Motivation of the work

     Ṡ = -βSI İ = βSI -γI Ṙ = γI      Ṡ = -β(1 -u)SI İ = β(1 -u)SI -γI Ṙ = γI with ∞ 0 u(τ ) dτ ≤ Q How to reduce at best max i I(t) ? Optimal control with L ∞ criterion ẋ = f (x , u) → inf u(•) max t∈[0,T ] h(x (t))
is not in the classical form of a Mayer or Bolza problem... Characterization of the value function (Barron, Ishii, Jensen, Liu, Gonzalez, Aragone...) in terms of a variational inequality :

min ∂ t V + inf u ∂ x V .f (x , u) , V -h(x ) = 0 . Approximation of the L ∞ norm by the L p norm. (D) : ẋ = f (x , y , u) ẏ = g(x , y , u) with x ∈ R n y ∈ R u ∈ U ⊂ R p
Assumptions. U is compact ; f and g are C 1 with linear growth.

P : inf u(•) max t∈[0,T ] y (t)
Question. Is it possible to write an equivalent problem in Mayer or Bolza form (and use numerical tools such as Bocop) ?

Remark : ẋ = f (x , u) y = h(x ) ⇒ ẋ = f (x , u) ẏ = g(x , u) := ∇h(x ) T • f (x , u)
A first formulation with state constraint

     ẋ = f (x , y , u) ẏ = g(x , y , u) ż = 0
The problem

P 0 : inf u(•) z(T )
under the state constraint

z(t) ≥ y (t), t ∈ [0, T ]
and the two boundaries condition

z(T ) = z(0)
is equivalent to P.

Remark. Here z(0) is free.

Another formulation as a Cauchy problem

(D a ) :      ẋ = f (x , y , u) ẏ = g(x , y , u) ż = max(g(x , y , u), 0)(1 -v ) v ∈ [0, 1]
Proposition. With z 0 = y 0 , the problem

P 1 : inf u(•),v (•) z(T )
under the state constraint

C : z(t) ≥ y (t), t ∈ [0, T ]
admits an optimal solution, and is equivalent to problem P.

I := t ∈ (0, T ); y (t ) > y (t) for some t < t .
Sun Rising Lemma :

I ∅ ⇒ int I = n (a n , b n ) with i) y (a n ) = y (b n ) if b n T , ii) if b n = T , then y (a n ) ≥ y (b n ). Then, the control v (t) = 1, t ∈ int I 0, t int I is optimal
A formulation with mixed constraint

(D a ) :      ẋ = f (x , y , u) ẏ = g(x , y , u) ż = max(g(x , y , u), 0)(1 -v ) v ∈ [0, 1]
Proposition. For z 0 = y 0 , the problem

P 2 : inf u(•),v (•) z(T )
under the mixed constraint

C m : max(y (t) -z(t), 0)(1 -v (t)) + z(t) -y (t) ≥ 0, t ∈ [0, T ]
is equivalent to P.

Formulation without constraint

Consider Z = (x , y , z) , Ż ∈ F (Z ) := (u,v )∈U×[0,1]    f (x , y , u) g(x , y , u) h(x , y , z, u, v )    with h(x , y , u, v ) = max(g(x , y , u), 0)(1 -v 1 R + (z -y )) Let S := {Z (•) a.c. ; Ż (t) ∈ F (Z (t)) a.e. and Z (0) = (x 0 , y 0 , y 0 )} Remark. F is only upper semi-continuous. Proposition. Assume G(x , y ) := u∈U f (x , y , u) g(x , y , u)
is convex. Then

P 3 : inf Z (•)∈S z(T )
admits a solution Z (•) and (x (•), y (•)) is optimal for problem P.

1. Consider the augmented dynamics :

Ż ∈ F † (Z ) := (u,v ,α)∈U×[0,1] 2    f (x , y , u) g(x , y , u) h † (x , y , z, u, v , α)    h † (x , y , z, u, v , α) = (1 -α)h(x , y , z, u, v ) + α max w ∈U h(x , y , z, w , 0) ⇒ S † compact ⇒ ∃(x (•), x (•), z (•)) optimal. 2. Any Z (•) sol. of D a with C m belongs to S ⊂ S † ⇒ z (T ) ≤ inf{z(T ); (x (•), y (•), z(•)) sol. of D a with C m }. Sketch of proof 3. If E := {t ∈ (0, T ); z(t) < y (t)} ∅, then one has ż(t) -ẏ (t) ≥ 0 for a.e. t ∈ E ⇒ z(0) -y (0) < 0 : contradiction. ⇒ z(T ) ≥ max t∈[0,T ] y (t) 4. Filipov's Lemma applied to G : ⇒ z (T ) ≥ max t∈[0,T ] y (t) ≥ inf u∈U max t∈[0,T ] y (t); (x (•), y (•)) sol. of D where (x (•), y (•)) is solution of D for a certain u (•).

Approximation from below

(D θ a ) :      ẋ = f (x , y , u) ẏ = g(x , y , u) ż = h θ (x , y , z, u, v ) with h θ (x , y , z, u, v ) = max(g(x , y , u), 0) 1 -v e -θ max(y -z,0)
Proposition. For any increasing sequence θ n → +∞, the problem 

P θn 3 : inf Z (•)∈S θn z(T ) admits an optimal solution (x n (•), y n (•), z n )(•)). (x n (•), y n (•)) converges (
λ 2 = log ε log(2) log(1-) -1 ε 2 θ = - log(1 -ε) log ( 

Conclusions

We 

I

  up to a sub-sequence) uniformly to an optimal solution (x (•), y (•)) of problem P, and ( ẋ (•), ẏ (•)) converges weakly to ( ẋ (•), ẏ (•)) in L 2 .Moreover, z n (T ) is an increasing sequence that converges to max t∈[0,T ] y (t). β = 0.21, γ = 0.07, Q = 28, I(0) = 10 6 , 0) log (exp(λ 1 ẏ ) + 1) /λ 1 exp(-θ max(yz, 0)) exp (-θ log(exp(λ 2 (yz)) + 1)/λ 2 )

  have proposed equivalent formulations that allow to use existing numerical methods, but...

with state constraint : not qualified... without state constraint : discontinuous differential inclusion... one cannot use (available) Maximum Principles... Open problem : How to derive necessary optimality conditions ?

is optimal for problem P.

An example

Optimal solution for T = 5 : The SIR problem

The SIR problem

Posit R 0 = β/γ and S h = R -1 0 . Proposition. 1 The "0-singular-0" feedback control