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MOTIVATION Expression quantitative trait locus (eQTL) analysis has been transformed by the introduction
of network representations of eQTL SNP-gene associations. However, these have relied on using some-
times arbitrary thresholds to turn functions of these associations such as false discovery rates into binary
presence/absence representations. We sought to identify optimal methods for defining eQTL networks and
metrics that balance statistical robustness, computational complexity, and biological discovery.
SUMMARY
Expression quantitative trait locus (eQTL) analysis associates SNPs with gene expression; these relation-
ships can be represented as a bipartite network with association strength as ‘‘edge weights’’ between
SNPs and genes. However, most eQTL networks use binary edge weights based on thresholded FDR esti-
mates: definitions that influence reproducibility and downstream analyses. We constructed twenty-nine tis-
sue-specific eQTL networks using GTEx data and evaluated a comprehensive set of network specifications
based on false discovery rates, test statistics, and p values, focusing on the degree centrality—ametric of an
SNP or gene node’s potential network influence. We found a thresholded Benjamini-Hochberg q value
weighted by the Z-statistic balances metric reproducibility and computational efficiency. Our estimated
gene degrees positively correlate with gene degrees in gene regulatory networks, demonstrating that these
networks are complementary in understanding regulation. Gene degrees also correlatewith genetic diversity,
and heritability analyses show that highly connected nodes are enriched for tissue-relevant traits.
INTRODUCTION

Most human traits and diseases are influenced by many genetic

variants that act in concert to alter cellular function (Hawkins

et al., 2010). Experimental evidence has demonstrated that the

overwhelming majority of trait-associated variants are enriched

within regulatory elements (Albert and Kruglyak, 2015; Ward

and Kellis, 2012; GTEx Consortium, 2015). Expression quantita-

tive trait loci (eQTL), which associate genetic variants with gene

expression, yield a substantial over-representation of genome-

wide association study (GWAS) variants as eQTLs relative to

expectation (Morley et al., 2004; Cheung et al., 2005; Schadt

et al., 2005; Nicolae et al., 2010). This suggests that eQTLs

play an important role in the causal pathway between genetic

variants and phenotype, and it is further evidenced that tissue-
Cell R
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specific disease-linked eQTLs are enriched in relevant tissues

(Dermitzakis, 2008; Fagny et al., 2017). Common approaches

to genetic and genomic analyses such as eQTL mapping

consider only pairwise associations, failing to elucidate the mo-

lecular mechanisms by which multiple genetic variants relate to

expression across genes (Ward and Kellis, 2012; Korte and Far-

low, 2013). Integrative analyses of the complex relationships be-

tween genetic and genomic features that are reproducible and

accurately represent biological relationships are thus of increas-

ingly significant importance.

Network analyses provide an integrative approach to charac-

terize complex genomic associations (Barabási et al., 2011). We

can identify genetic variants and genes that collectively influence

cellular processes to drive phenotypes using networks (Platig

et al., 2016; Fagny et al., 2017). Bipartite networks naturally
eports Methods 2, 100218, May 23, 2022 ª 2022 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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represent eQTL associations, where the edges between SNPs

and gene expression indicate the eQTL association (Asratian

et al., 1998; Platig et al., 2016; Fagny et al., 2017; Barber,

2007). Well-defined features of a network can elucidate genetic

regulation and inform function. The degree is a measure of

network centrality that is associated with how essential a node

is to function. For example, nodes that are more densely con-

nected can represent natural divisions of functional relatedness.

This representation has been shown to identify biological effects

in chronic obstructive pulmonary disease (COPD) (Glass et al.,

2014), where GWAS-identified SNPs were most central among

groups of functionally related features (Platig et al., 2016; Fagny

et al., 2017; Cho et al., 2014; Nicolae et al., 2010).

Many network approaches have been introduced tomodel ge-

netic and genomic data. Such approaches often use methods

like correlation and association-based measures to define net-

works; other approaches, including Bayesian network analysis,

infer directed acyclic graphs to model causal effects from obser-

vational data (Zhu et al., 2004, 2012; Yazdani et al., 2016; Sedge-

wick et al., 2019; Badsha and Fu, 2019). Some approaches

permit the use of many data types (such as multiomics data),

incorporate prior evidence in modeling, and may allow missing

data (Howey et al., 2021). Network methodologies vary in the

assumptions made, often using multivariate distributional as-

sumptions in order to obtain conditional dependencies between

nodes. These assumptions may be violated in various settings,

such as genetics settings with pleiotropy (Howey et al., 2020),

and complex models often cannot operate on summary statis-

tics. A straightforward approach is to define sets of associations

directly as networks and permit them to represent a large graph

from which one can perform secondary analyses, such as com-

munity detection, while maintaining the complexity of the asso-

ciations (Platig et al., 2016).

Existing eQTL network analyses in particular have constructed

networks using thresholded estimates from the eQTL analysis

regressing gene expression on genotype (Albert and Kruglyak,

2015). This approach desirably imposes a small computational

burden, as the network is limited to the sparse set of edges

meeting a threshold but requires an informed threshold and se-

lection of association measure, often selected in a semiquantita-

tive manner. Reducing eQTL associations to such indicators to

build a network may be detrimental by discarding potentially

valuable data, detracting from potential reproducibility, and ulti-

mately limiting the ability to perform informative downstream an-

alyses. Methods that are more robust than dichotimization or

based on rigorously defined measures or thresholds may over-

come these limitations (Zhu et al., 2004, 2012; Yazdani et al.,

2016; Sedgewick et al., 2019; Badsha and Fu, 2019). However,

approaches that include fully weighted networks or that cannot

operate on summary statistics have greater computational

burden, given the need to retain and operate on output frommil-

lions of regression models, and do not necessarily ensure

improved biological insight. It is thus critical to comprehensively

evaluate potential network specifications in order to fully charac-

terize eQTL network degrees, indicate robustness of network-

based findings, and provide further biological insight.

In this article, we consider a comprehensive set of network

representations of the SNP-gene association specifically toward
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estimating degree, a measure of how central a node is within the

network. In an analysis of twenty-nine tissues from the Geno-

type-Tissue Expression (GTEx, v.8 release) project, we construct

eQTL networks and estimate degree metrics for nodes. We

consider definitions that vary with respect to estimation method,

model output retained, threshold in dichotomized settings, and

inclusion of weights. We evaluate the network reproducibility

by considering consistency of degree in split-sample tissue-spe-

cific networks and across tissues for tissue-specific networks.

Given our network characterization, which balances stability of

SNP and gene degree with computation efficiency, we investi-

gate the relationship of gene degree in the eQTL network to

two other gene network types, gene regulatory networks and

gene co-expression networks. We then consider the biological

informativeness of the tissue-specific eQTL networks by evalu-

ating the relationship of gene degree to genetic diversity mea-

sures and heritability enrichment of blood traits. Our results

demonstrate that the topology of well-defined eQTL networks

relates genomic features to genetic diversity and trait heritability.

RESULTS

eQTL networks are dependent on edge and degree
definition
We mapped eQTLs from the genotype and RNA sequencing

(RNA-seq) data for twenty-nine tissues (sample size n = 202–

706) from the GTEx v.8 dataset (https://gtexportal.org/home/

datasets). After data processing primarily to impute variants

and normalize expression data, we retained 5,339,781 SNPs

for all observations and 24,138 genes, on average, across tis-

sues. We performed exhaustive eQTL mapping, adjusting for

sex, genotyping platform and protocol, PEER factors, and the

first five principal components by tissue (STAR Methods;

Table S1); cis-eQTL mapping was performed for variants within

1 Mb of a gene’s annotated transcriptional start site. We identi-

fied 806,182 (liver) to 3,930,834 (thyroid) cis-eQTLs and 18,037

(liver) and 110,952 (thyroid) trans-eQTLs at a false discovery

rate (FDR) threshold of 0.05. We compared our cis-eQTL associ-

ations with those reported by the GTEx Consortium; on average,

79% (SD = 2%) of our cis-eQTLs were also in the GTEx results.

These differences may be attributable to the genotype prepara-

tion and analysis methods.

We constructed eQTL networks from these results based on

edge definitions varying in sparsity, estimation method, and

weighting (Figure 1). The ‘‘sparse’’ representation includes

edges where associations met a measure of significance below

a threshold, t, where t was set equal to 0.05, 0.1, 0.15, and 0.2.

These measures included the q value (QV) as defined by Storey

et al. (Storey, 2002; Storey et al., 2003; Storey and Tibshirani,

2003), the local FDR (LFDR), and an adaptation of the Benja-

mini-Hochberg (BH) procedure for calculating the QV (see

STAR Methods). These methods differ in their computational ef-

ficiency and probabilistic interpretation. We extended these un-

weighted sparse networks to be weighted by the eQTL

Z-statistic to provide a measure of the strength of association.

We also considered a so-called ‘‘denser’’ network represe-

ntation that includes edges defined by the p value for all tested

associations. p values permit natural definitions of network

https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets


Figure 1. eQTL network workflow

eQTLs are mapped from genetic and gene expression data, and a function of their associations is used to construct an adjacency matrix with elements aij, from

which network metrics such as degree can be calculated (for example, by edge summation) and used to infer scientific conclusions.
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metrics. Networks were constructed for SNP-gene pairings on

both a genome-wide and location-specific scale; in the

genome-wide setting, edges are defined without regard to loca-

tion, whereas the location-specific setting distinguished be-

tween cis and trans effects. Given the variety of methods for

defining eQTL weights, we calculated degree metrics using def-

initions appropriate for the choice of edge weight. In the sparse

settings, the degree was defined as the summation of all

edges connected to a node, as is standard; for the denser

representation, the degree was defined as the proportion of

non-null proportion (NP) edges connected to a node. We calcu-

lated the degree metrics for the location-specific networks. In

the sparse setting, we calculated the degree metrics for net-

works of all SNP-gene pairings from both the genome-wide

and location-specific networks; the dense representation only

permitted a genome-wide degree when considering all SNP-

gene pairings.

Most association tests did not result in network SNP-gene

edges (Figure 2), as expected given the relatively small number

of eQTLs across the genome. The number of edges in the sparse

networks generally decreased with decreasing sample size, as

expected given corresponding decreasing power. The BH-

based network consistently had fewer edges, followed by the

LFDR-based network. The sparse networks had more non-

zero edges when relaxing the threshold t, as evidenced by the

lighter shades within stacked bars in Figure 2. This is to be ex-

pected because it permits more ‘‘suggestive’’ associations as

edges beyond those meeting more rigorous criteria. The NP-

defined network includes edges for all associations by definition.

The distributions of the SNP degree across tissues where t =

0.05 and edges are weighted by the magnitude of the eQTL

Z-statistic are given in Figure 2. The distributions are right

skewed, indicating that most SNPs have few connections and

few SNPs are associated with many genes or with high effect

size; this trend is observed for all t as well as for gene degree.

The unweighted degree estimates are less right skewed given

that the strength of association is not incorporated to further

inform the integer-valued degree. The unweighted-degree esti-

mates are highly correlated with the weighed degree (STAR

Methods; Table S2). The NPmethod yields probabilistic degrees

for all nodes, most of which were estimated to be near or equal to

zero. Consistent with previous findings that cis-eQTLs are more
commonly identified than trans-eQTLs due to multiple testing

challenges, the majority of SNP-gene edges are cis-eQTLs.

The cis component constitutes 100% of the degree magnitude

for most nodes, as variants with regulatory functions tend to

act locally (within the megabase window used to define cis

associations).

Degree definition determines stability
Within-tissue reproducibility

The stability of eQTL networks and their metrics is dependent on

network definition and sufficient sample size. The reproducibility

of degree estimates in independent and reduced samples were

evaluated by computing the SNP and gene degree metrics for

random sample splits and assessing the concordance between

the split-sample degree estimates via Spearman correlation.

This was repeated and averaged across five subsamples for

the entire network (accounting for location in the sparse net-

works) and was restricted to cis and trans associations to ac-

count for variability (Figure 3; Table S3).

Of the sparse networks, the BH-based network had the high-

est average SNP degree correlations between sample splits for

the tissues (t = 0.05; unweighted median: 0.19, interquartile

range [IQR]: 0.22; weighted median: 0.44, IQR: 0.19). The

LFDR- (t = 0.05; unweighted median: -0.02, IQR: 0.33; weighted

median: 0.14, IQR: 0.36) and QV-based networks (t = 0.05; un-

weighted median: -0.10, IQR: 0.34; weighted median: �0.003,

IQR: 0.36) had lower average sample-split correlations for SNP

degree. Each of the thresholded degree definitions demon-

strated higher correlations for the weighted measures, which al-

lows for greater granularity in the degree distribution. The

average degree correlation between the splits decreases with

increasing threshold t for most definitions. A relaxed threshold

may introduce more edges than can be stably estimated due

to larger errors. The NP-based degree in the network of all eQTLs

had averaged sample-split correlations with median -0.34 (IQR:

0.004) for SNP degree. This more dense network representation

was not positively correlated across sample splits in any tissue.

This is likely attributable to the instability of estimating null pro-

portions among a large set of primarily null tests (Storey, 2002;

Storey et al., 2003; Storey and Tibshirani, 2003) and a general

lack of spread in the degree. The results for gene degree

were notably more consistent across methods, which may be
Cell Reports Methods 2, 100218, May 23, 2022 3



Figure 2. eQTL network edge and SNP degree distributions

The distribution of edges is given by threshold t from darkest to lightest (0.05, 0.1, 0.15, and 0.2) and definition (q value [QV], local FDR [LFDR], Benjamini-

Hochberg [BH], and non-null proportion [NP]); the distribution of degree is given by definition for threshold t = 0.05 with Z-statistic weights.
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attributable to the lower sensitivity when considering eGenes

rather than eSNPs (Table S3).

The correlations varied across tissues; the average correlation

between the sample splits increases on average with increasing

sample size. Previous eQTL studies and power calculations

have demonstrated that typically larger sample sizes than these

subsamples (n = 101–353) are required to confidently map eQTLs

(Huang et al., 2018). There was moderate concordance between

the subsample and full-sample degree metrics illustrating the

lack of stability of an eQTL network in a small subsample, sug-

gesting the need for a larger minimum sample size for networks

and possibly reflecting effects of tissue heterogeneity. The cis-

specific networks, based on a smaller set of potential eQTLs

and thuswith a decreasedmultiple-testing burden, have a notably

higher correlation on average than the trans-specific networks.

The complete networks accounting for location are similar to the

cis-specific networks, consistent with the dominance of cis asso-

ciations in eQTL analyses. The BH-based SNP degree has a

notably higher correlation for the trans-specific networks, which

may be attributable to the nature of the significance measure

calculation, which was estimated per SNP for other measures

but considered the complete set of results for the efficient BH

computation. The advantage of including both cis and trans

associations is that it allows both local and nonlocal regulatory

effects to be modeled and results in networks that exhibit

higher-order structure based on those nonlocal associations.

Cross-tissue correlation

We compared the degrees identified in the tissue-specific net-

works across tissues using Spearman correlation; we expect

moderate correlation across all tissues given that cis-eQTLs pri-

marily contribute to the degree measures and are more often

replicated across tissues (Gamazon et al., 2018), reflecting the

fact that cells need to carry out a large number of core pro-

cesses, such as respiration and metabolism, independent of

tissue. This correlation was again performed for the complete,

cis-, and trans-specific networks (Figure 4; Table S4).
4 Cell Reports Methods 2, 100218, May 23, 2022
Across all eQTLs, the correlation of SNP degree across the tis-

sues was again higher for the BH degree (t = 0.05; weighted me-

dian: 0.27, IQR: 0.14) than the QV-based SNP degree (t = 0.05;

unweighted median: 0.11, IQR: 0.16, weighted median 0.20,

IQR: 0.16) and the LFDR-based SNP degree (t = 0.05; un-

weighted median: 0.15, IQR: 0.16; weighted median: 0.26, IQR:

0.18). The correlation of NP-based SNP degree across tissues

had median -0.33 (IQR: 0.01). This further suggests that this

NP-based networkmethod, using a degree based on the estima-

tion of the proportion of non-null hypotheses when it is very

small, is not reliable, as we expect positive correlation between

tissues for cis-specific degrees based on shared genetic

regulation.

For all levels of thresholding and for both genome-wide and

location-specific definitions, the correlation between tissues is

again slightly increased by including weights. Higher, or more

relaxed, thresholds led to lower average pairwise correlations

between tissues (Table S4). A potential contributor to these

trends may be that given the relaxed threshold, there is an

increased potential for identifying sub-threshold tissue-specific

trans-eQTLs as trans-eQTLs have lower power for eQTL map-

ping than cis-eQTLs. Given the stability demonstrated by the

BH-based network and computational benefits in speed and

memory, the subsequent analyses are presented primarily for

the BH-based weighted degree with t = 0.05, and secondarily

for all other degrees as reported in the supplemental information.

Relationship to other gene networks
Many types of networks have been used to study biological sys-

tems, including correlation-based and regulatory networks. We

compared the eQTL networks with gene regulatory and gene-

gene correlation networks via the gene degree. We constructed

tissue-specific gene regulatory networks using Passing Attri-

butes between Networks for Data Assimilation (PANDA), which

uses gene expression, transcriptomic, and transcription factor

protein-protein interaction data to infer regulatory associations



Figure 3. Correlation of SNP degree measures within tissue samples
The correlation of estimated SNP degrees across split tissue samples is given using the unweighted and Z-statistic weighted approaches based upon the QV,

LFDR, BH, and NP for each threshold t (0.05, 0.1, 0.15, and 0.2) given on the X axis. The distribution is given for the full network and stratified into cis- and trans-

location-specific networks.
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between transcription factors and target genes (Glass et al.,

2013; Schlauch et al., 2020). PANDA network analysis provides

insight into genes’ regulatory function as targets. We also used

weighted correlation network analysis (WGCNA), which builds

gene-gene pairwise correlation networks based on gene expres-

sion data (Langfelder and Horvath, 2020). We compared the tis-

sue-specific correlation of the gene degree in the eQTL networks

to gene degree in PANDA and WGCNA networks in each tissue

and then performed meta-analysis (Tables S5 and S6).

The meta-analysis correlation was estimated to be 0.05 (95%

confidence interval [CI]: (0.04, 0.07)) between the BH-based

weighted gene degree (t = 0.05) and the degree from the

PANDA network. PANDA networks, like eQTL networks, seek

to capture genetic regulatory processes, whichmay explain their

positive correlation. The gene eQTL network degree and

WGCNA degree had a meta-analysis correlation of -0.02 (95%

CI: (-0.04, -0.01)). The correlations were replicated using other

sparse network definitions (Table S6). These incongruent find-

ings between other gene network types are consistent with the

notion that co-expression and regulatory networks capture

different biological features. A correlation-based network finds

genes whose expression levels are similar to each other; genes

in an eQTL network are expressed at a level correlated with

the genotype at that locus. Further, cis-eQTLs, which are the

dominant edges in the network, generally are associated with

SNPs falling in regulatory regions, potentially disrupting tran-

scription-factor binding. Thus the extent of a gene’s complex

regulatory role would more likely be similarly reflected in both

eQTL and gene regulatory networks.

Degree correlates with genetic diversity
We assessed the relationship between the degree and genetic

evolution and diversity by calculating the correlation of gene-

level degree (BH-based weighted gene degree, t = 0.05) and

both nucleotide diversity and Tajima’s D at the gene level (Dane-

cek et al., 2011; Nei and Li, 1979; Tajima, 1989). Nucleotide di-

versity measures genetic variation based on the number of

nucleotide differences between sequences, permitting insight

into a population’s mutation rate. Tajima’s D considers nucleo-

tide differences as well as the number of segregating sites to

then assess whether neutral evolution, as in mutation-drift equi-

librium, or selection is occurring. The meta-analysis correlation
across tissues between gene degree and nucleotide diversity

was estimated as 0.13 (95% CI: (0.12, 0.15)); the correlation be-

tween gene degree and Tajima’s D was estimated as 0.15 (95%

CI: (0.14, 0.15)). These results, consistent across sparse degree

definitions (Tables S7 and S8), show statistically significant, pos-

itive associations between network gene degrees and genetic

diversity. Given that eGenes (genes whose expressions are

associated with at least one eQTL) are, by definition, more con-

nected in the network, this is consistent with previous findings in

plants where eGenes had higher genetic variation and Tajima’s D

(Mähler et al., 2017). Thus, this similarly suggests that genes less

connected within the network are under relatively stronger selec-

tive constraint. These results indicate that genes that are more

central to the network experience increased rates of molecular

evolution, at least in terms of the regulatory processes that con-

trol them, and evolve under decreased selective constraint.

However, previous analyses have found that eQTL network

hubs are less likely to be associated through GWASwith disease

processes than are nodes of intermediate degree (Platig et al.,

2016; Fagny et al., 2017), indicating this flexibility in regulatory

constraint might also be linked to the functional roles played

by these eGenes.

Heritability enrichment of degree
We evaluated whether the degree was enriched for trait heritabil-

ity using S-LDSC on a set of six tissue-specific networks (artery

aorta, coronary, and tibial; heart atrial appendage and left

ventricle; whole blood) and seven relevant complex blood-

related traits (eosinophil, high- and low-density lipoproteins

[HDLs and LDLs, respectively], platelet count, red blood cell

[RBC] width, red cell count, and white cell count) as analyzed

in UK Biobank (Hormozdiari et al., 2018). We considered both

SNP- and gene-level annotations (BH-based weighted degree,

t = 0.05). We conditioned, on the baseline-LD model, a herit-

ability model comprised of 97 annotations that has been

demonstrated to be highly informative by capturing functionality,

conservation, histone marks, and other variant-specific features

(Gazal et al., 2017). We thus account for these existing functional

annotations and evaluate the added value of our network

annotations in capturing trait heritability. We identified the

greatest enrichment across networks for the trait RBC

width, with estimates ranging from 3.29 (p = 8.84 3 10-6) to
Cell Reports Methods 2, 100218, May 23, 2022 5



Figure 4. Correlation of SNP degree measures between tissue samples

The pairwise correlations between tissues under the SNP degree definitions for QV, LFDR, BH, and NP, thresholdedwith t = 0.05 andweighted by Z-statistics, are

given for the complete network and stratified into location-specific networks.
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4.25 (p = 2.06 3 10-9) for the SNP-based annotation and

ranging from 1.87 (p = 2.55 3 10-9) to 2.45 (p = 2.25 3 10-11)

for the gene-based annotation (Figure 5). The degree annotation

was significantly enriched for the majority of tissue-trait pairings,

for both the SNP- and gene-level degrees (Tables S9, S10, and

S11). However, none of the t* estimates were significant in these

analyses, a measure that accounts for other functional annota-

tions. Thus, given the lack of statistical significant of the effect

size t*, similar to previously constructed network annotations,

the network annotations do not provide significant heritability

enrichment beyond the baseline-LD model (Kim et al., 2019).

Computational cost
The network construction and metric calculation methods we

used incurred significantly different computational burdens.

The least costly method is the BH-based approach. This

approach only requires storing SNP-gene associations meeting

the particular threshold t in memory. Further, the degree is

calculated via simple summation. Given the high proportion of

null associations, this means oftentimes that the association

will not need to be stored in memory, and one can capitalize

upon current eQTL software that allows for efficient regression

for large datasets (Shabalin, 2019). The QV- and LFDR-based

approaches require retaining the p values for all associations

intermediately, but they can be stored sparsely. The most

computationally costly approach is the NP-based network,

which requires an edge weight to be calculated and retained in

memory for all tested associations. A summary of the computa-

tional impact is given in Table S12. We compared the computa-

tional impact of calculating the degree of 10,000 SNPs for our

considered set of 24,634 genes in the largest tissue (skeletal

muscle) repeated across five iterations. The run time, including

I/O, was based on a 2.70 GHz laptop with 16 Gb of memory.

We observe that the location-specific computation, retaining

only edges meeting the minimum threshold for each of cis and

trans edges, is over four times faster than the exhaustive

genome-wide computation. This is significant considering that

studies are currently growing in the number of genotyped
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SNPs as well as those that can be imputed with high confidence;

therefore, scalability is of high importance.

DISCUSSION

We performed a comprehensive analysis of eQTL networks in

twenty-nine different tissues from the GTEx project. Using this

unique resource, we tested multiple approaches to reconstruct-

ing these networks and interrogated the stability of their resulting

properties. We found that the threshold significantly impacted

network size, with more stringent thresholds yielding sparser,

consistently defined networks. We also observed that the stabil-

ity of our edge definitions propagated through to affect node de-

gree as well, where correlation-based analyses demonstrated

that degree estimates were more consistent in split-sample

and cross-tissue networks using these more stringent, sparse

definitions. We explored the relationship between eQTL net-

works and gene regulatory networks, observing a positive corre-

lation between gene degree in our constructed eQTL networks

and gene regulatory networks. There was a negative correlation

between gene degree in our eQTL networks and gene co-

expression networks, suggesting that eQTL networks may be

appropriate to consider alongside other networks, particularly

as eQTL networks uniquely permit the inclusion of SNPs as

nodes and so sample the genetic factors associated with pheno-

type. We also observed a connection between eQTL network to-

pology and evolutionary processes. Specifically, more highly

connected genes in eQTL networks correlate with increased

evolutionary rates, indicating that they are reflective of evolu-

tionary processes. We also observe heritability enrichment of

blood-related traits for highly connected SNPs and genes in

trait-relevant tissues, indicating the informativeness of these

network features.

We found that a thresholding approach for constructing

network edges was both highly computational efficient and led

to stable network properties, including degree. In particular, a

weighted BH-based network had the highest correlations in split

samples and across tissues; the other thresholding approaches



Figure 5. Heritability enrichment and t* estimates for degree conditional on the baseline-LD model

(A–D) The estimates for SNP-level degree are given in (A) and (B), and estimates for gene-level degree are given in (C) and (D) across tissues and traits. SNPs or

genes are included in the annotation given they are in the upper quartile of degree metrics for the BH degree, thresholded with t = 0.05 and weighted by the

Z-statistic.

Resource
ll

OPEN ACCESS
often performed well with similar trends. We also observed this

consistency of the thresholding approach when we compared

the eQTL network metrics with gene networks and heritability

measures. Further, the thresholded methods straightforwardly

separate between cis- and trans-eQTLs when calculating the

FDR rates in all settings (since they are based on location-spe-

cific and genome-wide associations, respectively) and likely re-

flects the fact that trans effects are biologically less common

than cis effects.

The NP-based method did not perform well, which may be

because the null proportion is challenging to stably estimate.

This measure of the proportion of signals seeks to account for

sparsity, and given that eQTL signals are very sparse among a

large number of tests, methods for estimating the proportion of
non-null do not work well (Storey et al., 2003; Storey, 2002).

Furthermore, this approach does not capture the distinction be-

tween cis and trans effects and considers all eQTLs together in

genome-wide analysis; as a continuous measure, this may be

too stringent since the cis and trans effects and mechanisms

are different.

Our degree findings are also of computational importance

given the substantial differences in the computational cost of

inferring network edge weights. The BH-, QV-, and LFDR-based

networks require fewer computational resources as they can be

computed using matrix computations from summarized eQTL

mapping results; the use of more stringent thresholds further

reduce network-storage requirements and is supported by the

consistent results on the downstream analyses across
Cell Reports Methods 2, 100218, May 23, 2022 7
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thresholds. The NP degree measure, similar to many other exist-

ing network approaches, requires one to exhaustively output all

eQTL relationships and then perform estimation on the entirety of

the output. All of these degree measures can be completely par-

allelized for optimal computation, but the impact is nonetheless

an important consideration, as one would expect to periodically

repeat such analyses genome wide as datasets evolve.

We have been able to characterize the degree of nodes in

eQTL networks under different settings and explore their biolog-

ical implications. Further methodological work would include

pursuing fully weighted representations of the eQTL network

while calculating an estimate of the proportion of null for an

SNP stratified by cis- and trans-eQTLs. It would be interesting

to apply this framework to other biological QTL networks and

so to allow for comparisons across QTL networks, as one would

expect that SNPs associated with particular traits would also

affect the expression of genes encoding proteins that regulate

relevant biological processes. The value of considering network

metrics is demonstrated in the secondary analyses, where their

distinction from other networks and relationship to genomic fea-

tures such as diversity are shown. These results further support

integrating eQTLs with other measures of genetic association

with phenotype.

The results we present here were based on eQTL networks,

where the edge weights linking SNPs and genes are based on

analysis of experimental data to identify associations between

the genotype at a locus and the expression of each gene in the

genome. However, the lessons we learned are broadly appli-

cable to a wide range of problems in the inference of biological

networks. Many real-world network analyses focus on metrics

such as degree or betweenness centrality after binarizing the

edges. However, in analyzing biological networks, we often

have imperfect evidence or are modeling processes that are

neither always ‘‘on’’ or ‘‘off’’ but instead occur with some likeli-

hood. Understanding how edges are estimated, and the effect

that different methodological choices have on downstream ana-

lyses and the overall stability of results, is important for further

optimizing network methods. Robust methods for network infer-

ence and analysis will further our understanding of gene function

and help identify downstream relationships with traits and

diseases.

Limitations of the study
There are multiple limitations to the work presented here. First,

we focused on network specification and its effect on the degree

metric using the GTEx V8 data as a test case. While a key metric,

the degree may not always be of greatest interest, and thus an

association-based bipartite network may be better optimized

for a different measure. However, any of the commonly used

network metrics are based on edges, and the edge stability anal-

ysis we present in the context of degree is likely to affect other

measures in a similar manner. We also note that eQTL associa-

tion analysis methods and software are consistently improving

and may permit further optimized computation; the trends we

highlight, particularly in terms of storing and accessing large net-

works, would nonetheless persist. The resulting networks, met-

rics, and downstream findings may include false positive nodes,

particularly in settings with relaxed FDR thresholds. In our ana-
8 Cell Reports Methods 2, 100218, May 23, 2022
lyses, we used the most stringent threshold considered, and

trends we observed were largely consistent across the twenty-

nine tissues considered. Also, the heritability analysis we per-

formed is limited by previously noted methodological limitations,

including that S-LDSC requires sufficiently large and robust an-

notations for stable estimation, which limited our ability to incor-

porate weights in this aspect of the analysis.

The challenge that we face in validating network-based

methods is that there is no source of genome-wide ‘‘ground

truth.’’ The work presented here relies on estimating SNP-gene

associations through eQTL analysis; these associations are sup-

ported by extensive data but are not individually experimentally

validated. Consequently, when investigating thresholds on the

individual estimates of SNP-gene associations, we must rely

on other measures. Here, we appeal to properties such as

network stability for identifying optimal methods. This is a

reasonable strategy as a growing body of evidence indicates

that while individual SNP-gene associations may not be reliable,

the overall structure of eQTL networks can inform our under-

standing of the biology of the system under study. Consequently,

consistency in estimating the presence of SNP-gene associa-

tions can improve our overall understanding of genetic regulato-

ry processes.
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Materials availability
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Data and code availability
All data used for the analyses described in this manuscript were obtained from: the GTEx Portal on 12/17/19 and dbGaP:

phs000424.v8 on 12/17/19.

Code for analyses are publicly available online at: https://doi.org/10.5281/zenodo.6478155.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

No experimental models were generated for this study nor were research subjects enrolled.

METHOD DETAILS

In this section, we describe our approach for constructing eQTL networks and defining the network metric of degree. This approach

requires processed genotype and gene expression data, which can then be used to map eQTLs and build a network. We identify

differences in the various approaches with regards to stability and computational feasibility. We also provide details of the implemen-

tation of these approaches and their reproducibility. An overview of the workflow is given in Figure 1.

Bipartite eQTL network construction
We evaluated expression quantitative trait loci (eQTL) by modeling the association between SNP genotypes and gene expression

(Kendziorski et al., 2006; Wang et al., 2010). In particular, consider an r 3 n matrix S of SNP genotypes and r 3 m matrix G of

gene expression, each with r rows representing observations and columns representing n SNPs andm genes, respectively. Consider
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a covariate matrix X, including features such as principal components for population structure, sex, and age.Wemodel the eQTL of a

particular SNP i on a locus’s gene expression j:

Gj = XT
a+ bijSi:

Associations are considered for both SNPs acting to influence expression in cis or trans, where SNPs within 1MB of a gene’s tran-

scription start site are considered local or in cis.

The eQTL associations between all pairs of SNPs and genes can be represented as a bipartite network by considering each SNP i

and gene j to be a node in the network, and casting a function of their association as edges.We define elements ai,j of the n3m upper

right block of the bipartite network adjacency matrix A based on the association of the SNP-gene pairings. Previous studies of eQTL

networks took A to be a binary matrix, where matrix elements were defined by dichotomizing all SNP-gene associations according

to a fixed cutoff q = 0.2 on the false discovery rate (FDR) of the eQTL regression, Ii,j{FDR:q} (Platig et al., 2016; Fagny et al., 2017).

Thus, when the estimated FDR of the eQTL regression was below the threshold of 0.2 for SNP node i and gene expression node j then

ai,j = �1, indicating there was an edge connecting the nodes, and ai,j = 0 otherwise.

We define a set of adjacency matrix representations based on summary statistics from eQTL analyses. We first consider sparse

representations of A. Sparsity makes biological sense as even disease-associated SNPs are known to generally have small effect

sized, meaning they unlikely to exert their influence across the genome. In this setting, sparsity is enforced by thresholding a sum-

mary statistic to determine non-zero edges. Each element ofA is defined as ai;j =
��zi;j��IfYi;j < tg; where Zi,j is either set equal to 1 for an

unweighted representation or the z-statistic for testing bi,j from the eQTL regression between SNP i and gene j for a weighted rep-

resentation, Yi,j is a measure of the significance of the eQTL association where t ˛ 0:05;0:1; 0:15;0:2: Therefore when the estimated

regression measure was below the threshold of t for the SNP-gene pairing, then ai;j =
��zi;j�� and ai;j = 0 otherwise, providing a sparse

representation incorporating the magnitude of the effect. We estimate the network edges across all associations both without delin-

eation to location and stratified between cis- and trans-eQTLs.

We consider three definitions of Y, each providing a measure of significance to account for multiple comparisons: q-value

(Storey, 2002; Storey and Tibshirani, 2003; Storey et al., 2003), local FDR (Efron et al., 2001; Storey et al., 2003), and an adaptation

of Benjamini-Hochberg FDR (Benjamini and Hochberg, 1995). We first consider the q-value, a quantity that controls the FDR

by providing the minimum FDR at which an eQTL association test is called significant. The q-value is estimated in practice asbq � valueðpiÞ = mintRpi
F bDRðtÞ for a given p-value pi. We next consider the local FDR, which estimates the posterior probability

that the null hypothesis of no eQTL association is true, given the value of test statistic. The local FDR is given as

lFDRðzÞ = p0f0ðzÞ=fðzÞ where fðzÞ = p0f0ðzÞ+p1f1ðzÞ for the null probability and density p0; f0ðzÞ and non-null probability and density

p1; f1ðzÞ: The q-value and local FDR measures are implemented in the qvalue R package (Storey et al., 2019). We last considered an

adaptation of the Benjamini-Hochberg FDR,which is calculated for p-valuesmeeting a significance threshold (and so not considering

those non-significant) for computational efficiency (Shabalin, 2012). This approach considers the K significant p-values from N total

tests, and calculates FDR as qK =
N

K
pK ;qi = min

�N
i
pi;qi + 1

�
for i = 1;.;K � 1. This procedure is provided in the MatrixEQTL R

package (Shabalin, 2019).

We also consider a denser representation of A, where ai,j = pijwhere pi,j is the nominal p-value for the Z-test of the eQTL regression

parameter bi,j between SNP i and gene j. In contrast to the biological assumptions leading to a sparsity requirement, a denser network

allows us to capture the fact that we have no prior knowledge of precisely which SNPs and genes might have an association and so

allows us to estimate the weight of evidence supporting an interaction. As such, this representation includes the p-value of all eQTL

associations and does not involve thresholding. These sparse and denser adjacency matrix representations are thus defined as the

following, with n rows of SNPs and m columns of genes:

Bsparse =

2664
��z1;1��I1;1fY < tg /

��z1;m��I1;mfY < tg��z2;1��I2;1fY < tg /
��z2;m��I2;mfY < tg

« 1 «��zn;1��In;1fY < tg /
��zn;m��In;mfY < tg

3775;Bdenser =

2664
p11 / p1m

p21 / p2m

« 1 «
pn1 / pnm

3775
Degree definition and estimation
To identify nodes (either SNPs or genes in our bipartite representation) that are central to the network, we consider the networkmetric

of degree. For an eQTL network, a SNPwith high degree ismost highly connected to the expression of genes and therefore should be

highly functionally relevant. We define the node-level metric of degree particular to each adjacency matrix definition. For the sparse

representation of A, the degree of SNP i and the degree of gene j are defined as follows:

dSNP
sparse =

Xm
j = 1

��zi;j��Ii;j;dGene
sparse =

Xn

i = 1

��Zi;j

��Ii;j:
e2 Cell Reports Methods 2, 100218, May 23, 2022
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In the sparse, unweighted adjacency setting, all edges are binary. Thus, we take the standard summation of binary edges to obtain

a count of the number of edges or connections a SNP has to a gene (or a gene to all SNPs). For the sparse weighted setting, the

degree incorporates the magnitude of the test statistic Zi,i as a weighted sum.

For the denser representation of A, we estimate the proportion of significant eQTL analyses for a particular SNP, or the proportion

of genes whose expression are influenced by the SNP by utilizing the proportion of true null hypotheses. The proportion of null hy-

potheses is given as r0 = m0=m where m0 is the number of true null hypotheses and m is the total number of hypotheses. (Storey,

2002; Storey et al., 2003, 2004; Storey and Tibshirani, 2003). As such, the degree is given as:

dSNP
denser = 1 � r0

�
pi;1;pi;2;.;pi;m

�
;dGene

denser = 1 � r0
�
p1;j;p2;j;.;pn;j

�
Thus SNPs that have higher degree if they are estimated to have fewer true null associations to the genes. This degree dNP, thus is

given by the estimation of the proportion of non-null hypotheses.

GTEx data set
We downloaded data from the NHGRI Genotype-Tissue Expression (GTEx) project to build eQTL networks in each of twenty-nine

tissues. The GTEx project is a consortium collecting genotype and expression data from multiple human tissues from hundreds of

human donors. We downloaded the Version 8.0 whole genome sequencing and RNA-seq data from the database of Genotypes

and Phenotypes (dbGaP): phs000424.v8.p2. A threshold of at least 200 individuals per tissue available was considered for appro-

priate statistical power and network stability; sex-specific tissues were not included. Computations on the GTEx data were run on

the Bridges system at the Pittsburgh Supercomputing Center (PSC) and the Cannon cluster supported by the Faculty of Arts and

Sciences Division of Science, Research Computing Group at Harvard University. The sequencing data were processed in Plink

1.90 to retain only SNPs, and remove variants with genotype missingness greater than 10% or minor allele frequency less than

0.05 (Purcell and Chang, 2015); SNP imputation was performed using Eagle2 (Loh et al., 2016). Fully processed, filtered and normal-

ized RNA-Seq data were obtained from the GTEx Portal (www.gtexportal.org). Briefly, the GENCODE 26model was used to collapse

transcripts and quantify using RNA-SeQC (DeLuca et al., 2012).

eQTL mapping
We used a linear regression model with covariates assuming an additive effect of genotypes to map eQTLs. We accounted for pop-

ulation stratification by using the first five principal components of the genotypes as covariates. We further adjusted for sex, geno-

typing platform and protocol, and the GTEx-recommended set of f PEER factors based on sample size, with the model for gene j and

SNP i given by Gj = bijSi +a0 +a1PC1 +.+a5PC5 +a4Sex +a5PCR+a6Platform+a7PEER1 +.a7+ f � 1PEERf : Functions of the

regression coefficient bij were then used in network construction as previously described. Wald tests were used for performing infer-

ence on bij, and nominal p-values were considered throughout.

We defined cis-eQTLs to be SNPs within 1MB of a gene’s transcription start; all other SNP-gene pairings were defined as trans-

eQTLs. Analyses were conducted in R 3.3.0 and utilized the aforementioned MatrixEQTL and qvalue packages (R Core Team, 2020).

All calculations were massively parallelized across SNPs (Shabalin, 2012). The eQTL mapping by the GTEx Consortium was

compared by downloading the single-tissue cis-eQTL results for significant variant-gene associations based on permutations

from the GTEx Portal.

Degree correlation between and within tissues
We calculated the correlation of a given degree metric in two settings: across different tissues and within a particular tissue. We

compared the degree of SNPs and genes between tissues via correlation to define the network-level relationship between tissues.

We expected, particularly for cis-eQTLs, that tissue-specific networks would share features. Given the non-normal distributions of

each of the degree measures, we used Spearman correlation. We further considered the correlation of the degree within a particular

tissue, predominantly as a demonstration of reproducibility for each degree measure. We randomly split the observations for each

tissue into two equal sets, constructed networks and calculated the defined degree, and then estimated the correlation of the degree

between the splits. This was repeated five times for each tissue to account for variability. Lastly, we considered the correlation within

a particular tissue for different degree metrics to evaluate the impact of weighting on correlation.

Gene network construction and comparison
We built tissue-specific gene expression correlation networks to compare network-based relationships between genes. We used

Weighted Gene Co-expression Network Analysis, as implemented in the WGCNA R package, to construct a network defined by

the correlation pattern of genes across the GTEx expression data (Langfelder and Horvath, 2008, 2020). This approach requires

the selection of a soft thresholding power for constructing the network, which was selected based on inspecting by plot the first in-

flection point for the scale-free topology fit index curve. The co-expression network was constructed using all of the genes consid-

ered in eQTL mapping; the degree was calculated using the intramodularConnectivity function to obtain the total connectivity.

We also built tissue-specific regulatory networks using PANDA as described by Sonawane et al. (2017). In particular, we used the

pandaR package in Bioconductor (Glass et al., 2013; Schlauch et al., 2020) with a prior network provided by mapping transcription
Cell Reports Methods 2, 100218, May 23, 2022 e3
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factor binding motifs to the genome, protein-protein interaction data derived from the Catalog of Inferred Sequence Binding Prefer-

ences and StringDb (Weirauch et al., 2014; Szklarczyk et al., 2017), and gene expression data fromGTEx V8 as inputs to PANDA. The

output fromPANDAwas a set of twenty-nine tissue-specific gene regulatory networkmodels linking transcription factors to genes for

which there is evidence of regulation. We calculated the degree of genes in the regulatory network using the following proposed

transformation to the edge weights to account for negative edge weights,

Wij = ln ðewij + 1Þ;
where wij is the edge weight between transcription factor i and gene j.

We compared the degree across the different types of gene networks, exploring the differences in the regulatory relationships rep-

resented in these networks. We calculated the correlation of the gene degree between our proposed eQTL network, primarily consid-

ering the Benjamini-Hochberg based weighted gene degree with a threshold of t < 0.05 as well as the other sparse definitions within

the supplemental information, and each of the co-expression and regulatory networks for each tissue. We then meta-analyzed the

correlations using a random effects model using the meta package (Balduzzi et al., 2019).

Degree and functional annotations
Wedefine genomic annotations based on the estimated SNP and gene degrees. For the SNP-level degree, we defined the annotation

to be the Benjamini-Hochberg based weighted degree with a corresponding threshold of t < 0.05. For the gene-level degree, we an-

notated all SNPs within the gene (± 50 KB window) with the gene’s continuous-valued Benjamini-Hochberg based weighted degree

with a corresponding threshold of t < 0.05. We also defined annotations for LFDR and QV with a threshold of t < 0.05. We used the

1000G European samples as reference SNPs for defining the gene-based annotation (Genomes Project Consortium, 2015).

We also considered two sets of external annotations. First, we estimate annotations capturing genetic diversity. We calculate both

nucleotide diversity (p) and Tajima’s D across all genes for which expression was measured. We used the window-pi and TajimaD

functions of VCFtools on the previously described GTEx genotype data (Danecek et al., 2011). Second, we use the baseline-LD

model (v2.2) in enrichment estimation, which contains a broad set of 97 annotations (Gazal et al., 2017). This model extends previous

baseline-LD models and captures variant characteristics including functional regions, conservation, MAF, and LD-related

annotations.

Correlation with genetic diversity annotations
We evaluated the correlation between degree and genetic diversity. For each tissue, we used the gene-level degree defined above

primarily Benjamini-Hochberg based weighted degree with a corresponding threshold of t < 0.05, and secondarily across the other

sparse definitions) and calculated the correlation to nucleotide diversity and Tajima’s D in order to assess whether there is a relation-

ship between increased network connections and genetic evolution. We summarized across tissues by meta-analyzing the correla-

tions using a random effects model via the meta package (Balduzzi et al., 2019).

Effect size and enrichment estimation
We used stratified LD score regression (S-LDSC) to estimate the enrichment and standardized effect size of the degree-defined an-

notations (Gazal et al., 2017; Finucane et al., 2015). In particular, we considered seven blood traits selected to correspond with six

relevant tissue-specific networks. The summary statistics for these traits were obtained from a publicly available analysis of the UK

Biobank (Hormozdiari et al., 2018). As previously described, we define acj as the annotation value of SNP j for the annotation c and tc
as the contribution of annotation c to per-SNP heritability contribution. We consider a binary annotation in order to have sufficiently

stable estimates, defined as 1 where the variant is in the top quartile of the Benjamini-Hochberg (or secondarily LFDR or QV) based

weighted degree with a corresponding threshold of t < 0.05 and 0 otherwise. Then, assuming that the variance of each SNP is a linear

additive contribution to the annotation:

Var
�
bj

�
=

X
c

acjtc;

where tc is estimated as:

E
h
c2
j

i
= N

X
c

lðj; cÞtc + 1;

whereN is the GWAS sample size and l(j,c) is the LD score of SNP j for the annotation c. The LD score is estimated as lðj; cÞ = P
k

ackr
2
jk

where rjk is the correlation between SNPS j and k. We used LD scores computed from 1000G data from individuals with European

ancestry (Genomes Project Consortium, 2015).

The first measure of interest, effect size, is a standardized measure that describes effects unique to annotation c, conditional on all

other annotations. It is defined as the proportionate change in per-SNP heritability associated with a one standard deviation increase

in the value of the annotation (conditional on all the other annotations in the model),
e4 Cell Reports Methods 2, 100218, May 23, 2022
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t�c =
tcsdðcÞ
h2
g

.
M

;

where sd(C) is the standard deviation of annotation c, h2g is the SNP heritability, andM is the number of SNPs used in heritability esti-

mation. p-values were computed assuming t�=sdðt�Þ � Nð0; 1Þ:.
The second measure of interest, enrichment, is the proportion of heritability explained by the annotation divided by the proportion

of SNPs in the annotation. It describes effects that are both unique and non-unique. Thus for a continuous annotation, enrichment is

given as:

Enrichment :
%h2

gðCÞ
%SNPðCÞ =

h2
gðCÞ
h2
g

,P
jajc

M
;

where h2gðCÞ is the heritability of annotation c. p-values were computed using a block-jacknife.
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