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Abstract Biofilms are spatially organized communities of microorganisms embedded in a
self-produced organic matrix, conferring to the population emerging properties such as an
increased tolerance to the action of antimicrobials. It was shown that some bacilli were able to
swim in the exogenous matrix of pathogenic biofilms and to counterbalance these properties.
Swimming bacteria can deliver antimicrobial agents in situ, or potentiate the activity of
antimicrobial by creating a transient vascularization network in the matrix. Hence, characterizing
swimmer trajectories in the biofilm matrix is of particular interest to understand and optimize
this new biocontrol strategy in particular, but also more generally to decipher ecological drivers
of population spatial structure in natural biofilms ecosystems. In this study, a new methodology
is developed to analyze time-lapse confocal laser scanning images to describe and compare the
swimming trajectories of bacilli swimmers populations and their adaptations to the biofilm
structure. The method is based on the inference of a kinetic model of swimmer populations
including mechanistic interactions with the host biofilm. After validation on synthetic data, the
methodology is implemented on images of three different species of motile bacillus species
swimming in a Staphylococcus aureus biofilm. The fitted model allows to stratify the swimmer
populations by their swimming behavior and provides insights into the mechanisms deployed by
the micro-swimmers to adapt their swimming traits to the biofilm matrix.

Introduction
Biofilm is the most abundant mode of life of bacteria and archaea on earth (Flemming andWuertz,
2019; Flemming et al., 2016b). They are composed of spatially organized communities of microor-
ganisms embedded in a self-produced extracellular polymeric substances (EPS) matrix. EPS are
typically forming a gel composed of a heterogenous mixture of water, polysaccharides, proteins
and DNA (Flemming et al., 2016a). The biofilmmode of life confers to the inhabitantmicrobial com-
munity strong ecological advantages such as resistance tomechanical or chemical stresses (Bridier
et al., 2011) so that conventional antimicrobial treatments remain poorly efficient against biofilms
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(Bridier et al., 2015). Different mechanisms were invoked such as molecular diffusion-reaction
limitations in the biofilm matrix and the cell type diversification associated with stratified local
microenvironments (Bridier et al., 2017). Biofilms can induce harmful consequences in several
industrial applications, such as water (Beech and Sunner, 2004), or agri-food industry (Doulgeraki
et al., 2017), leading to significant economic and health burden (Köck et al., 2010). Indeed, it was
estimated that the biofilm mode of life is involved in 80% of human infection and usual chemical
control leads to serious environmental issues (Bridier et al., 2011). Hence, finding efficient ways to
improve biofilm treatment represents important societal sustainable perspectives.

Motile bacteria have been observed in host biofilms formed by exogenous bacterial species
(Houry et al., 2012; Li et al., 2014; Piard et al., 2016; Flemming et al., 2016a). These bacterial swim-
mers are able to penetrate the dense population of host bacteria and to find their way in the inter-
lace of EPS. Doing so, they visit the 3D structure of the biofilm, leaving behind them a trace in the
biofilm structure, i.e. a zone of extracellular matrix free of host bacteria (Figure 1 a and Appendix 1
Figure 3). Hence, bacterial swimmers are digging a network of capillars in the biofilm, enhancing
the diffusivity of large molecules (Houry et al., 2012), allowing the transport of biocide at the heart
of the biofilm, reducing islands of living cells. The potentiality of bigger swimmers has also been
studied for biofilm biocontrol, including spermatozoa (Mayorga-Martinez et al., 2021), protozoans
(Derlon et al., 2012) or metazoans (Klein et al., 2016). Recent results suggest a deeper role of bac-
terial swimmers in biofilm ecology with the concept of microbial hitchhiking: motile bacteria can
transport sessile entities such as spores (Muok et al., 2021), phages (Yu et al., 2020) or even other
bacteria (Samad et al., 2017), enhancing their dispersion within the biofilm. Hence, characterizing
microbial swimming in the very specific environment of the biofilm matrix is of particular interest
to decipher biofilm spatial regulations and their biocontrol, but more generally in an ecological
perspective of microbial population dynamics in natural ecosystems.

Bacterial swimming is strongly influenced by the micro-topography and bacteria deploy strate-
gies to sense and adapt their motion to their environment (Lee et al., 2021), with specific implica-
tions for biofilm formation and dynamics (Conrad and Poling-Skutvik, 2018). Model-based stud-
ies were conducted to characterize bacterial active motion in interaction with an heterogeneous
environment. An image and model-based analysis showed non-linear self-similar trajectories dur-
ing chemotactic motion with obstacles (Koorehdavoudi et al., 2017). Theoretical studies explored
Brownian dynamics of self-propelled particles in interaction with filamentous structures such as
EPS (Jabbarzadeh et al., 2014) or with random obstacles, exhibiting continuous limits and differ-
ent motion regimes depending on obstacle densities (Chepizhko and Peruani, 2013; Chepizhko
et al., 2013). Image analysis characterized different swimming patterns in polymeric fluids (Patte-
son et al., 2015), completed by detailed comparisons between a micro-scale model of flagellated
bacteria in polymeric fluids and high-throughput images (Martinez et al., 2014). Models of bac-
terial swimmers in visco-elastic fluids were also developed to study the force fields encountered
during their run (Li and Ardekani, 2016). However, to our knowledge, no study tried to characterize
swimming patterns in the highly heterogeneous environment presented by an exogenous biofilm
matrix.

In this study, we aim to provide a quantitative characterization of the different swimming be-
haviours in adaptation to the host biofilmmatrix observed by microscopy. We focus on identifying
potential species-dependent swimming characteristics and quantifying the swimming speed and
direction variations induced by the host biofilm structure. To address these goals, three differ-
ent Bacillus species presenting contrasted physiological characteristics are selected. First, differ-
ent trajectory descriptors accounting for interactions with the host biofilm are defined, allowing
to discriminate the swim of these bacterial strains by differential analysis. Then, a mechanistic
random-walk model including swimming adaptations to the host biofilm is introduced. This model
is numerically explored to identify the sensitivity of the trajectory descriptors to the model param-
eters. An inference strategy is designed to fit the model to 2D+T microscopy images. The method
is validated on synthetic data and applied to a microscopy dataset to decipher the swimming be-
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Figure 1. Microscopy data and model outlines. (a) Temporal stacks of 2D images are acquired, withdifferent fluorescence colors for host bacteria (Staphylococcus aureus, green) and swimmers (Bacillus pumilus,
Bacillus sphaericus or Bacillus cereus, red). Bacterial swimmers navigate in a host biofilm and are tracked in thedifferent snapshots. Swimmer trajectories are represented with white lines. High density and low densityzones of host cells are visible in the biofilm (green scale). (b) Additionally to speed and accelerationdistributions, three trajectory descriptors are considered. Distance is the total length of the trajectory path.
Displacement is the distance between the initial and final points of the trajectory. Visited area is the total areaof the pores left by the swimmer during its path. Hence, when a swimmer retraces its steps, the displacementis incremented but not the visited area. (c)Three different mechanisms are considered in the mechanisticmodel. Biofilm-dependant speed. A target speed is defined accordingly to the local density of biofilm andasymptotically reached after a relaxation time. Biofilm-dependent direction. Swimming direction is definedaccordingly to the local biofilm density gradient. Random walk. A Brownian motion is added. (d) The imageacquisition workflow is composed of a first step at the wet lab where host biofilm and swimmer are platedand imaged in different color channels. Then a post-processing phase recomposes the swimmer trajectorieswith tracking algorithms. Finally, temporal positions, speeds and accelerations are computed. On the biofilmchannel, density and density gradient maps are processed at each time step.
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Figure 2. TEM images of the three Bacillus. TEM images of the three Bacillus are acquired, scaled in thesame dimension and aligned (left panel). Images at lower scale are made with a zoom in on the flagellainsertion (right panel). Note that the zoom in is optical so that the zoomed in image do not correspond to azone of the larger scale images.

haviour of the three Bacillus.
Results
Ultrastuctural bacterial morphology
To investigate how the shape and propelling mechanism of bacteria can affect the way they navi-
gate in a porousmedia such as a biofilm, we first image three bacterial swimmers –Bacillus pumilus
(B. pumilus), Bacillus sphaericus (B. sphaericus) and Bacillus cereus (B. cereus) – by Transmitted Elec-
tron Microscopy (TEM) (Figure 2) to seek for potential structural and physiological differences. Im-
portant discrepancies can be observed between these Bacillus. First, they show noticeable differ-
ence in length and diameter, B. sphaericus being the longest bacteria by a factor of approximatively
1.5, and B. cereus and B. pumilus having similar size, but B. cereus showing a higher aspect ratio.
Secondly, they do not have the same type of flagella: B. pumilus and B. sphaericus present several
long flagella distributed over the whole surface of the membrane while B. cereus shows a unique
brush-like bundle of very thin flagella, at its back tip.

We then used these three species to test if these ultrastructural differences could impact their
swimming behaviour in a host biofilm or in a Newtonian control fluid: could the longer body of B.
sphaericus be an impediment in a crowded environment such as a biofilm or on the contrary could
its larger size give it a higher strength to cross the biofilm matrix? Is the unique brush-like flagella
of B. cereus an advantage or a disadvantage to swim in a Newtonian fluid or in a host biofilm?
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Species Batch # traject. traj. length time points Duration [s] Δt [s]
B. pumilus 1 122 40 (7.4) 4,590 30 0.134

2 152 25 (5.7) 3,543 30 0.134
3 243 38 (6.9) 8,825 30 0.134

B. sphaericus 1 98 40 (7.6) 3,762 30 0.134
2 91 43 (7.7) 3,771 30 0.134
3 48 55 (7.9) 2,543 23 0.134

B. cereus 1 105 47 (7.9) 4,766 30 0.069
2 53 36 (7.7) 1,808 30 0.069
3 121 43 (7.1) 5,006 30 0.069

Table 1. Dataset characteristics. We detailed, for each batch, the number of trajectories, the averagenumber of time points by trajectory (and standard deviation), the total number of time points in the dataset,the total movie duration in seconds and the time interval between two snapshots in seconds.

Characterizing bacterial swimming in a biofilm matrix through image descriptors
2D+T Confocal Laser Scanning Microscopy (CLSM) of the three Bacillus swimming in a Staphylo-

coccus aureus (S. aureus) host biofilm or in a control Newtonian buffer are acquired (see Figure 1 d).
Swimmers and host biofilms are imaged with different fluorescent dyes, allowing their acquisition
in different color channels, and to recover in the same spatio-temporal referential the swimmer
trajectories and the host biofilm density (see Materials and Methods and Figure 1). Namely, for
each species s and individual swimmer i, we recover the initial (T s0,i) and final (T send,i) observationtimes (when the swimmer goes in and out the focal plane, see Material and Methods sect. Con-
focal Laser Scanning Microscopy (CLSM)), and the number T si of time points in the trajectory. We
then extract from the 2D+T images the observed position, instantaneous speed and acceleration
time-series

t↦ Xs
i (t), t↦ V s

i (t), t↦ As
i (t), for t ∈ (T s0,i, T send,i).

Noting bs(t, x) the dynamic biofilmdensitymaps obtained from thebiofilm images, we also compute
the local biofilm density and density gradient along trajectories

t↦ bs(t, Xs
i (t)), and t ↦ ∇bs(t, Xs

i (t)).

The angle �si (t) and the average velocity V̄ s
i (t) between two successive speed vectors are also col-

lected (see Figure 4 and Material and method sec. Post-processing of image data).
Different swimming patterns can be deciphered by qualitative observations of the trajectories

Xs
i (t) (Figure 3) in the biofilm and in the control Newtonian buffer, and run-and-tumble swimming

patterns are quantified with �si (t) and V̄ s
i (t) (Figure 4). B. sphaericus has a similar run-and-reverse

behaviour in the biofilm and the control buffer with trajectories divided between back and forth
paths around the starting point and long runs, the biofilm strongly impairing its speed and increas-
ing the number of reverse events. By contrast, B. pumilus clearly switches its swimming behaviour
in the biofilm, from quasi-straight runs in the Newtonian buffer to a pronounced run-and-reverse
behaviour in the biofilm with decreased speeds and chaotic trajectories. On the contrary, B. cereus
swimmers manage to conserve comparable trajectories and distributions of swimming speed and
direction in the biofilm compared to control. Interestingly, the number of reverse events is even
reduced in the host biofilm for B. cereus.

For further quantitative analysis, trajectory descriptors are defined. We first investigate the
distribution of the population-wide average acceleration and velocity norms 1

T si −2

∑

t ‖As
i (t)‖ and

1
T si −1

∑

t ‖V s
i (t)‖, where ‖ ⋅ ‖ denotes the Euclidian norm. We also quantify the swimming kinematics

by computing the travelled distance distsi along the path and the total displacement dispsi , i.e. the
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Figure 3. Swimmer trajectories The whole set of trajectories of each species is displayed in the controlNewtonian buffer (upper panel) and in the host biofilm (lower panel).Note that the 3 batches of the differentspecies are pooled on these images. Number of trajectories are n = 517 and 123 (B. pumilus), n = 237 and 94 (B.
sphaericus) and n = 279 and 144 (B. cereus) for, respectively, the biofilm and the control buffer.

distance between the initial and final trajectory points, with
distsi = ∫

T send,i

T s0,i

‖V s
i (t)‖dt and dispsi = ‖X(T send,i) −X(T

s
0,i)‖ = ‖∫

T send,i

T s0,i

V s
i (t)dt‖.

We finally compute the total biofilm area visited by a swimmer along its path (see Figure 1 b). The
same descriptors are computed in the control Newtonian buffer.

The three species present contrasted distributions for these descriptors (Figure 5). B. sphaericus
has the smallest mean (||A|| = 0.58 and ||V || = 0.70) and median (‖A‖ = 0.50 and ‖V ‖ = 0.53) values
of acceleration and speed, while B. pumilus has thewidest distributions (difference between 95 and
5% centiles of 2.76 for ‖A‖ and 2.45 for ‖V ‖ compared to 1.00, 1.51 and 1.90, 1.49 for B. sphaericus
and B. cereus respectively). B. cereus for its part shows the highest accelerations, indicating larger
changes in swimming velocities, but median and mean speeds comparable to B. pumilus (Figure 5,
‖A‖ and ‖V ‖ panels). We also note that B. sphaericus and to a lower extent B. pumilus trajecto-
ries have a significant amount of null or small average speeds, while B. cereus trajectories have
practically no zero velocity, consistently with the qualitative analysis (Figure 5, ‖V ‖ panels). Small
velocities episodes of B. sphaericus and B. pumilus could occur during their back-and-forth trajec-
tories, which produce small displacements and pull the displacement distribution towards lower
values than B. cereus (Figure 5 , Disp panel). B. pumilus displacement is intermediary. Conversely,
back-and-forth trajectories can produce large swimming distances for B. sphaericus and B. pumilus
(mean adimensioned value of 32.2 and 43.2 respectively) so that B. sphaericus has a distance distri-
bution comparable to B. cereus (mean adimensioned value of 29.6,Figure 5 , Dist panel), but lower
than B. pumilus. Observing conjointly displacement and distance (Figure 5, lower-right panel) pro-
vides consistent insights: B. sphaericus shows a large variability of small displacement trajectories,
from small to large distances, while B. cereus trajectory displacement seems to vary almost linearly
with the distance at least for the points inside the isoline 50%. B. pumilus has again an intermediary
distribution, with a large range of displacement-distance couples. The distributions of visited areas
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Figure 4. Assessing run-and-tumble with speed and direction distributions. For each time point, theswimmer mean speed V̄ s
i (t), defined as the mean between the incoming and outgoing velocity vectors

V̄ s
i (t) = (‖V

s
i (t)‖ + ‖V s

i (t − Δt)‖)∕2, for t ∈ (T s0,i + Δt, T send,i), is plotted versus the direction change, defined asthe angle �si (t) between the incoming and outgoing velocity vectors
�si (t) = arccos((V

s
i (t) ⋅ V

s
i (t − Δt))∕(‖V

s
i (t)‖‖V

s
i (t − Δt)‖)). The left and bottom panels indicate the marginaldistributions, with the mean (dashed line) and quantiles 0.05, 0.5 and 0.95 (plain lines).
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of B. pumilus and B. cereus are almost identical, and higher than B. sphaericus one. Compared to the
control buffer, all descriptors are reduced in the biofilm. Consistently with previous observations,
the displacement (disp) is strongly reduced for B. pumilus, and less impacted for B. sphaericus and
B. cereus. These observations must be related to the behavioural switch for B. pumilus and to the
identical swimming patterns for the two other Bacilii in the biofilm compared to the control fluid.

All together, this data depict 1) a long-range species, B. cereus, which moves efficiently in the
biofilm during long, relatively straight, rapid runs, almost identically as in a Newtonian fluid 2)
a short-range species, B. sphaericus, that moves mainly locally in small areas in the biofilm and
in the control buffer with lower accelerations and speeds except few exceptions (only 6% of its
trajectories induced a displacement higher than 10�m compared to 28% for B. cereus and 26% for
B. pumilus) and 3) a medium-range species, B. pumilus, with a large diversity of rapid trajectories,
from small to large displacement, and a behavioural change from straight runs in aNewtonian fluid
to frequent run-and-reverse events in the biofilm. These kinematics discrepancies for B. pumilus
and B. cereus allow them however to cover identical visited areas.

Though, these global descriptors do not inform about potential adaptations of the swimmers to
the biofilm matrix. We first check if swimmer velocities are directly linked to the local biofilm den-
sity, and if the swimmers adapt their trajectory according to density gradients by plotting the points
(‖∇b(t, Xs

i (t))‖, ‖A
s
i (t)‖) and (b(t, Xs

i (t)), ‖V
s
i (t)‖) (Figure 5, lower panel). Clear differences between thethree species can be deciphered. First, the three Bacillus do not have the same distribution of vis-

ited biofilm density and gradient. B. pumilus swimmers visit denser biofilm with higher variations
than the other species while B. sphaericus and B. cereus stay in less dense and smoother areas, the
quantile 0.5 of these species being circumscribed in low gradient and low density values. Next, B.
cereus has a wider distribution of accelerations, specially for small density gradients, compared to
B. pumilus and B. sphaericus. This could indicate that when the biofilm is smooth, B. cereus sam-
ples its acceleration in a large distribution of possible values. Finally, we observe that the speed
distribution rapidly drops for increasing biofilm densities for B. sphaericus and B. cereus, while the
decrease is much smoother for B. pumilus. These observations provide additional insights in the
species swimming characteristics: B. pumilus swimmers seem to be less inconvenienced by the
host biofilm density than the other species, while B. cereus and B. sphaericus bacteria appear to be
particularly impacted by higher densities and to favor low densities where it can efficiently move.
Though, B. sphaericus has lower motile capabilities than B. cereus when the biofilm is not dense.
Analysis of swimming data with an integrative swimming model
This descriptive analysis does not allow to clearly identify potential mechanisms by which the swim-
mers adapt their swim to the biofilm structure or to simulate new species-dependant trajectories.
We then build a swimming model based on a Langevin-like equation on the acceleration that in-
volves several swimming behaviours modelling the swimmer adaptation to the biofilm. Further-
more, after inference, new synthetic data can be produced by predicting swimmer random walks
sharing characteristics comparable to the original data.

We consider bacterial swimmers as Lagrangian particles and we model the different forces
involved in the update of their velocity v. We assume that the swimmer motion can be modelled
by a stochastic process with a deterministic drift (Figure 1 c):

dv = 
(�(b) − ‖v‖) v
‖v‖

dt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
speed selection

+ � ∇b
‖∇b‖

dt

⏟⏞⏞⏟⏞⏞⏟
direction selection

+ �dt
⏟⏟⏟

random term
(1)

where the right hand side is composed of two deterministic terms in addition to a gaussian noise,
each weighted by the parameters 
 , � and �.

The first term implements the biological observation (Figure 5, lower central panel) that the
bacterial swimmers adapt their velocity to the biofilm density. This term can be interpreted as
a speed selection term that pulls the instantaneous speed of the swimmer towards a prescribed
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target velocity �(b) that depends on the host biofilm density b. The weight 
 can be interpreted
as a penalization coefficient. In such a formalism, the difference between the swimmer and the
prescribed speed is divided by a relaxation time � to be homogeneous to an acceleration. Hence,

 is proportionally inverse to �, 
 ∼ 1

�
. As a first order approximation of the speed drop observed

in Figure 5 for increasing b, the target speed �(b) is modeled as a linear variation between v0 and
v1, where v0 is the swimmer characteristic speed in the lowest density regions, where b = 0, and v1in the highest density zones where b = 1:

�(b) = v0(1 − b) + bv1 = v0 + b(v1 − v0)

The second term updates the velocity direction according to the local gradient of the biofilm
density ∇b. The sign of � indicates if the swimmer is inclined to go up (negative �) or down (positive
�) the host biofilm gradient, while the weight magnitude indicate the influence of this mechanism
in the swimmer kinematics. We note that this term does not depend on the gradient magnitude
but only on the gradient direction: this reflects the implicit assumption that the bacteria are able
to sense density variations to find favorable directions, but that the biological sensors are not
sensitive enough to evaluate the variation magnitudes.

The third term is a stochastic 2-dimensional diffusive process thatmodels the dispersion around
the deterministic drift modelled by the two first terms. We define

� ∼ (0, �)

The term � can also be interpreted as a model of the modelling errors, tuned by the term �. Eq.
(1) is supplemented by an initial condition by swimmer. For vanishing ‖v‖ or ‖∇b‖ leading to an
indetermination, the corresponding term in the equation is turned off.

Eq.(1) links the observed biofilmdensity and the swimmer trajectories troughmechanistic swim-
ming behaviours. The model fitting can be seen as an ANOVA-like integrative statistical analysis of
the image data. It decomposes the observed acceleration variance betweenmechanistic processes
describing different swimming traits in order to decipher their respective influence on the swimmer
trajectories while integrating heterogeneous data (density maps b and trajectories kinematics).

We can define characteristic speed and acceleration V ∗ and A∗ in order to set a dimensionless
version of Eq. (1)

dv = 
 ′(v′0 + b(v
′
1 − v

′
0) − ‖v‖) v

‖v‖
dt + �′ ∇b

‖∇b‖
dt + �′dt (2)

where 
 ′ = 
V ∗

A∗
, v′0 = v0

V ∗
, v′1 = v1

V ∗
, �′ = �

A∗
, �′ ∼ (0, �′) and �′ = �

A∗2
.

This dimensionless version will strongly improve the inference process and will allow an anal-
ysis of the relative contribution of the different terms in the kinematics. An extended numerical
exploration of this model is performed in Appendix 2 Sec. Numerical exploration on mock biofilm
images to illustrate the impact of the different parameters on the trajectories, showing in particular
the interplay between 
 and �: counter-intuitively, straight lines are induced when the stochastic
part � is high compared to the speed selection parameter 
 (see also Appendix 2).
Inferring swimming parameters from trajectory data
For each bacterial swimmer population, we now seek to infer with a Bayesian method population-
widemodel parameters governing the swimmingmodel of a given species frommicroscope obser-
vations.
Inference model setting
Equation (2) is re-written as a state equation on the acceleration for the bacterial strain s and the
swimmer i

As
i (t) = 


s(vs0 + b(t, X
s
i (t))(v

s
1 − v

s
0) − ‖V s

i (t)‖)
V s
i (t)

‖V s
i (t)‖

+ �s
∇b(t, Xs

i (t))
‖∇b(t, Xs

i (t))‖
+ �s (3)

∶= fA
(

�s, b(t, Xs
i (t)), V

s
i (t), X

s
i (t)

)

+ �s (4)
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where
�s ∶= (
s, vs0, v

s
1, �

s)

are species-dependant equation parameters. The function fA can be seen as the deterministic
drift of the random walk, gathering all the mechanisms included in the model. The inter-individual
variability of the swimmers of a same species comes from the swimmer-dependent initial condition,
the resulting biofilm matrix they encounter during their run, and the stochastic term.

Inferring the parameters �s can then be stated in a Bayesian framework as solving the non
linear regression problem

As
i (t) ∼

(

fA
(

�s|b(t, Xs
i (t)), V

s
i (t), X

s
i (t)

)

, �s
) (5)

from the data b(t, X), Xs
i (t), V s

i (t) and As
i (t), with truncated normal prior distributions

�s ∼ (0, 1), �s ∼ (0, 1), (6)
and additional constrains on the parameters


s ≥ 0, vs0 ≥ 0, vs1 ≥ 0, �s ≥ 0.

Wenote that Equation (5) canbe seen as a likelihood equation of the parameter �s knowingAs
i (t), b(t), V

s
i (t)and Xs

i (t). The parameter �s can now be seen as a corrector of both modelling errors in the deter-
ministic drift and observation errors between the observed and the true instantaneous acceler-
ation. Alternative settings where these uncertainties sources are separated and a true state for
position and acceleration is inferred can be defined (see Annex Various inference models). The in-
ference problem is implemented in the Bayesian HMC solver Stan (Stan Development Team, 2018)
using its python interface pystan (Riddell et al., 2021). Inference accuracy is thoroughly assessed
on synthetic data (see Appendix 1 Assessment of the inference with synthetic data and Figure 6).
Analysis of the confocal microscopy dataset
Wenowsolve the inference problem (5)-(6) on the confocalmicroscopydataset to identify population-
wide swimming model parameters in order to decompose the swimmer kinematics in three mech-
anisms: biofilm-related speed selection, density-induced direction changes and random walk. The
inference process is assessed by comparing the descriptors obtained on trajectories predicted by
the fitted model (Figure 7 a) with descriptors of real trajectories (Figure 5). The mean values of
acceleration and speeds are accurately predicted for the three species (Figure 7 a, panels ‖A‖ and
‖V ‖, dashed lines). Relative positions of distance, displacement and visited area mean values are
also correctly simulated (Figure 5 and Figure 7 a, upper panel). B. sphaericus presents the lowest
predicted accelerations and speeds while B. pumilus has the widest speed and acceleration dis-
tributions and B. cereus shows the highest accelerations, consistently with the data. The visited
area and the distances are slightly over estimated, but the relative position and the shape of the
distributions are conserved. The amount of null velocities for B. sphaericus is under estimated by
the fitted model and not rendered for B. pumilus. The distance distributions of the three species
are accurately predicted by the fitted model. When displaying conjointly the distance and the dis-
placement (Figure 7 a, right lower panel), the distribution of B. sphaericus is correctly predicted by
the simulations, but B. cereus and B. pumilus displacements are underestimated. Some qualitative
features can be recovered, such as the higher distribution of distance-distribution couples for B.
cereus or higher displacement for B. cereus compared to B. sphaericus.

Descriptors of swimming adaptations to the host biofilm are also correctly preserved for the
main part (Figure 5 and Figure 7 a, lower panel). B. pumilus is the species that crosses the high-
est biofilm densities in the fitted model simulations, showing the highest speeds in this crowded
areas, and that visits the most frequently areas with high density gradients, consistently with the
data. As in the confocal images, the simulated B. sphaericus and B. cereus favor smoother zones
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of the biofilm with lower biofilm densities. The B. cereus fitted model correctly render the high-
est acceleration variance observed in the data for low biofilm gradients, while B. sphaericus speed
and acceleration variance is the lowest for all ranges of biofilm densities and gradients, both in
the data and in the fitted model predictions. The drop of speeds and accelerations for increasing
biofilm densities and gradients is well predicted for B. pumilus, but is smoother in the simulation
compared to the data for B. sphaericus and B. cereus. In particular, the sharp drop of speeds for
b ≃ 0.25 observed in the data for B. cereus and B. sphaericus is underestimated by the fitted model.

All together, the model reproduces very accurately the mean values of acceleration, speed and
visited area, renders relative positions and the main characteristics of distributions for distance,
displacement and interactions with the host biofilm matrix, but produces less variable outputs
than observed in the data, meaning that the model is less accurate in the distribution tails. The
main features of the swimmer adaptation to the underlying biofilmare however correctly predicted
by the model.

To further inform the fitted model accuracy, the coefficient of determination R2det of the deter-ministic components fA(�s, b(t), V s
i , X

s
i (t)) of eq. (4) is computed (Table 3), in order to quantify the

goodness of fit of the friction and gradient terms of eq. (2) that represent interactions with the
biofilm. These results highlight that B. cereus bacteria do present an important stochastic part in
the accelerations, while the B. pumilus species is the best represented by our deterministic mod-
elling.

The three species present very different inferred parameter values (Figure 7 b and Table 2),
showing that the model inference captures contrasted swimming characteristics of these Bacillus.
Due to the mechanistic terms introduced in Eq. (1), these differences can be interpreted in term
of speed and direction adaptations to the host biofilm. First, B. pumilus shows the highest v0 value,and the highest amplitude between v0 and v1, inducing a higher ability for B. pumilus to swim fast
in low density biofilm zones and strong deceleration in crowded area. In comparison, B. sphaericus
presents the smallest amplitude between v0 and v1 showing a poor adaptation to biofilm density.
B. cereus has the highest 
 value, showing a reduced relaxation time toward the density depen-
dant speed: in other words, B. cereus is able to adapt its swimming speed more rapidly than the
other species when the biofilm density varies. B. cereus swimmers are also better able to change
their swimming direction in function of the biofilm variations they encounter along their way, their
� distribution being markedly higher than the other species which have very low �. Finally, the
stochastic parameter � is also contrasted, from a low distribution for B. sphaericus to high values
for B. cereus. All together, the inference complete the observations made in Figure 5: B. pumilus
poorly adapts its swimming direction to the host biofilm (low �) but has a wide range of possible
speeds when the biofilm density varies (high v0, low v1), that it can reach quite rapidly (intermedi-
ary 
) with intermediary stochastic correction (�). In contrast, B. cereus reaches lower speed values
(intermediary v0, low v1) but is more agile to adapt its swimming to its environment by changing
rapidly its speed when the biofilm density is more favorable (highest 
) and adapting its swimming
direction to biofilm variations, with higher stochastic variability (large �). Finally, B. sphaericus is the
less flexible of the three bacteria: less fast (smallest difference between v0 and v1), they are alsoless responsive to biofilm variations (small 
 and �) with low random perturbations (small �).

Finally, after inference, the impact of each term in the overall acceleration data can be quanti-
fied and analyzed by displaying its relative contribution in a ternary plot (Appendix 2 Figure 6). This
relative contribution can be measured thanks to the swimming model which integrates these dif-
ferent mechanisms in the same inference problem. The direction selection is the least influential
mechanism for the three species, with a slightly higher impact for B. cereus (50 and 95 % isolines
slightly shifted towards A(∇b) in Appendix 2 Figure 6 a). When zooming in, the three Bacillus show
differences in the balance between speed selection and the random term (Appendix 2 Figure 6 b):
while B. pumilus is slightly more influenced by the friction term than by stochasticity, these mech-
anisms are perfectly balanced in B. sphaericus accelerations, while B. cereus is more influenced by
the random term.

13 of 41



species param mean std confidence interval [2.5% - 97.5%] neff Rℎat

B. pumilus 
 0.77 3.95 × 10−3 [0.77−0.77] 4,507 1.0
v0 0.14 8.67 × 10−3 [0.12−0.16] 3,879 1.0
v1 1.69 × 10−3 1.69 × 10−3 [5.18 × 10−5−6.26 × 10−3] 4,821 1.0
� 9.84 × 10−3 5.07 × 10−3 [1.45 × 10−5−2.07 × 10−2] 5,223 1.0
� 0.62 2.48 × 10−3 [0.61−0.62] 5,307 1.0

B. sphaericus 
 0.61 4.53 × 10−3 [0.60−0.62] 4,965 1.0
v0 2.75 × 10−4 2.75 × 10−4 [4.91 × 10−6−1.01 × 10−3] 4,019 1.0
v1 4.84 × 10−3 4.77 × 10−3 [9.39 × 10−5−1.45 × 10−2] 5,001 1.0
� 4.25 × 10−3 3.33 × 10−3 [−2.18 × 10−3−1.15 × 10−2] 4,668 1.0
� 0.32 1.55 × 10−3 [0.31−0.32] 5,943 1.0

B. cereus 
 0.83 1.11 × 10−2 [0.80−0.86] 2,700 1.0
v0 6.44 × 10−2 1.07 × 10−2 [3.22 × 10−2−9.66 × 10−2] 2,510 1.0
v1 6.65 × 10−3 6.33 × 10−3 [1.50 × 10−4−2.15 × 10−2] 4,061 1.0
� 2.78 × 10−2 9.04 × 10−3 [1.39 × 10−2−5.56 × 10−2] 4,230 1.0
� 0.90 4.17 × 10−3 [0.89−0.92] 4,852 1.0

Table 2. Inference outputs for the three species. The posterior mean, standard deviation and inferredconfidence interval are indicated for each parameter and each specie. Convergence diagnosis index neff and
Rℎat are provided.

data N Aref Vref �(A) R2det[%] �2

B. pumilus 33,916 81.08 7.89 0.87 58.80 0.36
B. sphaericus 20,152 44.93 4.74 0.58 48.50 0.30
B. cereus 23,160 108.92 7.03 0.63 32.72 0.42

Table 3. Reference acceleration and speed, and acceleration variance decomposition between
stochastic and deterministic terms. The number N of acceleration time points is indicated for each specie.Then, reference values for acceleration Aref and speed Vref used for adimensionalization are computed byaveraging the corresponding values by specie. Descriptive statistics of acceleration variance decompositionare then computed in order to illustrate the contribution of the deterministic terms in the observedacceleration distribution, and the part of the residual mechanisms that are not included in the model. Weindicate for each species the acceleration variance �(A), the part of the variance explained by thedeterministic terms R2det (see Material and Methods sec.Inference validation on experimental data) and thevariance of the stochastic term �2. We note that in order to compare species at vizualisation step, they arere-normalized with the average of the species reference values : Aref = 78.31 and Vref = 6.55
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Interpretation of the bacterial swimming at the light of their morphology
Kinematics descriptors and swimming parameters can then be reinterpreted through the insights
provided by themorphology of each bacteria species as shown in Figure 2. As observed in Figure 2,
B. pumilus and B. sphaericus are flagellated whereas B. cereus is equipped by a unique brush-like
bundle of thin flagella at its tail. This morphology can be linked to their swimming patterns. The
flagella could be linked to the run-and-tumble behaviour of B. pumilus and B. sphaericus, as shown
for other flagellated bacteria such as E.coli, the tumbling events of which are induced by reverse
rotation of the cellular motor of its multiple flagella (Patteson et al., 2015). Additional functional
characteristics may discriminate B. pumilus and B. sphaericus, since run-and-reverse swimming is
the natural behaviour of B. sphaericus even in the Newtonian control buffer, whereas B. pumilus
drastically reduces its speed in high-density biofilms (Figure 7, a) and starts tumbling in the host
biofilm (Figure 4). B. pumilus has the highest number of flagella and is the bacteria that reaches
the highest speeds specially in the Newtonian buffer and in low-density areas, indicating that this
characteristic may be an advantage for swimming fast in the extracellular matrix. The kind, size
and disposition of the flagella bundlemay help B. cereus swimmers to adapt their runs to their envi-
ronment by changing directions to follow lower density areas (higher impact of direction selection
term of the three Bacillus in Appendix 2 Figure 6) or to adapt rapidly when biofilm density varies
(largest 
). B. cereus being the bacteria with the strongest stochastic part (highest �, density shifted
towards A(�) in Appendix 2 Figure 6), this morphology could also help the swimmer to go through
the biofilm by random navigation, which helps to maintain comparable straight trajectory with
or without biofilm when the stochastic part is higher than the speed selection term (Appendix 1
Figure 1, Appendix 2 Figure 3 and Appendix 2 Figure 6). Finally, B. sphaericus bacteria are much
longer than the other two species, which may explain why this species is the least motile in terms
of acceleration and kinematics, both in biofilms and in the Newtonian control buffer.
Discussion
Modelling and analysis of swimming trajectories
When analyzing microbial swimming trajectories, two general strategies can be found in the liter-
ature. The first one aims at designing statistical tests quantifying similarities with or deviations
from typical motion of interest such as diffusion (Patteson et al., 2015). Another strategy consists
in providing a generative model of the data, analyzing it (Chepizhko and Peruani, 2013; Chepizhko
et al., 2013) and comparingmodel outputs with real data (Koorehdavoudi et al., 2017; Jabbarzadeh
et al., 2014), possibly after inference. The model that is studied in this paper belong to the sec-
ond category: the model includes deterministic mechanisms describing interactions with the host
biofilm, together with a random correction counterbalancing the modelling errors. The parameter
inference allows to interpret the data variance relatively to speed or direction adaptations to the
host biofilm versus residual effects gathered in the stochastic term. This method is comparable
to ANOVA-like multivariate analysis: the parametric phenomelogical mappings between explica-
tive co-variables and a swimming behaviour (for example the function defining speed selection
from biofilm density) are gathered in the same inference problem, enabling to decompose accel-
eration variability between the different swimming behaviours. This integrative method allows for
multi-data integration and co-analysis. Furthermore, the fitted model allows to simulate typical
swimming trajectories of a given species.
Population-wide swimming characteristics vs true-state inference.
In this study, we do not aim to recover ’true’ swimmer trajectories (a.e. the blue trajectory in Ap-
pendix 2 Figure 4), i.e. identifying through smoothing techniques an approximation of the specific
realization of the stochastic modeling and observation errors that lead to a given ’observed’ trajec-
tory. Rather, the goal is to identify common characteristics shared by a population of trajectories
by inferring the ’population-wide’ parameters (the parameters �, �, v0, v1, 
 and �) that best explain
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the whole set of observed accelerations in a same population of swimmers. For this reason, we did
not introduce swimmer-specific terms nor individual noise: they would have increased the model
accuracy, but to the price of a blurrier characterization of the species specificities.

This choice determined our inference framework. Despite several alternative options for recov-
ering hidden states, in particular SSM (space state models) which are common in spatial ecology
(Auger-Méthé et al., 2021), the Bayesian method we opted for is a simpler non-linear regression
problem that proved to be sufficient to recover macroscopic swimmer trajectories and species
stratification. We discuss in Appendix 3 Various inference models the different options that were
tested and present in Material and Method Sec. Inference the method for noise model selection.
Among other interesting features, the Bayesian method provides confidence intervals on the final
parameter estimation, and on the resulting trajectories as in Figure 6 a.
Predictive capabilities of the model
The deterministic terms of the model explain only half of the variance (Table 3). A major part of
the underlying mechanisms is not correctly described by our model which is a common feature
since it is a phenomenological model which only considers interactions with the underlying biofilm
at a macroscopic level, without taking into account nanoscale physical mechanisms. A more de-
tailed description of the underlying physics could have been designed as in (Martinez et al., 2014),
but it would have made more complex the analysis of the interactions between the host biofilm
and the swimmer trajectories and the extraction of species-specific patterns. However, we note
that our model correctly renders observations made through macroscopic trajectory descriptors,
even though the inference process has not been made based on these observables. Furthermore,
several repetitions of the same models with different samples of the stochastic terms give very
similar values for the trajectory descriptors (see Appendix 2 Figure 5 and section Influence of infer-
ence and stochastic terms on the trajectory descriptors), showing that these descriptors are robust
to stochastic perturbations. Hence, the model (2) can be used to produce synthetic data sharing
the same global characteristics than the original ones specifically taking into accounts interactions
between the swimmers and the host biofilm. Furthermore, these predictions also reproduce the
species stratification observed in the original data using the global descriptors.
Biological interpretation of the fitted models
The direction selection term of the equation driven by � has little impact in the swimmer model
fitted on real data. The parameter � can however have a sensible impact on the kinematics as
shown in the sensitivity analysis, and on the trajectories in mock biofilms (Appendix 2 Figure 1
d). This could indicate that direction selection based on biofilm gradients is marginally effective
in real-life swimming trajectories in a biofilm matrix. On the contrary, the speed selection term is
more effective for the three Bacillus, showing that these micro-swimmer are able to adapt their
swimming velocity to the biofilm density faced during their run. This term acts as an inertial term
which enhances the stochastic term to provide direction and velocity changes.

The model has been used to decipher different adaptation strategies to the host biofilm of
the three species during their swim. It confirms that B. sphaericus are the less motile bacteria in
the biofilm, with reduced speeds and adaptation capabilities as indicated by the smallest model
parameter values and a stereotypic run-and-reverse behaviour inside or outside the biofilm. B.
pumilus on the contrary drastically changes its swimming behaviour in the biofilm compared to
the Newtonian control buffer, which is reflected in the model by a high amplitude between v0 and
v1 and a high 
 that indicates a rapid adaptation for varying biofilm densities. B. cereus shows the
highest adaptation ability to the biofilm matrix, with the highest 
 and � reflecting biofilm-induced
speed and direction changes. Furthermore, the high stochastic effects (highest �) higher than the
speed selection term tuned by 
 (see Appendix 2 Figure 6) allows this swimmer to conserve straight
runs in the biofilm (see Appendix 2 Sec. Friction and random term in Langevin equations) in the
same way than in the control Newtonian fluid.
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This characterizationmethodology could beused to drive species selection for improvedbiofilm
control. Furthermore, the model can be used to predict new trajectories and the resulting biofilm
vascularization, in a similar framework as in (Houry et al., 2012). Coupled with a model of biocide
diffusion, these simulations could be used to test numerically the efficiency of mono- or multi-
species swimmer pre-treatment to improve the removal of the host biofilm.
Flagellated bacteria in polymeric solutions.
Characterization of flagellated bacteriamotility in polymeric solutions is a very active research area
(Martinez et al., 2014; Patteson et al., 2015; Zöttl and Yeomans, 2019; Qu and Breuer, 2020; Qu
et al., 2018). Speed and direction variations have been measured for various polymeric fluids with
different visco-elastic properties. For themodel bacteria E.coli in polymeric solutions, enhanced vis-
cosity decreases tumblingwhile increased elasticity speeds up the swimmers (Patteson et al., 2015;
Zöttl and Yeomans, 2019). In our experiments on the contrary, we observed decreased speeds and
strong enhancement of reverse events for the flagellated B. sphaericus and B. pumilus in the biofilm
compared to the Newtonian control buffer. However, the experimental set-up strongly differ: the
complex rheology of S. aureus biofilms may strongly differ from polymeric fluids even if under cer-
tain condition they can be considered as visco-elastic fluids (Gloag et al., 2020), impacting differ-
ently the swimmer behaviours. Furthermore, the physiology of the motor cell in the Gram-positive
Bacillus differs from the one of the Gram-negative E.coli (Terahara et al., 2020; Szurmant and Ordal,
2004; Subramanian and Kearns, 2019). Finally, the particular brush-like flagella bundle of B. cereus
may allow this species to conserve the same swimming in Newtonian and crowded environments,
by adapting its swimming speed to the local density and otherwise randomly selecting swimming
directions across the host biofilm. To generalize this approach to other contexts, this study should
be reproduced for other swimmers and other host biofilms, together with polymeric fluids and
porous media, including biochemical interactions.
Materials and Methods
Infiltration of host biofilms by bacilli swimmers
Infiltration of S. aureus biofilms by bacilli swimmers were prepared in 96-well microplates. Sub-
merged biofilms were grown on the surface of polystyrene 96-well microtiter plates with a �clear®
base (Greiner Bio-one, France) enabling high-resolution fluorescence imaging (Bridier et al., 2010).
200 �L of an overnight S. aureus RN4220 pALC2084 expressing GFP (Malone et al., 2009) cultured
in TSB (adjusted to an OD 600 nm of 0.02) were added in each well. The microtiter plate was then
incubated at 30 ◦C for 60min to allow the bacteria to adhere to the bottom of the wells. Wells were
then rinsed with TSB to eliminate non-adherent bacteria and refilled with 200 �L of sterile TSB
prior incubation at 30 celsius for 24 h. In parallel, B. sphaericus 9A12, B. pumilus 3F3 and B. cereus
10B3 were cultivated overnight planktonically in TSB at 30°C. Overnight cultures were diluted 10
times and labelled in red with 5 �M of SYTO 61 (Molecular probes, France). After 5 minutes of con-
tact, 50 �L of labelled fluorescent swimmers suspension were added immediately on the top of
the S. aureus biofilm. All microscopic observations were collected within the following 30 minutes
to avoid interference of the dyes with bacterial motility. Three replicates were conducted. The
same protocol has been repeated without the host biofilm (control experiments): the swimmers
are added to the buffer only which is a Newtonian fluid.
Confocal Laser Scanning Microscopy (CLSM)
The 96 well microtiter plate containing 24h S. aureus biofilm and recently added bacilli swimmers
were mounted on the motorized stage of a Leica SP8 AOBS inverter confocal laser scanning mi-
croscope (CLSM, LEICA Microsystems, Germany) at the MIMA2 platform (https://www6.jouy.inra.fr/
mima2_eng/). Temperature was maintained at 30 celsius during all experiments. 2D+T acquisitions
were performed with the following parameters: images of 147.62 x 147.62 �m were acquired at
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8000 Hz using a 63×/1.2 N.A. To detect GFP, an argon laser at 488 nm set at 10% of the maximal
intensity was used, and the emitted fluorescence was collected in the range 495 to 550 nm using
hybrid detectors (HyD LEICAMicrosystems, Germany). To detect the red fluorescence of SYTO61, a
633 nm helium-neon laser set at 25% and 2% of the maximal intensity was used, and fluorescence
was collected in the range 650 to 750 nm using hybrid detectors. Images were collected during 30
seconds (see Table 1 for sampling period).

Bacterial swimmers navigate within a three-dimensional biofilm matrix and confocal micro-
scope refreshment time is not small enough to allow 3D+T images. To limit 3D trajectories, a focal
plane near the well edge has been selected, where the well wall physically constrains the swimmer
trajectories in one direction, which select longer trajectories in the 2D plane that can be tracked
in time. Therefore, experimental data are composed of two-dimensional trajectories captured be-
tween the swimmer arrival and departure times in the focal plane, and the associated 2D+T biofilm
density images that change over time due to swimmer action.

To check that the host biofilm structure is identical near the well’s edge compared to other 2D
slices, we took 4 replicates of S.aureus biofilms that were imaged in 3D using a stack of 6 horizontal
images, starting from z = 0 near the well’s edge, to z = 6Δz, at the interface between the biofilm
and the bulk solution. To study the between and within biofilm density variability in the horizontal
images, we subsampled them with a regular Cartesian 4x4 grid, resulting in a 4x6x(4x4)=384 2D
images database supplemented by metadata (stack, z and x − y coordinate of the subsample),
before computing a clustered pairwise correlation similarity matrix and a permanova.
Transmitted Electron Microscopy
Materials were directly adsorbed onto a carbon filmmembrane on a 300-mesh copper grid, stained
with 1% uranyl acetate, dissolved in distilled water, and dried at room temperature. Grids were
examined with Hitachi HT7700 electron microscope operated at 80 kV (Elexience – France), and
images were acquired with a charge-coupled device camera (AMT).
Post-processing of image data
See Figure 1 for a sketch of the datastream from microscope raw images to model inputs and
Appendix 1 Figure 1 for data visualization at each step of the post-processing pipeline.

Swimmer tracking has been applied on the red channel of the raw temporal stacks with IMARIS
software (Oxford Instruments) using the tracking function after automated spots detection to get
position time-series for each swimmer. Time-series with less than 8 time steps were filtered out.

Then, swimmer speed and acceleration time-series were computed from their position by finite-
difference approximations and trajectory descriptors were extracted. The RGB green channel cor-
responding to the biofilm density temporal images were converted into grayscale and rescalled
between 0 and 1 (linear scalling).

Trajectory descriptors are defined as follows. The mean acceleration and speed values, dis-
tance and displacement are computed with ‖A‖si =

1
T si −2

∑

t ‖As
i (t)‖, ‖V ‖si = 1

T si −1

∑

t ‖V s
i (t)‖, distsi =

Δt
∑T send,i−Δt

T s0,i
‖V s

i (t)‖ and dispsi = ‖X(T send,i) − X(T
s
0,i)‖. To compute the visited area, each trajectory

piece was subsampled by computing Xs
i (tk) =

k
ns
Xs
i (t) + (1 −

k
ns
)Xs

i (t + Δt) for k = 0, ns, with ns = 10and the pixels included in the ball B(Xs
i (tk), r) with radius r = 2 were labelled. The total area of thelabelled pixels is defined as the visited area of the swimmer i of species s.

To assess run-and-tumble behaviour, the angle �si (t) and the mean velocity V̄ s
i (t) between two

consecutive speed vectors are defined with �si (t) = arccos((V s
i (t) ⋅ V

s
i (t − Δt))∕(‖V

s
i (t)‖‖V

s
i (t − Δt)‖))and V̄ s

i (t) = (‖V
s
i (t)‖ + ‖V s

i (t − Δt)‖)∕2, for t ∈ (T s0,i + Δt, T send,i).Post-processeddata are available at https://forgemia.inra.fr/bioswimmers/swim-infer/SwimmerData.
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Computation of the forward swimming model
Time integration of equations (2) has been solved with an explicit Euler scheme regarding positions
xsi,t and velocities vsi,t of the swimmer i of species s at time t:

xsi,t+1 = xsi,t + vsi,tdt (7)
vsi,t+1 = vsi,t + dvsi,t (8)

where dvsi,t is given by eq. (2), and depends on �s, V s
i,t, xsi,t, b(t, xsi,t) and ∇b(t, xsi,t). In practice, the

biofilm density and gradient maps b and ∇b are discretized with a Cartesian grid corresponding to
the image pixels.

During random walks, swimmer may exit the biofilm domain. When the swimmer reaches the
domain boundary, a new swimmer is introduced with a velocity oriented towards the interior of
the domain while the original trajectory is stopped at the boundary.
Sensitivity analysis
A local sensitivity analysis (Figure 1) is performed by comparing basal simulation obtained with

 = � = � = 1 (v0 and v1 where taken as in Appendix 1 Table 3) with 3 simulations where 
 , �
and � are alternatively set to 0, resulting in 3 alternative models where the speed or the direction
selection or the random term is turned off. The interaction between the speed selection term (set
by 
) and the random term is illustrated in Appendix 2 Figure 3 where 5 repetitions of the same
trajectory of a simplified Langevin equation (11) are displayed with or without friction (
 = 1 or

 = 0), but with the same random seed for the stochastic term so that the stochastic part is strictly
identical.

To analyze the impacts of the non-dimensionalized swimming parameters 
 , v0, v1, �, � on thelocomotion behaviour, a global sensitivity analysis has been performed. The parameter space
[0, 1]5 was uniformly sampled with n = 1, 000 points using the Fourier Amplitude Sensitivity Test
(FAST) sampler of the SALib library i.e. the function SALib.sample.fast_sampler.sample (Cukier, 1973;
Saltelli et al., 1999). We note that the interval [0, 1] covers a large parameter domain for some
parameters, in particular � which remains small after inference. For this parameter, the sensitivity
analysis will show potential impact on the output, that may be ineffective in the parameter range
of the inferred model.

For each point in the parameter space, a forward simulation is conducted on a population of
swimmers on a representative biofilm extracted from the dataset (first batch of the B. pumilus
dataset). Trajectory descriptors are then extracted and taken as observable of the sensitivity anayl-
sis that requires both the parameters sampling and the associated descriptors. Sobol indices of
first order are then returned and pairwise partial correlations matrix has been calculated. Con-
vergence of the Sobol indices has been checked by taking sub-samples containing less than 1, 000
points.
Inference
Numerical implementation
The inverse problem (4)-(6) has been implemented using aHamiltonianMonte Carlo (HMC)method
to solve this Bayesian inference problem.

The three replicates for each swimmer species are pooled (trajectories and biofilm density
maps) and the input data required for the inference procedure (velocity yV and acceleration yA
times series for the whole batch of swimmers, biofilm densities yb and gradient yGb extracted at
swimmer positions) were assembled in a customed data structured. Normal standard prior distri-
butions were set for all swimming parameters � = (
, v0, v1, �, �). Additional positivity constrainedwere imposed for all parameters but �. Therefore, the implemented model can be summarized as:

� ∼ (0, 1), 
 ≥ 0, v0 ≥ 0, v1 ≥ 0, � ≥ 0
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yA ∼ (fA
(


, v0, v1, �|yb, yV, yb, yGb, dt
)

, �)

A warmup of 1,000 runs is followed by the Markov chains construction (4,000 iterations for 4
Markov chains). Markov chain convergence is assessed by direct visualization (Appendix 1 Figure 4)
by checking for biaised covariance structures in pair-plots (Appendix 1 Figure 5). Standard conver-
gence index were additionnaly computed: effective sample size per iteration (neff ) and potential
scale reduction factor (Rℎat).
Noise model selection
Different noisemodels have been evaluated for the regressionmodel (5) to take into account batch
or individual effects. Namely, we decomposed the noise in Eq. (5) by replacing �s by �si and/or
�s,b for individual i and experimental batch b. Model selection has been conducted by computing
the WAIC for the different noise models. A huge degradation of the WAIC has been observed for
individual or batch dependant noises, indicating that the enhancement of the inference accuracy
provided by the additional parameters can be considered as over-fitting and discarded.
Inference validation on synthetic data
Ground truth data construction
Ground truth synthetic data (see section Assessment of the inference with synthetic data) were
computed by solving eq. (8) and (2) with 
 = 10 s−1, v0 = 5 �m.s−1, v1 = 1 �m.s−1, � = 10 �m.s−2, � = 40
�m.s−2 and biofilm maps taken from the first batch of the B. pumilus dataset. The number of swim-
mers was fixed to N = 50 and the number of time steps was taken identical to the experimental
data i.e. Nt = 224. Resulting mean speeds and accelerations were Aref = 68.29 �m.s−2, Vref = 7.47
�m.s−1 and were used to rescale the data before inference together with the ground truth parame-
ters (Appendix 1 Table 3). In total, the acceleration dataset contains 9,523 samples for each spatial
direction.
Comparing ground truth data with the fitted model
After inference, a new dataset is obtained by solving eq. (8) with the fitted parameters. The same
initial conditions for speeds and positions as the ground truth data are taken. Trajectories are
stopped after the same number of time step as in the corresponding trajectory of the ground
truth dataset. To discard spurious stochastic uncertainties, the same random seed as the ground
truth simulations was taken, so that the unique uncertainty source was inference errors.
Checking the sensitivity to biofilm image noise
To produce Appendix 1 Figure 6, the biofilm density and the biofilm density gradient maps have
been noised with an additive gaussian noise with increasing variance, before inference: we set

�b ∼ (0,
√

l�b) and �∇b ∼ (0,

√

2l
Δx

�b)

where �b is the variance observed in the original data, and �b and �∇b are respectively the noise ap-plied to the biofilmdensity and thebiofilmdensity gradient. Theparameter l ∈ [0, 0.01, 0.02, 0.03, 0.04, 0.05]
is increased to apply a noise from 0 to 5%.
Inference validation on experimental data
Comparing microscopy data with the fitted model
The same procedure is repeated on the microscopy data: after inference, a new dataset is ob-
tained by solving eq. (8) with the fitted parameter, taking the same initial conditions for speeds
and positions. Trajectories are stopped after the same number of time step as in the correspond-
ing trajectory of the ground truth experimental dataset.
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Measuring the deterministic reconstruction
Thedeterministic coefficient of determinationR2detwas computed tomeasure howmuch thedataset
is explained by the deterministic part of the model. Setting As,det

i = fA
(


, v0, v1, �|yb, yV, yb, yGb, dt
):

R2,sdet = 1 −
∑

i(yAs
i − A

s,det
i )2

∑

i(yA
s
i − ̄yAs)2

where ̄yAs is the acceleration mean. R2,sdet is expected to tend towards 1 when the stochastic term
� = (0, �) becomes negligible with respect to Adet.
Plots and statistics
To allow inter-species comparisons in plots, the data and model outputs are re-normalized with
common reference values Aref and Vref defined as the average of the species reference values (see
Table 3 for values). Uni-dimensional distributions (Figure 5 upper panel, Figure 6 b upper panel,
Figure 7 a, upper panel, and Figure 7 b) were obtained with the gaussian_kde function of scipy.stats.
T tests for mean comparison were performed using scipy.stats ttest_ind.

Two-dimensional distribution plots (Figure 5, Figure 6 b, Figure 7 a lower panels) were obtained
by first plotting the two-dimensional point cloud and approximating the point distribution with a
gaussian KDE using scipy.stats gaussian_kde function. Then, the gaussian kde is evaluated at each
point of the point cloud and quantiles 0.05, 0.5 and 0.95 of the resulting values are computed.
Finally, quantile isovalues are plotted and the point cloud and the KDE are removed (seeAppendix 4
Figure 1 and Sec. KDE computation for details): this procedure ensures to enclose 5, 50 and 95 %
of the original points, centered in the densest zones of the initial point cloud.

Ternary plots (Appendix 2 Figure 6) were obtained by first computing the contribution of each
term of equation (4) to acceleration estimate. Namely, note

s(b)si = ‖
(vs0 + b(t, X
s
i (t))(v

s
1 − v

s
0) − ‖V s

i (t)‖)
V s
i (t)

‖V s
i (t)‖

‖,

s(∇b)si = ‖�s
∇b(t, Xs

i (t))
‖∇b(t, Xs

i (t))‖
‖, and s(�)si = ‖�s‖.

We compute the proportions A(k)si for k ∈ {b,∇b, �}
A(k)si =

s(k)si
s(b)si + s(∇b)

s
i + s(�)

s

i
.

Points (A(b)si , A(∇b)si , A(�)si ) are then plotted in ternary plots using the Ternary python package (Marc
et al., 2019) and approximated by gaussian KDE. Isolines are finally plotted as previously described.

To construct the plot in Appendix 1 Figure 2, pairwise correlation of the biofilm density in the
384 samples has been computed (scikit-learn pairwise_distances, ’correlation’ metric parameter (Pe-
dregosa et al., 2011)), and the resulting similaritymatrix has been displayed using Seaborn package
clustermap function (Waskom, 2021) after hierarchical clustering (scipy.cluster.hierarchy linkage
function (Virtanen et al., 2020)). Additional permanova has been computed to assess the signif-
icance of between-group dissimilarities using stats.distance package permanova function (scikit-
bio development team, 2020).
Code availability
All the image pre- and post-processing, calculations and statistics have been performed with cus-
tom scripts using the standard python libraries numpy (Harris et al., 2020), scipy (Virtanen et al.,
2020), imageio (Klein et al., 2021) and pandas (McKinney et al., 2010). The forward swimming prob-
lem computation is computed using customed scripts built upon numpy (Harris et al., 2020) and
H5py (https://www.h5py.org). Sensitivity analysis has been conductedwith the SALib library (Cukier,
1973; Saltelli et al., 1999) (Sobol index, function SALib.analyze.fast.analyze) and the pingouin library
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(Vallat, 2018) (PCC, pcorr method). The Bayesian inference has been conducted using the STAN li-
brary (Stan Development Team, 2018) through its python interface pystan (Riddell et al., 2021). All
plots have been made with the matplotlib python library (Hunter, 2007).

The whole python code have been made available and accessible at the following git repository
https://forgemia.inra.fr/bioswimmers/swim-infer.
Acknowledgements
This work has benefited from the facilities and expertise of MIMA2 MET – GABI, INRAE, AgroParis-
tech, 78352 Jouy-en-Josas, France. C. Péchoux is warmly acknowledged for TEM observations. Fi-
nancial support was provided by the French National Research Agency ANR-12-ALID-0006. Guil-
laume Ravel received funding from the Mathnum department at INRAE.
Competing interests
The authors declare no competing interests.
References
Auger-Méthé M, Newman K, Cole D, Empacher F, Gryba R, King AA, Leos-Barajas V, Mills Flemming J, NielsenA, Petris G, et al. A guide to state–space modeling of ecological time series. Ecological Monographs. 2021;

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecm.1470, doi: https://doi.org/10.1002/ecm.1470.
Beech IB, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. Currentopinion in Biotechnology. 2004; 15(3):181–186.
Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review.Biofouling. 2011; 27(9):1017–1032.
Bridier A, Dubois-Brissonnet F, Boubetra A, Thomas V, Briandet R. The biofilm architecture of sixty opportunis-tic pathogens deciphered using a high throughput CLSMmethod. Journal of microbiological methods. 2010;82(1):64–70.
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial organization plasticity as anadaptive driver of surface microbial communities. Frontiers in microbiology. 2017; 8:1364.
Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naitali M, Briandet R. Biofilm-associated persistence offood-borne pathogens. Food microbiology. 2015; 45:167–178.
Chepizhko O, Altmann EG, Peruani F. Optimal noise maximizes collective motion in heterogeneous media.Physical review letters. 2013; 110(23):238101.
Chepizhko O, Peruani F. Diffusion, subdiffusion, and trapping of active particles in heterogeneous media.Physical review letters. 2013; 111(16):160604.
Conrad JC, Poling-Skutvik R. Confined Flow: Consequences and Implications for Bacteria and Biofilms.Annual Review of Chemical and Biomolecular Engineering. 2018; 9(1):175–200. https://doi.org/10.1146/

annurev-chembioeng-060817-084006, doi: 10.1146/annurev-chembioeng-060817-084006, pMID: 29561646.
Cukier FCMSKEPAGSJH R I. Study of the sensitivity of coupled reaction systems to uncertainties in rate coeffi-cients. Journal of Chemical Physics. 1973; 59:3873–3878. doi: https://doi.org/10.1063/1.1680571.
Derlon N, Peter-Varbanets M, Scheidegger A, Pronk W, Morgenroth E. Predation influences the structure ofbiofilm developed on ultrafiltration membranes. Water research. 2012; 46(10):3323–3333.
Doulgeraki AI, Di Ciccio P, Ianieri A, Nychas GJE. Methicillin-resistant food-related Staphylococcus aureus: areview of current knowledge and biofilm formation for future studies and applications. Research in micro-biology. 2017; 168(1):1–15.
Flemming HC, Neu TR, Wingender J. The perfect slime: microbial extracellular polymeric substances (EPS). IWApublishing; 2016.
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form ofbacterial life. Nature Reviews Microbiology. 2016; 14(9):563–575.

23 of 41

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecm.1470
https://doi.org/10.1002/ecm.1470
https://doi.org/10.1146/annurev-chembioeng-060817-084006
https://doi.org/10.1146/annurev-chembioeng-060817-084006
https://doi.org/10.1063/1.1680571


Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nature ReviewsMicrobiology. 2019; 17(4):247–260.
Gloag ES, Fabbri S, Wozniak DJ, Stoodley P. Biofilm mechanics: Implications in infection and survival. Biofilm.2020; 2:100017.
Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, SmithNJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Fernández del Río J, Wiebe M, Peterson P,Gérard-Marchant P, et al. Array programmingwith NumPy. Nature. 2020; 585:357–362. doi: 10.1038/s41586-020-2649-2.
HouryA, GoharM,Deschamps J, Tischenko E, Aymerich S, Gruss A, Briandet R. Bacterial swimmers that infiltrateand take over the biofilm matrix. Proceedings of the National Academy of Sciences. 2012; 109(32):13088–13093. https://www.pnas.org/content/109/32/13088, doi: 10.1073/pnas.1200791109.
Hunter JD. Matplotlib: A 2D graphics environment. Computing in science & engineering. 2007; 9(3):90–95.
Jabbarzadeh M, Hyon Y, Fu HC. Swimming fluctuations of micro-organisms due to heterogeneous microstruc-ture. Physical Review E. 2014; 90(4):043021.
Klein A, Wallkötter S, Silvester S, Tanbakuchi A, Müller P, Nunez-Iglesias J, Harfouche M, actions user, Lee A,McCormickM,OrganicIrradiation, Rai A, LadegaardA, Smith TD, VaillantGA, jackwalker64, Nises J, KomarcevicM, rreilink, lschr, et al., imageio/imageio: v2.13.1. Zenodo; 2021. https://doi.org/10.5281/zenodo.5746216,doi: 10.5281/zenodo.5746216.
Klein T, Zihlmann D, Derlon N, Isaacson C, Szivak I, Weissbrodt DG, Pronk W. Biological control of biofilms onmembranes by metazoans. Water research. 2016; 88:20–29.
KöckR, Becker K, CooksonB, vanGemert-Pijnen J, Harbarth S, Kluytmans J, MielkeM, Peters G, Skov R, StruelensM, et al. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges inEurope. Eurosurveillance. 2010; 15(41):19688.
Koorehdavoudi H, Bogdan P, Wei G, Marculescu R, Zhuang J, Carlsen RW, Sitti M. Multi-fractal characterizationof bacterial swimming dynamics: a case study on real and simulated serratia marcescens. Proceedings ofthe Royal Society A: Mathematical, Physical and Engineering Sciences. 2017; 473(2203):20170154.
Lee SW, Phillips KS, Gu H, Kazemzadeh-Narbat M, Ren D. How microbes read the map: Ef-fects of implant topography on bacterial adhesion and biofilm formation. Biomaterials.2021; 268:120595. https://www.sciencedirect.com/science/article/pii/S0142961220308413, doi:https://doi.org/10.1016/j.biomaterials.2020.120595.
Li G, Ardekani AM. Collective motion of microorganisms in a viscoelastic fluid. Physical review letters. 2016;117(11):118001.
Li Y, Briandet R, Trubuil A. Tracking swimmers bacteria and pores within a biofilm. In: 2014 IEEE 11th Interna-
tional Symposium on Biomedical Imaging (ISBI) IEEE; 2014. p. 302–305.

Malone CL, Boles BR, Lauderdale KJ, Thoendel M, Kavanaugh JS, Horswill AR. Fluorescent reporters for Staphy-lococcus aureus. Journal of microbiological methods. 2009; 77(3):251–260.
Marc, Weinstein B, tgwoodcock, Simon C, chebee7i, Morgan W, Knight V, Swanson-Hysell N, Evans M, jl bernal,ZGainsforth, Badger TG, SaxonAnglo, Greco M, Zuidhof G, marcharper/python-ternary: Version 1.0.6. Zen-odo; 2019. https://doi.org/10.5281/zenodo.2628066, doi: 10.5281/zenodo.2628066.
Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG, Morozov AN, Poon WC. Flagellated bacterial motility inpolymer solutions. Proceedings of the National Academy of Sciences. 2014; 111(50):17771–17776.
Mayorga-Martinez CC, Zelenka J, Grmela J, Michalkova H, Ruml T, Mareš J, Pumera M. Swarming Aqua SpermMicromotors for Active Bacterial Biofilms Removal in Confined Spaces. Advanced Science. 2021; p. 2101301.
McKinney W, et al. Data structures for statistical computing in python. In: Proceedings of the 9th Python in
Science Conference, vol. 445 Austin, TX; 2010. p. 51–56.

Muok AR, Claessen D, Briegel A. Microbial hitchhiking: how Streptomyces spores are transported by motilesoil bacteria. The ISME Journal. 2021; p. 1–10.

24 of 41

https://www.pnas.org/content/109/32/13088
10.1073/pnas.1200791109
https://doi.org/10.5281/zenodo.5746216
10.5281/zenodo.5746216
https://www.sciencedirect.com/science/article/pii/S0142961220308413
https://doi.org/10.1016/j.biomaterials.2020.120595
https://doi.org/10.1016/j.biomaterials.2020.120595
https://doi.org/10.5281/zenodo.2628066
10.5281/zenodo.2628066


PattesonA, Gopinath A, GoulianM, Arratia P. Running and tumblingwith E. coli in polymeric solutions. Scientificreports. 2015; 5(1):1–11.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: MachineLearning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.
Piard J, Kim S, Deschamps J, Li Y, Dorel C, Gruss A, Trubuil A, Briandet R. Travelling through slime–bacterialmovements in the EPS matrix. The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). 2016;p. 179.
Qu Z, Breuer KS. Effects of shear-thinning viscosity and viscoelastic stresses on flagellated bacteria motility.Physical Review Fluids. 2020; 5(7):073103.
Qu Z, Temel FZ, Henderikx R, Breuer KS. Changes in the flagellar bundling time account for variations in swim-ming behavior of flagellated bacteria in viscous media. Proceedings of the National Academy of Sciences.2018; 115(8):1707–1712.
Riddell A, Hartikainen A, Carter M, pystan (3.0.0); 2021. PyPI.
Saltelli A, Tarantola S, Chan KS. A quantitative model-independent method for global sensitivity analysis ofmodel output. Technometrics. 1999; 41(1):39–56.
Samad T, Billings N, Birjiniuk A, Crouzier T, Doyle PS, Ribbeck K. Swimming bacteria promote dispersal ofnon-motile staphylococcal species. The ISME journal. 2017; 11(8):1933–1937.
Stan Development Team, The Stan Core Library; 2018. http://mc-stan.org/4, version 2.18.0.
Subramanian S, Kearns DB. Functional regulators of bacterial flagella. Annual review of microbiology. 2019;73:225–246.
Szurmant H, Ordal GW. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiologyand molecular biology reviews. 2004; 68(2):301–319.
scikit-bio development team T, scikit-bio: A Bioinformatics Library for Data Scientists, Students, and Devel-opers; 2020. http://scikit-bio.org.
Terahara N, Namba K, Minamino T. Dynamic exchange of two types of stator units in Bacillus subtilis flagellarmotor in response to environmental changes. Computational and Structural Biotechnology Journal. 2020;18:2897–2907.
Vallat R. Pingouin: statistics in Python. Journal of Open Source Software. 2018; 3(31):1026.
Virtanen P, Gommers R, Oliphant TE, HaberlandM, Reddy T, Cournapeau D, Burovski E, Peterson P, WeckesserW, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,Carey CJ, et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. NatureMethods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2.
WaskomML. seaborn: statistical data visualization. Journal of Open Source Software. 2021; 6(60):3021. https:

//doi.org/10.21105/joss.03021, doi: 10.21105/joss.03021.
Yu Z, Schwarz C, Zhu L, Chen L, Shen Y, Yu P. Hitchhiking Behavior in Bacteriophages Facilitates Phage Infectionand Enhances Carrier Bacteria Colonization. Environmental Science & Technology. 2020; 55(4):2462–2472.
Zöttl A, Yeomans JM. Enhanced bacterial swimming speeds in macromolecular polymer solutions. NaturePhysics. 2019; 15(6):554–558.

25 of 41

http://mc-stan.org/ 4
http://scikit-bio.org
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
10.21105/joss.03021


Appendix 1

Illustration of the datastream
Data acquisition
Illustrations of the image data at different steps of the data stream are displayed in Ap-
pendix 1 Figure 1, from raw microscopy data to rescalled biofilm density map with trajec-
tories. The contrast of the original 2 chanel image has been enhanced for visualization.
The RGB biofilm density temporal images (see Material and methods) were converted into
grayscale and rescalled between 0 and 1 (linear scalling). In this images, for illustrations,
trajectories are mapped into the biofilm density map and rescaled density map at initial
condition of the first B. pumilus batch. In the dataset, the trajectories are associated with
the corresponding biofilm map : Xs

i (t) is associated with the value b(t, Xs
i (t)) for swimmer i

of species s at time t. As the biofilm density map is also a time-series, the trajectories can
hardly be represented on the underlying biofilm that also changes in time.

Original 2 chanel image Swimmer tracking
Swimmer trajectories in 

normalized biofilm

Appendix 1 Figure 1. Illustration of image data along the post-processing process. Raw data (2chanel images) are first displayed. Then, trajectory tracking are obtained. Finally, the biofilm densitymap is rescalled, and mapped to grayscale.
Assessing the 3D structure of the biofilm
We check that the selection of a 2D focal plan does not induce an additional bias by over-
selecting biofilm areas with specific structures near the well’s edge. To do so, we assembled
an additional dataset of 4 replicates of S.aureus 3D images (see Material and Methods, sec-
tion , and Appendix 1 Figure 2.A for the dataset assembly) of horizontal image subsamples,
and computed their within and between dissimilarities (see Material and Methods, section
Plots and statistics. The resulting pairwise correlation matrix is displayed in Appendix 1
Figure 2 after hierarchical clustering. It shows that the z direction does not structure the
information, since the images are not clustered according to their z coordinates contrary
to the stack or the x − y coordinate labels. Permanova analysis shows that the differences
between stacks and x − y subsamples are significant (p − value = 1e − 4) but not between
horizontal images (p − value = 1).
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Appendix 1 Figure 2. Assessment that the biofilm structure does not strongly vary in the z
direction. A) Subsampling procedure. We illustrate the subsampling procedure in one of the 4replicates. The 2D images constituting the 3D stack are sampled with a 4x4 cartesian grid. We canalso visually observe that the biofilm variation between horizontal images are weak. B) Pairwisecorrelation matrix. The correlation dissimilarity between sample pairs is displayed (black=0 value,indicating identical samples, to light orange > 1, indicating dissimilar samples) after hierarchicalclustering. We indicate the stack,z and x − y label in the 3 first columns with a color code. We canobserve that the samples are not gathered by z, but rather by stacks and x − y groups, indicating thatimages with identical x − y labels are clustered together, showing that they are more similar tosamples with the same x − y coordinates in other z slices, than other samples in the same z slice withother x − y coordinates.
Illustration of pore formation
As strongly documented in Houry et al. (2012), swimmers can dig pores in a exogenous
biofilm, which enhance thebiofilm innervation and facilitate the penetration ofmacromolecules.
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To illustrate the pore formation, we show two successive images taken from a 2D temporal
stack of B. sphaericus swimmers in a S.aureus host biofilm in Figure 3. In the dashed ellipse,
we can see a swimmer that has moved in the two successive images, letting behind it an
empty space free from host bacteria.

t t + Δt
Appendix 1 Figure 3. Illustration of pore formation. Extractions of two successive images of B.
sphaericus swimming in a S.aureus biofilm are displayed. The dashed ellipse indicates a zone where aswimmer moves between the two successive images, which creates a pore along its swimming path.
Statistical tests
T-tests were performed to compare mean differences between 1D distribution of Figure
Figure 5. Resulting p-values are displayed in Appendix 1 Table 2.
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Appendix 1 Table 1. P-values of pairwise comparison between distributions in biofilms.Pairwise comparison were performed between 1D distributions displayed in Figure Figure 5 usingT-test and p-values are displayed. Non-significant values are indicated in bold.
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Assessment of the inference with synthetic data
parameter ground truth mean std confidence interval [2.5% - 97.5%] neff Rℎat


 1.094 1.08 1.00 × 10−2 [1.06 − 1.1] 3,569 1.0
v0 0.669 0.66 1.00 × 10−2 [0.64 − 0.68] 3,710 1.0
v1 0.134 0.13 2.00 × 10−2 [0.09 − 0.17] 3,431 1.0
� 0.146 0.16 6.20 × 10−3 [0.15 − 0.17] 5,050 1.0
� 0.586 0.59 3.00 × 10−3 [0.58 − 0.59] 4,906 1.0

Appendix 1 Table 3. Inference results on synthetic data. The normalized ground-truth parametervalues (i.e. ground truth parameter rescaled with Aref and Vref ) are compared with the inferenceoutputs on synthetic data: posterior distribution mean and standard deviation are indicated, togetherwith the inferred confidence intervals for the true parameters. Convergence diagnosis indices arealso given, with neff the effective sample size per iteration and Rℎat the potential scale reductionfactors, indicating that convergence occurred for all parameters.
To assess the inference method, synthetic data are built and will be used as reference for
assessment. We arbitrarily fix a parameter vector and solve system (1) from random initial
positions, in a host biofilm arbitrarily chosen in the image dataset. We then extract the
swimmer positions at given time-steps and recover accelerations and speeds with the same
post-processing pipeline as for microscopy images and solve the inverse problem (5)-(6). If
the inference process correctly works, we expect to recover the original parameters (the
ground truth).
The ground truth parameters are correctly recovered by the inference procedure (Ap-
pendix 1 Table 3), indicating that the parameters are correctly identifiable and that the
inverse problem is well-posed. An error of respectively 1.28, 1.34, 2.98 and 0.68% on the
parameters 
 , v0, v1 and � is observed in this controlled situation, � being inferred with loweraccuracy (9.59 %). This estimate is robust to noise on the biofilm data, with highest impact
on � (Appendix 1 Figure 6). To assess the impact of parameter inference uncertainties on tra-
jectory computation, the posterior parameter distribution is sampled and new trajectories
are computed, replacing the ground-truth parameters by the sampled ones. The swimmer
ground truth trajectories are accurately recovered: the sampled trajectories tightly frame
the original swimmer path as illustrated on a randomly chosen trajectory (Figure 6 a). We
note that an identical random seed has been taken for these simulations, including the
ground truth trajectory, in order to turn off the stochastic uncertainties and only focus on
the propagation of inference errors during simulations of swimmer trajectories.
Finally, we re-assemble a synthetic dataset by replacing the ground-truth parameters by the
inferred ones, i.e. the posterior mean. Qqplot of the fitted model accelerations versus the
ground truth accelerations give an excellent accuracy (Figure 6 d-e), with all the points lying
on the bisector, except slight divergences on the distribution tails. The fitted model trajec-
tories visually reproduce the qualitative characteristics of the original dataset (Figure 6 c).
The trajectory descriptors of section Characterizing bacterial swimming in a biofilm matrix
through image descriptors are then computed on both datasets (ground truth and inferred)
and compared (Figure 6 b). The kinematics descriptors, i.e. acceleration and speed distribu-
tions, are very accurately recovered with a relative error of 0.1%, 3.2%, 5% for respectively
themean, quantiles 0.05 and 0.95 of the acceleration (resp. 0.9%, 2.5% ,2% for speed). Some
small discrepancies can be observed on the distance and displacement distributions, even
if the mean and the quantiles 0.05 and 0.95 are close. The interactions between the host
biofilm and the acceleration and speed distribution are also recovered with high accuracy.
We note that part of the observed discrepancies comes from an additional source of vari-
ability of the simulation framework: when a swimmer reaches a domain boundary during a
simulation, its trajectory is stopped and a new swimmer is randomly introduced elsewhere
in the biofilm (see Materials and Methods for more details). This simulation strategy seems
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to be responsible of the over-representation of short trajectories in the inferred dataset,
compared to the ground truth (Figure 6 b upper panel, distance and displacement distribu-
tions).
Markov chains convergence and correlation
Markov chain (Appendix 1 Figure 4) and markov chain pairplots (Appendix 1 Figure 5) are
displayed. Direct visualization of the posterior sampling allows to detect convergence fail-
ure (strong autocorrelation or stationnary markov chain). Markov chain pairplot informs
on potential correlation between different parameters posterior samples, showing an inter-
action between parameter and an identification issue. In Appendix 1 Figure 4, the markov
chains correctly converged for all the parameter. No strong correlation can be observed in
Appendix 1 Figure 5.
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Appendix 1 Figure 4. Inference convergence validation. The markov chain (upper panel) and theposterior distribution (lower panel) of each parameter is displayed, showing good convergence of thestochastic sampling of the posteriors.
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Appendix 1 Figure 5. Pairplot of parameter markov chains. No strong covariance effect can beobserved, showing that the model can not be reduced by analytical dependence between parameters.Slight correlation is observed between the parameters v0, v1 and 
 : this feature is not surprising since

 , v0 and v1 are in the same term of equation (2). The correlation is however too low to expect a modelreduction.

Impact of noise on biofilm data
The impact of noise on the parameter inference is assessed by noising the biofilm density
and the biofilm density gradients with an additive gaussian noise with increasing variance
(Appendix 1 Figure 6). The noise variance is scaled with the variance observed in the original
data. Namely, we set

�b ∼ (0,
√

l�b) (9)
and

�∇b ∼ (0,

√

2l
Δx

�b) (10)
where �b is the variance observed in the original data, �b and �∇b are respectively the noiseapplied to the biofilm density and the biofilm density gradient and Δx is a pixel width. The
parameter l ∈ [0, 0.01, 0.02, 0.03, 0.04, 0.05] is increased to apply a noise from 0 to 5%.
We can observe that the estimate of only two parameters is impacted by noising the biofilm
inputs: the estimate of � and v1. The parameter � is also the parameter which is the less
accurately inferred when no noise is added (5%). Its estimation relative error increases up
to 35 % when 5% noise is added. The parameter � tunes the direction selection, which is
the less effective process in the swimmer model. The other parameters are recovered with
correct accuracy (kept under 18% for v1, and under 6% otherwise).
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Appendix 1 Figure 6. Impact of noise level on parameter inference. We plot the relative error ofthe estimate of the different equation parameters for increasing noise applied on the biofilm densityand the biofilm density gradients input data.
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Appendix 2

Numerical exploration
To illustrate the impact of each parameter on the interplay between the host biofilm and
the swimmers trajectories, the model (2) was first computed on two mock biofilms. The
first one is a square linear density gradient and the second is composed of large pores
on a textured background mimicking the dense biofilm zones (Appendix 2 Figure 1 a). A
basal simulation is computed with 
 = � = � = 1 and will be used later on as reference for
comparisons. These three parameters are alternatively set to zero to assess the resulting
trajectories when the speed selection, the direction selection or the random term is shut
down. Suppressing speed selection results in rectilinear trajectories (
 = 0, Appendix 2 Fig-
ure 1 c), which is rather counter-intuitive since the remaining terms are designed to tune the
direction. A discussion of this phenomenon is provided in Appendix 2 Influence of inference
and stochastic terms on the trajectory descriptors. When suppressing direction selection
(� = 0, Appendix 2 Figure 1 d), the trajectories are no longer drifted downwards the gradient
in the upper panel as in the basal simulation, and no longer follow the pores (lower panel).
If the stochastic term is shut down (� = 0, Appendix 2 Figure 1 e), the trajectories directly go
down the gradients and are trapped in the center of the image in the upper panel. When a
pore is found along the run, the swimmer keeps following it without being able to escape
the pore any longer unlike the basal situation (lower panel).

The link between themodel parameters and the global trajectory descriptors introduced
in Section Characterizing bacterial swimming in a biofilmmatrix through image descriptors
is less intuitive. A global sensitivity analysis of the trajectory descriptors (mean acceleration
and speed, distance, displacement and visited areas) with respect to the parameters 
 , v0,
v1, � and � is conducted in Model sensitivity analysis by computing their first order Sobol
index (SI) and their pairwise correlation coefficient (PCC). The sensitivity analysis shows that
the mean speed is mainly influenced by 
 and � with slightly negative and positive impact
respectively, while acceleration is rather influenced by � and � with positive impact. The
link between the parameters and the other descriptors is more complex, including non lin-
ear effects (strong SI and small PCC) and parameter interactions (higher SI residuals, see
Appendix 2 Figure 2).

(a) Mock biofilm (b) Basal (c) γ = 0 (d) β = 0 (e) ε = 0

Appendix 2 Figure 1. Numerical exploration of the model. To illustrate the influence of each termof Eq. (2), they are alternatively turned off (Fig. c to e), and swimmer trajectories are computed onmock biofilms (a) displaying marked density gradients (upper pannel) or marked pores (lower pannel).Trajectories can be compared to a basal simulation (b) when all the terms have the same intensity(� = � = � = 1).
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Model sensitivity analysis
The link between the model parameters and the global trajectory descriptors introduced in
Section Characterizing bacterial swimming in a biofilm matrix through image descriptors
is not intuitive. A global sensitivity analysis of the trajectory descriptors (mean acceleration
and speed, distance, displacement and visited areas) with respect to the parameters 
 , v0,
v1, � and � is conducted by computing their first order Sobol index (SI) and their pairwise
correlation coefficient (PCC).
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Appendix 2 Figure 2. Sensitivity analysis of state observable respectively to state-equation
parameters. The sensitivity of different state observables to parameter shifts is systematicallystudied through sensitivity analysis methods. a) Sobol indices are displayed for each output throughbarplots indicating the part of variance explained by a given parameter. The bars do not reach thevalue 1, indicating a residual variance reflecting interactions between parameters. b) Pairwisecorrelation coefficient (PCC) of the observable respectively to the input parameters are displayed. Anegative PCC indicates a negative impact on the output, and conversely. We note that the red dotindicating the PCC of � for V is confounded with the purple one indicating the PCC of �.
The residual variance is small for the median speed and acceleration but slightly larger for
the distance, displacement and visited area indicating larger effects of parameter interac-
tions for these outputs, i.e. output variations induced by joint shifts of the parameters (Ap-
pendix 2 Figure 2). The SI of the parameters v0 and v1 are negligible, except for the displace-ment and the visited area. The parameters 
 , � and �, i.e. the three weights associated to
each component of the state equation (2), are more influential. Distance and speed have
several main drivers. The distance is impacted nearly equally by 
 , � and � and the PCC of
these parameters is quite small, indicating that these parameters may induce indistinctly
negative or positive variations of the travelled distance, except for � which is slightly nega-
tively correlated. Themedian speed ismainly impacted by � (slightly positively) and 
 (slightly
negatively), with relatively small PCC (Appendix 2 Figure 2). The mean acceleration, the dis-
placement and the visited area are preponderantly impacted by a main driver: the mean
acceleration and the visited area are particularly impacted by �, the stochastic term weight,
with positive influence. The displacement is mainly influenced by 
 with no preponderant
variation direction (null PCC, Appendix 2 Figure 2).
Friction and random term in Langevin equations.
To illustrate the interplay between the friction and the random term during a randomwalks,
we solve the problem
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dv = − 
vdt
⏟⏟⏟
friction

+ �dt
⏟⏟⏟

random term
(11)

v(0) = (0, 0) (12)
X(0) = (0, 0) (13)

in an unconstrained domain, with � a 2 dimensional white noise with unitary variance. The
friction parameter 
 is alternatively set to 1 (Appendix 2 Fig Figure 3, upper panel) or 0 (Ap-
pendix 2 Fig Figure 3, lower panel). We note that the random seed is the same for the sim-
ulations with or without the friction term, so that the stochastic contribution is completely
identical in the upper and lower panels. The trajectories produced without the friction term
are much more regular and rectilinear that those produced with the friction term, that are
much chaotic.
The reason of that behaviour may come from the null mean of the white noise. Roughly
speaking, in average, the acceleration shows small variations around zero which leads after
temporal integration to regular speeds and rectilinear-like trajectories. By contrast, the fric-
tion term reduces the particle inertia, enhancing the impact of the stochastic term, which
produces much more chaotic trajectories.

Appendix 2 Figure 3. Illustration of the interplay between friction and stochastic terms in
Langevin equation. Trajectories produced by different repetitions of eq. (11) are displayed with 
 = 1(upper panel) and 
 = 0 (lower pannel). We note that the same random seed has been taken for thesimulations of the same column with or without the friction term, meaning that the stochastic term isstrictly identical in both simulations.
Impact of the stochastic term
We illustrate the impact of the random walk term on the overall swimmer trajectory with
Appendix 2 Figure 4. In this figure, we display two trajectories computed from model (2)
with identical parameters (�, �, v0, v1, 
 and �), initial condition, host biofilm and time length.
Different random samplings of the stochastic term of Equation (2) lead to these very differ-
ent trajectories. This example illustrate the difference between identifying population-wide
characteristics and inferring true trajectories : while the later try to detect the differences
between the two trajectories (i.e. in this example, identifying and smoothing the different
stochastic samples leading to these trajectories), the former focuses on the common fea-
tures between these apparently different trajectories.
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Appendix 2 Figure 4. Influence of the stochastic process on swimmer trajectories. We plot twodifferent trajectories computed with the model (2), including the same parameters �, �, v0, v1, 
 and �,the same initial condition and identical host biofilm. The only uncertainty source comes from thedifferent random samplings of the stochastic term. In this simulation, the ground truth (with defaultrandom seed) is plotted in blue.
Influence of inference and stochastic terms on the trajectory descriptors
Wewonder if the uncertainty sources involved in the inference process and in the stochastic
term of the random walk have a decisive impact on the trajectory descriptors. To address
this question, a first dataset is assembled by integrating in time Eq.(2) for given parameters
(see Appendix 1 Table 3), initial conditions and host biofilm. Then, this dataset is used as in-
puts of the inferencemethod to infer the initial parameters (ground truth). Another dataset
is produced by replacing the initial parameters by the inferred parameters. We note that
we take the same seed for the random number generator than for the initial dataset, so
that the only uncertainty that has been introduced until this step comes from the inference
procedure. Finally, we produce a last dataset by solving the model with the same inferred
parameters as in the second dataset, but changing the seed of the random number gener-
ator. Hence, this last dataset involves uncertainties coming from the stochastic terms and
from the inference process. This variation results in modifying the sampling of the stochas-
tic terms and leads to strong modifications of the trajectories, like in Appendix 2 Figure 4.
At end, the trajectory descriptors are computed and plotted in Appendix 2 Figure 5. We can
see that the trajectory descriptor distributions are very similar across the different dataset,
except for the total distance and the displacement where discrepancies can be noted. How-
ever, these differences are relatively small compared to the mean and the width of the
distributions. We can also observe that the interactions with the underlying biofilm is very
well conserved, even when the sampling of the stochastic term is very different. This obser-
vation grounds the initial guess that these trajectory descriptors captures common global
features of the different trajectories rather than specificities of given trajectories.
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Appendix 2 Figure 5. Low influence of the stochastic term on the trajectory descriptors. Toassess the influence of the random term on the population-wide trajectory descriptors and overallprediction accuracy, we repeated the experiment displayed in Figure 6 a. A synthetic database wasfirst assembled (ground truth) and prediction were performed with a fitted model (After inference).Then, a second repetition of the prediction of the fitted model was computed with another seed forthe random number generator, resulting in modifying the sampling of the stochastic terms andstrong modifications of individual trajectories, like in Figure 4. The population-wide trajectorydescriptors are however slightly impacted by this random effect, indicating that the maincharacteristics of the trajectory populations marginally depend on the stochastic term.
Relative impact of the different swimming processes on the species swim.
The ternary plot presented in Appendix 2 Figure 6 shows the balance between the different
swimming processes. The contribution of each term of equation (4) to acceleration esti-
mate was first computed. Namely, the relative value of the speed selection term ‖s(b)si‖, thedirection selection term ‖s(∇b)si‖ and the stochastic term ‖s(�)si‖ where

s(b)si = ‖
(vs0 + b(t, X
s
i (t))(v

s
1 − v

s
0) − ‖V s

i (t)‖)
V s
i (t)

‖V s
i (t)‖

‖,

s(∇b)si = ‖�s
∇b(t, Xs

i (t))
‖∇b(t, Xs

i (t))‖
‖, and s(�)si = ‖�s‖.

The proportions A(k)si of each process was computed with
A(k)si =

s(k)si
s(b)si + s(∇b)

s
i + s(�)

s

i
.

for k ∈ {b,∇b, �}. As the contribution of the direction selection was limited compared to the
other processes, we zoomed in the plot near the edge ‖s(∇b)si‖ = 0 to allow inter-species
comparisons.
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Appendix 2 Figure 6. Respective influence of stochastic effects, speed or direction adaptation
to the host biofilm. We plot in a ternary plot the respective influence of the speed selection (V ), thedirection selection (D) and the random term (�) of Eq.(1) in the acceleration distribution of eachspecies. Each squared instantaneous acceleration is mapped in the ternary plot coordinates throughthe relative contribution of V 2, D2 and �2, and this point cloud is approximated in the ternary plotcoordinates with a gaussian kernel to display the point distributions. The 0.05, 0.5 and 0.95 quantileisovalues of these distributions are plotted. (a) The entire ternary plot is displayed. The dashed linerepresents the zoom box represented in Fig. (b), where the same isolines are displayed, but with azoom in in the y direction to highlight differences between species.
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Appendix 3

Various inference models
Different inference models were designed and tested from the dimensionless state equa-
tion (2).
SSM model
The inference model can be stated as a space-state model (SSM) which is a framework com-
monly used in spatial ecology to infer a true state, i.e. true positions and trajectories, and
population-wide random walk parameters from time-serie data (Auger-Méthé et al., 2021).
The SSM inference model is a generalization of Hidden Markov Models (HMM).

Note zsi (t) the true (hidden) position of the individual i of the species s at time t. The state
model on acceleration (4) can be rewritten as

dvsi (t)
dt

= 
(vs0 + b(t, z
s
i (t))(v

s
1 − v

s
0) − ‖�si (t)‖)

vsi (t)
‖vsi (t)‖

+ �s
∇b(t, zsi (t))
‖∇b(t, zsi (t))‖

+ �smod (14)
zsi (t)
dt

= vsi (t) (15)
In this equation, vsi is the true hidden swimmer velocity. Starting from observed initial con-
ditions zsi (0), vsi (0), equations (15) can be integrated in time to recover hidden zsi (t), vsi (t) forall times t.

Then, a likelihood equation can be written to compare the true hidden state to the ob-
servations.

Xs
i (t) ∼ z

s
i (t) + �

s
obs (16)

We note a link between �mod and �obs in Eqs. (15)-(16) and the random state � in Eq. (4).
Namely, noting �mod and �obs the standard deviation of the gaussian noises �mod and �obs, directfinite-difference of As

i (t) from the true state gives an estimate of the noise variance on the
acceleration of the non-linear regression model

� =
√

(�mod
Δt

)2
+
(
√

6
�obs
Δt2

)2
.

Compared to problem (5), the main advantages are that the likelihood is written on the
original data, i.e. the observed position, and not a post-processed observed acceleration,
subject to finite-difference errors. Furthermore, the true trajectories are recovered and
modelling errors �smod and observation errors �sobs are separated. The main drawback of this
methodology is that the state space is very large since it includes all the positions and speeds
at every time for every swimmers, which leads to intractable computations.
Mixing SSM and non-linear inference models
An intermediary strategy has been designed by selecting swimmer trajectories that wewant
to infer by SSM, the remaining trajectories being kept to compute an acceleration dataset
As
i (t). Namely, note Dssm the set of swimmer index kept for SSM, and DA the set of swimmer

index kept for non-linear regression. We set, for i ∈ Dssm

dvsi (t)
dt

= 
(vs0 + b(t, z
s
i (t))(v

s
1 − v

s
0) − ‖�si (t)‖)

vsi (t)
‖vsi (t)‖

+ �s
∇b(t, zsi (t))
‖∇b(t, zsi (t))‖

+ �smod (17)
zsi (t)
dt

= vsi (t) (18)
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for given initial conditions zsi (0), vsi (0), and for j ∈ DA

As
j(t) = 
(v

s
0 + b(t, X

s
j (t))(v

s
1 − v

s
0) − ‖�si (t)‖)

V s
j (t)

‖V s
j (t)‖

+ �s
∇b(t, Xs

j (t))

‖∇b(t, Xs
j (t))‖

+ �s (19)
where Xs

j (t), V s
j (t) and As

j(t) are observed positions, speeds and accelerations. This model is
completed by a likelihood equation

Xs
i (t) ∼ z

s
i (t) + �

s
obs, for i ∈ DSSM (20)

As
i (t) ∼ fA(�

s
|b,Xs

j (t), V
s
j (t), A

s
j(t)) + �

s (21)
where fA is defined in equation (4).This setting kept some advantages of the SSM, like inferring some true hidden trajec-
tories or separating the estimate of modeling and observation errors, while limiting the
computational load if DSSM is not too large.

We finally kept the regression model for several reasons. First, we are interested in re-
covering population wide parameters to characterize strain-specific swims, and not identi-
fying true trajectories. Second, we can consider that the observation error with confocal mi-
croscopy is several order of magnitudes under the spatial characteristic lengths involved in
equation (2), so that observation errors can be neglected. Hence, the objective of separating
the uncertainty sources between model and observation errors, which is a main advantage
of the SSM or mixed inference settings, becomes secondary. Furthermore, enhancing the
state space dimension provided additional uncertainties, worsening the inference precision
on synthetic data. We then opted for the simple regression model that provided sufficient
parameter identifiability for limited computational load.
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Appendix 4

KDE computation
We illustrate the process of visualization of multiple point distributions in the same graph
using KDE and isolines enclosing specific proportions of the data in Appendix 4 Figure 1. A
point cloud is first approximated with a Gaussian KDE. Then, the value of the gaussian KDE
is evaluated in each point of the original point cloud, which allows to map the 2D map into
a 1D set where order relation can be defined. Specific quantiles of the resulting values are
computed (namely quantile 0.05, 0.5 and 0.95). By definition, the quantile 0.05 separate 5%
of the points of the original dataset (the 5% lowest Gaussian KDE values) from the remainder
of the data set. The isoline corresponding to the quantile 0.05 then also separates in the 2D
map the 5% lowest Gaussian KDE values from the others.

Appendix 4 Figure 1. Illustration of the Gaussian KDE isovalues computation. Starting from arandom 2D point distribution (left panel), a gaussian KDE is computed using the scipy.stats function(middle panel). Then, the gaussian KDE is evaluated at the original point positions, and quantiles ofthe resulting values are computed (quantiles 0.05, 0.5 and 0.95). Gaussian KDE isolines correspondingto this quantiles are finally computed (right panel). This isolines enclose respectively 5, 50 and 95 % ofthe points of the original distribution, centered in the densest area of the initial point cloud. Thisprocedure gives a good representation of the shape of the data, but allows to display severaldistributions in the same graph, enabling comparison while avoiding superimposition issues.
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