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Abstract

Biofilms are spatially organized microorganism colonies embedded in a self-
produced matrix, conferring to the microbial community resistance to environmental
stresses. Motile bacteria have been observed swimming in the matrix of pathogenic
exogeneous host biofilms. This observation opened new promising routes for delete-
rious biofilms biocontrol: these bacterial swimmers enhance biofilm vascularization
for chemical treatment or could deliver biocontrol agent by microbial hitchhiking or
local synthesis. Hence, characterizing swimmer trajectories in the biofilm matrix is
of particular interest to understand and optimize its biocontrol.

In this study, a new methodology is developed to analyze time-lapse confocal
laser scanning images to describe and compare the swimming trajectories of bac-
terial swimmers populations and their adaptations to the biofilm structure. The
method is based on the inference of a kinetic model of swimmer population includ-
ing mechanistic interactions with the host biofilm. After validation on synthetic
data, the methodology is implemented on images of three different motile Bacillus
species swimming in a Staphylococcus aureus biofilm. The fitted model allows to
stratify the swimmer populations by their swimming behavior and provides insights
into the mechanisms deployed by the micro-swimmers to adapt their swimming traits
to the biofilm matrix.

*Corresponding author: simon.labarthe@inrae.fr



1 Introduction

Biofilm is the most abundant mode of life of bacteria and archaea on earth [16] [15].
They are composed of spatially organized communities of microorganisms embedded
in a self-produced extracellular polymeric substances (EPS) matrix. EPS are typically
forming a gel composed of a heterogenous mixture of water, polysaccharides, proteins
and DNA [I4]. The biofilm mode of life confers to the inhabitant microbial community
strong ecological advantages such as resistance to mechanical or chemical stresses [3]
so that conventional antimicrobial treatments remain poorly efficient against biofilms
[6]. Different mechanisms were invoked such as molecular diffusion-reaction limitations
in the biofilm matrix and the cell type diversification associated with stratified local
microenvironments [5]. Biofilms can induce harmful consequences in several industrial
applications, such as water [2], or agri-food industry [12], leading to significant economic
and health burden [23]. Indeed, it was estimated that the biofilm mode of life is involved
in 80% of human infection and usual chemical control leads to serious environmental
issues[3]. Hence, finding efficient ways to improve biofilm treatment represents important
societal sustainable perspectives.

Motile bacteria have been observed in host biofilms formed by exogenous bacterial
species [18], 27, [34], 14]. These bacterial swimmers are able to penetrate the dense pop-
ulation of host bacteria and to find their way in the interlace of EPS. Doing so, they
visit the 3D structure of the biofilm, leaving behind them a trace in the biofilm struc-
ture, i.e. a zone of extracellular matrix free of host bacteria (Fig. . Hence, bacterial
swimmers are digging a network of capillars in the biofilm, enhancing the diffusivity of
large molecules [I8], allowing the transport of biocide at the heart of the biofilm, reduc-
ing islands of living cells. The potentiality of bigger swimmers has also been studied
for biofilm biocontrol, including spermatozoa [30], protozoans [11] or metazoans [22].
Recent results suggest a deeper role of bacterial swimmers in biofilm ecology with the
concept of microbial hitchhiking: motile bacteria can transport sessile entities such as
spores [32], phages [41] or even other bacteria [37], enhancing their dispersion within
the biofilm. Hence, characterizing microbial swimming in the very specific environment
of the biofilm matrix is of particular interest to decipher biofilm spatial regulations and
their biocontrol, but more generally in an ecological perspective of microbial population
dynamics in natural ecosystems.

Bacterial swimming is strongly influenced by the micro-topography and bacteria
deploy strategies to sense and adapt their motion to their environment [25], with specific
implications for biofilm formation and dynamics [9]. Model-based studies were conducted
to characterize bacterial active motion in interaction with an heterogeneous environment.
An image and model-based analysis showed non-linear self-similar trajectories during
chemotactic motion with obstacles [24]. Theoretical studies explored Brownian dynamics
of self-propelled particles in interaction with filamentous structures such as EPS [20]
or with random obstacles, exhibiting continuous limits and different motion regimes
depending on obstacle densities [8, [7]. Image analysis characterized different swimming
patterns in polymeric fluids [33], completed by detailed comparisons between a micro-



Species Batch ‘ # traject. traj. length time points Duration At

B. pumilus 1 122 40 (7.4) 4,590 30 0.134
2 152 25 (5.7) 3,543 30 0.134

3 243 38 (6.9) 8,825 30 0.134

B. sphaericus 1 98 40 (7.6) 3,762 30 0.134
2 91 43 (7.7) 3,771 30 0.134

3 48 55 (7.9) 2,543 23 0.134

B. cereus 1 105 47 (7.9) 4,766 30 0.069

2 53 36 (7.7) 1,808 30 0.069

3 121 43 (7.1) 5,006 30 0.069

Table 1: Dataset characteristics. We detailed, for each batch, the number of trajecto-
ries, the average number of time points by trajectory (and standard deviation), the total
number of time points in the dataset, the total movie duration and the time interval
between two snapshots.

scale model of flagellated bacteria in polymeric fluids and high-throughput images [29].
Models of bacterial swimmers in visco-elastic fluids were also developed to study the force
fields encountered during their run [26]. However, to our knowledge, no study tried to
characterize swimming patterns in the highly heterogeneous environment presented by
an exogenous biofilm matrix.

In this study, we aim at providing a quantitative characterization of the different
swimming behaviours in adaptation to the host biofilm matrix observed by microscopy.
We focus on identifying potential species-dependent swimming characteristics and quan-
tifying the swimming speed and direction variations induced by the host biofilm struc-
ture. To address these goals, three different Bacillus species presenting contrasted phys-
iological or swimming characteristics are selected. First, different trajectory descriptors
accounting for interactions with the host biofilm are defined, allowing to discriminate the
swim of these bacterial strains by differential analysis. Then, a mechanistic random-walk
model including swimming adaptations to the host biofilm is introduced. This model is
numerically explored to identify the sensitivity of the trajectory descriptors to the model
parameters. An inference strategy is designed to fit the model to 2D+T microscopy im-
ages. The method is validated on synthetic data and applied to a microscopy dataset to
decipher the swimming behaviour of the 3 Bacillus.

2 Results

2.1 Characterizing bacterial swimming in a biofilm matrix through
image descriptors

2D+T Confocal Laser Scanning Microscopy (CLSM) images of three bacterial swimmer
populations —Bacillus pumilus (B. pumilus), Bacillus sphaericus (B. sphaericus) and
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Figure 1: Microscopy data and model outlines. (a) Temporal stacks of 2D images
are acquired, with different fluorescence colors for host bacteria (Staphylococcus aureus,
green) and swimmers (Bacillus pumilus, Bacillus sphaericus or Bacillus cereus, red).
Bacterial swimmers navigate in a host biofilm and are tracked in the different snapshots.
Swimmer trajectories are represented with white lines. High density and low density
zones of host cells are visible in the biofilm (green scale). (b) Additionally to speed
and acceleration distributions, three trajectory descriptors are considered. Distance is
the distance between the initial and final points of the trajectory. Displacement is
the total length of the trajectory path. Visited area is the total area of the pores
left by the swimmer during its path. Hence, when a swimmer retraces its steps, the
displacement is incremented but not the visited area. (c)Three different mechanisms
are considered in the mechanistic model.  Biofilm-dependant speed. A target speed is
defined accordingly to the local density of biofilm and asymptotically reached after a
relaxation time. Biofilm-dependent direction. Swimming direction is defined accordingly
to the local biofilm density gradient. Random walk. A Brownian motion is added. (d)
The image acquisition workflow is composed of a first step at the wet lab where host
biofilm and swimmer are plated and imaged in different color channels. Then a post-
processing phase recomposes the swimmer trajectories with tracking algorithms. Then,
temporal positions, speeds and accelerations are computed. On the biofilm channel,
density and density gradient maps are processed at each time step.
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Figure 2: Analysis of swimming characteristics. (a) The whole set of trajectories of
each species is displayed. (b) Trajectory descriptors. Upper panel: acceleration, speed,
distance and displacement distributions structured by species are displayed, together
with quantile 0.05,0.5 and 0.95 (plain lines) and mean (dashed line). T-test pairwise
comparison p-values are displayed in Lower panel: we display the distribution of
the instantaneous acceleration norm respectively to the local biofilm density gradient
(i.e. ||A;(t)]| function of Vb(X;(t))) and of the instantaneous velocity norm respectively
to the local biofilm density (i.e. ||V;(t)|| function of b(X;(t)), structured by population.
The point cloud of each species is approximated by a gaussian kernel and gaussian kernel
isolines enclosing 5, 50 and 95% of the points centered in the densest zones are displayed
to facilitate comparisons between species (see Materials and Methods .



Bacillus cereus (B. cereus) — swimming in a Staphylococcus aureus (S. aureus) host
biofilm were acquired (see Fig. Swimmers and host biofilms were imaged with dif-
ferent fluorescence dies, allowing their acquisition in different color channels, and to
recover in the same spatio-temporal referential the swimmer trajectories and the host
biofilm density (see Materials and Methods and Fig. . Namely, for each species s and
individual swimmer 4, we recover the initial (7§;) and final (T}, ;;) observation times
(when the swimmer goes in and out the focal plane, see sect. , and the number 77
of time points in the trajectory. We then extract from the 2D+T images the observed
position, instantaneous speed and acceleration time-series
t— X72(t), t—V3(1), t— Aj), forte (1645 Tonai)-

Noting b*(¢, ) the dynamic biofilm density maps obtained from the biofilm images, we
also compute the local biofilm density and density gradient

te b5(t, X5(t)), and t— Vb(t, XF(1)).

Different swimming patterns can be deciphered by qualitative observations of the
trajectories X7 (t) (Fig. [2a)). For B. sphaericus and to a minor extent B. pumilus, the
trajectories are divided between back and forth paths around the starting point and long
runs. By contrast, B. cereus swimmers nearly never get stuck in the same place and
describe longer curves in the biofilm.

For quantitative analysis, trajectory descriptors are defined. We first investigate the
distribution of the population-wide average acceleration and velocity norms T%S Do IAZ @)l

and T%s > IV (t)]], where || - || denotes the Euclidian norm. We also quantify the swim-

ming kinematics by computing the travelled distance dist; along the path and the total
displacement disp{, i.e. the distance between the initial and final trajectory points, with

end,i

TS . TS .
dist; = / IWeldt  and  dispt = | X (Toa,) — XT3 = | / "t
5 15,
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We finally compute the total biofilm area visited by a swimmer along its path (see Fig.
).

The three species present contrasted distributions for these descriptors (Fig. . B.
sphaericus has the smallest mean and median values of acceleration and speed, while B.
pumilus has the widest distributions. B. cereus for its part shows the highest acceler-
ations, indicating larger changes in swimming velocities, but median and mean speeds
comparable to B. pumilus (Fig. ||A|| and ||V|| panels). We also note that B. sphaer-
icus and to a lower extent B. pumilus trajectories have a significant amount of null or
small average speeds, while B. cereus trajectories have practically no zero velocity, con-
sistently with the qualitative analysis (Fig. [[V]| panels). Small velocities episodes
of B. sphaericus and B. pumilus could occur during their back-and-forth trajectories,
which produce small displacements and pull the displacement distribution towards lower
values than B. cereus (Fig. Disp panel). B. pumilus displacement is intermediary.



Conversely, back-and-forth trajectories can produce large swimming distances for B.
sphaericus and B. pumilus so that B. sphaericus has a distance distribution comparable
to B. cereus (Fig. Dist panel), but lower than B. pumilus which also shows the
widest speed distribution. Observing conjointly displacement and distance (Fig.
lower-right panel) provides consistent insights: B. sphaericus shows a large variability
of small displacement trajectories, from small to large distances, while B. cereus trajec-
tory displacement seems to vary almost linearly with the distance at least for the points
inside the isoline 50%. B. pumilus has again an intermediary distribution, with a large
range of displacement-distance couples. The distributions of visited areas of B. pumilus
and B. cereus are almost identical, and higher than B. sphaericus one.

All together, this data depict 1) a long-range species, B. cereus, which moves ef-
ficiently in the biofilm during long, relatively straight, rapid runs, 2) a short-range
species, B. sphaericus, that moves mainly locally in small areas with lower accelerations
and speeds except few exceptions and 3) a medium-range species, B. pumilus, with a
large diversity of rapid trajectories, from small to large displacement. These kinematics
discrepancies for B. pumilus and B. cereus allow them however to cover identical visited
areas.

These global descriptors do not inform however about potential adaptations of the
swimmers to the biofilm matrix. We first want to check if swimmer velocities are
directly linked to the local biofilm density, and if the swimmers adapt their trajec-
tory according to density gradients by plotting the points (||Vb(t, X7 (¢))]l, || A3 (¢)]|) and
(b(t, X2 (1)), |VE@)|) (Fig. [2/f, g). Clear differences between the three species can be
deciphered. We first observe that the three Bacillus do not have the same distribution
of visited biofilm density and gradient. B. pumilus swimmers visit denser biofilm with
higher variations than the other species while B. sphaericus and B. cereus stay in less
dense and smoother areas, the quantile 0.5 area of these species being circumscribed in
low gradient and low density values. Next, we see that B. cereus has a wider distribu-
tion of accelerations, specially for small density gradients, compared to B. pumilus and
B. sphaericus. This could indicate that when the biofilm is smooth, B. cereus samples
its acceleration in a large distribution of possible values. Finally, we observe that the
speed distribution rapidly drops for increasing biofilm densities for B. sphaericus and B.
cereus, while the decrease is much smoother for B. pumilus. These observations provide
additional insights in the species swimming characteristics: B. pumilus swimmers seem
to be less inconvenienced by the host biofilm density than the other species, while B.
cereus and B. sphaericus bacteria appear to be particularly impacted by higher densities
and to favor low densities where it can efficiently move. Though, B. sphaericus has lower
motile capabilities than B. cereus when the biofiilm is not dense.

2.2 Swimming model

This descriptive analysis does not allow to clearly identify potential mechanisms by which
the swimmers adapt their swim to the biofilm structure or to simulate new species-
dependant trajectories. We then build a swimming model based on a Langevin-like
equation on the acceleration. Once fitted, this model will allow to identify the respective



influence of the deterministic mechanisms it includes but also to generate synthetic data
by predicting new swimmer random walks sharing characteristics comparable to the
original data.

2.2.1 Governing swimming equation

We consider bacterial swimmers as Lagrangian particles and we model the different forces
involved in the update of their velocity v. We assume that the swimmer motion can be
modelled by a stochastic process with a deterministic drift (Fig. [Ld):

Vb
dv = y(a(b) = [Iv])) HVHdt+ ﬂmdt +  ndt (1)
~~ e random term
speed selection direction selection

where the right hand side is composed of two deterministic terms in addition to a gaussian
noise, each weighted by the parameters v, 8 and e.

The first term implements the biological observation (Fig. that the bacterial
swimmers adapt their velocity to the biofilm density. This term can be interpreted as
a speed selection term that pulls the instantaneous speed of the swimmer towards a
prescribed target velocity «(b) that depends on the host biofilm density b. The weight
~ can be interpreted as a penalization coefficient, proportionally inverse to a relaxation
time 7, v ~ % As a first order approximation of the speed drop observed in Fig. for
increasing b, the target speed «(b) is modeled as a linear variation between vy and vy,
the swimmer characteristic speed in the highest and lowest density regions respectively:

a(b) = 1)0(1 — b) + bUl =g + b(v1 - 1)0)

The second term updates the velocity direction according to the local gradient of the
biofilm density Vb. The sign of 5 indicates if the swimmer is inclined to go up (negative
B) or down (positive ) the host biofilm gradient, while the weight magnitude indicate
the influence of this mechanism in the swimmer kinematics. We note that this term does
not depend on the gradient magnitude but only on the gradient direction: this reflects
the implicit assumption that the bacteria are able to sense density variations to find
favorable directions, but that the biological sensors are not sensitive enough to evaluate
the variation magnitudes.

The third term is a stochastic diffusive process that models the dispersion around
the deterministic drift modelled by the two first terms. We define

n~ N(0,¢)

The term 7 can also be interpreted as a model of the modelling errors, tuned by the
term e. Eq. is supplemented by an initial condition by swimmer. For vanishing ||v||
or ||Vb||, the corresponding term in the equation is turned off.

We can define characteristic speed and acceleration V* and A* in order to set a
dimensionless version of Eq.

Vb
——dt +7'dt (2)

T



where v/ = 40", vh = 18, v = &, ' = £, 0/ ~ N(0,¢) and ¢ = 5.

This dimensionless version will strongly improve the inference process and will allow
an analysis of the relative contribution of the different terms in the kinematics.

2.2.2 Numerical exploration and sensitivity analysis

To illustrate the impact of each parameter on the interplay between the host biofilm and
the swimmers trajectories, the model [2| was first computed on two mock biofilms. The
first one is a square linear density gradient and the second is composed of large pores on
a textured background mimicking the dense biofilm zones (Fig. . A basal simulation
is computed with v = 8 = € = 1, and this three parameters are alternatively set to
zero to assess the resulting trajectories when the speed selection, the direction selection
or the random term is shut down. Suppressing speed selection results in rectilinear
trajectories (v = 0, Fig. , which is rather counter-intuitive since the remaining terms
are designed to tune the direction. A discussion of this phenomena is provided in the
Annex When suppressing direction selection (y = 0, Fig. , the trajectories are
no longer drifted downwards the gradient in the upper panel as in the basal simulation,
and no longer follow the pores (lower panel). If the stochastic term is shut down (e = 0,
Fig. , the trajectories directly go down the gradients and are trapped in the center of
the image in the upper panel. When a pore is found along the run, the swimmer keeps
following it without being able to escape the pore any longer unlike the basal situation
(lower panel).

The link between the model parameters and the global trajectory descriptors in-
troduced in Section [2.1] is less intuitive. A global sensitivity analysis of the trajectory
descriptors (mean acceleration and speed, distance, displacement and visited areas) with
respect to the parameters v, vg, v1, 8 and € is conducted in[A.4] by computing their first
order Sobol index (SI) and their pairwise correlation coefficient (PCC). The sensitivity
analysis shows that the mean speed is mainly influenced by + and € with slightly neg-
ative and positive impact respectively, while acceleration is rather influenced by 8 and
€ with positive impact. The link between the parameters and the other descriptors is
more complex, including non linear effects (strong SI and small PCC) and parameter
interactions (higher SI residuals, see Sec. and Fig. Fig. for detailed analysis).

2.3 Inferring swimming parameters from trajectory data

For each bacterial swimmer population, we now seek to infer with a Bayesian method
population-wide model parameters governing the swimming model of a given species
from microscope observations.

2.3.1 Inference model setting

Equation is re-written as a state equation on the acceleration for the bacterial strain
s and the swimmer ¢
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Figure 3: Numerical exploration of the model. To illustrate the influence of each
term of Eq. , they are alternatively turned off (Fig. to , and swimmer trajec-
tories are computed on mock biofilms displaying marked density gradients (upper
pannel) or marked pores (lower pannel). Trajectories can be compared to a basal simu-
lation (3b) when all the terms have the same intensity (o = 8 = ¢ = 1).

A3(8) = 205+ B8 X20)01 — 08) = VO + 8 o oo+ O
= Fa 0% 000, X0,V (0, X2 () + @

where
0% = (%, v§,v1, B°%)

are species-dependant equation parameters. The function f4 can be seen as the de-
terministic drift of the random walk, gathering all the mechanisms included in the
model. The inter-individual variability of the swimmers of a same species comes from
the swimmer-dependent initial condition, the resulting biofilm matrix they encounters
during their run, and the stochastic term.

Inferring the parameters 6° can then be stated in a Bayesian framework as solving
the non linear regression problem

A7 (t) ~ N (Fa (0°[6(2, X7 (1)), V7 (1), X7 (1)), €°) (5)

from the data b(t, X'), X?(t), V*(t) and A$(t), with truncated normal prior distributions
6° ~ N(0,1) (6)

e’ ~N(0,1). (7)

10



parameter ground truth mean std confidence interval [2.5% - 97.5%| ncfr  Rhat
v 1.094 1.08 1.00 x 1072 [1.06 — 1.1] 3,569 1.0
Vo 0.669 0.66 1.00 x 1072 [0.64 — 0.68] 3,710 1.0
vy 0.134 0.13  2.00 x 1072 [0.09 — 0.17] 3,431 1.0

0.146 0.16 6.20 x 1073 [0.15 — 0.17] 5,050 1.0
€ 0.586 0.59 3.00 x 1073 [0.58 — 0.59] 4,906 1.0

Table 2: Inference results on synthetic data. The normalized ground-truth param-
eter values (i.e. ground truth parameter rescaled with A,.; and V,.f) are compared
with the inference outputs on synthetic data: posterior distribution mean and standard
deviation are indicated, together with the inferred confidence intervals for the true pa-
rameters. Convergence diagnosis indices are also given, with n.s; the effective sample
size per iteration and Ry, the potential scale reduction factors, indicating that conver-
gence occurred for all parameters.

and additional constrains on the parameters
720, v5=>20, v1>0, €>0

We note that Equation can be seen as a likelihood equation of the parameter 6°
knowing A (t),b(t), V;*(t) and X7 (t). The parameter €® can now be seen as a corrector
of both modelling errors in the deterministic drift and observation errors between the
observed and the true instantaneous acceleration. Alternative settings where these un-
certainties sources are separated and a true state for position and acceleration is inferred
can be defined (see Annex . The inference problem is implemented in the Bayesian
HMC solver Stan [38] using its python interface pystan [35].

2.3.2 Assessment of the inference with synthetic data

To assess the inference method, synthetic data are built. We arbitrarily fix a parameter
vector and solve system from random initial positions, in a host biofilm arbitrarily
chosen in the image dataset. We then extract the swimmer positions at given time-
steps and recover accelerations and speeds with the same post-processing pipeline as for
microscopy images and solve the inverse problem —.

The ground truth parameters are correctly recovered by the inference procedure
(Table , indicating that the parameters are correctly identifiable and that the inverse
problem is well-posed. An error of respectively 1.28, 1.34, 2.98 and 0.68% on the pa-
rameters 7, vg, v1 and € is observed in this controlled situation, 8 being inferred with
lower accuracy (9.59 %). To assess the impact of parameter inference uncertainties on
trajectory computation, the posterior parameter distribution is sampled and new trajec-
tories are computed, replacing the ground-truth parameters by the sampled ones. The
swimmer ground truth trajectories are accurately recovered: the sampled trajectories
tightly frame the original swimmer path as illustrated on a randomly chosen trajectory

11
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Figure 4: Inference assessment on synthetic data.(a) Predicted vs true tra-
jectories. Trajectories are recovered by sampling the parameter posterior distribution
starting from the same initial condition than in the data. We represent a ground truth
trajectory extracted randomly from the original dataset in red, the corresponding sam-
pled trajectories with thin gray lines, and the trajectory obtained with the posterior
means in orange. (b) trajectory descriptors Trajectories are re-computed replacing
the ground-truth parameters by the inferred parameters. The trajectory descriptors
introduced in are computed on the synthetic data (blue curves) and on the data ob-
tained with the inferred parameters (orange curves). Qgplot of fitted model output
vs ground truth. After inference, the fitted model is used to re-compute the synthetic
dataset (ground truth). We plot the x (left panel) and y (right panel) components of
the accelerations in a qqplot: the fitted model output quantiles are plotted against the
ground truth quantiles with blue dots, together with the y = x line (red).
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(Fig. . We note that an identical random seed has been taken for these simulations,
including the ground truth trajectory, in order to turn off the stochastic uncertainties
and only focus on the propagation of inference errors during simulations of swimmer
trajectories.

Finally, we re-assemble a synthetic dataset by replacing the ground-truth parameters
by the inferred ones, i.e. the posterior mean. Qqplot of the fitted model accelerations
versus the ground truth accelerations give an excellent accuracy (Fig. , with all the
points lying on the bisector, except slight divergences on the distribution tails. The
fitted model trajectories visually reproduce the qualitative characteristics of the origi-
nal dataset (Fig. . The trajectory descriptors of section are then computed on
both datasets (ground truth and inferred) and compared (Fig. [4b)). The kinematics
descriptors, i.e. acceleration and speed distributions, are very accurately recovered with
a relative error of 0.1%, 3.2%, 5% for respectively the mean, quantiles 0.05 and 0.95
of the acceleration (resp. 0.9%, 2.5% ,2% for speed). Some small discrepancies can
be observed on the distance and displacement distributions, even if the mean and the
quantiles 0.05 and 0.95 are close. The interactions between the host biofilm and the
acceleration and speed distribution are also recovered with high accuracy. We note that
part of the observed discrepancies comes from an additional source of variability of the
simulation framework: when a swimmer reaches a domain boundary during a simula-
tion, its trajectory is stopped and a new swimmer is randomly introduced elsewhere
in the biofilm (see Materials and Methods for more details). This simulation strategy
seems to be responsible of the over-representation of short trajectories in the inferred
dataset, compared to the ground truth (Fig. upper panel, distance and displacement
distributions).

2.3.3 Analysis of the confocal microscopy dataset

We now solve the inference problem — on the confocal microscopy dataset to iden-
tify population-wide swimming model parameters. The inference process is assessed by
comparing the descriptors obtained on trajectories predicted by the fitted model (Fig.
ba)) with descriptors of real trajectories (Fig. [2)). The mean values of acceleration and
speeds are accurately predicted for the three species (Figs. panels ||A|| and ||V,
dashed lines). Relative positions of distance, displacement and visited area mean values
are also correctly simulated (Figs. |2 and upper panel). B. sphaericus presents the
lowest predicted accelerations and speeds while B. pumilus has the widest speed and ac-
celeration distributions and B. cereus shows the highest accelerations, consistently with
the data. The visited area and the distances are slightly over estimated, but the relative
position and the shape of the distributions are conserved. The amount of null veloci-
ties for B. sphaericus is under estimated by the fitted model and not rendered for B.
pumilus. The distance distributions of the three species are accurately predicted by the
fitted model. When displaying conjointly the distance and the displacement right
lower panel), the distribution of B. sphaericus is correctly predicted by the simulations,
but B. cereus and B. pumilus displacements are underestimated. Some qualitative fea-
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tures can be recovered, such as the higher distribution of distance-distribution couples
for B. cereus or higher displacement for B. cereus compared to B. sphaericus.

Descriptors of swimming adaptations to the host biofilm are also correctly preserved
for the main part (Figs. [2/and lower panel). B. pumilus is the species that crosses the
highest biofilm densities in the fitted model simulations, showing the highest speeds in
this crowded areas, and that visits the most frequently areas with high density gradients,
consistently with the data. As in the confocal images, the simulated B. sphaericus
and B. cereus favor smoother zones of the biofilm with lower biofilm densities. The
B. cereus fitted model correctly render the highest acceleration variance observed in
the data for low biofilm gradients, while B. sphaericus speed and acceleration variance
is the lowest for all ranges of biofilm densities and gradients, both in the data and
in the fitted model predictions. The drop of speeds and accelerations for increasing
biofilm densities and gradients is well predicted for B. pumilus, but is smoother in the
simulation compared to the data for B. sphaericus and B. cereus. In particular, the
sharp drop of speeds for b ~ 0.25 observed in the data for B. cereus and B. sphaericus is
underestimated by the fitted model. All together, the model reproduces very accurately
the mean values of acceleration, speed and visited area, renders relative positions and
the main characteristics of distributions for distance, displacement and interactions with
the host biofilm matrix, but produces less variable outputs than observed in the data.

To further inform the fitted model accuracy, the coefficient of determination R%, of
the deterministic components f4(0°,b(t), V;®, X/ (t)) of eq. is computed (Table ), in
order to quantify the goodness of fit of the friction and gradient terms of eq. that
represent interactions with the biofilm. These results highlight that B. cereus bacteria
do present an important stochastic part in the accelerations, while the B. pumilus species
is the best represented by our deterministic modelling.

The three species present very different inferred parameter values (Fig. and table
3), showing that the model inference captures contrasted swimming characteristics of
this Bacillus. Due to the mechanistic terms introduced in Eq. , these differences can
be interpreted in term of speed and direction adaptations to the host biofilm. First,
B. pumilus shows the highest vy value, and the highest amplitude between vy and vy,
inducing a higher ability for B. pumilus to swim fast in low density biofilm zones. In
comparison, B. sphaericus presents quasi no difference between vy and v, showing a
poor adaptation to biofilm density. B. cereus has the highest v value, showing a reduced
relaxation time toward the density dependant speed: in other words, B. cereus is able
to adapt its swimming speed more rapidly than the other species when the biofilm den-
sity varies. B. cereus swimmers are also better able to change their swimming direction
in function of the biofilm variations they encounter along their way, their § distribu-
tion being markedly higher than the other species which have very low . Finally, the
stochastic parameter € is also contrasted, from a low distribution for B. sphaericus to
high values for B. cereus. All together, the inference complete the observations made
in Fig. B. pumilus poorly adapts its swimming direction to the host biofilm (low
B) but has a wide range of possible speeds when the biofilm density varies (high vy,
low v1), that it can reaches quite rapidly (intermediary ) with intermediary stochastic
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species param mean std confidence interval [2.5% - 97.5%] ncff  Rhat
B. pumilus vy 0.77 3.95 x 1073 [0.77—0.77] 4,507 1.0
V0 0.14 8.67 x 1073 [0.12—0.16] 3,879 1.0
vy 1.69 x 1073 1.69 x 1073 [5.18 x 1075—6.26 x 1073] 4,821 1.0
B 9.84 x 1072 5.07 x 1073 [1.45 x 107°—2.07 x 1072 5,223 1.0
€ 0.62 2.48 x 1073 [0.61—0.62] 5,307 1.0
B. sphaericus -y 0.61 4.53 x 1073 [0.60—0.62] 4,965 1.0
Vo 2.75x 107% 2.75 x 1074 [4.91 x 1075—1.01 x 1073] 4,019 1.0
v 4.84 %1073 4.77 x 1073 [9.39 x 107°—1.45 x 1072 5,001 1.0
B 425 x 1072 3.33x 1073 [—2.18 x 1073—1.15 x 107?] 4,668 1.0
€ 0.32 1.55 x 1073 [0.31—-0.32] 5943 1.0
B. cereus v 0.83 1.11 x 1072 [0.80—0.86] 2,700 1.0
vo 6.44 x 1072 1.07 x 102 [3.22 x 1072-9.66 x 1072] 2,510 1.0
v 6.65 x 1072 6.33 x 1073 [1.50 x 1074—-2.15 x 1072 4,061 1.0
B 2.78 x 1072 9.04 x 1073 [1.39 x 1072-5.56 x 1072] 4,230 1.0
€ 0.90 4.17 x 1073 [0.89—0.92] 4852 1.0

Table 3: Inference outputs for the three species. The posterior mean, standard
deviation and inferred confidence interval are indicated for each parameter and each
specie. Convergence diagnosis index n.ry and R, are provided.

correction (€). In contrast, B. cereus reaches lower speed values (intermediary vy, low
v1) but is more agile to adapt its swimming to its environment by changing rapidly its
speed when the biofilm density is more favorable and adapting it swimming direction
to biofilm variations, with higher stochastic variability (large €). Finally, B. sphaericus
is the less flexible of the three bacteria: less fast (small vy and v;), they are also less
responsive to biofilm variations (small v and £) with low random perturbations (small
€).

Finally, after inference, the impact of each term in the overall acceleration data can
be quantified and analyzed by displaying its relative contribution in a ternary plot (Fig.
@. The direction selection is the less influential mechanism for the three species, with
a slightly higher impact for B. cereus (50 and 95 % isolines slightly shifted towards
A(Vb) in Fig. [] b). When zooming in, the three Bacillus show differences in the
balance between speed selection and the random term: while B. pumilus is slightly more
influenced by the friction term than by stochasticity, these mechanisms are perfectly
balanced in B. sphaericus accelerations, while B. cereus is more influenced by the random
term.
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Figure 5: Inference result on the experimental images. (a) To validate the infer-
ence process, a synthetic dataset is assembled by computing eq. with the inferred
parameters and the trajectory descriptors introduced in section 2.1] are computed and
can be compared to the data descriptors in Fig. Acceleration, speed, distance and
displacement distributions are displayed in the upper panel, with quantiles 0.05, 0.5 and
0.95 (plain lines) and mean (dashed line). The mean values observed in the image data
are also displayed for comparison (black dashed line). Interactions between the host
biofilm and, respectively, acceleration and speed distributions are displayed in the lower
panel with isolines enclosing 5, 50 and 95% of the points, centered in the densest zones.
(b) Inferred parameter posterior distributions after analysis of the confocal swimmer
images, and posterior mean (dashed line).
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Figure 6: Respective influence of stochastic effects, speed or direction adap-
tation to the host biofilm. We plot in a ternary plot the respective influence of the
speed selection (V), the direction selection (D) and the random term (e) of Eq.(]) in
the acceleration distribution of each species. Each squared instantaneous acceleration is
mapped in the ternary plot coordinates through the relative contribution of V2, D? and
€2, and this point cloud is approximated in the ternary plot coordinates with a gaussian
kernel to display the point distributions. The 0.05, 0.5 and 0.95 quantile isovalues of
these distributions are plotted. (a) The entire ternary plot is displayed. The dashed line
represents the zoom box represented in Fig. (b), where the same isolines are displayed,
but with a zoom in in the y direction to highlight differences between species.
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data N Aref Vref O’(A) R?let[%] €2

B. pumilus 33,916 81.08 7.89 0.87 5880 0.36
B. sphaericus 20,152 44.93 4.74 0.58 48.50  0.30
B. cereus 23,160 108.92 7.03 0.63 32.72 0.42

Table 4: Reference acceleration and speed, and acceleration variance decom-
position between stochastic and deterministic terms. The number N of acceler-
ation times points is indicated for each specie. Then, reference values for acceleration
Apep and speed V,..r used for adimensionalization are computed by averaging the corre-
sponding values by specie. Descriptive statistics of acceleration variance decomposition
are then computed in order to illustrate the contribution of the deterministic terms in
the observed acceleration distribution, and the part of the residual mechanisms that are
not included in the model. We indicate for each species the acceleration variance o(A),
the part of the variance explained by the deterministic terms Rflet (see and the vari-
ance of the stochastic term €2. We note that in order to compare species at vizualisation
step, they are re-normalized with the average of the species reference values : A,c; =
78.31 and V¢ = 6.55

2.3.4 Ultrastuctural bacterial morphology

Both kinematic descriptors and swimming parameters can then be reinterpreted through
the insights provided by the morphology of each bacteria species (Fig. . First, B.
sphaericus bacteria are much longer than the other two species, which may explain why
this species is the less motile in terms of acceleration and kinematics: its length may be
a drawback for navigating in crowded areas. Besides, the three Bacillus do not have the
same type of flagella: while both B. pumilus and B. sphaericus species present several
long flagella distributed over the whole surface of the membrane, B. cereus shows a
unique brush-like group of very thin flagella, at the tail of the bacteria. The kind, size
and disposition of the flagella may helps B. cereus swimmers to adapt their runs to
their environment by changing directions to follow lower density areas (higher impact of
direction selection term of the three Bacillus in Fig. @ or to adapt rapidly when biofilm
density varies (largest ). B. cereus being the bacteria with the strongest stochastic part
(highest €, density shifted towards A(e) in Fig. [6)), this morphology could also help the
swimmer to go through the biofilm by random navigation. B. pumilus, which has the
highest number of flagella, is also the bacteria that reaches the highest speeds specially
in low-density areas with rather fast changes for varying biofilm densities (intermediary
~ value), indicating that this characteristic may be an advantage for swimming fast in
the extracellular matrix.
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Figure 7: TEM images of the three Bacillus. TEM images of the three Bacillus are
acquired, scaled in the same dimension and aligned (left panel). Images at lower scale
are made with a zoom in on the flagella insertion (right panel).
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3 Discussion

3.1 Modelling and analysis of swimming trajectories

When analyzing microbial swimming trajectories, two general strategies can be found
in the literature. The first one aims at designing statistical tests quantifying similari-
ties with or deviations from typical motion of interest such as diffusion [33]. Another
strategy consists in providing a generative model of the data, analyzing it [8, [7] and
comparing model outputs with real data [24], 20], possibly after inference. The model
that is studied in this paper belong to the second category: the model includes determin-
istic mechanisms describing interactions with the host biofilm, together with a random
correction counterbalancing the modelling errors. The parameter inference allows to in-
terpret the data variance relatively to speed or direction adaptations to the host biofilm
versus residual effects gathered in the stochastic term. Furthermore, the fitted model
allows to simulate typical swimming trajectories of a given species.

3.2 Population-wide swimming characteristics vs true-state inference.

In this study, we do not aim to recover 'true’ swimmer trajectories (a.e. the blue trajec-
tory in Fig. , i.e. identifying through smoothing techniques an approximation of the
specific realization of the stochastic modeling and observation errors that lead to a given
‘observed’ trajectory. Rather, the goal is to identify common characteristics shared by a
population of trajectories by inferring the 'population-wide’ parameters (the parameters
a, B, vo, v1, v and €) that best explain the whole set of observed accelerations in a same
population of swimmers. For this reason, we did not introduced swimmer-specific terms
nor individual noise: they would have increased the model accuracy, but to the price of
a blurrier characterization of the species specificities.

This choice determined our inference framework. Despite several alternative options
for recovering hidden states, in particular SSM (space state models) which are common
in spatial ecology [1], the Bayesian method we opted for is a simpler non-linear regression
problem that proved to be sufficient to recover macroscopic swimmer trajectories and
species stratification. We discuss in section the different options that were tested
and present in Sec. [4.7] the method for noise model selection. Among other interest-
ing features, the Bayesian method provides confidence intervals on the final parameter
estimation, and on the resulting trajectories as in Fig.

3.3 Predictive capabilities of the model

The deterministic terms of the model explain only half of the variance (Table . A
major part of the underlying mechanisms is not correctly described by our model which
is a common feature since it is a phenomenological model which only considers inter-
actions with the underlying biofilm at a macroscopic level, without taking into account
nanoscale physical mechanisms. A more detailed description of the underlying physics
could have been designed as in [29], but it would have made more complex the analy-
sis of the interactions between the host biofilm and the swimmer trajectories and the
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extraction of species-specific patterns. However, we note that our model correctly ren-
ders observations made through macroscopic trajectory descriptors, even though the
inference process has not been made based on these observables. Furthermore, several
repetitions of the same models with different samples of the stochastic terms give very
similar values for the trajectory descriptors (see Fig. and section [A.7)), showing that
these descriptors are robust to stochastic perturbations. Hence, the model can be
used to produce synthetic data sharing the same global characteristics than the original
ones specifically taking into accounts interactions between the swimmers and the host
biofilm. Furthermore, these predictions also reproduce the species stratification observed
in the original data using the global descriptors.

3.4 Biological interpretation of the fitted models

The direction selection term of the equation driven by 5 has little impact in the swimmer
model fitted on real data. The parameter 8 can however have a sensible impact on the
kinematics as shown in the sensitivity analysis, and on the trajectories as shown in mock
biofilms (Fig. . This could indicate that direction selection based on biofilm gradients
is marginally effective in real-life swimming trajectories in a biofilm matrix. On the
contrary, the speed selection term is more effective for the three Bacillus, showing that
these micro-swimmer are able to adapt their swimming velocity to the biofilm density
faced during their run. This term acts as an inertial term which enhances the stochastic
term to provide direction and velocity changes.

The model has been used to decipher different adaptation strategies to the host
biofilm of the three species during their swim. It indicates that B. sphaericus are the
less motile bacteria, whereas B. pumilus can adapt their speed to the biofilm density
they encounter and B. cereus are more driven by stochastic effects with slight capabilities
to adapt their direction to density gradients. This characterization methodology could
be used to drive species selection for improved biofilm control. Furthermore, the model
can be used to predict new trajectories and the resulting biofilm vascularization, in a
similar framework as in [I§]. Coupled with a model of biocide diffusion, these simulations
could be used to test numerically the efficiency of mono- or multi-species swimmer pre-
treatment to improve the removal of the host biofilm.

4 Materials and Methods

4.1 Infiltration of host biofilms by bacilli swimmers

Infiltration of S. aureus biofilms by bacilli swimmers were prepared in 96-well mi-
croplates. Submerged biofilms were grown on the surface of polystyrene 96-well mi-
crotiter plates with a uclear® base (Greiner Bio-one, France) enabling high-resolution
fluorescence imaging [4]. 200 uL of an overnight S. aureus RN4220 pALC2084 express-
ing GFP [28] cultured in TSB (adjusted to an OD 600 nm of 0.02) were added in each
well. The microtiter plate was then incubated at 30 °C for 60 min to allow the bacteria
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to adhere to the bottom of the wells. Wells were then rinsed with TSB to eliminate non-
adherent bacteria and refilled with 200 ulL of sterile TSB prior incubation at 30 celsius
for 24 h. In parallel, B. sphaericus 9412, B. pumilus 3F3 and B. cereus 10B3 were culti-
vated overnight planktonically in TSB at 30°C. Overnight cultures were diluted 10 times
and labelled in red with 5 uM of SYTO 61 (Molecular probes, France). After 5 minutes
of contact, 50 uLi of labelled fluorescent swimmers suspension were added immediately
on the top of the S. aureus biofilm. All microscopic observations were collected within
the following 30 minutes to avoid interference of the dyes with bacterial motility. Three
replicates were conducted.

4.2 Confocal Laser Scanning Microscopy (CLSM)

The 96 well microtiter plate containing 24h S. aureus biofilm and recently added bacilli
swimmers were mounted on the motorized stage of a Leica SP8 AOBS inverter confo-
cal laser scanning microscope (CLSM, LEICA Microsystems, Germany) at the MIMA?2
platform (https://www6.jouy.inra.fr/mima2_eng/). Temperature was maintained at
30 celsius during all experiments. 2D+T acquisitions were performed with the following
parameters: images of 147.62 x 147.62 pm were acquired at 8000 Hz using a 63x /1.2
N.A. To detect GFP, an argon laser at 488 nm set at 10% of the maximal intensity
was used, and the emitted fluorescence was collected in the range 495 to 550 nm using
hybrid detectors (HyD LEICA Microsystems, Germany). To detect the red fluorescence
of SYTOG61, a 633 nm helium-neon laser set at 25% and 2% of the maximal intensity was
used, and fluorescence was collected in the range 650 to 750 nm using hybrid detectors.
Images were collected during 30 s (see [1| for sampling period).

Bacterial swimmers navigate within a three-dimensional biofilm matrix and confo-
cal microscope refreshment time is not small enough to allow 3D+T images. To limit
3D trajectories, a focal plane near the well bordure has been selected, where the well
wall physically constrains the swimmer trajectories in one direction, which select longer
trajectories in the 2D plane that can be tracked in time. Therefore, experimental data
are composed of two-dimensional trajectories captured between the swimmer arrival and
departure times in the focal plane, and the associated 2D+T biofilm density images that
change over time due to swimmer action.

4.3 Transmitted Electron Microscopy

Materials were directly adsorbed onto a carbon film membrane on a 300-mesh copper
grid, stained with 1% uranyl acetate, dissolved in distilled water, and dried at room
temperature. Grids were examined with Hitachi HT7700 electron microscope operated
at 80 kV (Elexience — France), and images were acquired with a charge-coupled device
camera (AMT).
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4.4 Post-processing of image data

See Fig. [1]| for a sketch of the datastream from microscope raw images to model inputs
and Fig. for data visualization at each step of the post-processing pipeline.

Swimmer tracking has been applied on the red channel of the raw temporal stacks
with IMARIS software (Oxford Instruments) using the tracking function after automated
spots detection to get position time-series for each swimmer. Time-series with less than
8 time steps were filtered out.

Then, swimmer speed and acceleration time-series were computed from their position
by finite-difference approximations and trajectory descriptors were extracted. The RGB
biofilm density temporal images were converted into grayscale and rescalled between 0
and 1 (linear scalling). Post-processed data are available at https://forgemia.inra.fr /bioswimmers /swim-
infer/SwimmerData.

Trajectory descriptors are defined as follows. The mean acceleration and speed
values, distance and displacement are computed with ||A[|7 = T%S AN, VI =

. 48 Tesn K S - S S S
S VEO, dists = AT VA and disp} = X (T3,,) — X (T3] To com-

pute the visited area, each trajectory piece was subsampled by computing X7 (tx) =
H%X,f(t) +(1- nﬁg)Xf(t + 1) for k = 1,ng, with ny = 10 and the pixels included in the
ball B(X/(t),r) with radius r = 2 where labelled. The total area of the labelled pixels
is defined as the visited area of the swimmer i of species s.

4.5 Computation of the forward swimming model

Time integration of equations (2) has been solved with an explicit Euler scheme regarding
positions x;, and velocities v, of the swimmer 7 of species s at time ¢:

X541 = X0 + vy b (8)

Vil = Vit dvy, (9)

where dv?, is given by eq. (), and depend on 6°, V% @iy, b(t, x7,) and Vb(t, 27,). In
practice, the biofilm density and gradient maps b and Vb are discretized with a Cartesian
grid corresponding to the image voxels.

During random walks, swimmer may exit the biofilm domain. When the swimmer
reaches the domain boundary, a new swimmer is introduced with a velocity oriented
towards the interior of the domain while the original trajectory is stopped at the bound-
ary.

4.6 Sensitivity analysis

A local sensitivity analysis (Fig. [3)) is performed by comparing basal simulation obtained
with v = 8 =€ =1 (vyp and v; where taken as in Table 2)) with 3 simulations where -,
B and € are alternatively set to 0, resulting in 3 alternative models where the speed or
the direction selection or the random term is turned off. The interaction between the
speed selection term (set by 7) and the random term is illustrated in Fig. where 5
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repetitions of the same trajectory of a simplified Langevin equation are displayed
with or without friction (y = 1 or v = 0), but with the same random seed for the
stochastic term so that the stochastic part is strictly identical.