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A geospatial model of nature-based recreation for urban planning: Case study of 1 

Paris, France 2 

 3 

Abstract 4 

Incorporating nature-based recreation into urban planning analyses requires 5 

understanding the accessibility, quality, and demand for urban greenspace (UGS) 6 

across a city. Here, we present a novel tool that lowers the barriers to such information 7 

by (i) providing a spatially-explicit assessment of recreational UGS supply and 8 

demand; (ii) differentiating results by population group or UGS type; and (iii) using 9 

an accessible open-source software platform that facilitates scenario comparison and 10 

communication. In a case study in Paris, France, we demonstrate how the tool helps 11 

address important urban planning questions. We show that between 42% and 55% of 12 

the population is currently below the UGS target of 10 m2 per person, depending on 13 

the accessibility criteria used. Using revealed preference data, we demonstrate that 14 

older adults are disproportionately affected by the UGS deficit. Our assessment of 15 

future scenarios reveals that UGS targets set by public policies are largely insufficient 16 

(500 to 2800 ha are planned by 2030, while more than 4000 ha are needed to meet the 17 

policy target). By combining the strengths of established geospatial methods, the tool 18 

helps researchers and practitioners produce a more nuanced analysis of the recreation 19 

benefits of UGS implementation.  20 

 21 

1 Introduction 22 
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Recreation in nature benefits people in many ways such as providing aesthetic 23 

experiences, enhancing people’s physical and psychological health, and increasing 24 

social cohesion (Liu et al. 2020, WHO 2016, Keeler et al. 2019), thus representing an 25 

important category of ecosystem services (ES). Urban greenspace (UGS) such as 26 

parks, residential gardens, or sports and recreation areas, provides urban inhabitants 27 

with a major, if not only, opportunity for recreation, relaxation, socializing and 28 

interacting with plants and animals in cities (Soga and Gaston 2016). Despite the 29 

multiple benefits of nature experiences, people worldwide are spending less and less 30 

time in contact with nature (Soga and Gaston 2016). An important driver is the decline 31 

in accessible UGS as populations have rapidly concentrated into urban areas that are 32 

largely man-made and highly segregated from nature (Grimm et al. 2008, Turner et al. 33 

2004). As 68% of the global population will reside in cities in 2050 (United Nations, 34 

2019), it is crucial to ensure UGS provision in urban planning to secure the 35 

opportunity for natural-based recreation.  36 

Advances in urban ES science are expected to fundamentally change decision-37 

making (Cortinovis and Geneletti 2018a, Wilkerson et al. 2018, Hamel et al. 2021). 38 

Modelling tools can greatly propel this process by quantifying, mapping, and 39 

exploring the impacts of possible land use decisions (Guerry et al. 2015). Although 40 

recreation is far more studied than other cultural ecosystem services, modelling tools 41 

are still under-developed (Luederitz et al. 2015). One impediment is that modelling 42 

recreation requires information on population’s diverse preferences and use regarding 43 

UGS (Bateman et al. 2014, De Valck et al. 2017), which is often unpractical or costly 44 
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to collect for entire cities (Ives et al. 2017). Alternatively, recreation is modelled at the 45 

neighborhood or community level, relying on surveys of people’s use of and 46 

preferences for different UGS types. Accessible and reproducible data are essential to 47 

develop practical modelling tools to integrate recreation in UGS planning, especially 48 

when the purpose is to serve a wide range of cities and decision contexts (Hamel et al. 49 

2021). 50 

 Both the quantity of UGS and recreational needs, i.e. where and what type of 51 

UGS people might use, should be considered in planning. Among simple approaches 52 

for modelling the recreation service, UGS standards—minimum targets for the 53 

amount of UGS that should be accessible (e.g., 10 m2/cap) (Byrne and Sipe 2010)—54 

have been widely used (Maruani and Amit-Cohen 2007; González-García et al. 2020). 55 

However, UGS standards provide limited practical insights for urban planning since 56 

setting a UGS standard of 10 m2/hab does not indicate where and what type of UGS is 57 

needed the most (Badiu et al. 2016, Wilkerson et al. 2018). Needs-based approaches, 58 

relying on survey on residents’ preferences and use of UGS, were developed to 59 

address diverse recreation preferences (Byrne and Sipe 2010) but they often concern 60 

smaller areas. Urban ES assessments provide a useful framework to provide spatial 61 

information on both UGS quantity and recreational needs (Baró et al. 2016, González-62 

García et al. 2020, see Literature review). ES modelling tools that can translate UGS 63 

data into accessible and actionable information about where, how much and what type 64 

of UGS should be created will greatly help the implementation of UGS policies 65 

(Hamel et al. 2021).  66 
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Here we present a software tool to assess recreational UGS supply and demand 67 

to facilitate the incorporation of recreation service in UGS planning. This tool is 68 

available on a web-platform and is designed to be implemented as the “Urban Nature 69 

Access model” in InVEST (Integrated Valuation of Ecosystem Services and 70 

Tradeoffs)—a free, open-source software suite that models multiple ES delivered by 71 

nature (Hamel et al. 2021, Sharp et al. 2020). The model is easy to use and allows 72 

users to rapidly assess recreational UGS supply, demand and the supply-demand 73 

balance with flexible data requirements. Based on our review of the literature (Section 74 

2), the tool application illustrated in this article improves on existing options to 75 

support decision making in several ways: (i) it allows for rapid calculation of 76 

recreational UGS supply and demand to aid assessments based on commonly 77 

available data; (ii) it is compatible with both a “UGS standard” approach and needs-78 

based UGS assessments; (iii) it is supported by an online calculation and visualization 79 

platform that facilitates comparison and communication of impacts of different UGS 80 

planning scenarios. After describing the new model in Section 3, we present a case 81 

study in the administrative region of Paris, France, to demonstrate how it supports 82 

UGS planning with different data requirement. 83 

2 Literature review 84 

2.1 Recreational UGS supply assessment  85 

Recreation service supply is defined as the biophysical capacity of ecosystems to 86 

provide recreational opportunities (Plieninger et al. 2015). The biophysical UGS 87 

attributes including types, area, size, accessibility, configuration, facilities, safety, 88 
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maintenance, aesthetic, biodiversity, soundscape etc. have been considered as factors 89 

impacting recreation potential (Komossa et al. 2018, Paracchini et al. 2014). These 90 

factors can be broadly categorized according to availability and quality (La Rosa 91 

2014, Stessens et al. 2020, Stessens et al. 2017).  92 

2.1.1 UGS availability assessment  93 

UGS availability measures the quantity of UGS within a defined area or distance 94 

threshold (Tratalos et al. 2016). Such measures are aimed at quantifying how much 95 

UGS is accessible for the population from a given location, usually residential areas. 96 

A number of studies have shown that availability of UGS correlated with actual use 97 

for physical activity (WHO 2016). In particular, Schipperijn et al. (2010) reported that 98 

use of UGS in Denmark is determined by area and distance to home, along with other 99 

factors. Three types of UGS availablity measurements have been studied. 100 

First, cumulative opportunity indicators, such as UGS area per person, or the 101 

relative amount of green space (UGS area divided by total land area), within an area, 102 

often a predefined administrative boundary (Ekkel and de Vries 2017). For example, 103 

in UK’s national ecosystem assessment, the percent of 17 types of environmental 104 

spaces within Local Authority District is mapped as culture ES availability indicator 105 

(Tratalos et al. 2016).  106 

Second, proximity based indicators, i.e., presence of UGS of certain size within a 107 

distance threshold (termed as “accessibility” (Ekkel and de Vries 2017). The rationale 108 

behind this approach is that the size of a UGS determines the range of service the 109 

UGS is able to support (Stessens et al. 2017), and the UGS should be easily reachable 110 
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for most of the nearby population. For example, the WHO Europe regional office 111 

recommends at least 0.5 ha UGS within 300 m linear distance from home (WHO 112 

2016).  113 

More advanced, the gravity model conceptualizes the service provided by UGS 114 

as declining with “resistance” (often proxied by distance), which can be described by 115 

a decay function (Liu et al. 2020, Baró et al. 2016). Accessible UGS is calculated by 116 

summing up the UGS areas corrected by the decay function within an area served by a 117 

given UGS (Liu et al. 2020). The two step floating catchment area method (2SFCA) 118 

further modifies the gravity model by introducing “floating search radius” since 119 

different age, social status may be willing to travel different distances for different 120 

types of UGS (Luo 2004, Xing et al. 2018).  121 

As with many ES, it is important to note that the majority of UGS availability 122 

literature is concentrated in the global North and developed cities in Asia with few 123 

case studies from the global South and less developed Asian cities, despite their high 124 

urbanization rates (Boulton et al. 2018). A wide range of UGS availability has been 125 

reported in that literature, ranging from very low supply, for example 2.65 m2/cap 126 

UGS in Hong Kong (public, collective and private UGS all included, (Jim and Chan 127 

2016)), 2.5 m2/cap in Schwerin, Germany (Wüstemann et al. 2016), and 4 m2/cap in 128 

Macedonia, Spain, and southern Italy, to very high with 200 m2/cap in some cities of 129 

German, Belgium and Austria (Fuller and Gaston 2009). Methodological studies 130 

found that data sources, UGS classification systems, distance thresholds, analysis 131 

techniques, and types of distance (network v.s. Euclidean distance) can greatly impact 132 
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results (Mears and Brindley 2019). There is a call to develop standard ways to UGS 133 

quantification to interpret individual studies and understand differing results (Badiu et 134 

al. 2016, Mears and Brindley 2019).  135 

Although there is no international standard for availability of UGS, the United 136 

Nations’ objective is to provide universal access to safe, inclusive and accessible 137 

green and public space no less than 300 meters from each inhabitant residence by 138 

2030 (Sustainable Goal 11.7, United Nations Department of Economic and Social 139 

Affairs 2014). In the literature, distances between 300m and 800m are often used as 140 

UGS accessibility standards with most European cities using 300m or 500m (Boulton 141 

et al. 2018).  142 

2.1.2 Quality assessment 143 

UGS includes a varied range of ecosystems and is able to provide a diverse kind 144 

of “quality” and satisfy different recreational needs (Rupprecht et al. 2015). The 145 

concept of UGS “quality” is complex and multifold. It is challenging to assess UGS 146 

quality, especially when integrating user’s preference with spatial information 147 

(Stessens et al. 2020). At the landscape level, indicators such as naturalness, land 148 

cover, presence of or distance to water, protection status, diversity of landscape, and 149 

view shed etc. are used to assess and map recreation quality (Komossa et al. 2018, 150 

Paracchini et al. 2014). Indicator selection is usually based on literature or 151 

assumptions with a few exceptions that are derived from user’s preferences (De Valck 152 

et al. 2017, Tardieu and Tuffery 2019).  153 

At a finer scale, in-situ observational evaluative indices are developed to assess 154 
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UGS quality (Knobel et al. 2019). Generally, UGS size, recreational amenities such as 155 

water features or trails, facilities, and areas with organized recreational activities are 156 

common attributes associated with higher recreation quality (Donahue et al. 2018). 157 

However, these attributes are difficult to map at larger scales since some indicators 158 

(e.g., facilities or programming) rely on detailed and on-site investigation of 159 

individual UGS. New data sources, such as street view images, unmanned aerial 160 

vehicle images, and Google Earth images, are making such assessments possible. 161 

These data can be applied to delineate and classify urban environments at high 162 

accuracy and large scale (Pardo-García and Mérida-Rodríguez 2017). However, these 163 

approaches still constitute a research frontier, especially at larger scales.    164 

2.2 Recreational UGS demand assessment  165 

Understanding citizens’ recreational needs is critical to design UGS that 166 

encourages urban dwellers to travel longer and spend more time to recreate (Byrne 167 

and Sipe 2010). There are significant differences in recreation preferences based on a 168 

number of demographic or social characteristics, such as age, gender, race, ethnicity, 169 

socioeconomic status (De Valck et al. 2017).  170 

People’s recreation preference and demand have been modelled using multiple 171 

approaches such as travel cost model (Binner et al. 2017, Tardieu and Tuffery 2019), 172 

discrete choice model (Vaara and  Matero J 2011, De Valck et al. 2017, Ta et al. 2020) 173 

and hedonic pricing method (Loret de Mola et al. 2017, Sander and Haight 2012), and 174 

various data sources, many of which rely on surveys. Preference and visitation are 175 

collected through questionnaires, participatory mapping, or through on-site 176 
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observations of usage of UGS (Bjerke et al. 2006, Polat and Akay 2015, Tardieu 177 

2017). Demand and preference can be determined by extracting statistical 178 

relationships between UGS characteristics, personal characteristics of respondents and 179 

visitation choices (Tardieu and Tuffery 2019). The merit of surveys is that multi-180 

dimensional variables can be collected, allowing in-depth analysis of demands and 181 

preferences. The disadvantage is that they are resource intensive and difficult to apply 182 

at large scales, and local case studies use a variety of measurements and survey 183 

protocols which makes it difficult to synthesize findings and develop generic models. 184 

To our knowledge, only the UK, Finland and Denmark conducted national monitoring 185 

of UGS use which provide multiple dimensional recreation profiles of the citizens 186 

(Fish et al. 2016, Kenter et al. 2014, Schipperijn et al. 2010, Toftager et al. 2011, 187 

Vaara and Matero 2011). Comprehensive, long-term and large-scale research on 188 

recreational use of UGS is lacking which hinders the development of widely 189 

applicable models. 190 

Another line of research relies on collecting data from a large group of 191 

population through social media. Flickr (Donahue et al. 2018), Instagram (Schwartz 192 

and Hochman 2014), Twitter (Hamstead et al. 2018) and STRAVA (Sun et al. 2017) 193 

have been used to explore the relative use of UGS. Recently machine learning 194 

algorithms have been jointly used with crowd-sourced images to detect the type of 195 

interaction with nature (Richards and Tunçer 2018). Scholars have emphasized new 196 

opportunities provided by large crowd-sourced data for images, videos, and other 197 

sources such as activity tracking applications. These data provide new potential 198 
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through near real-time monitoring, but also raise concerns regarding sampling bias, 199 

data structure and a lack of socio-economic information about visitors (Boyd and 200 

Crawford 2012).  201 

2.3 Existing recreation service modelling tools 202 

Multiple reviews on ES assessment tools have discussed recreation service 203 

modelling (Bagstad et al. 2013, Brown and Fagerholm 2015, Carter et al. 2012, Grêt-204 

Regamey et al. 2017). Among the most popular models, Social Values for Ecosystem 205 

Services (SolVES) relies on a survey on public values and preference for locations to 206 

predict and map recreation value in landspape. SolVES can reveal heterogenous 207 

preferences for recreation but is problematic to transfer the results to unstudied area. 208 

The InVEST Recreation (“Visitation”) model approximates visitation using Flickr 209 

photos and builds a regression model with environmental attributes layer (Sharp et al. 210 

2020). However, the current InVEST recreation model (entitled “Visitation: 211 

Recreation and tourism”, v3.8) is not suitable for quantifying daily recreation in UGS, 212 

as it relies on a dataset with a bias towards highly attractive areas. For example, a 213 

leisure walk in a pocket park is unlikely to result in a post on Flickr. The Benefit 214 

Transfer Toolkit developed spreadsheets based on a meta-analysis of existing case 215 

studies (Loomis et al. 2018). It allows quantifying the economic benefits of the 216 

recreation service in unstudied area, but the limited sample cases lead to high 217 

uncertainty in the approach. The ESTIMAP recreation model calculates three 218 

indicators that can be used for a European assessment of nature-based recreation: the 219 

Recreation Potential (RP), the Recreation Opportunity Spectrum (ROS), and the share 220 
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of the population that can potentially profit from nearby nature for recreation 221 

purposes. RP is a composite indicator which estimates the capacity of sites to provide 222 

recreation services based on their naturalness, protection status and water component. 223 

ROS is derived by overlaying the RP indext and a proximity index. RP and ROS are 224 

used to derive the third one through a zonal analysi with population raster (Zulian et 225 

al. 2013). Other existing “off-the-shelf” recreation service assessment tools include 226 

ROS developed by U.S. Department of Agriculture for managing forest recreation, 227 

Outdoor Recreation Valuation (ORVal) tool developed by the Land, Environment, 228 

Economics and Policy Institute of UK, Natural capital planning tool (NCTP) 229 

developed by Consultancy for Environmental Economics & Policy of the UK, and on-230 

site evaluation tools such as Quality of Public Open Space Tool (POST) and 231 

Neighborhood Green Space Tool (NGST). They are reviewed and compared in 232 

Supplementary Information A. 233 

3 Model description  234 

The following section describes the model algorithm. Our approach links 235 

recreation quality to different types of UGS in cities, in accordance with (Handley et 236 

al. 2002) and using a decay function to represent UGS availability. The interface of 237 

the online tool is described in Supplementary Information B. 238 

3.1 Recreational UGS supply modelling  239 

3.1.1 Default supply modelling  240 

We adopted the 2SFCA method to model recreation supply (Luo 2004). This 241 

approach relies on rasterized data for population and UGS and involves two steps 242 
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(Figure 1).  243 

In the first step, for each UGS pixel j (green pixel in Figure 1a), the algorithm 244 

computes the greenspace to population ratio (Rj) by dividing UGS area in pixel j (Sj) 245 

by population (pk) in the search radius. Since visitation on UGS declines with distance 246 

to residential areas, a decay function f(dkj) is applied to population values (Eq. 1).  247 

�� = ��∑ ��×
(���)�∈��������
 (1) 248 

Where Rj is the UGS to population ratio of UGS pixel j; Sj is the UGS area in 249 

pixel j (m2); pk is the population in pixel k; dkj is the Euclidean distance between pixel 250 

k and j; d0 is the search radius; f(dkj) is the decay function describing the decline of 251 

service against distance. Five different forms of decay functions are available to use in 252 

the software: Dichotomy, Power function, Gaussian function, Kernel density function, 253 

and Poisson regresson function. 254 

In the second step, for each pixel in the study area, the algorithm sums up Rj 255 

values from UGS pixels within the search radius (Figure 1b). Thus, UGS supplied to 256 

pixel i (����) is calculated as (Eq. 2) :   257 

���� = ∑ ���∈�������� ∗  �(���) (2) 258 

Where i is any pixel in the study area; ���� is the greenspace per capita supplied 259 

to pixel i (m2/cap); Rj is the UGS-population ratio of a UGS pixel j; dij is the 260 

Euclidean distance between pixel i and j; d0 is the search radius. 261 
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 262 
Figure 1. Two-step floating catchment area (2SFCA) method to calculate urban greenspace 263 

(UGS)-population ratio (a) and UGS supply (b). Green pixels represent UGS, red pixels 264 

represent inhabited pixels. Blue circles indicate the search radii around UGS pixels (step 1) and 265 

then any pixel in the landscape (step 2). Rj1 and Rj2 are the UGS-population ratios for pixels j1 266 

and j2. Dk1j1 is the distance between pixels j1 and k1. Supi is the total UGS supply for pixel i. 267 

The dichotomy function is used in this example. 268 

 269 

3.1.2 Modeling supply of different UGS types  270 

The model allows users to distinguish between different types of UGS, e.g., 271 

forest, municipal park, and community park, which will impact recreation differently 272 

because of their qualities. 273 

If r is the type of UGS and j is a UGS pixel of type r, and d!,# is the search radius 274 

for UGS of type r, the Rr,j is calculated by the area of UGS in pixel j divided by the 275 

population within the radius. The recreation service supply of UGS type r to pixel i 276 

(���$,�) is calculated by summing up the Rr,j of UGS type r within the radius. The total 277 

UGS supplied to pixel i (����) is calculated by summing up the ���$,� of all types of 278 

UGS:  279 

R#,& = '(,)∑ *+∗,(-+))+∈�.+)�.�,(�
 (3) 280 

���$,� = ∑ R#,&&∈�-/)�-�,(� ∗  f(d1&)  (4) 281 
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���� = ∑ ���$,�$$23  (5) 282 

 283 

3.1.3 Modeling UGS supply to different population groups  284 

The model can take into account the different search radii of subgroup 285 

populations, which changes the supply of UGS. g represents the factors in which to 286 

split the population (e.g., age group g1, g2, …, gN). Then the UGS supplied to gn group 287 

of people in pixel i can be calculated as:   288 

��289 

= ��∑ �4,53 ∗ �6�4�7 + ∑ �4,59 ∗ �6�4�7 + ⋯ + ∑ �4,5; ∗ �6�4�74∈<������,=>?4∈<������,=@?4∈<������,=A?  290 

= ��∑ ∑ ��,=>∗B(��� )�∈�������,=>�C>DA  (6) 291 

 ���5;,� = ∑ R& × f(dij)&∈�-/)�-�,GH�  (7) 292 

Where ���5;,� is the UGS supplied to group gn at pixel i; �4,5; is population of 293 

group gn at pixel k; d0,gn is the search radius for group gn; f(dkj) and f(dij) is the decay 294 

function. 295 

3.2 Recreational UGS demand modelling  296 

We define demand as the amount of UGS per capita within proximity, described 297 

by two parameters: distance (d0, in m) and amount (Demcap, in m2/cap). The 298 

parameters can be calibrated by preferences from a survey, which represent 299 

preferences for UGS area and promixity (d0 and Dcap can be differentiated according 300 

to sub population groups’ preferences for more accurate assessment). Alternatively, 301 

users can define demand by applying a policy standard—for example, the Netherlands 302 
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set the target of a minimum greenspace provision of 60 m2 per-capita within a 500 m 303 

radius around households (de Roo, 2011).  304 

3.3 Supply-demand balance at multiple scales  305 

The per-capita UGS supply-demand balance is defined for each pixel i by 306 

calculating the difference between per-capita UGS supply and demand (Balancecap,i) 307 

(Eq. 8).  308 

Balancecap,i = Supi – Demcap (8) 309 

To determine the balance for all people in pixel i (Balancei), Balancecap,i is 310 

multiplied with population at pixel i (pi), which indicates how much UGS is under-311 

supplied or over-supplied at pixel i.  312 

Balancei = Balancecap,i × pi (9) 313 

The administrative level supply-demand balance (Balanceadm) is the sum of the 314 

pixel level supply-demand balance (Balancei) in an administrative unit (Eq. 10). 315 

Balanceadm indicates how much UGS (m2) is under- or over-supplied in an 316 

administrative unit. Since the UGS surplus in one pixel cannot compensate for a 317 

deficit in other pixels due to inaccessibility, Defadm is calculated as the sum of only 318 

deficit UGS values which indicate real shortage of UGS (Eq. 11).   319 

BalanceO�P = ∑ Balance� (10) 320 

QR�O�P = ∑ |Balance� |  T� Balance� < 0 (11) 321 

If Balancecap,i＜0, it indicates that people in this pixel are under-supplied with 322 

UGS compared to the defined standard. Summing up population in these pixels within 323 

an administrative unit will provide the number of inhabitants with less than 324 
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recommended UGS in an administrative unit (popdef,adm, Eq. 12).  325 

�W�-X,,Y-Z = [ ∑ �� ,   if \]^]_`RaO�,�＜0
0，if  \]^]_`RaO�,�＞0  (12) 326 

4 Application 327 

4.1 Study area 328 

Our study focuses on Paris, France and the surrounding region of Île-de-France 329 

(France). The region has an area of 12,061 km2 and is home to a population of about 330 

12 million people (Figure 2, Figure S5 in Supplementary Information, INSEE 2015). 331 

Since 2012, the amount of UGS has started increasing after a long period of decrease 332 

(Ta et al. 2020). However, the city of Paris remains a very densely populated area with 333 

a low amount of UGS per capita 1 . In 2013, the Île-de-France region adopted a 334 

masterplan that set a regulatory objective regarding UGS access, which should be 335 

achieved by 2030: supplying 10 m2 of UGS per inhabitant in the region, giving 336 

priority to municipalities with less than 10% of open and natural areas (Institut Paris 337 

Région 2013). To reach this goal, the Green Plan (“Plan Vert”) aims to create 500ha of 338 

additional UGS (Region Ile de France 2017), and the regional master plan aims to 339 

create 2300ha of additional UGS (Institut Paris Région 2013).  340 

In this context, our study addresses three questions: (1) Where is the policy target 341 

of 10 m2/cap met? (2) Which population groups are disproportionally affected by 342 

UGS deficits? (3) How would the implementation of planned UGS change the UGS 343 

                             
1 According to the Green View Index (GVI) developed by the Massachusetts Institute of Technology, 

calculated using Google Street View panoramas, showing the percentage coverage of the canopy of a 

pixel: http://senseable.mit.edu/treepedia/cities/paris. 
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deficits?  344 

 345 

Figure 2. Land use map of Ile-de-France (based on MOS, 2017) 346 

 347 

4.2 Data processing 348 

4.2.1 Urban greenspace  349 

We derived UGS data from an existing dataset for 2017 with 81 land use types 350 

(MOS 2017). UGS considered in the analysis include: (1) forests (MOS land cover 351 

code 1-4, including wood or forests, sections or clearings in the forest, poplar, open 352 

spaces with shrub or herbaceous vegetation); (2) grassland (MOS 7); (3) water banks 353 

(MOS 5, banks of waterways without harbor or storage activities); (4) public parks 354 

and gardens (MOS 13 and 25, parks and gardens, animal parks, zoos, amusement 355 

parks); (5) free slots for camping and caravanning (MOS 24). We did not include 356 

private gardens, outdoor sports fields, and golf course due to their restricted access. 357 

The total UGS area is 3859 km2, equating to 31% of the study area.  358 

4.2.2 Population  359 
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A disaggregation approach was used to produce a population grid at 100m 360 

resolution. We used IRIS level population census data collected by the National 361 

Institute of Statistics and Economis Studies in 2015 (vector, INSEE 2015). An IRIS 362 

unit is the smallest census unit available, which comprises between 1,800 and 5,000 363 

inhabitants, with an average area of 10 ha. The population census data also include 364 

sociodemographic characteristics such as age, median available income2, education 365 

etc. We projected the population from IRIS units based on the MOS land cover 366 

information (29 to 34, individual habitat, identical individual housing sets, rural 367 

habitat, continuous low habitat, continuous collective housing, discontinuous 368 

collective housing). The derived population map is as in Supplementary information 369 

(Figure S5).  370 

4.2.3 Future scenarios  371 

 To illustrate the use of the model for urban planning, we have developed two 372 

spatial scenarios with additional UGS that represent alternative futures 373 

(Supplementary information Figures S6-7). First, we applied a scenario based on the 374 

Plan Vert that aims to create 500 ha of additional UGS by 2030 (Région Ile de France 375 

2017). Second, we applied a more ambitious scenario based on the regional master 376 

plan (“SDRIF”) with the objective to create 2800 ha of additional UGS by 2030 377 

(Région Ile de France 2013). The two scenarios provide insight into what is possible 378 

                             
2 The IRIS perimeters are joined with socioeconomic data from a large dataset on localized social and 

tax file (FiLoSoFi) provided by the national statistics institute (INSEE). The median available income 

corresponds to the median income (among residents in the IRIS) actually available to a household to 

consume or save, that is the primary income + transfer income - compulsory taxes. 
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with various degrees of greening in the region.  379 

To develop the spatial scenarios, we first extracted all deficient pixels from the 380 

supply-demand balance at pixel level (Balancei) for the current situation (i.e., with 381 

negative values). A 300m radius focal statistic analysis using ArcGIS was applied to 382 

this selection to incorporate all affected pixels in the subsequent selection steps. 383 

For the 500ha new UGS scenario, we selected municipalities that were identified 384 

as highly deficient by the Plan Vert. Within these municipalities, 5557 pixels (about 385 

500ha) with the highest UGS deficiency values for land use types vacant land (MOS 386 

28), open air parking (MOS 75), and quarries (MOS 79) were converted to UGS to 387 

obtain the scenario map.  388 

For the 2800ha new UGS scenario, we selected municipalities that were identified 389 

as deficient by the Plan Vert. Within these municipalities, 31111 pixels (2800ha) with 390 

the highest UGS deficiency values for land use types vacant land (MOS 28), open air 391 

parking (MOS 75), quarries (MOS 79), and industry and business (MOS 43-50 and 392 

52) were converted to UGS to obtain the scenario map. The industry and business 393 

land use types were applied in this scenario to include more highly deficient areas in 394 

the Paris inner city. 395 

4.3 Model set-up   396 

To reflect the objectives from the regional masterplan (Région Ile de France 397 

2013), we set the per capita UGS demand criterion (Demcap) to 10 m2 for all analyses.  398 

Model set-up for question (1): areas meeting the policy target 399 

To assess where the per capita demand was met by the existing UGS (question 400 
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(1)) and demonstrate model calibration using only the policy target set by the SDRIF 401 

for 2030 (Région Ile de France 2013) (i.e., 10 m2/capita), we used three distance 402 

thresholds (d0) in accordance with the UN’s goal and literature (Section 2.1): 300 m, 403 

500 m and 800 m, which equal about 5, 10 and 15 min walking distances, 404 

respectively. The model was run without disaggregation of UGS or population groups 405 

and the dichotomy function was used (Table 1).  406 

Model set-up for question (2): population groups disproportionally affected by UGS 407 

deficits 408 

To assess which population groups are disproportionately affected by UGS 409 

deficits (question (2)) and demonstrate model calibration, we used a survey conducted 410 

in the region between April 15th and May 24th 2018. In total, 320 individuals have 411 

been face-to-face interviewed. They were asked to identify their residence, their most 412 

visited park during the year preceding the survey, their travel time to reach the UGS 413 

and the used travel mode. We also asked their number of visits in the park, and socio-414 

demographic characteristics. The survey details and description of the sample can be 415 

found in Ta et al. (2020).    416 

The travel distance between the most visited park and individuals’ residence is 417 

calculated with Google maps, by calculating the distance between the respondent’s 418 

municipality centroid and centroid of their most visited park. Distances were double-419 

checked with the stated travel time declared by respondents.We assumed a 3.6 km/h 420 

speed by foot, 16 km/h by bike, and 60 km/h by car and public transport. To obtain the 421 

search radii for different age groups, a Poisson regression was applied to the stated 422 
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number of visits. The count data models such as the Poisson or negative binomial are 423 

commonly used to analyse visitation data, as this type of models is particularly 424 

accurate when the dependent variable is an integer that takes few different values, 425 

such as visitor trips to a destination site (Shaw, 1988, Englin and Shonkwiler, 1995, 426 

Baerenklau et al. 2010, Roussel et al. 2016, Tardieu and Tuffery, 2019). When plotting 427 

the data, we found that the Poisson function best described the decay of visitation 428 

against travelled distance to greenspace in our dataset. This is confirmed by likelihood 429 

ratio test on alpha, representing the dispersion parameter in our regression, which 430 

showed that our dataset was not overdispersed, justifying here the use of a Poisson 431 

model over a negative binomial model. Visits have been regressed according to age 432 

class (coded as a dummy variable 1 if older adult: above 60 and 0 if adult: 18-60), and 433 

distance. The regression results can be found in Supplementary information Table S4. 434 

Accordingly to this Poisson regression, we derived the expected number of visits in a 435 

year and the expected distance traveled by the two age groups accordingly to the 436 

distance decay estimated for each group. Results showed that being older than 60 437 

years old increases the probability of visits compared to being younger but decreases 438 

the willingness to travel implying a search radius for older adults lower than the one 439 

for adults (Figure 3). The search radius for adults (d0, adult) has been estimated at 440 

2860m in average, and the search radius for older adults (d0, elder) at 1060m in average. 441 

We used the Poisson regression function as the decay function in the tool. 442 
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 443 

Figure 3. Distance decay effect on the expected number of visits to UGS for population under 444 

(a) and over (b) 60 years-old  445 

 446 

Model set-up for question (3): expected change in UGS deficits 447 

To assess how the scenarios would impact the UGS supply and demand (question 448 

(3)), we used a search radius of 300 m and the “dichotomy” decay function. To 449 

understand the impacts of the UGS planning scenarios on poplation subgroups, we 450 

analyzed the income level of the population for whom UGS supply improved.  451 

 452 

Table 1. Input data and model settings for analyzing each UGS question (see text for 453 

details) 454 

Input data Question 1 Question 2 Question 3 

Greenspace   MOS81a MOS81a Scenariosb 

Population raster 100m rasterc 100m rasterc 100m rasterc 

Population structure  Census data c Census data c Census data c 

Model expansion Default  Split population Default  

Demand  10m2/capd 10m2/capd 10m2/capd 

Search radius(m) 300, 500, 800d,e Adult: 1060f 

Older adult: 2860f 

300d 

Decay function dichotomyd Poisson f dichotomyd 

Data sources a: MOS 81 categories for the year 2017, available upon convention with the Institut 
Paris Region. MOS 11 available at https://data.iledefrance.fr/explore/dataset/mode-

doccupation-du-sol-mos-en-11-postes-en-2017/information/ 
b: Scenarios developed as in section 4.2.3 
c: iris population census data available at: 
https://www.insee.fr/fr/statistiques/3627376 
d: policy target; e: literature 
f: survey in section 4.3 Model calibration for question (2) 
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4.4 Recreation service in Île-de-France  455 

4.4.1 Recreational UGS supply-demand balance against policy standard  456 

The per capita UGS balance at pixel level is shown in Figure 4. Most deficit 457 

areas are located in the city center where population density is high. For the Paris city 458 

limits, the majority of people live in areas with a UGS deficit (300m threshold), 459 

although residential areas near large parks and along the Seine river have a UGS 460 

surplus. For municipalities close to large UGS, the deficit decreased as the distance 461 

thresholds increased from 300m to 800m (e.g., Montfermeil, Tremblay-en-France). 462 

However, for municipalities in Paris limits, the deficit remains even distance 463 

thretholds increases (e.g., Paris 11ème and Paris 20ème). 464 

The UGS deficit area and percent of population under the recommended standard 465 

aggregated at the municipal level are shown in Figures 5 and 6. In accordance with 466 

pixel level results, deficit municipalities are mainly concentrated in inner-city areas 467 

and their number decreased with increasing distance thresholds from 300m to 800m. 468 

Many municipalities have a small or no UGS deficit: 505 and 1084 out of 1300 469 

municipalities have no UGS deficit using 300m and 800m as search radii respectively 470 

(Table 2). However, at regional level, with the 300m radius, the total UGS area deficit 471 

is 4396 ha and the population with a UGS deficit accounts for 55% of the total 472 

population. With the 800m radius, the total UGS area deficit is 2810 ha and the 473 

population with a UGS deficit accounts for 42% of the total population.474 
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 475 

Figure 4. Recreation service balance (per capita UGS supply-demand balance, Balancecap,i) in Ile-de-France region for different distance thresholds (m2/cap). 476 

Blank areas mean there is no population on the pixel.  477 
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 478 

Figure 5. Recreation service deficit (Defadm) in Ile-de-France region, for different distance thresholds. Policy target: 10 m2 /capita 479 
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 480 

Figure 6. Percent of population below the policy target (popdef,adm) in Ile-de-France region, for different distance thresholds. Policy target: 10 m2 /capita. 481 



 

27 

 

Table 2. Number of municipalities associated with deficit UGS area and percent of deficit 482 

population using different distance thresholds 483 

Deficit indicator and levels 

No. of municipalities in relation to UGS deficit 

levels 

300m  500m  800m  

Deficit UGS 

area (ha) in a 

municipality 

0 505 886 1084 

0-5 639 291 128 

10 48 42 24 

10-50 90 64 50 

50-169 18 17 14 

Municipal mean 3.38 2.67 2.16 

 Region total 4396 3475 2810 

Percent of 

population 

under UGS 

deficit in a 

municipality 

0%-10% 901 1073 1147 

11%-25% 155 62 36 

26%-50% 100 64 36 

51%-75% 75 41 30 

76%-100% 69 60 51 

Region total 55% 48% 42% 

Note: Total population: 12.08 million. Total number of municipalities: 1300 484 

 485 

4.4.2 Recreational UGS supply-demand balance among different age groups 486 

There is a striking difference between the supply-demand balance between adults 487 

and older adults (Figures 4 and 5). The total number of older adults with a UGS 488 

deficit is 1,610,208 and number of adults with a deficit is 2,523,292. Adults with less 489 

than 10 m2 UGS per capita are concentrated in a few inner-city municipalities, while 490 

the deficit among older adults is more widespread. For both adults and older adults, a 491 

higher percentage of people with a deficit are observed in and directly around Paris.  492 

4.4.3 Supply-demand balance in future scenarios 493 

Scenario 1 (500ha additional UGS) reduced the UGS deficit by 360ha, 494 

accounting for 8% of total UGS area deficit. This scenario elevated 270,639 people’s 495 

UGS access over the 10m2 UGS per capita policy target, alleviating 4.1% of total 496 

deficit population. Scenario 2 (2800ha additional UGS) reduced the UGS area deficit 497 
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by 1582ha, accounting for 36% of the total UGS area deficit (Figure 8 a,c). This 498 

scenario reduced the number of people under UGS deficit by 1,381,591 accounting 499 

for 21% of the deficit population (Figure 8 b,d). Among the reduced deficit 500 

population, the majority were in the lowest income quantiles (64% and 80% 501 

respectively for Scenario 1 and 2) (Table 3).502 
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 503 
Figure 7. (a-b) Supply-demand balance , and (c-d) percent of population under UGS deficit, for different age groups. Policy target: 10 m2/capita 504 
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 505 

Figure 8. Reduced UGS deficit (top row) and population deficit (bottom row) in scenario 1 (maps a, c) and scenario 2 (maps b, d) 506 
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Table 3. Percent of reduced deficit population in each income quantile by two scenarios 507 

Income quantile 

Percent of reduced deficit population in 

each income quantile  

Scenario 1 Scenario 2 

Lowest 25% 55.5% 40.5% 

50% 25.2% 24.0% 

75% 13.7% 16.7% 

Highest 100% 5.6% 18.8% 

 508 

5 Discussion  509 

5.1 Recreation service in Ile-de-France 510 

Although UGS accounts for 31% of land surface area in the Ile-de-France region, 511 

55% of population have less UGS than the desired target. An additional 4396 ha is 512 

required to meet the policy target for every inhabitant indicating that the master plan 513 

and Plan Vert objectives are not ambitious enough with regard to this service. 514 

Recreational UGS deficit showed a clear concentric pattern: high deficit areas are 515 

located in a few high-density municipalities in and around the city center, while high 516 

surplus areas are located in peripheric area, making the development of UGS in these 517 

deficient municipalities even more difficult (Liotta et al. 2020). This is not unusual, 518 

especially in large cities such as Paris,  Guangzhou (Liu et al. 2020), or cities with 519 

historic central neighborhoods such as Amsterdam (Paulin et al. 2020).  520 

When including dwellers’ preferences and use in the model, an important finding 521 

emerges. The spatial difference in deficit in UGS between the general adult population 522 

and older adults (Figure 7) is important and can be explained by the fact that elder 523 

people are less likely to travel long distances to reach a UGS (represented by a 524 
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stronger distance decay than younger people), even though they are generally the most 525 

frequent visitors (Bateman et al. 2003). This has been observed in Ile-de-France 526 

through the revealed preference analysis conducted in this study (Supplementary 527 

information Table S4) and through the stated preferences obtained from a choice 528 

experiment (Ta et al. 2020). This suggests that older adults are disproportionately 529 

affected by the UGS deficit in Paris, having less opportunities to access UGS. Given 530 

the benefits of UGS for the ageing population, this finding could be used to promote 531 

UGS areas that respond to specific needs of this population group. In Ta et al. (2020), 532 

conducting a choice experiment study in the region, this population showed a clear 533 

preference for the walking transport mode on short distances (~1000 m), having 534 

access to UGS with trees no matter the size of the UGS. Thus for this population what 535 

matters is not a minimum surface of UGS but an easy access to wooded areas. 536 

Although the 10m2/cap target is not very high compared with policy standards 537 

from other cities (Badiu et al. 2016), scenario analyses showed that in a densely 538 

populated city like Paris, achieving this goal is difficult due to the lack of available 539 

vacant land. In Ile de France, we found that most convertible land was located in areas 540 

with UGS surplus, and usually far from Paris. Conversely, in highly deficit areas there 541 

were not enough land to build UGS. Although converting business and commercial 542 

land (Scenario 2) would be costly, our results shows that it would be effective in 543 

changing the UGS supply-demand balance. This transformation is possible in urban 544 

renewal programs where old infrastrucutre, industrial or residential land can be 545 

converted. Building UGS in these area can bring significant accessbile recreation 546 
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opportunity to people along side other ES which should be considered to justify the 547 

cost (Song et al. 2019). Other options would involve retrofitting buildings with 548 

rooftop parks, greening courtyards and school yards, or altering street scapes to create 549 

greenways along roads, which would create additional greenspace for people to 550 

recreate (Manso et al. 2021). 551 

Our scenario analyses also illustrate the importance of the accessibility criteria to 552 

identify priority areas for UGS investment. We used the Plan Vert to target our UGS 553 

implementation, where the municipalities were identified based on the criteria of 554 

access to greenspace as well as “attenuating or aggravating factors” such as the 555 

presence of other vegetation type (e.g., agricultural areas) or future urban 556 

densification plans. Targeting these municipalities while allowing UGS creation only 557 

in a few land use categories, meant that the amount of UGS added to the area (500 558 

and 2800 ha, respectively, for each scenario) is less than the reduction in deficit (360 559 

and 1582 ha, respectively). Although this study was conducted for illustrative 560 

purposes only, additional iterations with stakeholders could reveal more optimal 561 

scenarios based on commonly agreed UGS supply criteria (e.g., distance to UGS, type 562 

of UGS considered, and type of conversion allowed to increase UGS supply, etc.).  563 

5.2 Strengths of the geospatial tool  564 

Here we have presented and applied a UGS supply-demand assessment model 565 

that facilitates urban planning through a multi-scale approach. In previous models, 566 

recreation service is often measured by population with access to UGS within a 567 

certain distance (Geneletti et al. 2022, Cortinovis and Geneletti, 2018b, Sikorska et al. 568 
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2020). Thus, these models obfuscate the differences between a crowded residence 569 

community that has access to a small UGS and an uncrowded residence community 570 

that has access to a large UGS. Our model takes these situations into account by 571 

measuring the recreation service using UGS area per inhabitant. Also, previous 572 

models typically assign weights to UGS quality indicators and produce a 573 

dimensionless composite indicator to represent recreation opportunity (Cortinovis and 574 

Geneletti, 2018, Stessens et al. 2017). Our model assigns different search radii and 575 

decay functions to different types of UGS and represents the corresponding recreation 576 

service using indicators with clear biophysical meaning (i.e., area of different types of 577 

UGS per person) which is easier for model users to understand. Our tool calculates the 578 

recreational supply-demand balance at the pixel and administrative levels. Pixel level 579 

supply-demand balance information can identify areas with highest deficiencies—580 

where new UGS will most effectively mitigate a UGS deficit for recreation. The 581 

analysis at the administrative level supports a multifaceted analysis of UGS supply 582 

and demand by estimating the population under UGS deficit or surplus, differentiating 583 

between socio-demographic profiles. This information helps moving beyond 584 

“standards-based” approaches (Wilkerson et al. 2018), and allows model users to 585 

iterate and test different UGS planning scenarios. The model is currently available in 586 

an online visualization platform that facilitates comparing the impacts of different 587 

planning scenarios (Supplementary Information B). The advanced options of the 588 

model allows non-specialists to integrate information on citizen’s preferences and use, 589 

and to easily map the demand according to different distance decays and probabilities 590 
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of visit. This is, to our knowledge, the first online tool enabling these functions. The 591 

integration into InVEST as an open source model will allow users to run multiple 592 

ecosystem service models for a single study region (Sharp et al. 2020). 593 

The Ile-de-France case study demonstrated how the model works with widely 594 

available data (land cover, population, and a policy target for UGS availability) to 595 

provide policy-relevant informations to urban planners. The flexible data requirement 596 

is an important feature, making the model applicable in cities with less data 597 

availability. Land cover and population data are available globally with inceasingly 598 

high resolution (GHSL 2019, Urban Atlas 2018, Worldpop 2017). Therefore, the 599 

model can be particularly relevant in rapidly developing cities in the global South 600 

where UGS analyses have not been conducted routinely (Rigolon et al. 2018). The 601 

model can provide results sensitive to socio-demographic composition and allow to 602 

identify the beneficiaries of UGS investment. For example, in our case study we 603 

found that the scenario developed according to Plan Vert and SDRIF master plan 604 

predominantly benefitted people (IRIS) with the lowest median available income. The 605 

model also allows to implement more sophisticated assessment based on recreational 606 

surveys to consider individuals’ preferences, widely hererogeneous regarding 607 

recreational activities. 608 

5.3 Limitations and potential improvements 609 

Despite its strengths, the tool may be not be appropriate for all recreational 610 

activities. For example, since the model provides a static picture of UGS and 611 

population locations, its usefulness is limited for activities such as running or cycling, 612 
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where UGS users can cover long distances. Future improvements to the model could 613 

include different accessibility indicators for UGS and include road and pedestrian 614 

networks to better represent the idea of the “cognitive distance” for users to reach 615 

UGS (Montello 1991). 616 

Another limitation of the model is that it expresses results in area per inhabitant 617 

and does not output economic or health and well-being indicators (although it can 618 

include preferences as an input). Future work could expand the indicators to facilitate 619 

economic valuation, at different scales. Revealed preferences as hedonic prices or 620 

stated preferences such as choice experiments approaches have been extensively used 621 

in urban areas to estimate the willingnesses to pay of dwellers for each visits 622 

(Choumert and Salanie 2008, Tu et al. 2016). As we also have expressed the 623 

“willingness to travel” of people in the Poisson regression (based in the travel cost 624 

technique intuitions), or in a choice experiment (Ta et al. 2020), our indicator of 625 

preference (distance or time) could be transformed into a monetary indicator for 626 

individuals. However their implementation typically varies with socio-economic and 627 

demographic context, making a standard approach and a standard evaluation difficult 628 

to implement in the tool.  629 

6 Conclusion  630 

We have developed a tool that supports the assessment of recreational supply and 631 

demand in urban environments. The tool’s main strengths are: (i) spatially explicit 632 

assessment of recreational UGS supply and demand based on commonly available 633 

data (land cover, population rasters); (ii) disaggregation of results by population group 634 
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or UGS type; (iii) compatibility with simple quantitative and qualitative planning 635 

strategies (e.g., UGS per inhabitant standard, survey of population UGS preferences); 636 

and (iv) rapid and easily-accessible online implementation and visualization platform 637 

that facilitates comparison and communication of impacts of different UGS planning 638 

scenarios. A case study in Paris demonstrated the application of the tool to address 639 

questions such as: 1) Where is the policy target of 10 m2/cap met? (2) Which 640 

population groups are disproportionally affected by UGS deficits? (3) How do UGS 641 

implementation scenarios change the UGS deficits? We showed how older adults may 642 

be differently affected by UGS deficits, and how the criteria for UGS accessibility 643 

impacts policy recommendations in practice. This type of analysis helps nuance the 644 

assessment of UGS by providing more information on the beneficiaries of UGS 645 

implementation scenarios, thereby improving the integration of the UGS recreation 646 

service in ecosystem-based approaches to urban planning. 647 

 648 
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