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Deciphering microbiota functions is crucial to predict ecosystem sustainability in response to global change. High-throughput sequencing at the individual or community level has revolutionized our understanding of microbial ecology, leading to the big data era and improving our ability to link microbial diversity with microbial functions. Recent advances in bioinformatics have been key for developing functional prediction tools based on DNA metabarcoding data and using taxonomic gene information. This cheaper approach in every aspect serves as an alternative to shotgun sequencing. Although these tools are increasingly used by ecologists, an objective evaluation of their modularity, portability, and robustness is lacking. Here, we reviewed 100 scientific papers on functional inference and ecological trait assignment to rank the advantages, specificities, and drawbacks of these tools, using a scientific benchmarking. To date, inference tools have been mainly devoted to bacterial functions, and ecological trait assignment tools, to fungal functions. A major limitation is the lack of reference genomes-compared with the human microbiota-especially for complex ecosystems such as soils. Finally, we explore applied research prospects. These tools are promising and already provide relevant information on ecosystem functioning, but standardized indicators and corresponding repositories are still lacking that would enable them to be used for operational diagnosis.

Background

Microorganisms are present in all habitats on Earth and are essential for animals, plants, and therefore for the sustainability of human activities [START_REF] Cavicchioli | Scientists' warning to humanity: Microorganisms and climate change[END_REF]. The extraordinary diversity of microbial communities plays an essential role in the various biogeochemical cycles, allows aquatic and terrestrial ecosystems to function properly, and ensures their ability to provide ecological services (e.g., soil structuring, organic matter renewal, nutrient recycling, pollution control, regulation/barrier to pathogens, or even plant productivity) [START_REF] Maron | Soil microbial diversity: Methodological strategy, spatial overview and functional interest[END_REF][START_REF] Guerra | Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy[END_REF][START_REF] Bardgett | Belowground biodiversity and ecosystem functioning[END_REF]. Their fabulous capacity to adapt to different environmental stresses over time is now well known, and the regulation process of their diversity is better and better deciphered. Despite these tremendous improvements in the approaches targeting indigenous microbiotas, our understanding of the link between microbes and their associated functions remains limited [START_REF] Rivett | Abundance determines the functional role of bacterial phylotypes in complex communities[END_REF]. A workshop hosted by the British Ecological Society's Microbial Ecology Special Interest Group (June 2016) recently identified 50 important research questions in microbial ecology. One of the main ones was "What methods can we use to marry microbial diversity with function; how do we link transcriptomics, proteomics and metabolomics?" [START_REF] Antwis | Fifty important research questions in microbial ecology[END_REF]. This sums up the future challenges facing the scientific community when it comes to improving our understanding of the regulation of the microbiome diversity and functions [START_REF] Sergaki | Challenges and approaches in microbiome research: From fundamental to applied[END_REF].

Microbial functions can be characterized from genomic, proteomic, or metabolic data (Fig. 1) [START_REF] Starr | Proteomic and metaproteomic approaches to understand host-microbe interactions[END_REF][START_REF] Aldridge | Microbial metabolomics: Innovation, application, insight[END_REF][START_REF] Knight | Best practices for analysing microbiomes[END_REF]. Considering genomics, quantitative PCR (qPCR) and microarrays were the first technologies used to describe functional genes or taxa from complex en-vironmental samples [START_REF] Porter | Scaling up: A guide to highthroughput genomic approaches for biodiversity analysis[END_REF]. Initially designed to determine the absolute copy number of a single given gene, the latest technical advances can analyze thousands of combinations of samples and targets in parallel [START_REF] Mehle | Quantitative analysis with droplet digital PCR[END_REF]. Standardized methods even make it possible to quantify genes of interest (e.g., involved in biogeochemical cycles or pesticide degradation) to estimate soil quality [START_REF] Thiele-Bruhn | Identification of new microbial functional standards for soil quality assessment[END_REF]. DNA microarrays were the first high-throughput technologies giving access to gene expression profiles at the individual or community levels [START_REF] Porter | Scaling up: A guide to highthroughput genomic approaches for biodiversity analysis[END_REF][START_REF] Sessitsch | Diagnostic microbial microarrays in soil ecology[END_REF]. There exist different kinds of microarrays (e.g., Phy-loChip, GeoChip, PathoChip, StressChip, CAZyChip). They provide a snapshot of microbial diversity (bacteria, fungi, viruses) and/or of the functional genes present in a given sample (e.g., genes coding for enzymes involved in polysaccharide degradation) [START_REF] He | GeoChip: A comprehensive microarray for investigating biogeochemical, ecological and environmental processes[END_REF][START_REF] Lee | The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities[END_REF][START_REF] Zhou | StressChip as a high-throughput tool for assessing microbial community responses to environmental stresses[END_REF][START_REF] Abot | CAZyChip: Dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems[END_REF]. Some of these microarrays have become diagnostic tools in many fields, in particular for targeting viruses, bacterial or fungal pathogens, or harmful organisms [START_REF] Tedersoo | High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations[END_REF]. More recent and cheaper, various high-throughput sequencing (HTS) alternatives have been developed to explore microbial communities (Fig. 1) [START_REF] Franzosa | Sequencing and beyond: Integrating molecular "omics" for microbial community profiling[END_REF]. Genome and metagenome sequencing have changed the microbial ecology field: thanks to genome sequencing and meta-omics approaches, gene catalogs can be assessed, and new microorganisms can be discovered [START_REF] Segata | Computational meta'omics for microbial community studies[END_REF][START_REF] Frioux | From bag-of-genes to bag-of-genomes: Metabolic modelling of communities in the era of metagenome-assembled genomes[END_REF].

For example, by implementing a metabarcoding approach, microbial ecologists were initially enthusiastic about such huge taxonomic information but quickly pointed out the lack of associated functional information [START_REF] Frioux | From bag-of-genes to bag-of-genomes: Metabolic modelling of communities in the era of metagenome-assembled genomes[END_REF]. Taxonomic profiles can indeed change to varying degrees among samples, and predicting to what extent these changes affect the overall functional ca- pacity of the community has remained a technical and scientific challenge to date [START_REF] Antwis | Fifty important research questions in microbial ecology[END_REF][START_REF] Fierer | Embracing the unknown: Disentangling the complexities of the soil microbiome[END_REF][START_REF] Martiny | Microbiomes in light of traits: A phylogenetic perspective[END_REF]. Metabarcoding may well be used to directly target functional genes and classify them by taxonomic group, but applications remain limited to a few families [START_REF] Penton | Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: Primers and processing matter[END_REF][START_REF] Hannula | Primer sets developed for functional genes reveal shifts in functionality of fungal community in soils[END_REF][START_REF] Barbi | PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing[END_REF][START_REF] Fish | FunGene: The functional gene pipeline and repository[END_REF][START_REF] Angel | Evaluation of primers targeting the diazotroph functional gene and development of NifMAP -A bioinformatics pipeline for analyzing nifH amplicon data[END_REF].

In the face of these limitations, 2 solutions have emerged to indirectly obtain functional information from taxonomic profiles, i.e., (i) functional inference, and (ii) ecological trait assignment, using (meta)genome and microbiome big data (Fig. 1). Functional inference predicts the putative functions (e.g., gene catalogs, metabolic pathways) of microbial communities, while ecological trait assignment directly retrieves a trait common to all taxa by linking taxonomic names with a dedicated database. The major difference between these 2 solutions for obtaining functional information is that functional inference retrieves functions even for operational taxonomic units (OTUs) without a taxonomic name thanks to phylogenetic placement of sequences (taxonomic markers) in a reference tree and different evolutionary models.

Many bioinformatic tools have been developed since the first publication about a functional prediction tool using metabarcoding data. To date, only 1 review has addressed functional inference tools; it is focused on aquaculture and on a limited subset of all the tools available to predict functions from 16S ribosomal DNA (rDNA) metabarcoding datasets [START_REF] Ortiz-Estrada | Predictive functional profiles using metagenomic 16S rRNA data: A novel approach to understanding the microbial ecology of aquaculture systems[END_REF]. Therefore, in the present context where new solutions are proposed regularly to predict putative function profiles, the state of the art needs to be scrutinized more exhaustively to build a scientific and technical benchmark. More precisely, we provide a detailed description of each tool and evaluate their advantages, specificities, and drawbacks by paying special attention to their methods, modularity, portability, and robustness. One of the main objectives of this review is to provide a rationale on the use of the different tools currently available for prokaryote and fungal communities and draw perspectives, with a few suggestions to enhance their usefulness in microbial ecology. Finally, we illustrate the application of these methods with studies focusing on the soil environment. The choice of this particular system is justified by the fact that it is the most diverse and complex one in terms of microbial diversity, ecology, and functional reservoir [START_REF] Bardgett | Belowground biodiversity and ecosystem functioning[END_REF][START_REF] Bahram | Structure and function of the global topsoil microbiome[END_REF]; therefore, it represents the most challenging environmental matrix for linking diversity and functions. We believe that this work will help scientists working on microbial communities make choices to best take advantage of their high amount of microbial data. This work also shows that although those approaches are promising, they still need improvements to make them operational tools for microbial diagnosis. Repositories using standardized and robust metrics are still lacking when it comes to interpreting the results.

Historical and Recent Increase of Microbial Datasets

The emergence of HTS in the mid 2000s generated a huge volume of data, leading to a revolution in our way of describing biodiversity. This rise of microbial data can be directly linked to the improvement of HTS technologies, concomitantly with a tremendous decrease in sequencing costs (Fig. 2). This was reflected, with a small time lag, by an increase in the number of sequence read archives (SRAs) linked to metabarcoding data deposited on the NCBI website (Fig. 2).

Thanks to the contribution of ecologists, microbiologists, taxonomists, and computer scientists, the databases are continuously enriched and are key to enhance our knowledge about the description and determinism of environmental and human microbiotas [START_REF] Hahn | The information science of microbial ecology[END_REF][START_REF] Farley | Situating ecology as a big-data science: Current advances, challenges, and solutions[END_REF]. For example, the 16S rDNA sequence data available to analyze bacterial/archaeal diversity were multiplied by 4 and 10 in the RDP and SILVA databases, respectively, between 2007 and 2019 (Fig. 3A). The trend is the same for fungal diversity, with a doubling of internal transcribed spacer (ITS) sequences in the UNITE/INSD database within the past 5 years (Fig. 3B). The 16S rDNA sequences are much more numerous than ITS sequences. However, there were 30 times more fungal species referenced than bacterial ones in 2017 (Fig. 3A andB). The numbers of microbial genomes available, in particular in the Joint Genome Institute (JGI) platform, have increased continuously, and they outpaced Moore's Law mostly from 2013 for bacteria and archaea (Fig. 3C andD).

The number of known microbial genes, enzymes, or metabolic pathways available in specialized databases has also considerably increased in the past few years [START_REF] Caspi | The MetaCyc database of metabolic pathways and enzymes -a 2019 update[END_REF][START_REF] Kanehisa | KEGG as a reference resource for gene and protein annotation[END_REF][START_REF] Lombard | The carbohydrate-active enzymes database (CAZy) in 2013[END_REF]. Thousands of functional information files are currently accessible in the KEGG, CAZy, or MetaCyc databases ( When possible, we detailed the number of organisms for the 3 domains of the tree of life. CAZy includes glycoside hydrolases (GH), glycosyl transferases (GT), carbohydrate esterases (CE), polysaccharide lyases (PL), and auxiliary activities (AA). CAZy: Carbohydrate-Active Enzymes; KEGG: Kyoto Encyclopedia of Genes and Genomes; KO: KEGG Orthology; MetaCyc: metabolic pathways and enzymes; NA: not applicable.

Orthology (KO) to reach 35.5 and 3.2 million, respectively [START_REF] Starke | The total microbiome functions in bacteria and fungi[END_REF]. The authors also indicated that only a tiny fraction of these functions is known today, representing 0.02% and 0.14% for bacteria and fungi, respectively. Although the characterization of gene catalogs using metagenomic approaches was recently criticized [START_REF] Commichaux | A critical assessment of gene catalogs for metagenomic analysis[END_REF], the number of non-redundant genes provides an overview of the potential functional reservoir available across various ecosystems [START_REF] Zhou | The preceding root system drives the composition and function of the rhizosphere microbiome[END_REF]. The soil by far seems to harbor the largest pool of functions, followed by the marine, and then animal microbiomes (Fig. 4).

The rapid growth of available genomes is a unique opportunity to predict the putative microbial functions from metabarcoding data by linking taxonomic markers (i.e., rRNA gene amplicons) and their reference genomes or ecological traits. Therefore, the next section is devoted to the different tools and databases dedicated to functional inference and ecological trait assignment for bacterial and fungal communities.

Overview of the Available Tools for Predicting the Potential Functions of the Microbiotas

HTS and the presently increasing collection of functional or ecological traits on a more regular and rigorous basis are promising cues for linking biodiversity and associated functions in the near future [START_REF] Martiny | Microbiomes in light of traits: A phylogenetic perspective[END_REF][START_REF] Baldrian | The known and the unknown in soil microbial ecology[END_REF]. In the literature, the term "function" is used in different ways depending on the study model, the time scale, or even the habitat [START_REF] Blondel | Guilds or functional groups: Does it matter?[END_REF][START_REF] Mlambo | Not all traits are "functional": Insights from taxonomy and biodiversity-ecosystem functioning research[END_REF][START_REF] Volaire | What do you mean "functional" in ecology? Patterns versus processes[END_REF][START_REF] Escalas | Microbial functional diversity: From concepts to applications[END_REF]. The notion of function may refer to genes, enzymes, or metabolic pathways but may also represent ecological traits that bring together phenotypic and biochemical notions [START_REF] Malik | Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[END_REF][START_REF] Madin | A synthesis of bacterial and archaeal phenotypic trait data[END_REF][START_REF] Lajoie | Making the most of traitbased approaches for microbial ecology[END_REF].

On the basis of the analysis of 20 papers since 2013, we classified the databases and tools according to the granularity of the results (Fig. 5A), from general information such as ecological traits to more detailed information such as genes or metabolic path-Figure 3: Annual cumulative growth of databases in terms of bacterial/archaeal (A) and fungal (B) sequences, and species/subspecies deposited per year. Comparison of the annual cumulative growth of bacterial/archaeal (C) and fungal (D) genomes compared to simulations of Moore's law. The plot is in logarithmic scale. Three databases were compared for 16S rRNA gene sequences: RDP (blue), SILVA (orange), and Greengenes (green). Information is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN [START_REF] Kembel | Picante: R tools for integrating phylogenies and ecology[END_REF][START_REF]LPSN -List of Prokaryotic names with Standing in Nomenclature[END_REF]) website for bacterial and archaeal species, and on the MycoBank database for fungal species [START_REF] Louca | Efficient comparative phylogenetics on large trees[END_REF][START_REF]MYCOBANK Database[END_REF]. Information about the bacterial, archaeal, and fungal genomes is based on the Genome OnLine Database (GOLD) [START_REF] Walters | Alpha-, beta-, and gammadiversity of bacteria varies across habitats[END_REF]. ways (Fig. 5). The tools used to obtain fine results, i.e., at the metabolic pathway or gene levels for any taxonomic resolution, are known as functional inference tools (Fig. 5B). On the other hand, we grouped existing tools or databases under the term "ecological trait assignment" when functional information referred to phenotypic or ecological traits and was accessible only for a specific taxonomic rank (Fig. 5C). Indeed, there is a wealth of information often linked to ecological traits in published scientific articles, or of partially formatted metadata (i.e., partial taxonomy or data not linked to the ID of a taxonomic database) [START_REF] Reimer | Mobilization and integration of bacterial phenotypic data-Enabling next generation biodiversity analysis through the Bac Dive metadatabase[END_REF].

Tools or methods exist, known under the term "text mining," to automatically collect data from various sources (e.g., a website, a document in pdf format) through automatic language processing (e.g., natural language processing) [START_REF] Endara | Extraction of phenotypic traits from taxonomic descriptions for the tree of life using natural language processing[END_REF]. For example, @MInter [START_REF] Lim | @MInter: Automated text-mining of microbial interactions[END_REF] retrieves information related to microbial interactions from abstracts of articles thanks to a supervised machine learning model.

Other tools are based on ontologies; i.e., they use a structured set of terms and concepts from a particular domain by specifying the relationships between these terms and their properties, and thus have a common reference for the use of a common vocabulary. For example, OntoBiotope [START_REF] Chaix | Text mining tools for extracting information about microbial biodiversity in food[END_REF] ontology in the food field retrieves the phenotypes and habitats of microbes from the literature based on the NCBI taxonomy. Another ontology exists, called Ontology of Microbial Phenotype [START_REF] Chibucos | An ontology for microbial phenotypes[END_REF]; it brings together a structured set of terms and concepts around microbial phenotypes, and specifies the relationships between these terms and their properties. Tools also based on machine learning such as ProTraits [START_REF] Brbi Ć | Phenotype inference from text and genomic data[END_REF] can automatically annotate prokaryotic species on the basis of phenotypic or genomic data from scientific articles or online resources [START_REF]Protraits[END_REF].

To date, we have recorded ∼20 tools or databases that retrieve functional or ecological data from microbial taxonomic markers, with 2-4 developments per year (Fig. 6 and Table 2). The timeline shows that most of these tools (18 of 23 in total) are only dedicated to bacteria/archaea, 2 are dedicated to bacteria/archaea + fungi, and only 3 are specifically dedicated to fungal organisms. It is important to also underline that most of these tools are devoted to functional inference (13 of 23). The most cited tool is PICRUSt v1 [START_REF] Langille | Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[END_REF], which continued to outrank all others with >4,000 citations in 2020. While FUNGuild [START_REF] Nguyen | FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[END_REF], Tax4Fun v1 [START_REF] Aßhauer | Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data[END_REF], or FAPROTAX [START_REF] Louca | Decoupling function and taxonomy in the global ocean microbiome[END_REF] are moderately cited, with a few hundred citations, the others are much less so, with only a dozen citations (Fig. 7A). Interestingly, the articles citing functional inference and ecological trait assignment tools fall within the same scope as those for which they were initially developed (Fig 7B .): PICRUSt, FUNGuild, and PAPRICA are mainly cited in articles about human health, the soil, and marine environments, respectively.

Functional inference

Definition

Functional inference consists of predicting the functional potential of a microbial community from metabarcoding data. The functional potential of a taxon or of a microbial community represents the metabolic capacities based on the presence/absence of genes involved in these pathways. Functional inference methods are based on the assumption that phylogenetic information from marker gene sequences correlates well enough with the genomic content to produce accurate predictions when associated reference genomes are available. In other words, it assumes a significant relationship between (i) the phylogenetic distance between taxonomic markers and (ii) the conservation of the genetic content, referring to vertical gene descent during the evolution of microbial genomes. This is made possible through the relationship between the phylogenetic relatedness of organisms and their gene content [START_REF] Segata | Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies[END_REF][START_REF] Snel | Genome phylogeny based on gene content[END_REF] (Fig. 5B).

It should be emphasized that the presence of 1 or more genes involved in a function remains "potential" and may not be expressed under environmental conditions. From this point of view, functional inference results may be similar to shotgun metagenomics data; which is often observed in the literature, especially when focusing on a family of genes or a specific biogeochemical cycle [START_REF] Hartman | A genomic perspective on stoichiometric regulation of soil carbon cycling[END_REF]. Also, the fact that inferred metagenomes are based only on the reference genomes available in these tools (archaea, bacteria, fungi) means that the lateral gene transfer and gene loss cannot be studied, unlike shotgun metagenomics.

Available tools

PICRUSt.

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) v1 [START_REF] Langille | Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[END_REF] is the first tool to have been developed to predict potential functional genes from 16S rRNA metabarcoding and has been the most popular one since it was launched in 2013 (Fig. 5B). PICRUSt v1 needs 3 things: (i) a reference OTU, (ii) a reference genome, and (iii) a reference phylogenetic tree. As regards the reference OTU, the file (in BIOM or tabulated format) is expected to contain a standard OTU abundance table with sequences picked only against the Greengenes taxonomic reference (18 May 2012 or v13.5/v13.8). This tool based on a modified method of ancestral state reconstruction (ASR) deduces functional information for taxa without a match in the reference genomes. The reference genomes are functional proxies that provide a weighting of the functional profiles for the phylogenetically close taxa within a reference phylogenetic tree. The PICRUSt method is divided into 3 main steps that are necessary to obtain relevant information on functional profiles: (i) genome prediction, (ii) metagenome prediction, and (iii) analysis of predictions.

The genome prediction step consists of preparing the trees and checking the quality of the input datasets; then comes the reconstruction of ancestral states in the reference tree (ASR; 4 methodologies are available). Using the output files, the software program predicts traits for leaves of the phylogenetic tree lacking sequenced genomes.

During the metagenome prediction step, normalization of the abundance of each OTU is carried out on the basis of rRNA gene copy numbers (GCNs) to predict the functional category abundances of the metagenome. The user obtains an abundance table for each functional category per sample. The correcting step of the rRNA GCNs allows normalizing to correct the biases towards microorganisms with greater GCNs and improve the estimation of microbial diversity [START_REF] Kembel | Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance[END_REF]. This step is recommended when the OTUs are phylogenetically closely linked to the genomes [START_REF] Louca | Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem[END_REF]. To assess the robustness of the predictions, i.e., to obtain the representativeness of the database towards a community of interest, a nearest sequenced taxon index (NSTI) is generated for each sample. It is calculated using the average of the branches that separate the sequences of interest (OTUs, amplicon sequence variants [ASVs]) in a sample from the reference microbial genome, with a weighting by their relative abundance in the sample. This confidence score is one of the major strengths of this tool. Regarding functional categories, information can be obtained at different levels (genes or metabolic pathways) with more or less detailed descriptions (EC numbers, KEGG pathway [START_REF] Kanehisa | KEGG as a reference resource for gene and protein annotation[END_REF], cluster of orthologous groups [COG]). Information about all functional categories can also be obtained for each OTU. The last step consists of analyzing the predicted data. This step is essential for interpreting the large number of results generated from a robust statistical analysis.

The major strength of PICRUSt v1 lies in its evolutionary models that infer functions for the complete bacterial community. The portability of this tool with the support of a broad stakeholder community including a forum (Google group) and blogs are advantages that make it a central tool for functional predictions (Ta-ble 2). Despite all its benefits, PICRUSt v1 has drawbacks such as focusing only on the 16S rDNA marker and using only Greengenes taxonomy (Table 2). Several specialized tools have emerged to integrate PICRUSt as a sublayer to carry out diagnoses in the medical field [START_REF] Woloszynek | Exploring thematic structure and predicted functionality of 16S rRNA amplicon data[END_REF] or directly in a pipeline [START_REF] Dhariwal | MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data[END_REF]. PICRUSt v2 fills the gaps of the first version, with an improvement that allows inference directly based on the sequences and no longer through taxonomy. Another improvement concerns the addition of bacterial but also fungal reference genomes, thus making it possible to infer from 18S rDNA and ITS amplicons [START_REF] Douglas | PICRUSt2 for prediction of metagenome functions[END_REF].

PAPRICA. Pathway Prediction by Phylogenetic Placement (PA-PRICA) [START_REF] Bowman | Microbial communities can be described by metabolic structure: A general framework and application to a seasonally variable, depth-stratified microbial community from the coastal West Antarctic Peninsula[END_REF] infers the metabolic potential of prokaryotic and eukaryotic communities from metabarcoding data based on rRNA Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022 gene amplicons. It was the first tool that allowed for the functional prediction of 16S and 18S rRNA amplicons. It comes in the form of a pipeline taking the OTU reads as inputs to place them in an rRNA reference tree built from complete genomes. To build this tree, a consensus genome is found for each node in the tree, which then makes it possible to predict metabolic pathways for the sequences of interest without a match in the complete reference genomes. The abundance of metabolic pathways is weighted by rRNA GCNs from known genomes. A strength of this tool is that it also provides an indicator of genomic stability depicting the robustness of the results. However, PAPRICA, like all the tools using a reference phylogenetic tree and sequence placement methods, is dependent on the quality of rRNA resolution, and this represents a drawback when some clades may be affected (Table 2).

Tax4Fun. Tax4Fun [START_REF] Aßhauer | Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data[END_REF] is an R [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF] package published in 2015 for predicting functional profiles from targeted metagenomic 16S rRNA data. However, the algorithm and statistical efficiency based on a metabolic mixture model in terms of a mixture of pathways was developed in 2013. This R-based architecture is inherently a cross-platform tool, and it may be more accessible for a large number of users with low experience in bioinformatics. This tool uses pre-calculated functional profiles like PICRUSt v1 and taxonomic data formatted from the SILVA database. One of the differences with PICRUSt is the rRNA sequence placement in the reference genomes, which is achieved by a BLAST search (instead of a tree placement approach as for PICRUSt). It is a convenient tool because it provides a confidence score (FTU and FSU) to determine the fraction of OTUs that was not mapped to KEGG organisms or the number of sequences without KEGG Orthology (KO) hits (Table 2). Like PICRUSt v1, it cannot be used for fungal diversity predictions.

Piphillin. Piphillin [START_REF] Iwai | Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes[END_REF] differs from the PICRUSt or PAPRICA approaches because it does not use a phylogenetic tree or database (16S) but directly maps the OTU sequences on the rRNA of the reference genomes using a nearest-neighbor algorithm. This specificity could avoid faulty sequence placements in the reference phylogenetic tree. It is used online only, which represents both a strength and a weakness: it benefits from computing power (a strength), whose strength depends on the hosting server (e.g., quota management, cluster configuration) (a weakness). A Piphillin sublayer also exists to complete the analysis of the results [START_REF] Mitchell | PUMAA: A platform for accessible microbiome analysis in the undergraduate classroom[END_REF].

The quality of prediction represents a prerequisite for the application of the above-presented tools to study indigenous microbial communities. It may depend on the tool but also on the type of targeted ecosystem. To test the quality of functional prediction according to the tool and the studied ecosystem, we compiled the NSTI scores for PICRUSt v1 and the FTUs for Tax4Fun from a subsampling of articles that covered a range of ecosystems-human, marine, plant, and soil (Fig. 8). Whatever the tool, the best predictions were obtained for the human microbiotas, and the most approximate ones, for the soil samples. The variability of quality scores across the different soil studies seemed to be lower with PI-CRUSt than with Tax4Fun. Nevertheless, some soil studies using Tax4fun indicate a high-quality survey, with only ∼30% of OTUs unmapped to a reference. This likely reflects the discrepancy between human reference genome availability and soil microbiota genome availability. In addition, microbial diversity is much more complex in soils than in the human microbiotas. In this case, it is essential that the quality scores from functional inference tools should be taken into account because it is a key to a robust interpretation of the results. Unfortunately, we found few studies indicating these quality scores.

Ecological trait assignment

Definition

Ecological trait assignment differs from functional inference because it consists of obtaining information on the life strategy, phenotypic, and quantitative genomic traits (e.g., trophic modes, growth strategy) of a taxon from its nomenclature, whatever its taxonomic rank. If the taxon is not present in the database, it will not be possible to know its traits (Fig. 5C). This approach is faster than functional inference for retrieving an item of functional information, but tools dedicated to metabarcoding outputs are lacking, and only a few ecological traits are available (Table 2). The main interest is to get functional information with a possibly not so fine granularity as functional inference does, but obviously more accurate. Ecological traits are indeed often based on results with biochemical experimentations from curated databases or scientific publications. Practically speaking, only the guild will be recovered and for example the fungal sequences identified as belonging to the Serpula genus will be assigned to a wood saprotroph when an ecological trait tool is used; with an inference tool, the abundance of various genes related to polysaccharide degradation will be attributed to all fungal sequences.

Tools

FUNGuild.

FUNGuild [START_REF] Nguyen | FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[END_REF] is the pioneer and one of the few tools that assigns ecological traits to fungi based on their taxonomy (Table 2). These assignments rely on metabarcoding data. They require providing a contingency table (OTUs or sequence counts per sample) and the link between each OTU and its taxonomy. To carry out the assignment, FUNGuild uses its own curated database, and searches it for the taxon. This database contains several taxonomic levels (e.g., phylum, genus, species). However, the taxonomic name at the genus or species level is necessary to assign traits to the taxa of interest. Trait information is available in 66% of the cases at the genus level, and only in 34% of the cases at the species level [START_REF] Nguyen | FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[END_REF]. The user obtains a summary table of the different possible ecological traits for each taxon with a robustness indicator and a confidence range ("possible," "probable," and "highly probable").

The strength of this database is that the provided data are based on the literature (primary research), or on reference websites or their own collective research experience if the datum is missing. The authors recommend the use of the UNITE database for taxonomic assignment and therefore the use of the ITS marker, but it can be easily transposed to data based on the 18S rRNA marker. It just requires creating a wrapper to make a link between the taxonomy of the data and FUNGuild to retrieve the traits of interest.

A new database called Fun Fun [START_REF] Zanne | Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi[END_REF] is now available. It encompasses 80 fungal ecological traits. In reality, this database is a FUNGuild database overlay with information on genetic, enzymatic, morphological, stoichiometric, life history, and physiological aspects. In addition, the authors mention that Fun Fun will be updated in terms of taxonomy and associated guilds, which is not necessarily the case with FUNGuild. However, although this database is promising, a lot of information is missing because it integrates literature data for the first time ever, and its improvement relies on the progress of research, as well as the contribution of scientists. This caused an impulse leading to a community of scientists proposing a new database: FungalTraits [START_REF] Põlme | FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles[END_REF] links information from FUNGuild and Fun Fun . It is very complete, and offers different levels of life styles. Please note that this database includes species from the fungal kingdom but also fungus-like stramenopiles (e.g., the Oomycota phylum). This may be especially useful because various species are identified as major plant pathogens within Oomycota. For example, the genus Phytophthora gathers several crop pathogens that cause important losses and can represent a risk to global food security [START_REF] Fones | Threats to global food security from emerging fungal and oomycete crop pathogens[END_REF].

To conclude, the minor drawbacks of FUNGuild, with rare updates or a tool oriented to ITS sequences, have been offset by the new Fun Fun and FungalTraits databases.

To complete the tools concerning fungal communities, DEEMY [START_REF] Agerer | DEEMY-An information system for characterization and determination of ectomycorrhizae[END_REF] is an information system only available online and specialized in ectomycorrhizas [START_REF]DEEMY An Information System for Characterization and DEtermination of EctoMYcorrhizae[END_REF]. This website references 554 species associated with their respective symbiotic organisms, including 104 genera. To characterize each species, a summary sheet provides taxonomic nomenclature and bibliographical references and photographs, as well as information on morphology, anatomy, potential chemical reactions, or even ecology traits. FAPROTAX. Functional Annotation of Prokaryotic Taxa (FAPRO-TAX) [START_REF] Louca | Decoupling function and taxonomy in the global ocean microbiome[END_REF] is used to assign metabolic functions, ecological traits, or large functional groups relevant to prokaryotes (Table 2). This database was built manually from the scientific literature of the International Journal of Systematic and Evolutionary Microbiology (IJSEM) and Bergey's Manual of Systematic Bacteriology. It contains ∼4,700 unique prokaryotic taxonomies (mostly at the species level) and 90 functional groups. FAPROTAX is based on the implicit assignment of a trait/function to a taxon (whether cultivated or not) if all the cultivated members display this trait/function. Its main limitation is that it is focused on marine prokaryotic organisms, so communities from other biomes can be missing. Another point to be considered is that if the taxa of interest do not have a species name, the tool cannot draw inferences at the upper levels (e.g., genus) to assign an ecological trait.

IJSEM phenotypic database. IJSEM [START_REF] Barberán | Hiding in plain sight: Mining bacterial species records for phenotypic trait information[END_REF] compiles phenotypic and environmental tolerance data about >5,000 bacterial strains. It is an official and unique reference for publishing and validating new strains. These strains cover ∼23 phyla from various habitats (mainly soils). The database appears as a TSV file [START_REF] Barberan | International Journal of Systematic and Evolutionary Microbiology (IJSEM) phenotypic database[END_REF], and available information can be grouped into 5 categories: ancillary data (e.g., article's DOI; taxonomic nomenclature), morphology/phenotype (e.g., Gram stain status; motility), metabolism (e.g., BIOLOG information), environmental preferences (e.g., habitat of isolation; oxygen requirement), and sequence data (e.g., 16S rRNA accession No.).

BacDive. BacDive [START_REF] Reimer | Bac Dive in 2019: Bacterial phenotypic data for high-throughput biodiversity analysis[END_REF] is one of the largest metadatabases [START_REF] Bacdive | Explore Bacterial Diversity[END_REF] referencing information on bacterial and archaeal diversity (Table 2). The tool links taxonomy and phenotypic information directly, but the database can only be browsed on a website or data can be downloaded from it. However, it provides a complete API to achieve scripts and retrieve the desired information. In the first months of 2020, it offered data on 81,827 bacterial and archaeal strains, including 14,091 type strains, and thereby covered ∼90% of the described species according to their website. This database is interesting because it provides different levels of robust information on taxonomy, morphology, physiology (API®-tests), molecular data, and cultivation conditions. As for physiological data, it provides-for example-the main substrates used for culturing a species and the enzymes present (a link with the EC classification number is available). These data have been more broadly incorporated into a tool (bacteria-archaea-traits) that encompasses numerous traits of bacteria and archaea from 26 sources [START_REF] Madin | A synthesis of bacterial and archaeal phenotypic trait data[END_REF].

To complete this list, a few specialized databases target only 1 or a few traits. For example, Engqvist [START_REF] Engqvist | Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures[END_REF] recently grouped the growth temperatures of 21,498 non-redundant organisms across the whole tree of life. This study showed a strong correlation between the growth temperature of organisms and enzymatic optima, with temperature-dependent increases or decreases of enzymatic functions. This information can be very interesting and complementary to the interpretation of functional inference results, and can be linked-for example-to environmental conditions.

Application of These New Approaches to the Functions of the Soil Microbial Ecosystem

Functional inference

In recent years, meta-omics approaches have been increasingly included in soil monitoring, whether in fundamental research programs or in more operational projects [START_REF] Nkongolo | Advances in monitoring soil microbial community dynamic and function[END_REF]. Most studies (∼60% on the basis of keywords in the titles or abstracts of the publications, see Fig. 7B) have focused on PICRUSt to generate functional predictions from taxonomic data of the soil microbiota. We summarized the most valuable outcomes about soils by grouping them into categories: anthropogenic gradient, agricultural practices, and biogeochemical cycle or soil properties (Fig. 9). For example, a study showed that plant-bacteria interactions in the rhizosphere were mainly related to beneficial cooperation [START_REF] Jin | Taxonomic structure and functional association of foxtail millet root microbiome[END_REF] involving the release of root exudates by the plants on the one hand, and hormone production or the ability to break down toxic chemicals by bacteria on the other hand. Another study investigated the stoichiometric regulation of soil carbon cycling by comparing functional predictions by metabarcoding (via PICRUSt) and shotgun sequencing on a wide C:N:P soil gradient in a rice field [START_REF] Hartman | A genomic perspective on stoichiometric regulation of soil carbon cycling[END_REF]. A strong correlation was evidenced between the functional predictions from metabarcoding and metagenomics as regards the abundance of some metabolic families involved in the C, N, and P cycles. Still using PICRUSt, another study examined the effects of intercropping by predicting the soil microbial functional profiles. It evidenced that an intercropping system increased the functional potential in terms of carbon fixation pathways and the citrate cycle [START_REF] Lian | Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies[END_REF]. Finally, a study focused on the impact of long-term land-use practices (forest, grassland, crops) on soil bacterial communities [START_REF] Sengupta | Bacterial community dissimilarity in soils is driven by long-term land-use practices[END_REF] showed that forest soils harbored the largest reservoir of genes, followed by no-till soils and then grasslands. The plowed soils presented the lowest functional richness.

Based on Tax4Fun predictions, a study investigated the effect of different irrigation practices with various water qualities (freshwater, treated or untreated wastewater) along with the different land use systems in drylands [START_REF] Lüneberg | Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, Mexico[END_REF]. The authors compared the potential functional and taxonomic profiles of bacteria. Irrigation with wastewater had an effect on bacterial responses by shaping communities and functional profiles. By bringing more nitrogen, wastewater favored the response of certain genera, in particular Nitrosospira, and increased the relative abundance of the genes involved in nitrification and denitrification.

Among all the functional inference tools available today, 2 of them stand out, i.e., PICRUSt and Tax4Fun. A benchmark study of these tools found no major differences in terms of performance, especially for soil samples [START_REF] Sun | Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories[END_REF]. Another benchmark study indicated that these 2 tools provided similar functional profiles but could be complementary for certain gene families found only in one or the other [START_REF] Koo | Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica[END_REF]. Moreover, the characterization of the fungal functional potential by PICRUSt2 is too recent for us to have any insights into its robustness concerning soil communities. Compared to trait assignment, the links between diversity and functions still remain tenuous concerning certain biogeochemical cycles or the impact of climate change and plant diversity (Fig. 9).

Ecological trait assignment

The complexity of microbial traits is variable, with simple traits like organic phosphate utilization and more complex ones like methanogenesis [START_REF] Martiny | Microbiomes in light of traits: A phylogenetic perspective[END_REF][START_REF] Martiny | Phylogenetic conservatism of functional traits in microorganisms[END_REF]. The conservation of prokaryotic traits or core genes varies according to phylogenetic depth [START_REF] Segata | Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies[END_REF]. For example, the complex methanogenesis trait seems to be very conserved at the order and family levels, which contrasts with the resistance to specific bacteriophages, which seems to vary at the species level owing to particular point mutations [START_REF] Martiny | Microbiomes in light of traits: A phylogenetic perspective[END_REF]. Below are a few examples of the possible benefits of ecological traits to the analysis of the diversity of soil microbial communities (Fig. 9).

Regarding the assignment of fungal traits, FUNGuild is currently and by far the most implemented tool, if not the only tool The figure is made up of 2 parts: studies on bacterial communities based on functional inference on the left and studies on fungal communities based on ecological trait assignment on the right. For all studies (climate change, anthropogenic gradient, agricultural practices, plant diversity, or the biogeochemical cycle), if an effect or a correlation was found on the gene reservoir or on microbial communities with a particular ecological trait, a colored arrow indicates the effect and a cross indicates no significant effect. A triangle indicates either a decrease or an increase of the gene reservoir or microbial communities with a particular trait. References are listed in Additional File 1.

implemented by ecologists wishing to supplement their diversity analyses with data on the ecological traits of fungal communities, and mainly in studies on soil fungal communities [START_REF] George | Primer and database choice affect fungal functional but not biological diversity findings in a national soil survey[END_REF][START_REF] Yang | Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity[END_REF][START_REF] Makiola | Land use is a determinant of plant pathogen alpha-but not beta-diversity[END_REF][START_REF] Buscardo | Effects of natural and experimental drought on soil fungi and biogeochemistry in an Amazon rain forest[END_REF]. A study on fungal communities in subtropical forest soils highlighted a negative relationship between the abundance of pathogenic fungi and the phylogenetic diversity of plant communities [START_REF] Liang | Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest[END_REF]. Another study showed a positive correlation between soil fungal community dissimilarities (plant pathogens, saprotrophs, and ectomycorrhizas) and plant phylogenetic distances in forest soils [START_REF] Yang | Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China[END_REF]. Tropical land uses also affect the functional guild. A massive shift of fungal trophic modes has been shown-notably a decrease in mycorrhizal fungi and an increase in saprophytic and pathogenic fungi-along with increased anthropization levels [100]. Interestingly, several large-scale (national or global) studies have characterized the distribution of trophic types while identifying the environmental parameters that influence them [START_REF] George | Primer and database choice affect fungal functional but not biological diversity findings in a national soil survey[END_REF][101][102][103]. The distribution of these trophic modes seems to vary greatly depending on temperature and precipitation [103]. This supports a recent global study focused on the distribution of pathogens and indicating higher abundance in warm regions [102]. A recent study compared the trophic modes (synonym: life strategies) assigned to the ITS and 18S rDNA molecular markers by FUNGuild [START_REF] George | Primer and database choice affect fungal functional but not biological diversity findings in a national soil survey[END_REF]. This study indicated that the saprotroph and pathotroph richness levels were directly and negatively correlated with the organic matter content and elevation, and positively correlated with the pH and bulk density. For symbiotroph richness, the relationship differed depending on the molecular marker used: it was positively correlated with the C:N ratio when ITS sequences were used but negatively correlated when 18S rDNA sequences were used. Similarly, the pH was positively correlated on the basis of 18S rDNA data but negatively correlated on the basis of ITS data [START_REF] George | Primer and database choice affect fungal functional but not biological diversity findings in a national soil survey[END_REF]. These differences may come from the fact that the 2 molecular markers do not cover the same taxonomic range. Therefore, the choice of molecular markers and primers is essential because it affects the global picture obtained by possibly enhancing or decreasing the representation of particular functional groups in the commu-Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022 nity. For example, arbuscular mycorrhizal fungi are better represented, in particular the Glomeromycota group, when the 18S rDNA marker is used [104,105]. A study at a smaller scale also showed that saprotroph richness was directly driven by the soil physico-chemical parameters and confirmed the aforementioned results. The authors showed a positive correlation with the pH but a negative one with the C:N ratio [106]. All these studies used the FUNGuild tool dedicated to characterizing fungal community traits.

Regarding the assignment of bacterial traits, various databases exist but few tools have been developed to assign ecological traits from metabarcoding datasets. Only FAPROTAX stands out as a powerful tool for analyzing the functional potential of soil communities [107], although it is dedicated to marine organisms.

Technical and Conceptual Limitations and Biases

The metabarcoding approaches have significant advantages for characterizing indigenous prokaryotic and eukaryotic microbial communities. Standard protocols now exist, from sample preparation to bioinformatic and statistical analyses, and scientists have acquired an important feedback on biases, costs, and efficiency [108][109][110].

A fundamental limitation of functional inference tools, represented by gene gain and loss, is mainly due to horizontal gene transfer but also gene duplication, gene loss, and de novo gene birth [111][112][113][114], which is addressed in the literature and taken into account to some extent in these tools. However, horizontal gene transfer remains difficult to consider accurately for functional prediction, and its influence on microbial communities is hard to estimate. Moreover, the horizontal gene transfer rate varies substantially within the tree of life and according to gene families/pathways [START_REF] Martiny | Microbiomes in light of traits: A phylogenetic perspective[END_REF][START_REF] Martiny | Phylogenetic conservatism of functional traits in microorganisms[END_REF]111]. This process is mainly described in prokaryotes but is also found to a lesser extent in eukaryotes, in particular fungi [115]. Microorganisms can gain a function through plasmid transfer, but no information was found in the literature about functional prediction [START_REF] Langille | Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[END_REF]. However, plasmids are extrachromosomal DNA molecules that play a role in the rapid adaptation of microbial communities to environmental changes across all microbiomes [116,117]. In particular, they are transferred between phylogenetically distant populations for them to acquire genes and beneficial traits for their adaptation (e.g., resistance to antibiotics, biocides, pollutants). This is key for all environments, especially soils, where biotic and abiotic fluctuations are tremendous [118]. The transfer of plasmids is also introduced from phages or viruses into microbial genomes [119].

From a technical point of view, most of the studies on microbial diversity using metabarcoding approaches are based on the sequencing of 1 or more hypervariable regions and remain limited by the size of the amplicon to be sequenced. The most commonly used Illumina sequencing platforms (MiSeq, HiSeq, and NovaSeq) can provide maximum readings of 600 bp (∼550 bp after adapter/tag/primer trimming). Several studies have questioned the most suitable regions for obtaining the best taxonomic resolution [120,121]; the use of full-length rRNA (∼1,800 bp) seems to be the most appropriate solution [122]. It would significantly enhance phylogenetic resolution for prokaryotic and eukaryotic microorganisms [123] (Fig. 10, second box). Short reads do not allow good enough resolution in taxonomic assignment either (i.e., not down to the species level), although this point is crucial for placing sequences/taxa in the phylogenetic tree to achieve functional in-ference. With third-generation HTS platforms (e.g., PacBio, Oxford Nanopore), full-length molecular markers can be sequenced, e.g., 16S/18S rRNA genes or the full ITS1 and ITS2 sequences [124,125]. This will considerably improve taxonomic assignment and make it possible to assign sequences at the species or even the strain level in certain cases [125]. This way, functional inference and ecological trait assignment will be improved. However, if the objective is to obtain the best taxonomic resolution possible, the study of ecological traits at high taxonomic ranks (e.g., the phylum) remains very promising, especially for highly conserved traits [126]. For example, the carbon mineralization rate was positively (e.g., Bacteroidetes) or negatively (e.g., Acidobacteria) correlated with their relative abundance [127].

A good practice complementary to the use of full-length amplicon sequencing would be the use of ASVs (also called ZOTUs) to increase the rate of inference with a better sequence placement on the reference tree [START_REF] Douglas | PICRUSt2 for prediction of metagenome functions[END_REF]128]. Indeed, for those using an OTU clustering approach with a similarity threshold, 1 solution would be to use all the sequences within the OTUs instead of 1 representative sequence for each OTU seed, which could be less accurate. However, this would also increase the analysis time.

Importance of Taxonomy and Genome References: From Accuracy to Resolution

Many tools use taxonomic data to obtain information about microbial functions through a metabarcoding approach. Therefore, it is important to check the bioinformatic strategy used to analyze the amplicon sequences, from the filtering steps to OTU clustering or not (see ASV), including taxonomic assignment.

The use of tools on ecological traits is highly dependent on taxonomic resolution. For example, when using FUNGuild, special attention must also be paid to the fact that a sequence assigned at the genus level may be associated with several trophic types, and that plant-pathogenic fungi are highly hostspecific and may be non-pathogenic in the context of the study. For the sequences (or OTUs) without any taxonomic assignment, functions cannot be obtained using tools on ecological traits (Fig. 10, second box). To improve this point, especially for fungal communities, inferences may be drawn on the basis of phylogeny, as done for bacteria, archaea, or macroorganisms [129][130][131][132][133]. One of the avenues to be explored is the use of ASR tools such as PICANTE [START_REF] Kembel | Picante: R tools for integrating phylogenies and ecology[END_REF] or CASTOR [START_REF] Louca | Efficient comparative phylogenetics on large trees[END_REF], which infer traits for taxa devoid of ecological data from a phylogenetic tree.

Functional inference tools depend on the reference genomes to establish predictions, so the accuracy of the results can vary among samples. Samples with well-described host-associated communities such as the human microbiome have many reference genomes available and allow good predictive accuracy (Figs 8 and 10 third box). Contrastingly, in more complex and highly biodiverse environments like soils [START_REF] Walters | Alpha-, beta-, and gammadiversity of bacteria varies across habitats[END_REF], the genomes representing the total taxonomic diversity are much more difficult to obtain. The proportion of cultivable terrestrial strains remains very low (∼25%) compared to the human microbiotas (80%) [134]. Thus, the results estimated for the communities from complex biomes are approximate and debatable.

To improve functional prediction results, it is advisable to provide genomes specific to the habitat of interest [135]. Considerable efforts have to be made to increase the number of habitat-specific reference genomes (animal/human, water, plant, soil), with special attention to the most complex and unknown environments 

Discussion and Future Prospects

The possible retrieval of a putative functional potential or ecological traits directly from taxonomic markers and metabarcoding approaches opens new perspectives for our understanding of microbial communities, both from a fundamental and/or an operational point of view (e.g., functional redundancies, diagnostic tool) [START_REF] Woloszynek | Exploring thematic structure and predicted functionality of 16S rRNA amplicon data[END_REF]140]. This information can be used to (i) understand the main functions potentially expressed in a given environment and identify the possible drivers, (ii) examine the distribution of functions among taxonomic groups, or (iii) supplement the classic diversity metrics used to evaluate the ecological state of environmental matrices (Fig. 10, first box). Beyond providing an overview of the putative functions of an ecosystem, prediction tools could also provide more detailed information than taxonomic markers do for users to significantly distinguish sample groups from each other in certain habitats [122] (Fig. 10A, first box).

A new generation of tools solves the main limitations of the previous generation tools by including improvements in terms of taxonomic marker targeting, methodology, and flexibility.

Future Prospects with Second-Generation Tools

Second-generation tools are currently emerging, e.g., PICRUSt2 [START_REF] Douglas | PICRUSt2 for prediction of metagenome functions[END_REF], Tax4Fun2 [135], or iVikodak [141] (Fig. 6). Indeed, Langille's team of developers bridged the gap for the scientific community working on fungal ecology. PICRUSt2 now includes 18S rDNA and ITS amplicons from the fungal kingdom. Another great improvement is flexibility: the sequence can be used directly, instead of taxonomy based on Greengenes nomenclature. Users are no longer dependent on taxonomy to infer functions; this is a great comfort and provides better robustness of the analyses. However, users should be wary of the results because the number of sequenced fungal genomes currently integrated in the tool is much lower than the number of bacterial genomes. It is recommended to check the quality score (e.g., NSTI) for the robustness of the results and interpretation. However, this limitation can be lifted. For example, the 1000 Fungal Genomes Project [142] is aimed at high-quality sequencing and annotation of fungal genomes so as to build a reference dataset to be used for meta-omics data analysis.

Another downside of these tools is the absence of data support for micro-eukaryotic communities, which are essential to the soil Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022 ecosystem. Protists are abundant and diverse, with a large range of functional diversity, and are highly involved in soil food webs and functioning [143,144]. It would be particularly useful to develop tools dedicated to protists from data on ecological traits available in the literature [145].

Challenges: From Fundamental Research to Diagnosis

Switching from fundamental research to practical applications would be interesting because although operational microbial diversity bioindicators are increasingly emerging, there is a huge gap in the functional information of microbial communities. Even if the number of species can be an indicator of the impact of biotic and abiotic factors [146,147], the need to characterize the associated functions at the ecosystem level has become obvious to obtain a complete diagnosis with functional information on the soil microbial quality [148,149].

As regards human health, identifying taxonomic and functional changes to estimate the contributions of taxa associated with a disease is an emerging topic [150], as, e.g., in research into gene markers involved in colorectal or oral cancers [151,152].

Some interesting examples exist in the biomonitoring and bioassessment of water quality [153,154], but examples for the soil microbial quality are still scarce. The huge complexity and diversity of the soil microbial community probably still limits such applications to the soil ecosystem, along with a lack of genome references. However, initiatives at the global level are in progress to access soil biodiversity using taxonomic, functional, and environmental data [147,155]. We can also note that a real dynamic seems to be developing at the international scale to collect, standardize, and disseminate traits through the tree of life via an open science tool called the Open Traits Network (OTN) [START_REF] Koo | Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica[END_REF].

To our knowledge, providing robust and operational indicators based on putative functions derived from metabarcoding data is impossible today. The main challenges are to (i) aggregate and summarize the mass of data currently generated, (ii) test the predictions on datasets and compare them with "real" functional measurements, (iii) validate these indicators on datasets under diverse experimental conditions (e.g., land use gradient, agricultural practices) at the local and global scales, and (iv) develop representative repositories to ensure the validity of the diagnosis made from these new tools.

Regarding aggregation and data reduction (item i), a track would be to use a constrained non-negative matrix factorization approach [156], an alternative to the concept of communityaggregated traits [157]. This method has already been used to aggregate functional traits from metagenomes [156]. The authors demonstrated that significant data reduction made it possible to propose simple models to describe a set of complex functions at the scale of an ecosystem (here the potential for fiber degradation in the human intestinal microbiota) while preserving biological data quality [156]. Concerning item ii, it will be interesting, for example, to confront functional predictions with volatile organic compound (VOCs) emissions or microbial respiration rates from soil measurements. Indeed, the very diverse microbial VOCs are secondary metabolites playing various roles, in particular making it possible to carry out more or less long-distance interactions and communication (e.g., growth, motility, antibiotic resistance, expression of stress response genes) [158]. Moreover, to suggest these tools as robust indicators of the soil quality (item iii), it will be essential to use large datasets to determine the best metrics (e.g., functional richness, relative gene abundance, aggregation of traits) and the most sensitive genes or groups of genes depending on the various scientific issues. Once these limitations have been lifted, these tools will provide results of great interest to the scientific community at relatively affordable human, technological, and financial costs. However, maintaining the associated scientific expertise will be essential to support their transfer for operational applications and avoid erroneous interpretations that could potentially have disastrous consequences for soil users and soil policy makers (item iv). For example, interpreting trophic types requires strong expertise, with particular attention to the exploitation of potential pathogenicity information-a highly sensitive task. The responses of the traits vary according to the disturbances applied to the ecosystem [159], and the results must be contextualized to ensure correct interpretation.

Conclusion

The exploration of microbial functional diversity based on taxonomic marker genes in order to improve our knowledge of microbial diversity and functions is just starting. As highlighted in this review, various solutions have emerged over a number of years and are being improved quickly thanks to technological advances. Functional inference results are already robust and representative for some ecosystems with low diversity (specific richness) and with well-characterized genomes such as the human microbiotas. Progress now needs to be made for more complex environments. The upcoming challenge, notably for environmental samples, will be to establish the link between functional predictions on reference datasets and environmental measurements. The new network SoilBON dedicated to monitoring soil biodiversity and functional ecosystems at a global scale, with particular attention to microbial diversity, is a step in this direction [START_REF] Guerra | Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy[END_REF]. This ambitious framework aims to collect and analyze soil diversity on the basis of soil ecological indicators (i.e., essential biodiversity variables [160]). One purpose of this framework is to inform policy makers and stakeholders so that they can adopt measures to preserve this biodiversity.
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 1 Figure 1: Schematic diagram of the various strategies available for exploring the functional diversity of the microbiota. Green frames indicate metabarcoding approaches for retrieving putative functions from taxonomic genes by functional inference and ecological trait assignment. cDNA: complementary DNA; NMR: nuclear magnetic resonance; rRNA: ribosomal RNA.
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 2 Figure 2: Evolution of costs (dollars) per raw megabase of DNA sequence (black line with logarithmic scale), and evolution of the number of SRA metabarcoding data deposited in the NCBI website. The data used to draw this figure are described in Additional File 1, section Figure 2.

Figure 4 :

 4 Figure 4: Global microbial gene catalogs from various ecosystems. The references are listed in Additional File 1.
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 5 Figure 5: Diagram of the granularity of the data (A) that can be obtained by functional inference (B) or ecological trait assignment (C).
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 6 Figure 6: Timeline depicting the historical record of the major tools developed for functional inference or ecological trait assignment. The first version of the DEEMY database dates back to 1996; it was omitted for aesthetic reasons.
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 7 Figure 7: Annual cumulative number of citations of the major tools (A) and their scope (B). The keywords used for "scope" were retrieved from the titles and abstracts of the articles listed in Additional File 1.
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 8 Figure 8: Overview of the quality of functional prediction based on a subsampling of articles for PICRUSt (A) and Tax4Fun (B) across various ecosystems.For PICRUSt, colors were assigned according NSTI results: <0.06, quite good; 0.06-0.10, good; 0.10-0.15, reasonable but probably approximate; and >0.20, probably unreliable. For Tax4Fun, we split the fraction of OTUs that could not be mapped to KEGG organisms in 5 harmonious groups. References are listed in Additional File 1. The distribution of data are displaying by boxplots and are standardized way of based on a five number summary (minimum, first quartile, median, third quartile, and maximum) and the outliers (shown as black circles).
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 9 Figure 9: Summary diagram of the most relevant microbial soil functions results based on functional inference and ecological trait assignment.The figure is made up of 2 parts: studies on bacterial communities based on functional inference on the left and studies on fungal communities based on ecological trait assignment on the right. For all studies (climate change, anthropogenic gradient, agricultural practices, plant diversity, or the biogeochemical cycle), if an effect or a correlation was found on the gene reservoir or on microbial communities with a particular ecological trait, a colored arrow indicates the effect and a cross indicates no significant effect. A triangle indicates either a decrease or an increase of the gene reservoir or microbial communities with a particular trait. References are listed in Additional File 1.
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 10 Figure 10: Summary diagram of the expected results (first box), the functional prediction prospects (second box), and the limits of the microbial genomic data available for different habitats (third box). The first box illustrates a comparative example of data results of community structures and functional structures through a PCA (A). This example illustrates the case when the functional community structure differentiates experimental conditions better than it differentiates the microbial community structure. Illustrative heat maps showing the relative abundance of genes per sample (B) or per OTU (C).
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  136]. Tools to routinely update the databases will also need to be developed [137]. This is an ongoing dynamic at the international scale. For example, the annotation of reference genomes in databases is not yet representative of soil microbial diversity [138]. To fill this gap, an effort has been made by creating the Refsoil database [138] (which does not seem to be maintained [139]) or a Refsoil + plasmid database [117].
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Table 1 :

 1 Numbers of organisms, genes, enzymes, and metabolic pathways available in the CAZy, KEGG, and MetaCyc databases

			Metabolic	
	Database	Organisms	pathways	Enzymes/Genes
	CAZy	Eukaryotes: 344; Bacteria: 20,421;	NA	GH: 171; GT: 114; PL: 41; CE: 19; AA:
		Archaea: 413		16
	KEGG	Eukaryotes: 557; Bacteria: 6,317;	547	KO groups: 24,402
		Archaea: 344		
	MetaCyc	Total: 3,295	2,937	13,356

Table 2 :

 2 List of the functional inference tools, ecological trait assignment tools,

and databases Tool Implementation Targeted genes Functional prediction Approaches Methods Inputs used Strengths and Specificities Limitations

  

																											Inferring microbiota functions | 7
		Evolutionary	models are not	taken into	account	No confidence	score generated	Not yet	available for	microbial	eukaryotes	Errors may	occur with	sequence	placement due	to poor	resolution of	rRNA	amplicons in	some clades	Based on	specific	taxonomy	(Greengenes	identifiers)	KEGG database	not updated	since 2011	No	pre-calculated	table of fungal	genomes	available
		r				r			r				r									r				r		r	
	Perl (recently 16S rRNA KO, Gene Functional Builds a NCBI	Python) Ontology, inference pangenome taxonomy r Uses functional Pfam, profile of the TIGRFAM pangenome so	could be less	sensitive to	horizontal gene	transfer				Python 16S/18S rRNA MetaCyc Functional Phylogenetic Based on	ontology inference placement rDNA r 18S rRNA amplicon amplicons are sequences taken into	account r Examples on	the developer's	blog		Python 16S rRNA KO, KEGG Functional ASR (Wagner Greengenes	Pathway, COG, inference Parsimony, taxonomy r Evolutionary CAZy ACE ML, ACE (18may2012 or models are REML, ACE v13.5/v13.8) taken into PIC) account	r Confidence	score generated	(NSTI)	r Correction of	OTU copy	numbers	Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022
	PanFP												PAPRICA									PICRUSt										

Table 2 :

 2 Continued

		Limitations		Errors may	occur with	sequence	placement	owing to poor	resolution of	rRNA	amplicons in	some clades														Available	online only	Available for	16S rRNA only
				r																									r	r
	Targeted Functional Strengths and	Implementation genes prediction Approaches Methods Inputs used Specificities	Python/R 16S/18S MetaCyc, KO, Functional HSP Based on	rRNA/ITS EC number, inference (maximum rDNA r Evolutionary COG, Pfam, parsimony, amplicon models are TIGRFAM empirical sequences taken into probabilities, account subtree r averaging, Confidence	SCP) score generated	(NSTI)	r Twice as many	KO scores	r Multiple HSP	methods can be	implemented	(takes branch	length	weighting into	account)	r 18S rRNA and	ITS amplicons	are taken into	account	r Extensive	documentation	and active	community	Web-based 16S rRNA BioCyc, KEGG Functional Nearest-Based on	inference neighbor rDNA r Regular matching of amplicon updates of 16S rRNA gene sequences functional amplicons databases with genomes r from reference rRNA copy	databases number	adjustment	Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022
		Tool	PICRUSt2																										Piphillin

Table 2 :

 2 Continued Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022

		Limitations		No	peer-reviewed	publication	(bioRxiv	preprint)	Detailed	explanation is	missing (e.g.,	how was	protrait input	created?)	Based on	specific	taxonomy	(SILVA	identifiers)	KEGG database	not updated	since 2011
				r									r						r									r
	Strengths and	Specificities		Confidence is	estimated by	boostrapping		Integrated to	USEARCH tool							Uses R	(multiplatform)	with	pre-calculated	files	Confidence	score generated	(FTU and FSU)	The algorithm	could better	predict poorly	characterized	taxa compared	to approaches	based on ASR	with possible	large distances	in the tree,	thanks to a	minimum of	similarity	between	sequences
				r						r									r									r	r
		Inputs used	Greengenes,	SILVA															SILVA	taxonomy										
		Methods	Word counting																Nearest-	neighbor	search based	on a minimum	16S rRNA	sequence	similarity	
		Approaches	Functional	inference															Functional	inference										
	Functional	prediction	Trait	annotation	(e.g., energy	metabolism,	Gram-positive	staining,	presence of a	flagellum)					KO											
	Targeted	genes	16S rRNA																16S rRNA											
		Implementation	USEARCH																R package											
		Tool	SINAPS																Tax4Fun											

Table 2 :

 2 Continued

		Limitations		Not yet	available for	microbial	eukaryotes																				
				r																									
	Strengths and	Specificities		Algorithm with	a minimal	sequence	similarity	Uses R	(multiplatform)	with	pre-calculated,	highly	memory-	efficient	platform-	independent	files	Confidence	score generated	(FTU and FSU)	KO update from	2018	Calculates the	redundancy of	specific	functions	directly	Builds its own	habitat-specific	reference
				r						r										r			r		r					r
		Inputs used	Based on	rDNA	amplicon	sequences																					
		Methods	BLAST																										
		Approaches	Functional	inference																									
	Functional	prediction	KO																										
	Targeted	genes	16S rRNA																										
		Implementation	R package																										
		Tool	Tax4Fun2																										
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Table 2 :
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		Limitations		Not longer	available	Not yet	available for	microbial	eukaryotes											Available	online only	Not yet	available for	microbial	eukaryotes
				r			r																		r			r
	Strengths and	Specificities		Pathway	exclusion	cut-off value is	available to	provide the	minimum	percentage of	genes/enzymes	belonging to a	metabolic	pathway	required to	consider the	pathway as	functional	Compares 2	datasets	User-friendly	for non-expert	bioinformati-	cians	Integrated tools	for statistical	comparisons	Graphical	visualizations
				r																			r		r				r	r
		Inputs used	RDP, SILVA																					RDP,	Greengenes,	SILVA	
		Methods	Microbial	co-existence	patterns																		Microbial co-	inhabitance	patterns	
		Approaches	Functional	inference																				Functional	inference			
	Functional	prediction	KEGG	pathway, EC	number																		KEGG, Pfam,	COG, TIGRfam			
	Targeted	genes	16S rRNA																					16S rRNA				
		Implementation	Web-based	(not longer	available)																		Web-based				
		Tool	Vikodak																					iVikodak				
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Table 2 :
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		Limitations		No regular	update	18S rRNA	taxonomy with	related	database not	included.	However, the	database is	open-access,	and a	homemade	wrapper can be	used for 18S	metabarcoding	output	Implicit	assumption	(see Methods	column) could	be false with	the increase of	newly cultured	organisms	Does not infer	upper rank	when	taxonomic	resolution is
				r				r														r									r
	Strengths and	Specificities		Trait quality for	taxon	assignment														Based on the	literature of	cultured taxa		Availability of	all literature to	create the	database	Functions	easily added to	the tool
				r																		r						r		r
		Inputs used	Based on	UNITE	taxonomy	(ITS)													SILVA (128,	132)								
		Methods	Not applicable																		If all type	strains of a	species at the	genus level	share the	function,	FAPROTAX	assumes that	all uncultured	organisms of	this genus	possess the	putative	function
		Approaches	Trait	assignment																	Trait	assignment,	Database						
	Functional	prediction	Guild type																		Ecological	functions (e.g.,	nitrification,	denitrification,	or	fermentation)
	Targeted	genes	ITS																		16S rRNA									
		Implementation	Python/Web-	based																	Python; flat	file								
		Tool	FUNGuild																		FAPROTAX									
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Table 2 :
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		Limitations		Does not	provide a tool	for	metabarcoding	output								No	peer-reviewed	publication	(bioRxiv	preprint)	
				r																	r						
	Strengths and	Specificities		Provides links	to ENA,	GenBank,	SILVA, BRENDA,	GBIF, ChEBI,	Straininfo	website data	A match with	16S rRNA	sequences is	available from	SILVA	Biogically	interpretable	traits (Gram	staining,	oxygen	tolerance,	biofilm	formation,	pathogenicity,	mobile element	content, and	oxidative stress	tolerance)
				r												r					r						
		Inputs used	NCBI	taxonomy																Greengenes							
		Methods	Not applicable																	PICRUSt,	custom trait	assignment				
		Approaches	Database																	Functional	inference						
	Functional	prediction	Morphology,	physiology	(API®-tests),	molecular	data, and	cultivation	conditions						KEGG							
	Targeted	genes																		16S rRNA							
		Implementation	Python and R	API, R package																R/Python							
		Tool	BacDive																	BugBase							
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Table 2 :

 2 Continued

		Limitations		Does not	provide a tool	for	metabarcoding	output	Does not	provide a tool	for	metabarcoding	output						Based on	PICRUSt v1	
				r					r												r		
	Targeted Functional Strengths and	Implementation genes prediction Approaches Methods Inputs used Specificities	Flat file with R IJSEM Database Not applicable Not applicable	script for r 16S rRNA curation accession	numbers	available	Web-based; Wikipedia, Database Not applicable Not applicable	flat files MicrobeWiki, r Phenotypic HAMAP inference proteomes, r PubMed large ressource	abstracts and (∼545,000	publications, phenotypes	Bacmap, scanning 424	Genoscope, traits across	JGI, KEGG, 3,046 species)	NCBI, Karyn's r Genomes NCBI taxonomy available	Web-based 16S rRNA KO Functional PICRUSt Greengenes	inference r Explores	simultaneous	and integrative	studies of	taxonomic and	functional	profiles	Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022
		Tool	IJSEM					ProTraits												BURRITO			

Table 2 :

 2 Continued

		Limitations		Not yet	available for	microbial	eukaryotes						Does not	provide a tool	for	metabarcoding	output				
				r									r								
	Targeted Functional Strengths and	Implementation genes prediction Approaches Methods Inputs used Specificities	Python/web 16S rRNA MetaCyc, Functional Custom NCBI	implementa-MicroCyc, inference, methods taxonomy r Pathway score tion FAPROTAX, Trait (provides and pathway IJSEM assignment functional frequency score information are provided, about allowing upper-rank knowledge of taxa when number of organism enzymes name is not present in the found) pathway	R package; flat Ecological Trait Not applicable Based on	file traits assignment UNITE r Uses R taxonomy (multiplatform) (ITS) r	Complementary	to FUNGuild	Flat files Guild type, Trait Not applicable Based on	body type, assignment UNITE r Expert work to habitat taxonomy propose traits (ITS) at the genus	level	r Merges the	FUNGuild and	FunFun tools	r An excel file	with vlookup	function is	available to	assign guilds or	trait data	Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022
		Tool	MACADAM					FunFun				FungalTraits									

Table 2 :

 2 Continued

		Limitations		Specialized in	ectomycor-	rhizas	only										
				r																	
	Strengths and	Specificities		Link to tree	species	associated		Includes	images		Groups the	major bacterial	and archaeal	databases into	1 database	Traits and	species data	condensed	R workflow	available to	retrieve	condensed trait	and species	data
				r						r			r								r	r
		Inputs used	Not applicable										NCBI	taxonomy,	GTDB	taxonomy			
		Methods	Not applicable										Not applicable								
		Approaches	Database										Database								
	Functional	prediction	Morphology,	anatomy,	potential for	chemical	reactions, or	even ecology	traits	Traits,	phenotypic	traits,	quantitative	genomic traits	
	Targeted	genes											16S rRNA								
		Implementation	Web-based										R package; flat	file							
		Tool	DEEMY										Bacteria-	archaea-traits							

Table 2 :

 2 Continued

		Limitations		Dedicated to	the food	domain								Species name	required	
				r										r		
	Targeted Functional Strengths and	Implementation genes prediction Approaches Methods Inputs used Specificities	Web-based Habitats and Database ToMap (Text to NCBI	phenotypes ontology taxonomy r Term relevance mapping) is evaluated by	the semantic	search engine	PubMedBiotope	r Maintained by	∼30	microbiology	experts	Python Microbial Machine Support-No specific	interactions learning vector taxonomy, just r Original machine species level approach to get (SVM)-based information on classifier microbial	interactions	rapidly	Downloaded from https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab090/6505123 by INRA Avignon user on 16 February 2022
		Tool	OntoBiotope										@Minter			
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