaccination rate rm (s) at all s.

E Proof of Proposition 1

We first show that ds/dt < 0 for s > s′m. By (45) with s0 = s′m,

θmsU
′
m (s; s′m) = sm − s+

√
(sm − s)2

+ 2ρ [qm (s)− Um (s; s′m)].
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Hence,

θmsU
′
m (s; s′m)

 > 2 (sm − s) if s′m < s ≤ sm

> 0 if s > sm.

In view of (23),

ds

dt
= θm (1− s)−K − θ2

msU
′
m (s) < −θm [sm − s] ≤ 0

if s′m < s ≤ sm, and

ds

dt
≤ sm − s < 0

if s > sm. Furthermore,

lim
s→s′+m

θmsU
′
m (s) = 2 (sm − s′m) .

Hence,

lim
s→s′+m

ds

dt
= θm (1− s′m)−K − 2θm (sm − s′m)

= − (θm −K) +
2 (θm −K)

1 +
√

1 + 2β
ρ (θm −K)

< 0.

Hence, ds/dt has negative upper bound for s > s′m. Consequently, s (t) decreases to s′m in finite time from

any initial value s (t0) > s′m.

We next show that ds/dt > 0 if s < s′m. For such s,

θmsU
′
m (s) = sm − s−

√
(sm − s)2

+ 2ρ [qm (s)− Um (s)]

< sm − s

if the regime is after mutation or before mutation with λ = 0. Hence,

ds

dt
= θm (1− s)−K − θ2

msU
′
m (s) > 0 for s < s′m.

In addition, as s→ s′m from left, θmsU
′
m (s)→ 0. Hence

ds

dt
→ θm (sm − s′m) = θm −K −

2 (θm −K)

1 +
√

1 + 2β
ρ (θm −K)

> 0.

Hence, ds/dt has a positive lower bound for s < s′m. Therefore, s (t) increases to s′m in finite time. This

completes the proof of the proposition.
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F Proof of proposition 2

Relations (29) and (31) directly come from the definitions of theδs and conditions stated in Theorem 2.

Suppose L0 → L1 does not occur at a finite time. Then V0 (s) satisfies the HJB equation (37) after

mutation or (38) before mutation for all s ∈ (0, 1). Hence, V0 (s) = U0 (s) for s ∈ [0, 1]. Furthermore, by (5)

or (8)

V1 (s) ≤ V0 (s) ≤ V1 (s) + Γ1 for all s ∈ [0, 1] .

From HJB equations (17) and (18) we find

Um (0) =
hm
ρ
, Um (0) =

hm + λV m (0)

ρ+ λ
for m = 0, 1.

Since h1 > h0, it follows that from V1 ≤ V0 that

V 1 (0) = V 0 (0) =
h0

ρ
< U1 (0) .

This leads to

U0 (0) =
h0 + λh0/ρ

ρ+ λ
=
h0

ρ
, U1 (0) =

h0 + λh1/ρ

ρ+ λ
>
h0

ρ
.

Hence,

V 1 (0) ≤ V 0 (0) =
h0

ρ
< U1 (0) .

Therefore, in any case, V1 (s) 6= U1 (s) for small s. Hence V1 (s) = V0 (s) for small s. If there is s ∈ [0, 1] such

that V1 (s) < V0 (s), then the infimum of such s is the transition point between locked down and unlockdown.

I.e., it is the point of reopening, s∗0. So, (30) holds. If there is no such point s ∈ [0, 1], then V1 (s) = V0 (s)

for all s ∈ [0, 1]. This proves Part 1.

Suppose reopening occurs at a finite time. Furthermore, by (15),

δ0 ≡ 2
θ0 + θ1

θ0 − θ1
[h1 − h0] ≤ (1− s∗0)

2
< 1.

The above inequality also implies (31).

Suppose L1 → L0 does not occur at a finite time. Since h1 > h0, V1 (s) does not satisfy the HJB equation.

Hence V1 (s) = V0 (s) for small s. It is not possible that V1 (s) < V0 (s) for some s ∈ (0, 1), because, otherwise,

at the infimum of such s is L1 → L0 takes place. Hence, V1 (s) = V0 (s) for all s ∈ [0, 1]. This implies that

V0 (s) < V1 (s) + Γ1 for all s ∈ (0, 1). Hence, lockdown does not happen at an interior point. Hence, by (5),

V0 (s) satisfies the HJB equation for all s. Therefore V0 (s) = U0 (s) for s ∈ [0, 1]. This proves Part 2.
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G Proof of Proposition 3

G.1 Part 1

We define a function F1 by

F1 (s) = sV ′1 (s;λ) (1− s) (θ1 − θ0)− 1

2

[
sV ′1 (s;λ)

]2 (
θ2

1 − θ
2
0

)
+ α (h1 − h0) + ρΓ1

where V 1 (s;λ) satisfies

(ρ+ λ)V 1 (s;λ) = H∗1
(
s, V ′1 (s;λ) , λV̄ (s)

)
. (46)

Then (14) with m = 0 and n = 1 can be written as

F1 (s∗1 (λ)) + λ
[
V̄1 (s∗1 (λ) ;λ)− V̄0 (s∗1 (λ) ;λ) + Γ1

]
= 0. (47)

Suppose after mutation lockdown does not occur at s∗1 (0), by (5),

V̄1 (s)− V̄0 (s) + Γ1 > 0 for s greater than and is near s∗1 (0) .

It follows that the second term on the left-hand side of (47) is positive for λ positive and small. Hence

F1 (s∗1 (λ)) < 0 (48)

for such λ. We show that F1 (s) > 0 for s < s∗1 (0) and is near s∗1 (0). Once proven, it would imply

s∗1 (λ) > s∗1 (0) for λ positive and small.

In terms of H∗1 and H∗0 defined in (6), (47) with λ = 0 is equivalent to

H∗1
(
s∗1 (0) , V ′1 (s∗1 (0) ; 0) , 0

)
= ρV 1 (s∗1 (0) ; 0)

H∗0
(
s∗1 (0) , V ′1 (s∗1 (0) ; 0) , 0

)
= ρ [V 1 (s∗1 (0) ; 0) + Γ1] .

The equations are quadratic in s∗1 (0)V ′1 (s∗1 (0) ; 0). We write the second equation as

V ′1 (s∗1 (0) ; 0) = Q
0

(s∗1 (0) , V 1 (s∗1 (0) ; 0) + Γ1, 0) .
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Since s∗1 (0) is before any steady state, by Proposition 1, s∗1 (0) < s′0 which is the intersection of V 0 (s) and

q
0

(s) ≡ αh0

ρ
+

β

2ρ
s2.

Hence, at

Q
0

(s∗1 (0) , V 1 (s∗1 (0) ; 0) + Γ1, 0)

=
1

θs∗1 (0)

[
s0 − s−

√
(s0 − s)

2
+ 2αh0 + βs2 − 2ρ [V 1 (s∗1 (0) ; 0) + Γ1]

]
.

Since lockdown with λ = 0 occurs at s∗1 (0), it follows that

Q
0

(s, V 1 (s; 0) + Γ1, 0) > V ′1 (s; 0) for s < s∗1 (0) .

This inequality is equivalent to

H∗0
(
s, V ′1 (s; 0) , 0

)
< ρ [V 1 (s; 0) + Γ] for s < s∗1 (0) .

So

H∗1
(
s, V ′1 (s; 0) , 0

)
= ρV 1 (s; 0) for all s ∈ (0, 1) .

Hence,

H∗1
(
s, V ′1 (s; 0) , 0

)
−H∗0

(
s, V ′1 (s; 0) , 0

)
> −ρΓ1 for s < s∗1 (0) .

By continuity of solutions with respect to parameters, it follows that

H∗1
(
s, V ′1 (s;λ) , 0

)
−H∗0

(
s, V ′1 (s;λ) , 0

)
> −ρΓ1 for s < s∗1 (0)

if λ is close to 0. This is equivalent to F1 (s) > 0 for s < s∗1 (0) and is near s∗1 (0). Hence, (48) follows.

Suppose after mutation lockdown occurs at some s̄∗1 < s∗1 (0). Then, by continuity, s̄∗1 < s∗1 (λ) for λ near

0. Also by continuity, we have s∗1 (λ) less than the least steady state before mutation. By (12),

(ρ+ λ) [V 1 (s∗1 (λ) ;λ) + Γ1] = H∗0
(
s∗1 (λ) , V ′1 (s∗1 (λ) ;λ) , λV̄0 (s∗1 (λ))

)
(49)

holds for any λ ≥ 0. Since lockdown occurs at s = s∗1 (λ), it follows that

V 1 (s;λ) + Γ1 > V 0 (s;λ) , V ′0 (s;λ) > V ′1 (s;λ) for s < s∗1 (λ) .
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Since s∗1 (λ) is less than the least steady state before mutation, it follows that

Q
0

(
s, V, λV̄0

)
=

1

θ0s

[
s0 − s−

√
(s0 − s)

2
+ 2αh0 + βs2 + 2λV̄0 − 2 (ρ+ λ)V

]

which is increasing in V . Hence,

Q
0

(
s, V 1 (s;λ) + Γ1, λV̄0 (s)

)
> Q

0

(
s, V 0 (s;λ) , λV̄0 (s)

)
= V ′0 (s;λ) > V ′1 (s;λ)

for s < s∗1 (λ). This inequality is equivalent to

H∗0
(
s, V ′1 (s;λ) , λV̄0 (s)

)
< (ρ+ λ) [V 1 (s;λ) + Γ1] .

It can be written as

H∗0
(
s, V ′1 (s;λ) , 0

)
< ρ [V 1 (s;λ) + Γ1]− λ

[
V̄0 (s)− V 1 (s;λ)− Γ1

]
for s < s∗1 (λ) . (50)

Furthermore, V 1 (s;λ) satisfies the HJB equation

(ρ+ λ)V 1 (s;λ) = H∗1
(
s, V 1 (s;λ) , λV̄1 (s)

)
for any s ∈ (0, 1)

which is equivalent to

H∗1 (s, V 1 (s;λ) , 0) = ρV 1 (s;λ)− λ
[
V̄1 (s)− V 1 (s;λ)

]
(51)

Note that by (5),

V̄0 (s) = V̄1 (s) + Γ1 for s ≥ s̄∗1.

Subtracting the corresponding sides of (50) and (51) yields

H∗1
(
s, V ′1 (s;λ) , 0

)
−H∗0

(
s, V ′1 (s;λ) , 0

)
> −ρΓ1

for any s that satisfies s̄∗1 < s < s∗1 (λ) and for any λ near 0. However, s∗1 (0) satisfies the equations (49) and

(51) with λ = 0 and s = s∗1 (0). It follows that

H∗1
(
s∗1 (0) , V ′1 (s∗1 (0) ; 0)

)
−H∗0

(
s∗1 (0) , V ′1 (s∗1 (0) ; 0) , 0

)
= −ρΓ1.

Therefore, it is necessary that s∗1 (0) ≥ s∗1 (λ).
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G.2 Part 2

We define a function F0 by

F0 (s) = sV ′0 (s;λ) (1− s) (θ0 − θ1)− 1

2

[
sV ′0 (s;λ)

]2 (
θ2

0 − θ
2
1

)
+ α (h0 − h1)

where V 0 (s;λ) satisfies

(ρ+ λ)V 0 (s;λ) = H∗0
(
s, V ′0 (s;λ) , λV̄0 (s)

)
.

Then (14) with m = 1 and n = 0 can be written as

F0 (s∗0 (λ)) + λ
[
V̄0 (s∗0 (λ) ;λ)− V̄1 (s∗0 (λ) ;λ)

]
= 0. (52)

In the case where after mutation reopening occurs either immediately or at some s̄∗0 ≥ s∗0 (0), then

V̄1 (s) = V̄0 (s) for s ≤ s∗0 (0) .

In the case where after mutation reopening occurs at s̄∗0 < s∗0 (0), by (5),

V̄0 (s)− V̄1 (s) > 0 for s near s∗0 (0) ,

it follows that the second term on the left-hand side of (52) is positive. Hence

F0 (s∗0 (λ)) < 0. (53)

We show that F0 (s) > 0 for s > s∗0 (0). Once proven, it would imply s∗0 (λ) < s∗0 (0) for λ positive and small.

In terms of H∗1 and H∗0 defined in (6), (47) with λ = 0 is equivalent to

H∗0
(
s∗0 (0) , V ′0 (s∗0 (0)) , 0

)
= ρV 0 (s∗0 (0) ; 0)

H∗1
(
s∗0 (0) , V ′0 (s∗1 (0)) , 0

)
= ρV 0 (s∗0 (0) ; 0) .

The equations are quadratic in s∗0 (0)V ′0 (s∗0 (0) ; 0). We write the second equation as

V ′0 (s∗0 (0) ; 0) = Q
1

(s∗0 (0) , V 0 (s∗1 (0) ; 0) , 0)

≡ 1

θ1s
∗
0 (0)

[
− (s+ ε1) +

√
(s+ ε1) + 2αh1 + βs2 − 2ρV 0 (s∗0 (0) ; 0)

]
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where ε1 = K/θ1 − 1. Since reopening occurs at s∗0 (0), it follows that

Q
1

(s, V 0 (s; 0) , 0) < V ′0 (s; 0) for s > s∗0 (0)

This inequality is equivalent to

H∗1
(
s, V ′0 (s; 0) , 0

)
< ρV 0 (s; 0) for s > s∗0 (0) .

Also,

H∗0
(
s, V ′0 (s; 0) , 0

)
= ρV 0 (s; 0) for all s.

Hence

H∗0
(
s, V ′0 (s; 0) , 0

)
−H∗1

(
s, V ′0 (s; 0) , 0

)
> 0

for s > s∗0 (0). By the continuity of solutions with respect to λ, we also have

H∗0
(
s, V ′0 (s;λ) , 0

)
−H∗1

(
s, V ′0 (s;λ) , 0

)
> 0

This is equivalent to

F0 (s) > 0 for s > s∗0 (0) .

This proves (53).

Suppose after mutation reopening occurs at some point s̄∗0 such that s∗0 (0) < s̄∗0 ≤ 1. Then

V̄1 (s) = V̄0 (s) for s ≤ s̄∗0. (54)

By continuity, we may suppose that λ is so small such that s∗0 (λ) < s̄∗0. By (12),

(ρ+ λ)V 0 (s∗0 (λ) ;λ) = H∗1
(
s∗0 (λ) , V ′0 (s∗0 (λ) ;λ) , λV̄1 (s∗0 (λ))

)
(55)

holds for any λ ≥ 0. Since reopening occurs at s = s∗0 (λ), it follows that

V 0 (s;λ) > V 1 (s;λ) , V ′0 (s;λ) > V ′1 (s;λ) for s > s∗0 (λ) .
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Note that θ1 < K, it follows that

Q
1

(s, V, λW )

≡ 1

θ1s

[
− (s+ ε1) +

√
(s+ ε1) + 2αh1 + βs2 + 2λW − 2 (ρ+ λ)V

]

is decreasing in V . Hence,

Q
1

(
s, V 0 (s;λ) , λV̄1 (s)

)
< Q

1

(
s, V 1 (s;λ) , λV̄1 (s)

)
< V ′1 (s;λ) < V ′0 (s;λ)

for s > s∗0 (λ). This inequality is equivalent to

(ρ+ λ)V 0 (s;λ) > H∗1
(
s, V ′0 (s;λ) , λV̄1 (s)

)
for s > s∗0 (λ) ,

which is the same as

ρV 0 (s;λ) > H∗1
(
s, V ′0 (s;λ) , 0

)
+ λ

[
V̄1 (s)− V 0 (s;λ)

]
for s > s∗0 (λ) . (56)

In addition, for any s ∈ (0, 1), we also have

(ρ+ λ)V 0 (s;λ) = H∗0
(
s, V ′0 (s;λ) , λV̄0 (s)

)
which can be written as

ρV 0 (s;λ) = H∗0
(
s, V ′0 (s;λ) , 0

)
+ λ

[
V̄0 (s)− V 0 (s;λ)

]
. (57)

Subtracting the respective sides of (56) and (57) and using (54), we find

H∗0
(
s;V ′0 (s;λ) , 0

)
−H∗1

(
s, V ′0 (s;λ) , 0

)
> 0 if s∗0 (λ) < s < s̄∗0

for λ sufficiently close to 0. However, s∗0 (0) satisfies (55) and (57) with λ = 0. That is,

H∗0
(
s∗0 (0) , V ′0 (s∗0 (0) ; 0) , 0

)
−H∗1

(
s∗0 (0) , V ′0 (s∗0 (0) ; 0) , 0

)
= 0.

This implies that s∗0 (0) ≤ s∗0 (λ) for λ sufficiently close to 0.

The proof is complete.
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H Proof of Proposition 4

Suppose θ0 > K. At t = 0, either the state is locked down or un-locked down. In the former case, if s∗0 does

not exist (Case 1), then reopen occurs immediately. After reopening, the state remains open forever. Since

θ0 > K, as discussed above,

lim inf
t→∞

s (t) ≥ ŝ0 > 0.

If s∗0 exists, then either s (t) converges to a steady state while the state remains locked down, or s (t)

approaches to s∗0, triggering reopening. In the former case,

lim inf
t→∞

s (t) ≥ s∗0 > 0,

In the latter case, as discussed above, s (t) does not converge to zero. Thus, in any case s (t) does not

converge to zero.

Suppose θ0, θ1 ≤ K. Then either locked down or un-locked down, s (t) is decreasing. So, eventually the

state will be un-locked down, and s (t) decreases to zero.

47



Competing Interests:

The authors have no competing interests to declare that are relevant to the content of this article.

References

[1] Acemoglu, D., V. Chernozhukov, I. Werning and M. Whinston (2021). Optimal targeted lockdowns in

a multigroup SIR model. American Economic Review: Insights, 3 (4), 487-502.

[2] Alvarez, F., D. Argente and F. Lippi (2021). A simple planning problem for Covid-19 lock-down, test-

ing,and tracing. American Economic Review: Insights, 3 (3), 367-382.

[3] Aspri A., E. Beretta, A. Gandolfi, and E. Wasmer (2021). Mortality containment vs. Economics Opening:

Optimal policies in a SEIARD model. Journal of Mathematical Economics, 93, 102490.

[4] Bandyopadhyay S., K. Chatterjee, K. Das and J. Roy (2021). Learning versus habit formation: Optimal

timing of lockdown for disease containment. Journal of Mathematical Economics, 93, 102452.

[5] Boucekkine, R., A. Carvajal, Sh. Chakraborty, and A. Goenka (2021). The economics of epidemics and

contagious diseases: An introduction. Journal of Mathematical Economics, 93, 102498.

[6] Boucekkine, R., A. Pommeret, F. Prieur (2013). Optimal regime switching and threshold effects. Journal

of Economic Dynamics and Control 37 (12), 2979-2997

[7] Burger, R., G. Chowell. and L. Lara-Diaz (2021). Measuring differences between phenomenological

growth models applied to epidemiology. Mathematical Bioscience, 334, 108558.

[8] Caulkins, J., D. Grass, G. Feichtinger, R. Hartl, P. Kort, A, Prskawetz, A. Seidl and S. Wrza-

czek (2020). How long should the COVID-19 lockdown continue? PLoS ONE 15(12): e0243413.

https://doi.org/10.1371/ journal.pone.0243413.

[9] Caulkins, J., D. Grass, G. Feichtinger, R. Hartl, P. Kort, A, Prskawetz, A. Seidl and S. Wrzaczek (2021).

The optimal lockdown intensity for COVID-19. Journal of Mathematical Economics, 93, 102489.

[10] Choi, W., and E. Shim (2020). Optimal strategies for vaccination and social distancing in a game-

theoretic epidemiologic model. Journal of Theoretical Bioscience, 505, 110422.

[11] Crepin, A.-S. and E. Naedval (2020). Inertia risk: Improving economic models of catastrophes. Scandi-

navian Journal of Economics, 122(4), 1259?1285.

48



[12] Cropper, M. (1976). Regulating activities with catastrophic environmental effects. Journal of Environ-

mental Economics and Management, 3, 1-15.

[13] Dasgupta, P. and G. Heal (1974). The optimal depletion of exhaustible resources. The Review of Eco-

nomic Studies, 41, 3-28.

[14] Dixit, R. and R. Pindyck (1994). Investment under uncertainty. Princeton University Press.

[15] Eichenbaum, M., S. Rebelo, and M. Trabandt (2021). The macroeconomics of epidemics. The Review

of Financial Studies, 34, 5149-5187.

[16] Federico, S. and G. Ferrari (2021). Taming the spread of an epidemic by lockdown policies. Journal of

Mathematical Economics, 93, 102453.

[17] Gersovitz, M. and J. Hammer (2004). The economical control of infectious diseases. The Economic

Journal, 114, 1-27.

[18] Goenka, A. and L. Liu (2012). Infectious diseases and endogenous fluctuations. Economic Theory, 50,

125-149.

[19] Goenka, A. and L. Liu (2020). Infectious diseases, human capital and economic growth. Economic

Theory, 70, 1-47.

[20] Goenka, A., L. Liu and M. Nguyen (2014). Infectious diseases and economic growth. Journal of Math-

ematical Economics, 50, 34-53.

[21] Goenka, A., L. Liu and M. Nguyen (2021). Modeling optimal quarantines with waning immunity.

Toulouse School of Economics WP 1206.

[22] Gollier, C. (2020a). Pandemic economics: optimal dynamic confinement under uncertainty and learning.

The Geneva Risk and Insurance Review, 45, 80-93.

[23] Gollier, C. (2020b). Cost-benefit analysis of age-specific deconfinement strategies. Journal of Public

Economic Theory, 22(6), 1746-1771.

[24] Loerstcher, S. and E. Miur (2021). Road to recovery: Managing an epidemic. Journal of Mathematical

Economics, 93, 102482.

[25] Long, N.V., F. Prieur, M. Tidball and K. Puzon (2017). Piecewise closed-loop equilibria in differential

games with regime switching strategies. Journal of Economic Dynamics and Control, 76, 264-284.

49



[26] Sakamoto, H. (2014). Dynamic resource management under the risk of regime shifts. Journal of Envi-

ronmental Economics and Management, 68, 1-19.

50



CEE-M Working Papers1 - 2022 
 

 
WP 2022-01  Denis Claude & Mabel tidball 

« Taking firms’ margin targets seriously in a model of competition in supply 
functions » 

 
WP 2022-02  Cauê D. Carrilhoa, Gabriela Demarchi, Amy E. Duchelle, Sven Wunder, & 

Marla Morsello 
« Permanence of avoided deforestation in a Transamazon REDD+ initiative 
(Pará, Brazil)functions » 

 
WP 2022-03  Francisco Cabo, Alain Jean-marie & Mabel tidball 

« Positional effects in public good provision. Strategic interaction and 
inertia » 

 
 
WP 2022-04  Fabien Prieur, Weihua Ruan & Benteng Zou  

« Optimal lockdown and vaccination policies to contain the spread of a 
mutating infectious disease » 

 
 
 
 
 
 
 

                                                           
1 CEE-M Working Papers / Contact : laurent.garnier@inrae.fr 

 RePEc https://ideas.repec.org/s/hal/wpceem.html  
 HAL https://halshs.archives-ouvertes.fr/CEE-M-WP/ 

 

mailto:laurent.garnier@inrae.fr
https://ideas.repec.org/s/hal/wpceem.html
https://halshs.archives-ouvertes.fr/CEE-M-WP/

