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Abstract  16 

Recent studies demonstrated the capability of Sentinel-2 (S2) data to estimate topsoil 17 

properties and highlighted the sensitivity of these estimations to soil surface conditions 18 

depending on the S2 acquisition date. These estimations are based on Bottom Of Atmosphere 19 

(BOA) reflectance images, obtained from Top Of Atmosphere (TOA) reflectance values using 20 

Atmospheric Correction (AC) methods. AC of optical satellite imagery is an important pre-21 

processing stage before estimating biophysical variables, and several AC methods are 22 

currently operational to perform such conversion. This study aims at evaluating the sensitivity 23 

of topsoil clay content estimation to atmospheric corrections along an S2 time series. Three 24 

AC methods were tested (MAJA, Sen2Cor, and LaSRC) on a time series of eleven Sentinel-2 25 
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images acquired over a cultivated region in India (Karnataka State) from February 2017 to 26 

June 2017. Multiple Linear Regression models were built using clay content analyzed from 27 

topsoil samples collected over bare soil pixels and corresponding BOA reflectance data. The 28 

influence of AC methods was also analysed depending on bare soil pixels selections based on 29 

two spectral indices and several thresholds: the normalized difference vegetation index 30 

(NDVI below 0.25, 0.3 and 0.35) and the combination of NDVI (below 0.3) and Normalized 31 

Burned Ratio 2 index (NBR2 below 0.09, 0.12 and 0.15) for masking green vegetation, crop 32 

residues and soil moisture. 33 

First, this work highlighted that regression models were more sensitive to acquisition 34 

date than to AC method, suggesting that soil surface conditions were more influent on clay 35 

content estimation models than variability among atmospheric corrections. Secondly, no AC 36 

method outperformed other methods for clay content estimation, and the performances of 37 

regression models varied mostly depending on the bare soil pixels selection used to calibrate 38 

the regression models. Finally, differences in BOA reflectance among AC methods for the 39 

same acquisition date led to differences in NDVI and NBR2, and hence in bare soil coverage 40 

identification and subsequent topsoil clay content mapping coverage. Thus, selecting S2 41 

images with respect to the acquisition date appears to be a more critical step than selecting an 42 

AC method, to ensure optimal retrieval accuracy when mapping topsoil properties assumed to 43 

be relatively stable over time. 44 

 45 

Keywords: clay content; Sentinel-2; atmospheric correction; multiple linear regression; soil 46 

property mapping; India. 47 

 48 

1. Introduction 49 
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Soils are key to meeting global environmental sustainability challenges for food security, 50 

water security, energy sustainability, climate stability, biodiversity, and ecosystem service 51 

delivery (McBratney et al., 2014). An accurate and spatially referenced characterization of 52 

soil properties over cultivated areas, including soil organic matter, soil texture, or iron 53 

content, is essential for meeting these global environmental sustainability challenges and 54 

would also allow to help for planning agricultural engineering work such as land 55 

consolidation, drainage management, and soil erosion prevention. Particle-size distribution, 56 

also called soil texture, refers to relative amounts of sand, silt, and clay in grams per kilogram 57 

(g kg-1) in a soil, the sum of these particle size fractions equaling 1000 g kg-1. Soil texture is a 58 

major component of soil, as it has an important influence on water infiltration and soil 59 

stabilization (Le Bissonnais et al., 2007, 2018). To ensure soil security, adequate decisions 60 

both at global and local levels are required to favor the beneficial roles of soil (Rodrigo-61 

Comino et al., 2020). Such decisions require accurate spatially referenced soil information 62 

systems that can be used in environmental modeling. 63 

Spectroscopy covering the Visible, Near Infrared, and Short Wave Infrared domains 64 

(VNIR/SWIR, 400 – 2500 nm) is a technology that proved its relevance for the estimation of 65 

soil properties (Viscarra Rossel et al., 2006) as the soil reflectance spectrum results from the 66 

position and shape of absorption features of chemical constituents (“peaks”) (e.g., water 67 

molecules influence the absorption features at specific wavelengths that are the results of 68 

overtone and combination modes from the IR region) and overall spectral shape of the 69 

physical properties (e.g., texture) (Ben-Dor and Banin, 1995a, 1995b). Most of the 70 

absorptions in the VNIR/SWIR region are characteristic of clay and organic matter, and are 71 

dominated by C–H, O–H, N–H and metal–OH bonds (e.g., Clark et al., 1990). Soil physical 72 

properties, including particle size, scatter the light in a way that the spectrum shape and base 73 

line are changing (Wetzel, 1983; Chabrillat et al., 2019). According to Ben-Dor et al. (2002), 74 
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an accurate estimate of a soil property can be expected from VNIR/SWIR data if the targeted 75 

soil property i) is related to a chemical species that impacts soil surface reflectance values 76 

through absorption bands (e.g., OH- ion for clay) or ii) is highly correlated with the latter 77 

(e.g., CEC correlated with clay content). In addition to these two rules, a minimum level of 78 

variability of the targeted soil property across study regions is required to be accurately 79 

estimated (Gomez et al., 2012a).  80 

VNIR/SWIR airborne spectroscopy was successfully used to map a large range of soil 81 

properties such as iron, soil organic carbon (SOC), and clay contents over bare soil surfaces 82 

with high accuracy (e.g., Ben-Dor et al., 2002; Stevens et al., 2010; Gomez et al., 2008, 83 

2012b; Chabrillat et al., 2019). More recently, the VNIR/SWIR multispectral satellites 84 

Sentinel-2 (S2) enabled mapping topsoil properties over bare soil surfaces, such as SOC (e.g., 85 

Gholizadeh et al., 2018; Vaudour et al., 2019a, b, 2021; Žížala et al., 2019; Castaldi et al., 86 

2021; Dvorakova et al., 2021; Urbina-Salazar et al., 2021) and texture (e.g., Gholizadeh et al., 87 

2018; Gomez et al., 2019; Bousbih et al., 2019). Despite lower accuracy of S2 estimates 88 

compared to airborne imaging spectroscopy, the global coverage and high revisit frequency of 89 

S2 (five days at the equator) opened perspectives for regional mapping. However, the 90 

selection of an S2 acquisition over a multi-temporal series in order to have an optimal 91 

estimation of soil properties, such as clay content, raises questions due to multiple factors 92 

influencing surface reflectance, and possibly statistical models adjusted to estimate soil 93 

properties (Vaudour et al., 2019b; Gomez et al., 2019; Castaldi et al., 2019). Indeed soil 94 

surface conditions such as soil moisture and roughness (e.g., due to tillage operations) 95 

influence soil reflectance (Chabrillat et al., 2019). The Normalized Difference Vegetation 96 

Index (NDVI, based on Red and NIR spectral bands) and the Normalized Burned Ratio 2 97 

(NBR2) index (based on spectral bands around 1600 nm and 2200 nm) have been widely used 98 

as indicators for photosynthetic vegetation and dry crop residues, respectively (e.g., for 99 
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Landsat 8 by Demattê et al., 2018 and S2 by Castaldi et al. 2019). Nevertheless, while NBR2 100 

follows a linear relationship with crop residue cover over dry soils, no correlation with residue 101 

cover could be found over moist soils (Dvorakova et al., 2020). So it is assumed that NBR2 102 

reacts both to crop residues and soil moisture, where high values of NBR2 indicate soils that 103 

are moist and/or are covered by crop residues. In the way of creating a composite multi-date 104 

bare soil image based on S2 images for soil organic carbon (SOC) prediction, Dvorakova et 105 

al., (2021) and Vaudour et al. (2021) developed strategies that allow selecting S2 pixels with 106 

minimal influence of crop residues, surface roughness or soil moisture, using spectral indices, 107 

especially NDVI and NBR2 indices for detecting these disturbing factors. 108 

Atmospheric conditions also strongly influence the Top of Atmosphere (TOA) 109 

reflectance (Level-1C products), and the choice of atmospheric correction (AC) method used 110 

to convert S2 Level-1C into Level-2A products may result in differences in terms of Bottom 111 

of Atmosphere (BOA) reflectance. These AC methods use different atmospheric models and 112 

hypotheses, which may affect the resulting BOA reflectance depending on the season, clouds, 113 

sun azimuth, and elevation, and therefore the soil property estimations. Several AC methods 114 

have been developed for multispectral images (e.g., Multi-sensor Atmospheric Correction and 115 

Cloud Screening -MACCS, Hagolle et al. (2015a), updated and renamed « MACCS-ATCOR 116 

joint algorithm » or MAJA, Lonjou et al. (2016); Sen2Cor, Gascon et al. (2017), Louis et al. 117 

(2016); Land Surface Reflectance Code -LaSRC, Vermote et al. (2016)). MAJA and Sen2Cor 118 

methods were both developed specifically for Sentinel-2 and have become widely used 119 

standard products available from Copernicus and other platforms. LaSRC, originally 120 

developed by NASA for Landsat, has been adapted recently for Sentinel-2, so it may also 121 

become a standard product in the future (e.g., considered in the Brazil Data Cube, Ferreira et 122 

al., 2020). These methods use quite different processing paths, from the atmospheric 123 

parameter estimation to the radiative transfer model and temporal information, justifying 124 
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interest in their comparison. A first Atmospheric Correction Inter-comparison Exercise 125 

(ACIX) was carried out under an international collaborative initiative to compare a set of AC 126 

methods for optical sensors, including S2 (Doxani et al., 2018). However, because the 127 

exercise continued, Doxani et al. (2018) did not draw common conclusions from all the 128 

algorithms. In addition, Sola et al. (2018a, 2018b) evaluated four AC methods for S2 images, 129 

highlighting minor differences between these AC methods. Finally, to the best of our 130 

knowledge, no work has been conducted on the impact of AC methods on soil property 131 

estimation. 132 

Following, on the one hand, the studies from Doxani et al. (2018) and Sola et al. 133 

(2018a, 2018b) evaluating AC methods for S2 images, and those from Gomez et al. (2019) 134 

and Vaudour et al. (2019b) studying the impact of acquisition dates on prediction 135 

performances of texture and SOC contents, the objective of this study is to evaluate the 136 

impact of three major AC methods (Sen2Cor, MAJA, and LaSRC) along an S2 time series on 137 

clay content estimation in the topsoil. The influence of these AC methods was also analysed 138 

depending on bare soil pixels selections based on two spectral indices and several thresholds: 139 

the NDVI (below 0.25, 0.3 and 0.35) and the combination of NDVI (below 0.3) and NBR2 140 

(below 0.09, 0.12 and 0.15). Eleven S2 images covering a cropping cycle in 2017 in a 141 

cultivated region in India (Karnataka State) were selected for this study. Soil samples were 142 

collected over the study area and analyzed in a laboratory. Clay content was then estimated 143 

from each BOA S2 image, corrected by the three AC methods, using multiple linear 144 

regression models.  145 

 146 

2. Materials and Methods 147 

2.1. Study area 148 
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The Berambadi catchment is a subcatchment of the South Gundal located in the Deccan 149 

Plateau of Southern India (Figure 1a), extending over 84 km2 (Figure 1b). Our study area is 150 

located in the eastern part of the Berambadi catchment, of which 60% of the surface is 151 

dedicated to agriculture, with a high diversity of crops (e.g., sunflower, marigold, sorghum, 152 

turmeric, maize, etc.) and high seasonal variability. The western part of the Berambadi 153 

catchment is covered by forest (not shown in Figure 1b). The Berambadi catchment belongs 154 

to the Kabini Critical Zone Observatory (AMBHAS, BVET, Tomer et al., 2015; Sekhar et al., 155 

2016), which is part of the OZCAR network (Gaillardet et al., 2018). The climate is tropical 156 

subhumid with an average rainfall of 800 mm/year and a PET of 1100 mm (aridity index 157 

P/PET of 0.7). The monsoon dynamics drive three main seasons: dry season (winter in 158 

January and February, summer from March to May), Kharif (southwest monsoon season, 159 

from June to September), and Rabi (north-east monsoon season, from October to December). 160 

Red soils (Ferralsols and Chromic Luvisols) cover the uplands and hillslopes, while black 161 

soils (Vertisols and Vertic intergrades) are mostly found in the valley bottom (Barbiero et al., 162 

2010). Uplands and hillslopes are mainly characterized by coarse soil texture (sandy loam) 163 

due to erosion processes, whereas valleys bottoms are mainly characterized by finer soil 164 

texture (clay) mainly caused by deposition processes (Gunnell and Bourgeon, 1997; Barbiero 165 

et al., 2010).  166 

Three cropping seasons regulate the farm system (Robert et al., 2017). During the 167 

Kharif season (from June to September) corresponding to the rainy season, most of the 168 

cropping area are cultivated with sorghum, maize, sunflower, marigold, as well as crops 169 

grown in irrigated conditions, such as turmeric, onion, garlic, and banana. During the Rabi 170 

season (from October to January) corresponding to the winter season, most irrigated plots are 171 

cultivated with maize, horse gram, and vegetables. Finally, during the Summer season (from 172 
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February to May) corresponding to the hot and dry season, only few plots are cultivated, and 173 

almost 90% of the cropland is bare land. 174 

[Figure 1] 175 

 176 

2.2. Soil dataset 177 

A total of 164 topsoil samples were collected over Berambadi in November 2019 (Figure 1b). 178 

All samples were composed of five sub-samples collected to a depth of 5 cm within a 10 m 179 

×10 m square (one at the center and four at each corner) centered on the geographical position 180 

of the sampling plot, as recorded by a Garmin GPS instrument. After sample homogenization, 181 

approximately 20 g was devoted to soil property analysis. The samples were then air-dried 182 

and sieved with a 2 mm sieve prior to being analyzed in the laboratory. The clay fraction was 183 

determined using the pipette method as described by Piper (1966). The clay content ranged 184 

between 58 and 622 g kg-1 (mean = 252 g kg-1, standard deviation = 124 g kg-1 and skewness 185 

= 5 g kg-1).  186 

 187 

2.3. Sentinel-2 images 188 

 Launched in 2015 and then 2017 the combination of both Sentinel-2 satellites (S2A and S2B) 189 

delivers a revisit period of five days at the equator. The multispectral sensors acquired 190 

information over thirteen spectral bands in the VNIR/SWIR spectral domain, with spatial 191 

resolution ranging from 10 m to 60 m.  192 

Twenty-six images from the S2 tile 43PFP were acquired over Berambadi between 193 

February 1st and June 30th 2017. This corresponds to the summer season and beginning of 194 

Kharif season in South India, when both a maximum of bare soil pixels and a minimum of 195 

clouds can be encountered. As clay content is a perennial property in topsoil horizons, we can 196 

assume that the clay content analyzed from soil samples collected in 2019 remained 197 
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unchanged compared to 2017, as assumed in previous studies (e.g., Gomez et al., 2008; 198 

Loiseau et al., 2019). 199 

 200 

2.3.1. Atmospheric correction method  201 

Atmospheric corrections were performed on the 26 images using three AC methods described 202 

in the next subsections (MAJA, Lonjou et al., 2016; Sen2Cor, Louis et al., 2016; LaSRC ; 203 

Vermote et al., 2016) providing three time series of atmospherically corrected images (Figure 204 

2a). After atmospheric correction, only ten bands were retained for spectral modeling, 205 

corresponding to the four 10 m resolution bands (B2, B3, B4 and B8, see Table 1 in 206 

Dvorakova et al., 2021) and the six 20 m resolution bands (B5, B6, B7, B8A, B11 and B12, 207 

see Table 1 in Dvorakova et al., 2021). The BOA products were provided with reflectance 208 

*10000. 209 

[Figure 2] 210 

 211 

a. Sen2Cor 212 

Since 2015, the Copernicus Open Access Hub has provided Level-2A products of S2 imagery 213 

data over Europe, using the Sen2Cor processor developed by European Space Agency (ESA) 214 

(ESA, 2015; Gascon et al., 2017; Louis et al., 2016). The Sen2Cor processor performs 215 

atmospheric correction, terrain and cirrus correction, and scene classification applied to TOA 216 

data.  217 

The Sen2Cor 2.8 was applied to produce Level-2A images from Level-1C images using 218 

default settings (available in the Ground Image Processing Parameters files delivered with 219 

Sen2Cor official release, https://step.esa.int/main/snap-supported-220 

plugins/sen2cor/sen2cor_v2-8). The Planet Digital Elevation Model was used, and cirrus and 221 

Bidirectional Reflectance Distribution Function (BRDF) corrections were deactivated. All 222 
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other parameters were set to their default value. In addition to Level-2A reflectance data, 223 

Sen2Cor also produces an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) 224 

map, and a Scene Classification Map (SCM) together with Quality Indicators (QI) for cloud 225 

and snow probabilities. After conversion to Level-2A reflectance, Sen2Cor provides the four 226 

VNIR spectral bands with their native spatial resolution of 10 m and the six 20 m resolution 227 

bands, which were resampled to 10 m using nearest-neighbor interpolation.  228 

 229 

b. MAJA 230 

The MAJA processor (Lonjou et al., 2016; Hagolle et al., 2019) was initially developed to 231 

perform cloud detection and atmospheric correction over time series of optical images 232 

acquired at high resolution and under quasi constant viewing angles. MAJA combines Multi-233 

Mission Atmospheric Correction and Cloud Screening (MACCS) developed by the French 234 

Centre National d’Études Spatiales (CNES) and ATCOR developed by the German 235 

Aerospace Center (DLR). This spectro-temporal AC method was developed to process images 236 

from Formosat-2, Landsat, VENμS, and S2 satellites. MAJA is based on a spectral 237 

assumption of the link between red and blue spectral bands and a temporal assumption 238 

assuming that a given neighborhood separated by a few days should yield similar surface 239 

reflectance (Hagolle et al., 2015a; 2015b). In the current study, the MAJA correction was 240 

processed with on-demand PEPS (Plateforme d’Exploitation des Produits Sentinel) processing 241 

service, which uses eight S2 acquisitions prior to each acquisition of interest to meet the 242 

temporal assumption (https://labo.obs-mip.fr/multitemp/on-demand-sentinel2-l2a-processing-243 

with-maja-on-peps, last access on 2021-07-01). As Sen2Cor, MAJA provides spectral bands 244 

with their native spatial resolution. After Level-2A conversion, we used nearest-neighbor 245 

interpolation to convert all 20 m bands to 10 m resolution. 246 

 247 
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c. LaSRC 248 

Landsat Surface Reflectance Code (LaSRC) is an AC method initially developed to convert 249 

TOA radiance to BOA reflectance for Landsat 8 collection, which was recently adapted to 250 

Sentinel-2 (Vermote et al., 2018). The algorithm performs atmospheric correction, assuming a 251 

Lambertian-plane-parallel atmosphere, and using the Second Simulation of the Satellite 252 

Signal in the Solar Spectrum (6S) “Urban Clean” model (Vermote et al., 2016; USGS, 2016). 253 

The atmospheric parameters required for the inversion include surface pressure (from the 254 

National Center for Environmental Prediction Global Data Assimilation System—NCEP 255 

GDAS weather model), water vapor (derived from the MODIS near-infrared channels), ozone 256 

(from NCEP GDAS), and aerosol properties (AOT and Angstrom exponent) (Claverie et al., 257 

2018). The aerosol properties are estimated using the comparison between assumed surface 258 

reflectance ratios computed from MODIS time series and Sentinel-2 TOA reflectance ratios. 259 

The correction algorithm is applied at a spatial resolution of 10 m, which is the output 260 

resolution for all bands. Therefore, the L1C bands with a resolution of 20 and 60 m are 261 

resampled with a nearest-neighbor method in a pre-processing step.  262 

 263 

2.3.2. Cloud mask  264 

Pixels identified as clouds or cloud shadows were masked over the S2 time series, using the 265 

cloud mask product provided by MAJA (Figure 2a). The MAJA cloud mask is computed with 266 

a combination of mono-temporal and multi-temporal approaches (Hagolle et al., 2010) and 267 

accounts for different types of clouds (low, high, thin) and corresponding projected shadows 268 

(Baetens et al., 2019). Recent cloud mask algorithms inter-comparisons highlighted that the 269 

MAJA cloud mask algorithm provided similar to better performances over other cloud and 270 

shadow mask algorithms on a large variety of environments (Baetens et al., 2019 ; Tarrio et 271 

al., 2020). 272 
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 273 

2.3.3. Bare soil selection 274 

S2 pixels identified as non-cultivated land were masked using a land-use map available for 275 

the study area (AMBHAS Team, 2015) (Figure 2a). These pixels correspond to urban areas, 276 

bodies of water, and natural vegetation (forest). Among the 26 images available over the 277 

study area, eleven were finally kept for this study, for which the surface of cultivated land 278 

outside clouds and cloud shadows covered more than 95% of the Berambadi catchment. 279 

After masking pixels corresponding to non-cultivated land, bare soil were 280 

discriminated from photosynthetic vegetation, based on a thresholding applied on the 281 

normalized difference vegetation index (NDVI) calculated using the red band B04 (665 nm) 282 

and the NIR band B08 (842 nm) (Figure 2a). Three NDVI thresholds common to all images 283 

were defined based on visual interpretation from an expert with field knowledge and literature 284 

(e.g., Stevens et al., 2008; Vaudour et al., 2016; Lu et al., 2013), : (i) below 0.25, (ii) below 285 

0.3 and (iii) below 0.35. Pixels corresponding to bare soil were also differentiated from crop 286 

residue and moist soil, applying thresholding on the Normalized Burned Ratio 2 index 287 

(NBR2) calculated using the SWIR1 band B11 (1610 nm) and the SWIR2 band B12 (2202 288 

nm) (Figure 2a). As setting a threshold for the NBR2 index might be difficult without relevant 289 

field observation (Dvorakova et al., 2020 and 2021), four thresholds of NBR2 were tested: (i) 290 

no threshold, (ii) below 0.15, (iii) below 0.12 and (iv) below 0.09. . This study focused on the 291 

common pixels identified as bare soil for all images to compare clay predictions obtained for 292 

the different acquisitions and AC methods. 293 

Topsoil water content is directly related to the time since last precipitations. As soil 294 

moisture affects spectra (Diek et al., 2016; Vaudour et al., 2019b) and in order to compare the 295 

NBR2 response with rainfall events, we calculated the number of days from the last rain for 296 

each S2 image to hint at the topsoil humidity conditions, based on daily rainfall measured in 297 
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the Maddur village, on the West part of the Berambadi catchment. Among these eleven 298 

selected images, two images were acquired following heavy rainfall (cumulative rainfall of 299 

25.5 mm and 18.4 mm over the last two days before the S2 data acquisition on 08-03-2017 300 

and 04-04-2017, respectively), three images were acquired following moderate rainfall 301 

(cumulative rainfall of 6.5 mm, 5.5 mm and 9 mm over the last five days before the S2 data 302 

acquisition on 25-03-2017, 24-04-2017, and 07-05-2017), and six images were acquired after 303 

more than five days without rain (03-02-2017, 16-02-2017, 23-02-2017, 26-02-2017, 28-03-304 

2017, and 27-04-2017). 305 

 306 

2.4 Spectral Measures 307 

The BOA reflectances produced with the three different AC methods were compared pairwise 308 

to estimate the spectral similarity between AC methods over the eleven dates (Figure 2b). 309 

These spectral similarity analysis were performed using R software (R Development Core 310 

Team, 2015). The coefficient of correlation ��,� was calculated between the BOA reflectance 311 

values as follows:  312 

��,� = ���(	
���,��� , 	
���,��� )  (1) 313 

where 	
���,��� and 	
���,��� are the BOA reflectance values obtained from AC methods 1 314 

and 2, at band i for the S2 image acquired at date t. The coefficient of correlation r was 315 

calculated over the N bare soil pixels, for which soil sample was collected and clay content 316 

was analyzed. 317 

As the coefficient of correlation ��,� does not reflect the bias in the data (due to change 318 

in albedo in our case), the bias 	�����,� between two AC methods at band i for the S2 image 319 

acquired at date t was calculated as follows:  320 

	�����,� = ∑ �����,�. !"# 
$

$%&� − ∑ �����,�. !"( 
$

$%&�   (2) 321 
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where 	
���,�.%�� and 	
���,�.%�� are the BOA reflectance values for pixel k, at band i for the S2 322 

image acquired at date t, obtained from one AC and another, respectively, and N is the 323 

number of considered pixels. The bias 	�����,� was calculated over the N bare soil pixels for 324 

which soil sample was collected and clay content was analyzed. 325 

The spectral angle was used to analyze the spectral similarity between BOA 326 

reflectance spectra. The spectral angle )*%,� considers the whole spectra and not a single band 327 

as ��,� and 	�����,� (Kruse et al., 1993). It was calculated between the BOA spectrum obtained 328 

from one AC and another, for pixel k and the S2 image acquired at date t, as follows: 329 

)*%,� = ∑ �����,�, !"# ∗�����,�, !"(,-�.#
/∑ �����,�, !"#(,-�.# /∑ �����,�, !"((,-�.#

  (3) 330 

where 	
���,�.%�� and 	
���,�.%�� are the BOA reflectance values at band i obtained from one AC 331 

method and another, respectively, for pixel k, and nb is the total number of spectral bands (10 332 

in our case). )*%,� ranges between 0 and 1, with low values corresponding to low spectral 333 

similarity and high values corresponding to high spectral similarity. The spectral angle 334 

mapper )*� was finally calculated for the S2 image acquired at date t, over the N bare soil 335 

pixels for which soil sample was collected and clay content was analyzed, as follows: 336 

)*� = �
$ ∑ )*%,�$%&�   (4) 337 

where )*%,� was calculated from Equation (3). 338 

  339 

2.5. Regression model 340 

Regression models and analysis were performed using R software (R Development Core 341 

Team, 2015), and both the ade4 (Dray and Dufour, 2007) and pls packages (Mevik and 342 

Wehrens, 2007) were used. 343 

A Multiple Linear Regression (MLR) method was used to produce clay maps 344 

estimated from S2 images. MLR is a multivariate approach adjusting a linear relationship 345 
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between a dependent (response) variable (Y-variable, i.e., clay content in the present case), 346 

and a set of predictor variables (X-variables, i.e., S2 spectra in the present case) (Tenehaus, 347 

1998) (Figure 2d). A restrictive selection of pixels corresponding to bare soil may result in 348 

small sample size available to train and validate regression models using independant 349 

datasets. In this work, a k-fold cross-validation (CV) was used. The original dataset was 350 

randomly divided into k sub-datasets. Then, k-1 sub-datasets were used as training data, and 351 

the remaining one was used as validation data. The CV process was repeated k times, and the 352 

model performance was evaluated by averaging prediction error obtained for the k sub-353 

datasets. The k-fold CV method can take full advantage of data, as each part of the original 354 

dataset is randomly divided and used for both training and testing. Here, 10-fold cross-355 

validation (CV) was used to build robust methods for estimating the accuracy of MLR models 356 

and repeated 5 times.  357 

Finally, three statistical criteria were used to assess model performances: mean 358 

absolute error (MAE), root mean square error (RMSEcv), and Pearson correlation coefficient 359 

(R2
cv) of cross validation (Figure 2e). These statistical criteria were calculated taking into 360 

account the 10-fold CV and 5 repetitions. 361 

 362 

3. Results 363 

3.1 Bare soil coverage analysis 364 

The distribution of NDVI values calculated over all unmasked pixels showed positive skew 365 

for all acquisition dates and AC methods with values lower than 0.25 (Figure 3). Larger 366 

differences in NDVI distributions between the three AC methods were obtained for the S2 367 

image acquired on 08-03-2017 (Figure 3). The median value of NDVI distributions obtained 368 

using the LaSRC method (around 0.21) was slightly higher than the median obtained using 369 

Sen2Cor and MAJA methods (around 0.19) regardless of the date (Figure 3). 370 
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[Figure 3] 371 

 372 

The distribution of NBR2 values calculated over all unmasked pixels showed positive skew 373 

for all acquisition dates and AC methods with values lower than 0.2 (Figure 4). The median 374 

value of NBR2 distributions obtained using the LaSRC (around 0.12 along the dates) method 375 

was slightly higher than the median obtained using Sen2Cor and MAJA methods (around 0.9 376 

and 0.10 along the dates, respectively), regardless of the date (Figure 4). The AC methods 377 

affected the NBR2 values (Figure 4) more than NDVI values (Figure 3) as NBR2 378 

distributions differed from an AC method to another, especially for the S2 images acquired on 379 

08-03-2017, 04-04-2017, 24-04-2017, 27-04-2017 and 07-05-2017. 380 

[Figure 4] 381 

 382 

Bare soil coverage selected using both NDVI and NBR2 thresholding varied depending on 383 

both acquisition dates and AC methods (Table 1). The acquisition date providing the 384 

maximum bare soil coverage varied among AC methods. As an example, using a NDVI 385 

below 0.3, the S2 image providing the maximum bare soil coverage was the one acquired on 386 

26-02-2017 from MAJA-corrected S2 images (with 85.9%), on 08-03-2017 from Sen2Cor-387 

corrected S2 images (with 85.9%), and on 23-02-2017 from LaSRC-corrected S2 images 388 

(with 82.7%) (Table 1). The acquisition date providing the minimum bare soil coverage also 389 

varied from an AC method to another. Still using a NDVI below 0.3, the S2 image providing 390 

the minimum bare soil coverage was the one acquired on 07-05-2017 along MAJA-corrected 391 

S2 images (with 76.3%), on 03-02-2017 along Sen2Cor-corrected S2 images (with 73.4%) 392 

and on 08-03-2017 along LaSRC-corrected S2 images (with 75.1%) (Table 1). Regardless of 393 

the NDVI and NBR2 thresholds, the image acquired on 08-03-2017 presented maximum bare 394 

soil coverage for all AC methods (range from 5.7 to 20.75%, Table 1). Regardless of the 395 
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NDVI and NBR2 thresholds, the Sen2Cor method provided the highest range of bare soil 396 

coverage along the acquition dates (range from 9.18 to 18.49%, Table 1). Finally, a majority 397 

of LaSRC-corrected S2 images provided slightly less bare soil coverage than those corrected 398 

by Sen2Cor and MAJA, regardless of the NDVI threshold or the combination of NDVI and 399 

NBR2 thresholds (Table 1). 400 

[Table 1] 401 

 402 

The bare soil pixels that were common for all S2 images corrected by MAJA, Sen2Cor and 403 

LaSRC covered from 67.3% of the surface based on a NDVI below 0.35 to 1.2% based on 404 

NDVI and NBR2 below 0.3 and 0.09, respectively (Table 2). This resulted in varying sample 405 

sizes of bare soil locations with clay content information, which ranged from 122 samples 406 

based on NDVI below 0.35 to 2 samples based on NDVI and NBR2 below 0.3 and 0.09, 407 

respectively (Table 2). Due to the poor bare soil coverage on 08-03-2017 using NBR2 below 408 

to 0.12 or lower, especially from the LaSRC method (Table 1, Figure 4), the bare soil 409 

coverage common to all dates did not exceed 7%, which allowed 12 or less samples (Table 2).  410 

As the combinations of NDVI below 0.3 and NBR2 below 0.09 or 0.12, were too 411 

restrictive, this study used the four datasets reaching more than 45 collected samples 412 

identified as bare soil pixels (i.e. extracted using NDVI below 0.25, 0.3, 0.35 and using the 413 

combination of NDVI and NBR2 below 0.3 and 0.15, respectively) to train MLR models 414 

(Figures 2c and d) and apply them to the corresponding bare soil coverage. These four dataset 415 

displayed close distributions with a range between 58 and 592 g kg-1, a mean around 220 g kg-
416 

1, and skewness from 7 to 8.7 g kg-1 (Table 2).  417 

[Table 2] 418 

 419 

3.2 BOA reflectance analysis based on bare soil pixels identified with NDVI below 0.3 420 
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The effect of AC methods on BOA reflectance values was investigated based on the 111 bare 421 

soil pixels for which a measured clay content value was available for training the regression 422 

models, identified with a NDVI below 0.3 (Table 2). The BOA reflectance values obtained for 423 

each image corrected by the three AC methods were compared based on these 111 bare soil 424 

pixels. Reflectance obtained with LaSRC showed lower values for almost all bands, except 425 

for B04 on 08-03-2017 (Figure 5C) and for B03 (Figure 5B). Reflectance obtained with 426 

Sen2Cor from bands B04 to B12 (665 nm to 2190 nm, red boxplots, Figures 5 from C to J) 427 

showed systematically higher values than reflectance obtained with MAJA and LaSRC 428 

(yellow and blue boxplots, respectively, Figures 5 from C to J), except on 08-03-2017 for 429 

Band 04. The largest difference in BOA reflectance obtained among the three AC methods at 430 

the same date was observed on 08-03-2017 and mainly over the visible spectral bands 431 

(Figures 5A, B, and C). The )*� values (Equation (4)), computed for pairwise comparison 432 

among AC methods over the 111 topsoil spectra, are high, up to 0.994, showing high 433 

similarities between spectra corrected by different AC methods (data not shown). 434 

[Figure 5] 435 

  436 

The Pearson’s correlation coefficient ��,� (Equation (1)) computed between the 111 topsoil 437 

spectra corrected by MAJA and Sen2Cor were very high for all bands and dates, ranging from 438 

0.93 to 0.99 (Figure 6A1). The lowest correlations were obtained for B02 (490 nm) and B03 439 

(560 nm), with a mean of 0.97, while the NIR and SWIR bands showed a very high 440 

correlation (> 0.99) (Figure 6A1). Along the eleven dates, the lowest correlations were 441 

obtained for the S2 image acquired on 08-03-2017 (mean of 0.99 over the spectral bands), 442 

while the highest correlations were obtained for the S2 image acquired on 16-02-2017 (mean 443 

up to 0.999 over the spectral bands) (Figure 6A1).  444 
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The correlations ��,� between the 111 topsoil spectra corrected by MAJA and LaSRC 445 

followed similar patterns to correlations ��,� calculated between the 111 spectra corrected by 446 

Sen2Cor and LaSRC (Figures 6A2 and A3). The correlations ��,� were very high varying from 447 

0.90 to 0.99, except for B02 (from 0.52 and 0.90) and B03 (from 0.79 and 0.97). Along the 448 

eleven dates, the lowest correlations were obtained for the S2 image acquired on 08-03-2017 449 

(mean of 0.88 over the spectral bands, Figures 6A2 and A3).  450 

 451 

The 	�����,� (in absolute value) between the 111 spectra corrected by MAJA and Sen2Cor 452 

ranged from 2.5 (B02 at 490 nm, on 23-02-2017) to 400.0 (B12 at 2190 nm, on 24-04-2017) 453 

for all the bands and dates (Figure 6B1). Along the 10 spectral bands, the highest 	�����,� 454 

were obtained for the B12 (2190 nm) (mean of 302.2 in absolute value) while the lowest 455 

	�����,� were obtained for the B02 (490 nm) (mean of 68 in absolute value) (Figure 6B1). 456 

Along the eleven dates, the highest 	�����,� were obtained for the S2 image acquired on 04-457 

04-2017 (mean of 220.5 in absolute value), while the lowest 	�����,� were obtained for the S2 458 

image acquired on 16-02-2017 (mean of 76.3 in absolute value) (Figure 6B1).  459 

The 	�����,� (in absolute value) between the 111 spectra corrected by MAJA and 460 

LaSRC varied from 0.00 (B8A at 865 nm, on 28-03-2017) to 249.6 (B02 at 490 nm, on 08-461 

03-2017) for all bands and dates (Figure 6B2). Along the 10 spectral bands, the highest 462 

	�����,� were obtained for the B02 (490 nm) (mean of 112.3 in absolute value) while the 463 

lowest 	�����,� were obtained for the B08A (865 nm) (mean of 10.9 in absolute value) (Figure 464 

6B2). Along the eleven dates, the highest 	�����,� were obtained for the S2 image acquired on 465 

08-03-2017 (mean of 135.9 in absolute value), while the lowest 	�����,� were obtained for the 466 

S2 image acquired on 25-03-2017 (mean of 33.2 in absolute value) (Figure 6B2). 467 

The 	�����,� (in absolute value) between the 111 spectra corrected by Sen2Cor and 468 

LaSRC varied from 20 (B02 at 490 nm, on 03-02-2017) and 460.8 (B05 at 705 nm, on 08-03-469 
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2017) for all the bands and dates (Figure 6B3). Along the 10 spectral bands, the highest 470 

	�����,� were obtained for the B05 (705 nm) (mean of 310.9 in absolute value), while the 471 

lowest biases were obtained for the B08A (865 nm) (mean of 128.8 in absolute value) (Figure 472 

6B3). Along the eleven dates, the highest 	�����,� were obtained for the S2 image acquired on 473 

08-03-2017 (mean of 308.4 in absolute value), while the lowest 	�����,� were obtained for the 474 

S2 image acquired on 16-02-2017 (mean of 100.8 in absolute value) (Figure 6B3). 475 

[Figure 6] 476 

 477 

3.3 Clay predictions based on bare soil pixels identified with NDVI below 0.3 478 

The effect of AC methods on clay content estimations was firstly investigated based on bare 479 

soil pixels obtained with NDVI below 0.3. MLR models were built from each S2 image and 480 

each AC method using the 111 topsoil samples identified with NDVI below 0.3, providing 33 481 

MLR models. Performances for the prediction of clay content strongly varied depending on 482 

the acquisition date, with R²cv ranging from 0.49 to 0.72 for MAJA, from 0.45 to 0.71 for 483 

Sen2Cor, and from 0.43 to 0.71 for LaSRC (Table 3). 484 

The difference in R²cv obtained when comparing dates of acquisition for each AC 485 

method varied from 0.23 (obtained from MAJA-corrected S2 images) to 0.29 (obtained from 486 

LaSRC-corrected S2 images) (Table 3), suggesting a strong impact of the acquisition date on 487 

clay content estimation. Based on MAJA- and Sen2Cor-corrected S2 images, the best MLR 488 

model was obtained from the S2 image acquired on 24-04-2017 (R²cv > 0.71 and RMSECV > 489 

6.50%, Table 3), while based on LaSRC-corrected S2 images, the best MLR model was 490 

obtained from the S2 image acquired on 25-03-2017 (R²cv of 0.71 and RMSECV of 6.38%, 491 

Table 3). The MLR models built from the S2 image acquired on 04-04-2017 provided poor 492 

performances for clay content prediction (R²cv < 0.55 and RMSECV > 6.50%, Table 3) for all 493 

AC methods. 494 
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The difference in R²cv obtained when comparing the three corrected S2 images for a 495 

given date of acquisition varied from 0.00 (obtained on 27-04-2017) to 0.07 (obtained on 08-496 

03-2017) (Table 3), suggesting a poor impact of the AC method selection on clay content 497 

estimation. The three AC methods provided very close regression performances for six S2 498 

images (03-02-2017, 26-02-2017, 25-03-2017, 28-03-2017, 24-04-2017 and 27-04-2017, 499 

Table 3). Considering the five remaining S2 images, MAJA provided corrected S2 images 500 

associated to the best clay content estimations for four acquisition dates, while LaSRC 501 

provided corrected S2 images associated to the best clay content estimations for only one 502 

acquisition dates (04-04-2017, Table 3). 503 

Finally, the largest difference in R²cv obtained when comparing AC methods for a 504 

given date of acquisition was 0.07, while the largest difference in R²cv obtained when 505 

comparing dates of acquisition for each AC method was 0.29 (Table 3). So it suggested a 506 

stronger impact of the acquisition date on clay prediction performance compared to the AC 507 

method. 508 

[Table 3] 509 

 510 

3.4 Influence of bare soil pixels identification on clay predictions 511 

The analysis of AC influence on clay content estimations was extended to varying bare soil 512 

pixels identifications: with NDVI below 0.25 and 0.35, and with the combination of NDVI 513 

and NBR2 below 0.3 and 0.15, respectively. Based on these bare soil pixels identifications, 514 

MLR models were built from MAJA-, Sen2Cor- and LaSRC-corrected images.  515 

Regardless of the AC methods and thresholdings, the poorest performances were 516 

obtained from the S2 image acquired on 08-03-2017 (Table 3). Using MAJA-corrected S2 517 

images, the best performances were obtained from the S2 image acquired on 24-04-2017, 518 

independently from thresholding. Using Sen2Cor- and LaSRC-corrected S2 images, the best 519 
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performances were obtained from S2 images acquired on 25-03-2017 and 24-04-2017, 520 

depending on thresholding (Table 3). 521 

Regression models performances obtained based on bare soil coverage selected using 522 

NDVI below 0.3 and 0.35, were similar. Using such NDVI thresholds, the largest difference 523 

in R²cv obtained when comparing AC methods for a given date of acquisition was 0.07, while 524 

the largest difference in R²cv obtained when comparing dates of acquisition for each AC 525 

method was 0.29 (Table 3). Using the 84 topsoil samples identified with NDVI below 0.25, 526 

the largest difference in R²cv obtained when comparing AC methods for a given date of 527 

acquisition was 0.04, while the largest difference in R²cv obtained when comparing dates of 528 

acquisition for each AC method was 0.31 (Table 3). Using the 47 topsoil samples identified 529 

with NDVI below 0.3 and NBR2 below 0.15, the largest difference in R²cv obtained when 530 

comparing AC methods for a given date of acquisition was 0.08, while the largest difference 531 

in R²cv obtained when comparing dates of acquisition for each AC method was 0.26 (Table 3). 532 

These results suggest that the acquisition date has stronger influence than the AC method on 533 

clay prediction performance. Finally, applying restrictive NDVI thresholds or combining 534 

NDVI and NBR2 thresholds did not systematically improve the models performance for a 535 

given acquisition date (Table 3). 536 

 537 

4. Discussion 538 

Variation in bare soils coverage 539 

The extent of bare soil coverage varied depending on acquisition date, AC method and index 540 

thresholds (Table 1), with more variability due to dates and index thresholds than AC 541 

methods. While the non-cultivated lands mask (urban areas, bodies of water, and natural 542 

vegetation forest) was unique regardless of AC methods and date of acquisition, the cloud, 543 

and land masks were consistent only among the three AC methods but not among the eleven 544 
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dates, and the photosynthetic vegetation masks varied between AC methods and the date of 545 

acquisition. Indeed, the clouds were masked using one cloud mask specific to each S2 date 546 

provided by MAJA (Table 1, Section 2.3.2), and the photosynthetic vegetation was masked by 547 

applying a threshold on the NDVI calculated using the red band B04 (665 nm) and the NIR 548 

band B08 (842 nm) of each S2 image.  549 

As clouds only affected three dates (08-03-2017, 04-04-2017, and 27-04-2017, Table 550 

1) and bands B04 and B08 differed slightly depending on the S2 acquisition date (Figures 5C 551 

and G, respectively), the variability of bare soil coverage along the dates was mainly due to 552 

the cut-off induced by NDVI and NBR2 values, which may vary according to some changes 553 

in soil surface conditions (due to humidity, roughness), new crop growing within the dates 554 

(Vaudour et al., 2019b) or crop residues (Dvorakova et al., 2021). The variability of NDVI 555 

values for the same date depending on AC methods was also previously observed by Sola et 556 

al. (2018a, 2018b).  557 

The choice of an AC method showed very minor influence on bare soil coverage, 558 

except for the image acquired on 08-03-2017 (e.g., from 58.22% to 78.97% using NDVI < 559 

0.25 and LaSRC- and Sen2Cor-corrected S2 images, Table 1). For this specific date, such 560 

difference may be due to some unmasked clouds (including cirrus) over the Berambadi (Table 561 

1) affecting the reflectance along the spectra, hence the NDVI values. Tarrio et al. (2020) 562 

showed that although MAJA detects clouds and cloud shadows fairly well, producing few 563 

errors of omission, the majority of omitted clouds for MAJA was composed of high cirrus 564 

clouds. 565 

 566 

Variation in BOA spectra (based on bare soil pixels identified with NDVI below 0.3) 567 

Atmospheric corrections performed with Sen2Cor resulted in higher reflectance values for 568 

bands B04 to B12 (665 nm to 2190 nm, red boxplots, Figures 5 from C to J), except for the 569 
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date 08-03-2017 in Band 04 (Figure 5C), compared to others AC methods. These results are 570 

in agreement with those obtained by Sola et al. (2018a, 2018b), who reported higher BOA 571 

reflectance obtained by Sen2Cor compared to MAJA and the 6S model. Li et al. (2018) also 572 

observed an overestimation of surface reflectance by Sen2Cor, especially for bright pixels, 573 

and suggested that may be due to an AOT overestimation. Reflectance obtained with LaSRC 574 

showed systematically lower values for almost all bands, with the exception for B04 on 08-575 

03-2017 (Figure 5C) and generally for B03 (Figure 5B), than reflectance obtained with MAJA 576 

and Sen2Cor. These results are still in agreement with Sola et al. (2018a), who reported lower 577 

BOA reflectance obtained by the 6S model compared to MAJA and Sen2Cor. Moreover, 578 

reflectance values obtained on 08-03-2017 from bands B05 to B12 (705 nm to 2190 nm, 579 

Figure 4) were the lowest of the time series, which may be explained by a higher soil moisture 580 

content on the 08-03-2017 image due to previous rainfall, likely to cause a general decrease in 581 

reflectance (Minasny et al., 2011) or some unmasked clouds (including cirrus). 582 

Variations in performances between AC methods might be explained by several 583 

factors: i) MAJA is based on a multitemporal approach, while other methods are based on 584 

individual acquisitions and ii) the computation of AOT and water vapor as well as the 585 

radiative transfer model differs among methods, iii) each AC method uses its own cloud mask 586 

method to screen the main cloudy pixels for which AC parameter estimations (such as AOT) 587 

would probably not converge. Regarding this last factor, a gap-filling operation was 588 

performed to fill AOT values for cloudy pixels (either by using a constant value for MAJA or 589 

interpolation for Sen2Cor and LaSRC) before applying atmospheric correction with radiative 590 

transfer models. Such differences in cloudy pixels may result in local differences in correction 591 

accuracy, especially in the surroundings of shadowed or clouded pixels, and therefore 592 

contribute to a small part of the difference between the accuracy of MAJA and the other 593 

methods. However, considering the low rate of omission of MAJA cloud detection exposed in 594 
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Baetens et al. (2019), as well as the spatial homogeneity of the atmospheric correction 595 

parameters, this cannot fully explain the differences in accuracy observed between the 596 

methods. 597 

Despite these differences observed for BOA reflectance produced by the three AC 598 

methods (Figures 5 and 6), the spectra were highly correlated regardless of the date of 599 

acquisition, except for 08-03-2017, and regardless of the bands, except the B02 (490 nm). 600 

Such high correlations are in accordance with the results obtained by Padró et al. (2017), who 601 

compared BOA reflectances obtained by several AC methods, including Sen2Cor, with in situ 602 

reflectances, and obtained high correlations regardless of the AC methods (r² > 0.9). 603 

 604 

AC method as minor driver of prediction performances 605 

Our MLR regression models for clay content estimations provided performances (Table 3) in 606 

accordance with the performances obtained by Shabou et al. (2015) and Gasmi et al. (2021) 607 

using multispectral Landsat images over Mediterranean contexts, and by Bellinaso et al. 608 

(2021) and Vaudour et al. (2019a) using S2 images over tropical and temperate/Mediterranean 609 

contexts, respectively.  610 

Regardless of the bare soil coverage selection, the AC method had a limited influence 611 

on MLR performances for clay content prediction (Table 3). Indeed the MLR models built 612 

from MAJA-, Sen2Cor- and LaSRC-corrected S2 images provided close performances (Table 613 

3). This is in accordance with Marujo et al. (2021), who expected that LaSRC and Sen2Cor 614 

would converge to produce consistent and comparable data from both sensors. However, this 615 

is not in accordance with Sola et al. (2018a), who showed MAJA provided better 616 

performances in the analysis per land cover compared to Sen2Cor.  617 

  618 

S2 acquisition date as the main driver of prediction performances 619 
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Regardless of the bare soil coverage selection, the date of S2 image acquisition showed a 620 

stronger influence than the AC method on the performances for clay content prediction (Table 621 

3). As previously shown by Demattê et al. (2018) and then Castaldi et al. (2019), Vaudour et 622 

al. (2019b) and Dvorakova et al. (2021), soil surface conditions impact the accuracy of SOC 623 

prediction models. This seems the case through our observed time-series, for which the dates 624 

acquired shortly after a rainfall event resulted in the lowest performance (on 08-03-2017 and 625 

04-04-2017, Table 3), presumably due to higher soil moisture.  626 

As the date of S2 image acquisition appears to be very important for soil property 627 

estimation, and this even more compared to the AC method, future researches could focus on 628 

identifying rules for selecting the best date of image acquisition. This was started by selecting 629 

dates with average driest condition or lower crop residues over bare soils based on NDVI and 630 

NBR2 spectral indices and enabled to obtain the best prediction performances using single-631 

dates images (Castaldi et al., 2019; Vaudour et al., 2019b; Urbina-Salazar et al., 2021).  632 

Similarly, rules for date selection may be used to create multi-temporal image 633 

composites composed of multidate images stacked over the same tile. From now, multi-634 

temporal image composites are built from either pixelwise thresholding based on the 635 

minimum pixel value (Loiseau et al., 2019; Vaudour et al., 2021), average reflectance value 636 

(e.g., Demattê et al., 2018; Gasmi et al., 2019; Dvorakova et al., 2021), median reflectance 637 

value (Castaldi et al., 2021; Luo et al., 2022), or considering a trade-off between average per 638 

date-indices and maximum bare soil coverage (Vaudour et al., 2021) along a multidate 639 

satellite series. Multiple studies suggested using multi-temporal image composites to 640 

maximize bare soil coverage for soil property prediction (e.g., Demattê et al., 2018; Vaudour 641 

et al., 2021; Dvorakova et al., 2021). However, current researches do not converge towards a 642 

common conclusion about their benefits compared to single-date images, especially in terms 643 

of soil property prediction accuracies. While Gasmi et al. (2019) showed that multi-temporal 644 
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image composites based on mean spectral reflectance from bare soil pixels along a Landsat-645 

TM time series allowed to increase both the prediction accuracy of soil clay content and 646 

mapping coverage, Vaudour et al. (2021) showed that none of the multi-temporal image 647 

composites based on pixelwise or per-date bare soil reflectance along a S2 time series 648 

improved model performance for SOC prediction compared to the best single-date image. 649 

Therefore, benefit and methodologies for multi-temporal mosaicking are critical questions 650 

remaining to be explored.  651 

 652 

5. Conclusions 653 

The influence of three atmospheric corrections, namely MAJA, Sen2Cor and LaSRC, on 654 

eleven S2 images was evaluated based on clay content estimation over bare soil pixels. Our 655 

study highlighted the influence of the S2 acquisition date and AC method on model 656 

performances adjusted for clay content estimations, with more variability induced by the 657 

acquisition date than the AC method. Thus, the influence of the choice of an AC on the 658 

estimation of soil properties can be considered as moderate compared to soil surface 659 

conditions, such as moisture, crop residue or roughness, which may be strongly variable in 660 

space and time. As regression models performances were close from one AC method to 661 

another, this work did not allow to consider one AC method to be the best method prior 662 

estimating clay content. As Sen2Cor provided performances for clay content estimations close 663 

to MAJA and LaSRC methods, and since ESA provides corrected imagery with Sen2Cor, this 664 

AC method might be a satisfactory choice. Finally, as soil properties such as organic carbon 665 

and iron are key properties influencing soil radiometric properties in a different manner than 666 

clay, the impact of AC methods on the estimation of such topsoil properties could be further 667 

investigated to test the robustness of our conclusions. 668 

 669 
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Figure 1: a) Location of the Berambadi catchment in India (red dot) and b) the 164 collected soil surface samples (red dots) plotted over the S2 

image acquired on 03-02-2017 (colored composite of bands 08 (R), 04 (G), and 03 (B)). White pixels correspond to masked pixels (non-bare 

soils). 
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Figure 2: Workflow. a) Preparation of the BOA S2 images restricted to bare soil pixels, b) 

spectral analysis of BOA images across the time-series and obtained from the 3 AC methods, 

c) preparation of both calibration and validation datasets for d) model building and e) validation 

of clay predictions. 
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Figure 3: Histograms of NDVI values calculated for each S2 image corrected by the MAJA (yellow), Sen2Cor (orange), and LaSRC (cyan) AC 

methods. 



4 

 

Figure 4: Histograms of NBR2 values calculated for each S2 image corrected by the MAJA (yellow), Sen2Cor (orange), and LaSRC (cyan) AC 

methods. 
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Figure 5: Distribution of BOA reflectance obtained with MAJA (yellow), Sen2Cor (orange) 

and LaSRC (cyan) at each spectral band and for each date. 
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Figure 6: Coefficient of correlation ��,� (A1, A2 and A3) and ����	�,� (BA, B2 and B3) 

calculated between the BOA reflectance obtained by MAJA and Sen2Cor (A1 and B1), by 

MAJA and LaSRC (A2 and B2), and by Sen2Cor and LaSRC (A3 and B3) for the 111 spectra. 



Table 1: Proportion of masked cloud surface (%) over each S2 image. Proportion of bare soil (%) over each S2 image obtained by each AC method 

and the tested combinations of NDVI and NBR2 thresholds. The range (difference between the largest and smallest values of bare soil coverage) 

was also calculated along both AC methods and S2 dates. Highest ranges of bare soil pixels along both AC methods and S2 dates are highlighted 

in bold. 

  S2 acquisition date (DD-MM-YYYY)  

  03-02-

2017 

16-02-

2017 

23-02-

2017 

26-02-

2017 

08-03-

2017 

25-03-

2017 

28-03-

2017 

04-04-

2017 

24-04-

2017 

27-04-

2017 

07-05-

2017 
 

 % of masked cloud surface 0 0 0 0 3 0 0 0.3 0 1.4 0 

Range along 

the dates 

(%) 

NDVI < 

0.25 

% of bare soil with MAJA 66.45 74.5 75.18 78.7 71.78 70.43 72.16 68.42 67.69 68.38 65.03 13.67 

% of bare soil with Sen2Cor 60.48 67.85 74.6 77.42 78.97 70.59 70.28 76.4 73.96 71.97 68.89 18.49 

% of bare soil with LaSRC 61.01 66.78 72.74 70.09 58.22 69.26 67.64 67.79 66.3 65.92 62.7 14.52 

Range of bare soil along 

the 3 AC methods (%) 
5.97 7.72 2.44 8.61 20.75 1.33 4.52 8.61 7.66 6.05 6.19   

NDVI < 

0.3 

% of bare soil with MAJA 77.9 83.4 83.8 85.9 80.5 80.8 81.8 79.8 79.1 78.6 76.3 9.6 

% of bare soil with Sen2Cor 73.4 79.9 83.5 85.6 85.9 81.1 80.9 85.1 83.3 81.3 79.5 12.5 

% of bare soil with LaSRC 75.2 79.1 82.7 82 75.1 80.9 80.2 80.5 78.7 79.2 75.3 7.6 

Range of bare soil along 

the 3 AC methods (%) 
4.5 4.3 1.1 3.9 10.8 0.3 1.6 5.3 4.6 2.7 4.2   

NDVI < 

0.35 

% of bare soil with MAJA 84.36 88.44 88.56 90.03 85.37 86.69 87.27 86.28 85.58 84.77 83.22 6.81 

% of bare soil with Sen2Cor 80.97 86.12 88.4 90.15 89.58 87.02 86.77 90.13 88.74 86.9 85.92 9.18 

% of bare soil with LaSRC 82.71 85.27 87.99 87.85 83.81 87 86.67 87.29 85.82 86.46 82.93 5.28 

Range of bare soil along 

the 3 AC methods (%) 
3.39 3.17 0.57 2.3 5.77 0.33 0.6 3.85 3.16 2.13 2.99   

% of bare soil with MAJA 23.69 20.73 27.24 17.57 5.11 40.7 26.07 22.37 21.42 18.42 15.34 35.59 



NDVI < 

0.3 and 

NBR2 < 

0.09 

% of bare soil with Sen2Cor 33.89 35.86 44.66 32.25 14.81 55.19 41.83 44.34 51.25 38.96 44.38 40.38 

% of bare soil with LaSRC 20.22 17.26 21.82 10.42 2.08 37.83 19.17 15.16 11.83 9.65 8.53 35.75 

Range of bare soil along 

the 3 AC methods (%) 
13.67 18.6 22.84 21.83 12.73 17.36 22.66 29.18 39.42 29.31 35.85   

NDVI < 

0.3 and 

NBR2 < 

0.12 

% of bare soil with MAJA 58.51 57.64 64.29 57.21 17.21 73.28 64.02 55.51 59.32 54.8 50.48 56.07 

% of bare soil with Sen2Cor 62.82 67.21 73.72 69.59 36.37 77.75 72.56 73.38 77.52 70.72 72.09 41.38 

% of bare soil with LaSRC 55.24 52.96 59.46 47.06 10.15 71.79 57.71 48.09 47.64 42.63 39.64 61.64 

Range of bare soil along 

the 3 AC methods (%) 
7.58 14.25 14.26 22.53 26.22 5.96 14.85 25.29 29.88 28.09 32.45   

NDVI < 

0.3 and 

NBR2 < 

0.15 

% of bare soil with MAJA 74.78 78.25 80.58 79.76 40.01 80.35 79.75 74.97 77.06 75.21 72.43 40.57 

% of bare soil with Sen2Cor 72.51 78.5 82.55 83.55 63.42 80.87 80.17 83.84 82.75 80.05 78.9 20.42 

% of bare soil with LaSRC 72.13 74.04 78.71 74.72 27.63 80.29 77.53 73.13 73.89 72.1 68.22 52.66 

Range of bare soil along 

the 3 AC methods (%) 
2.65 4.46 3.84 8.83 35.79 0.58 2.64 10.71 8.86 7.95 10.68   

  



Table 2: Proportion of common bare soil surface (%) for all S2 images corrected by MAJA. Sen2Cor and LaSRC. Number of collected topsoil 

samples located over these common bare soil pixels and statistics calculated for each dataset of topsoil samples. These values were calculated for 

each tested combinations of NDVI and NBR2 thresholds. 

 
  Statistics on collected topsoil samples located over common bare soil pixels 

 

% of 

common 

bare soil 

Number of 

samples  
min (g kg-1) max (g kg-1) 

mean (g 

kg-1) 

Standard 

deviation 

(g kg-1) 

skewness (g 

kg-1) 

NDVI < 0.25 40.0% 84 58 592 212 117 8.7 

NDVI < 0.3 57.2% 111 58 592 224 120 7.8 

NDVI < 0.35 67.3% 122 58 592 228 190 7.0 

NDVI < 0.3 and NBR2 < 0.09 1.2% 2 58 64 61 3.9 0 

NDVI < 0.3 and NBR2 < 0.12 7% 12 58 449 147 109 18.0 

NDVI < 0.3 and NBR2 < 0.15 21% 47 58 592 228 119 7.0 



Table 3: Validation performances for the estimations of soil clay content obtained from the MLR models built from MAJA- Sen2Cor- and LaSRC-

corrected S2 images. Best performances in terms of both R²
cv and RMSEcv for each date are highlighted in bold. 

   S2 acquisition date (DD-MM-YYYY) 

   03-02-

2017 

16-02-

2017 

23-02-

2017 

26-02-

2017 

08-03-

2017 

25-03-

2017 

28-03-

2017 

04-04-

2017 

24-04-

2017 

27-04-

2017 

07-05-

2017 

NDVI < 

0.25 

MAJA 

R
²
cv 0.62 0.63 0.62 0.61 0.52 0.74 0.71 0.62 0.80 0.73 0.72 

RMSEcv 7.77 7.56 7.82 7.66 8.74 6.44 6.94 7.86 5.68 6.56 6.47 

MAE 5.55 5.84 5.97 5.72 6.88 5.02 5.45 6.29 4.68 5.23 5.22 

Sen2Cor 

R
²
cv 0.62 0.63 0.62 0.60 0.50 0.76 0.72 0.62 0.80 0.74 0.72 

RMSEcv 7.86 7.68 7.77 7.81 8.93 6.34 7.00 7.74 5.70 6.52 6.59 

MAE 5.54 5.89 5.88 5.71 7.09 4.94 5.48 6.21 4.70 5.20 5.30 

LaSRC 

R
²
cv 0.63 0.62 0.62 0.59 0.50 0.75 0.72 0.63 0.77 0.72 0.68 

RMSEcv 7.61 7.58 7.61 7.91 8.94 6.21 6.84 7.64 6.16 6.50 6.99 

MAE 5.39 5.66 5.85 5.99 7.09 4.79 5.47 6.02 5.07 5.35 5.73 

NDVI < 0.3 

MAJA 

R
²
cv 0.62 0.65 0.64 0.65 0.49 0.71 0.66 0.51 0.72 0.68 0.68 

RMSEcv 7.57 7.29 7.44 7.34 8.77 6.60 7.19 8.56 6.50 6.98 6.89 

MAE 5.67 5.57 5.62 5.41 6.98 5.18 5.68 6.79 5.17 5.53 5.73 

Sen2Cor 

R
²
cv 0.61 0.64 0.61 0.64 0.45 0.71 0.67 0.48 0.71 0.68 0.67 

RMSEcv 7.68 7.35 7.54 7.38 9.15 6.63 7.15 8.73 6.56 6.97 6.98 

MAE 5.70 5.63 5.66 5.40 7.30 5.20 5.62 6.89 5.24 5.48 5.84 

LaSRC 

R
²
cv 0.62 0.62 0.62 0.64 0.43 0.71 0.66 0.55 0.71 0.68 0.64 

RMSEcv 7.43 7.31 7.38 7.44 9.26 6.38 7.17 8.20 6.62 6.70 7.10 

MAE 5.50 5.54 5.61 5.51 7.40 4.94 5.68 6.44 5.34 5.39 5.88 

NDVI < 

0.35 

MAJA 

R
²
cv 0.63 0.64 0.61 0.65 0.51 0.74 0.71 0.55 0.75 0.70 0.70 

RMSEcv 7.47 7.42 7.59 7.42 8.51 6.32 6.72 8.27 6.14 6.68 6.79 

MAE 5.59 5.60 5.69 5.59 6.76 4.91 5.28 6.55 4.79 5.22 5.61 

Sen2Cor R
²
cv 0.62 0.63 0.62 0.62 0.47 0.73 0.70 0.51 0.75 0.70 0.69 



RMSEcv 7.61 7.51 7.55 7.57 8.88 6.34 6.77 8.42 6.22 6.68 6.81 

MAE 5.68 5.69 5.72 5.65 7.04 4.91 5.26 6.62 4.87 5.20 5.68 

LaSRC 

R
²
cv 0.60 0.61 0.61 0.63 0.45 0.74 0.70 0.58 0.74 0.69 0.66 

RMSEcv 7.55 7.42 7.45 7.59 8.97 6.21 6.80 7.92 6.30 6.81 7.03 

MAE 5.58 5.54 5.53 5.76 7.11 4.80 5.35 6.24 4.97 5.32 5.75 

NDVI < 0.3 

and NBR2 

< 0.15 

MAJA 

R
²
cv 0.70 0.73 0.71 0.70 0.58 0.75 0.66 0.62 0.77 0.73 0.73 

RMSEcv 6.91 7.22 7.06 7.69 9.03 6.98 7.93 8.84 6.82 7.48 7.36 

MAE 5.73 6.14 5.94 6.28 7.65 5.80 6.47 7.32 5.60 6.31 6.34 

Sen2Cor 

R
²
cv 0.70 0.73 0.71 0.72 0.54 0.78 0.67 0.62 0.77 0.73 0.72 

RMSEcv 6.97 7.09 7.26 7.54 9.50 6.88 7.77 8.29 7.03 7.63 7.23 

MAE 5.80 5.99 6.24 6.14 7.97 5.71 6.42 6.82 5.75 6.43 6.14 

LaSRC 

R
²
cv 0.73 0.74 0.72 0.71 0.52 0.78 0.68 0.67 0.69 0.71 0.74 

RMSEcv 5.98 6.77 6.46 7.11 9.53 6.81 7.78 8.43 8.41 8.04 7.49 

MAE 4.99 5.71 5.43 5.70 7.86 5.38 6.50 7.17 7.11 6.80 6.37 

 

 




