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Abstract

To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species
such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait
loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was
phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress
indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-
sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-
by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single
nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide
polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleo-
tide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones com-
pared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables.
Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits.
New candidate genes and the application into breeding are discussed.

Keywords: GWAS; genomic prediction; grapevine; Vitis vinifera L; genotyping-by-sequencing; yield components; secondary metabo-
lites; genetic architecture; candidate genes

Introduction
With the 2 major challenges facing perennial fruit crops in general
and grapevine in particular, i.e. decreasing phytosanitary products
such as fungicide treatments and adapting to climate change,
harnessing existing genetic diversity (Wolkovich et al. 2018) and
breeding new varieties (Adam-Blondon et al. 2011) are both impor-
tant levers. For the latter, many studies aimed at deciphering the
genetic architecture of traits of interest by mapping quantitative
trait loci (QTLs) in bi-parental progenies (Vezzulli et al. 2019).
However, this approach suffers from several drawbacks: the limited
allelic diversity in parents, the low number of recombination events
in the progeny, the upward bias of estimated QTL effects, and the
underestimation of the polygenic contribution for prediction pur-
poses (Cardon and Bell 2001). As a result, all traits currently involved

in grapevine marker-assisted selection (Vezzulli et al. 2019) are con-

trolled by major genes, such as resistance to downy and powdery

mildews (Di Gaspero et al. 2007), black rot (Rex et al. 2014), sex (Picq

et al. 2014), berry color (Fournier-Level et al. 2009), seedlessness

(Mej�ıa et al. 2011), and Muscat aroma (Duchêne et al. 2009).
To overcome these limits, a few genome-wide association

studies (GWASs) have been performed in cultivated grapevine di-

versity panels but, due to various reasons, failed to identify many

new QTLs. Several articles (Myles et al. 2011; Zarouri 2016;

Migicovsky et al. 2017; Laucou et al. 2018) harnessed phenotypic

data from genetic resources repositories collected without a

proper experimental design. Moreover, the first 3 articles cited

used at most 10k SNPs despite the low extent of linkage disequi-

librium (LD) (Myles et al. 2011; Nicolas et al. 2016). Among other
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articles, Zhang et al. (2017) focused on a single binary trait with a
major QTL, seedlessness; Yang et al. (2017) used only 187 SSRs and
96 genotypes; Sargolzaei et al. (2020) focused on disease resistance
using an 18K SNP microarray; Naegele et al. (2021) used at most
14k SNPs obtained by sequencing.

Moreover, most of these articles as well as one using 32k SNPs
obtained with sequencing (Guo et al. 2019) used only SNP-by-SNP
models. However, multi-SNP models have the advantage of explic-
itly assuming a genetic architecture, be it sparse with few major
QTLs or dense with many small-effect QTLs, allowing them to bene-
fit from a potential gain in power (Zhang et al. 2019). Furthermore,
the effects of QTLs are often overestimated (Xu 2003) which leads to
poor prediction (Meuwissen et al. 2001). Multi-SNP models provide
a straightforward way to efficiently perform genomic prediction
(de los Campos et al. 2013), notably for traits devoid of major QTLs.

Consequently, our objective was to perform whole-genome as-
sociation and prediction for various traits of interest in grapevine
breeding, likely to display different genetic architectures. We aimed
at finding out to what extent genetic variation contributes to phe-
notypic variation, how it is organized in sparse and dense genetic
components, how accurate genomic prediction might be, and
which genes are present under the QTLs uncovered. Our approach
builds on a large diversity panel of 279 Vitis vinifera L. cultivars
(Nicolas et al. 2016) defined from the French collection of grapevine
genetic resources and overgrafted in the vineyard in 5 randomized
complete blocks. The panel was phenotyped over several years and
under different conditions for 127 traits, including yield compo-
nents, organic acids, aroma precursors, polyphenols, and a water
stress indicator, which, along with 25 derived variables, totaled 152
response variables. The cultivars were genotyped with both micro-
array and sequencing after a reduction of genomic complexity
(genotyping-by-sequencing, GBS), reaching a total of 63k SNPs. QTL
detection and genomic prediction were then performed with multi-
SNP models assuming different genetic architectures, and posi-
tional candidate genes were searched for under QTLs.

Materials and methods
Plant material and field trial
The panel of 279 cultivars of Vitis vinifera L. was designed to limit
relatedness (any pair of cultivars in the panel corresponds to dis-
tinct genotypes with no parent in common) and is weakly struc-
tured in 3 genetic groups (Nicolas et al. 2016). In 2009, at the
Domaine du Chapitre of Institut Agro Montpellier (Villeneuve-lès-
Maguelone, France), the 279 cultivars as well as a control (cv.
Marselan) were all overgrafted onto 6-year-old Marselan vines, it-
self grafted on rootstock Fercal, in a complete randomized block
design with 5 blocks (A to E, Supplementary Fig. 1). Because of
failed overgrafting, precocious death or fertility issues, only 270 cul-
tivars out of the 279 in the whole panel could be phenotyped. The
density of the field trial was 3,300 plants/ha (1 m between plants
along the same rank and 2.5 m between ranks). Each of the 5 blocks
contained 1 plant of each panel cultivar as well as a regular mesh
of over-grafts of Marselan as control (between 23 and 39 per block).
The double-cordon training system was applied.

A random subset of 21 full-sib genotypes of a Syrah �
Grenache progeny, together with the 2 parents, was also used to
assess out-of-sample genomic prediction. The field design had 2
random complete blocks established in 2003 as already described
(Doligez et al. 2013). Each block contained the whole progeny (191
offsprings, one subplot each) as well as both parents (9 subplots
each). Each subplot contained 5 grafted plants of the same geno-
type.

Phenotyping
Here, we will use the term “trait” for any plant feature for which
raw data were collected, whatever the year and condition.

However, in our analyzes we use the term “response variable” be-
cause: (1) for some traits, data were acquired in different years
and conditions, and hence analyzed separately; (2) we also com-
bined several traits to define new variables. In the end, we thus
analyzed 152 response variables from 127 traits.

In 2011 and 2012, the trial was not irrigated, and all the plants
of the panel cultivars and controls were concurrently pheno-

typed. For each plant, we recorded the number of clusters
(NCBLU) and harvested 3 clusters at 20�Brix, which provided the
sampling date (SAMPLDAY, in days since January 1). We recorded
mean cluster weight (MCW, in g), mean cluster length (in cm),
mean cluster width (in cm), and cluster compactness (from 1 to 9
on the OIV 204 scale; OIV, 2009). One hundred berries randomly

sampled from the central third of clusters were weighed, provid-
ing the mean berry weight (MBW, in g). In the winters of 2011–
2012 and 2012–2013, the number of woody shoots (NBWS) and
pruning weight (PRUW, in kg) were recorded for each plant. In
2011, the veraison date (onset of ripening, VER, in days since
January 1) was also recorded. Two variables were computed from

these traits: the veraison-maturity interval (VERMATU as
SAMPLDAY—VER, in days), and plant vigor (VIG as PRUW/NBWS,
in kg). In 2011 and 2012, juices were made from the sampled ber-
ries and analyzed to measure d13C (D13C) as previously detailed
(Pinasseau, Vallverdú-Queralt, et al. 2017). In 2012 were also de-
termined glucose (GLU), fructose (FRU), malate (MAL), tartrate

(TAR), shikimate (SHI), and citrate (CIT) concentrations, all in
lEq l�1, as previously described (Rienth et al. 2016). Six variables
were computed from these traits: the sum of glucose and fruc-
tose (GLUFRU), glucose divided by fructose (GLUONFRU), malate
divided by either tartrate (MALTAR), shikimate (SHIKTAR), or cit-
rate (CITAR) and the sum of glucose and fructose (GLUFRUTAR).

In 2014 and 2015, irrigation was applied to blocks C, D, and E

only (Pinasseau, Vallverdú-Queralt, et al. 2017), and only panel
cultivars were phenotyped. As above, 3 clusters per plant were
harvested at 20�Brix, providing the MCW (in g). Berries sampled
from different blocks with the same water treatment were pooled
per cultivar. More details on berry sampling and processing, as
well as polyphenols and d13C measurements and analysis are de-

scribed elsewhere (Pinasseau, Vallverdú-Queralt, et al. 2017).
From the data available on the 105 different polyphenols in mg
per berry (Pinasseau, Verbaere, et al. 2017), a few typos were cor-
rected and 17 extra variables were calculated (Pinasseau,
Vallverdú-Queralt, et al. 2017). In addition, 2 aroma precursors,
b-damascenone (BDAM, in lg l�1) (Kotseridis et al. 1999) and po-

tential dimethyl sulfide (PDMS, in lg l�1) (Segurel et al. 2005) were
also quantified. The volume and weight of juice samples were
recorded, allowing to assess their effects when included as cofac-
tors in the statistical analyses.

A total of 127 traits were phenotyped, from which 25 extra var-
iables were computed. Because irrigation was applied to some
blocks only in 2014–2015, the few traits phenotyped both in 2011–

2012 and in 2014–2015 were analyzed separately. Overall, 152 re-
sponse variables were analyzed (Supplementary Tables 1 and 2).

The sanitary status of cultivars regarding the presence of 5 vi-
ruses (CNa, GLRaV1, GLRaV2, GLRaV3, and GFkV) was assessed
by ELISA from plants at INRAE Vassal (Marseillan, France).
Flower sex (OIV 151) and berry skin color (OIV 225) of each panel
cultivar were retrieved from (Laucou et al. 2018) and completed
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with the database of INRAE Vassal germplasm repository (https://
bioweb.supagro.inra.fr/collections_vigne/Home.php?l=EN).

Berry weight was phenotyped on the Syrah � Grenache cross
in 2005, 2006, and 2007 in the same way as on the panel (Doligez
et al. 2013), except that 8 clusters per genotype and per block
were harvested instead of 3.

Genotyping
Data acquisition and analysis of microarray SNPs
The panel and Syrah � Grenache progeny were genotyped with the
GrapeReSeq 18k Vitis Illumina microarray (Laucou et al. 2018). Data
processing (see Supplementary Text 1, Supplementary Figs. 2, 3,
and Supplementary Table 2) resulted in 13,925 SNPs for 277 culti-
vars. After filtering on LD above 0.9 and minor allele frequency
(MAF) below 0.05, 10,530 SNPs remained (see Supplementary
Fig. 4), thereafter referred to as the “microarray-only” SNPs.

Data acquisition and analysis of sequencing SNPs
The panel was also genotyped by sequencing (GBS, Elshire et al.
2011). Keygene NV owns patents and patent applications protecting
its Sequence Based Genotyping technologies. Data processing con-
sisted in read checking with FastQC version 0.1.2 (Andrews 2016),
demultiplexing with a custom script, cleaning, and trimming with
CutAdapt version 1.8.1 (Martin 2011), alignment on the PN40024
12Xv2 reference sequence (Canaguier et al. 2017) with BWA MEM ver-
sion 0.7.12-r1039 (Li 2013) and realignment with GATK version 3.7
(DePristo et al. 2011), followed by variant and SNP calling with GATK
HaplotypeCaller, and a final filtering step, notably to discard SNP
genotypes with <10 reads or quality below 20 (see Supplementary
Text 2 and Supplementary Table 3). It resulted in 184,145 SNPs with
<30% missing data for the 279 panel cultivars.

Joint imputation of microarray and GBS SNPs
The 13,925 microarray SNPs and 184,145 GBS SNPs for 277 com-
mon cultivars were combined into a set of 197,885 common SNPs
(after duplicate removal) using coordinates on the 12Xv2 reference
sequence (Canaguier et al. 2017). Missing data were imputed using
LD with Beagle version 4.1-r862 (Browning and Browning 2009) as
advised by Swarts et al. (2014), with window¼ 1,000, overlap¼ 450,
ne¼ 10,000, and otherwise default parameters. After filtering for
LD above 0.9, 90,007 SNPs remained (see Supplementary Fig. 3),
and while subsequent filtering for MAF below 0.05 resulted in
63,105 SNPs (see Supplementary Fig. 4), thereafter referred to as
the “microarray-GBS” SNPs. We also imputed the Syrah �
Grenache SNP genotypes similarly using Beagle.

Statistical modeling of phenotypic data
We performed a 2-stage analysis of each response variable using
univariate regression models. In the first stage, estimates of total
genotypic values were obtained (detailed in this section). In the
second stage (see next section), these were regressed on SNP gen-
otypes to identify QTLs, estimate their allelic effects and assess
prediction accuracy.

To decrease the influence of potential outliers, all polyphenols
(the compounds as well as the calculated variables) had their raw
data automatically transformed with the natural log. For the other
traits, when their raw phenotypic data were too skewed as visually
assessed, they were also log-transformed (see Supplementary Fig. 5
and Supplementary Table 4).

Assessment of spatial heterogeneity
In 2011–2012, phenotypic data for the control were spatially
analyzed (Cressie 1993) in a way similar to Hamann et al. (2002).

First, a global linear model was fitted with R/stats with fixed
effects for block, year, block–year interaction, PRUW, NBWS,
vigor, and all 5 viruses (PRUW and vigor were discarded when
vigor itself was the response). Facilitated by R/MuMIn version
1.40 (Barto�n 2017), model comparison was performed by maxi-
mum likelihood (ML), the best model being selected based on the
corrected Akaike information criterion, AICc (Burnham and
Anderson 2004). For each year separately, the empirical variogram
of residuals from the best model was computed, on which several
variogram models were fitted by ML with R/gstat version 1.1.5
(Pebesma 2004): exponential, spherical, gaussian, and Stein’s pa-
rametrization of the Mat�ern model. The variogram model with the
smallest sum of squared errors was then used to perform spatial
interpolation by kriging, i.e. best linear unbiased prediction (BLUP)
of the control’s response variable at all locations. By visually
assessing the slope of the best variogram model fitted to the em-
pirical variogram (Supplementary Fig. 6) and the prediction errors
from cross-validation (data not shown), it was concluded that
there was no need to correct for spatial heterogeneity.

In 2014–2015, the control was not phenotyped, an irrigation
treatment was applied, and samples from different blocks with
the same irrigation level were pooled (Pinasseau, Vallverdú-
Queralt, et al. 2017), hence preventing the assessment of any po-
tential spatial heterogeneity as above.

Estimation of genotypic values
For each response variable, a global linear mixed model was de-
fined with multiple fixed effects [for the 2011–2012 data set:
block, year, block–year interaction, PRUW, NBWS, vigor, and all 5
viruses, PRUW and vigor being discarded when vigor itself was
the response; for the 2014–2015 data set: irrigation, year, irriga-
tion–year interaction, �Brix (as there can be small deviations
from 20�Brix)], and all 5 viruses, as well as the volume and weight
of juice samples for BDAM and PDMS) together with 2 random
effects (genotype and genotype–year interaction). The global
model was fitted by ML with R/lme4 version 1.1.19 (Bates et al.
2015). The output was given to R/lmerTest version 3.1-2
(Kuznetsova et al. 2017) to use its function “step.” Backward elimi-
nation of random-effect terms was performed using likelihood
ratio test, followed by backward elimination of fixed-effect terms
using F-test for all marginal terms, i.e. terms that can be dropped
from the model while respecting the hierarchy of terms in the
model, with a 0.05 P-value threshold for both types of terms.
The final model after backward elimination was then refitted by
restricted ML (ReML) to obtain unbiased estimates of variance
components and empirical BLUPs of genotypic values. The accept-
ability of underlying assumptions (homoscedasticity, normality,
independence) was visually assessed by plotting residuals and
BLUPs. Broad-sense heritability on a genotype–mean basis (H2)
was computed using 2 estimators. The first assumes a balanced
design (Falconer and Mackay 2009): H2

C ¼ r2
g/[r

2
g þ (r2

g:y/ny) þ
(r2

e/(ny � nr)] where r2
g is the variance of the genotypic values,

r2
g:y is the variance of the genotype–year interactions, ny is the ar-

ithmetic mean number of trials (years), r2
e is the variance of the

errors (residuals), and nr the arithmetic mean number of replicates
per trial. The second estimator, H2

O, allows for unbalanced data
(see Oakey et al. 2006, for details). Robust confidence intervals for
variance components, heritability and genotypic coefficient of var-
iation were obtained by parametric bootstrap as recommended by
Schweiger et al. (2016), using the percentile method (Carpenter and
Bithell 2000) in the R/lme4 and R/boot packages. In the Syrah �
Grenache progeny, empirical BLUPs of genotypic values for berry
weight were obtained in the same way.
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Statistical modeling of genotypic data
Genetic architecture assumed sparse
We used 2 types of models to perform genome-wide association
testing and detect QTLs. The first is the SNP-by-SNP model as
implemented in GEMMA version 0.97 (Zhou and Stephens 2012).
For each SNP p, eBLUP(g) ¼ 1 l þMa,p bp þ uþ e where eBLUP(g) is
a vector of responses of length N, Ma,p is a vector of length N with
the genotypes at the pth SNP (additive coding), bp is its effect
modeled as fixed, u � NN(0, ru

2 A) is a vector of length N corre-
sponding to a polygenic effect modeled as random where the co-
variance matrix A contains additive genetic relationships
(Vitezica et al. 2013), and e � NN(0, re

2 Id) with N the Normal dis-
tribution of dimension N, 0 a vector of zeros, and Id the identity
matrix of dimension N�N. eBLUPs of g were used instead of
BLUEs as they are known to be more accurate for prediction and
selection purposes, notably thanks to the shrinkage property
(Piepho et al. 2008). Our goal was to test the null hypothesis bp¼0
while controlling for relatedness between genotypes. Controlling
the family-wise error rate at 5% to account for multiple testing,
the effect of an SNP was deemed significant when the P value
from the Wald test statistic was lower than the Bonferroni
threshold.

The second type of models jointly analyzes all SNPs with the
goal of selecting a subset of those with large effects while han-
dling LD. This SNP selection can be achieved in a frequentist set-
ting via stepwise regression (Segura et al. 2012). It starts with the
SNP-by-SNP model, followed by inclusion, at every iteration, of
the SNP with the smallest P value as an additional fixed effect,
until the proportion of variance explained by the polygenic effect
is close to zero. The SNP effects deemed significant were those of
the best model selected according to the extended BIC. We fitted
it with R/mlmm.gwas v1.0.4 (Bonnafous et al. 2018) allowing a
maximum of 50 iterations. SNP selection can also be achieved in
a Bayesian setting with the following model: eBLUP(g) ¼ 1 l þ Ma

b þ e, where Ma is a NxP matrix of SNP genotypes (additive cod-
ing), with the so-called spike-and-slab prior for each SNP p, bp �
p0 d0 þ (1 - p0) N1(0, rb

2), d0 being a point mass at zero. We fitted it
with the variational algorithm, faster than MCMC, implemented
in R/varbvs version 2.5.7 (Carbonetto and Stephens 2012). An SNP
was deemed significant when its posterior inclusion probability,
PIPp ¼ Pr(bp 6¼ 0), was higher than 0.80.

Beyond this focus on statistical significance (McShane and
Gal 2017), we provide all estimates of significant additive SNP
effects with a quantification of their uncertainty (Supplementary
Table 5).

QTL definition and annotation
QTLs were defined as intervals around significant SNPs based on
LD decay (Bonnafous et al. 2018) (see Supplementary Text 3). A
comparison was made between the QTLs detected in this study
and (1) a first list of already-published QTLs (Vezzulli et al. 2019),
significant at a 5% genome-wide threshold, that were classified
according to the Vitis INRAE ontology v2 (https://urgi.versailles.
inra.fr/ephesis/ephesis) and slightly edited for automatic proc-
essing (see Supplementary Text 3); and (2) a second list of signifi-
cant hits from a few GWAS publications after converting their
coordinates on the genome reference we used.

In terms of annotation, as a given locus can be a QTL for mul-
tiple response variables, we first merged our 489 reliable QTLs
(found with at least 2 methods, see Results) across all response
variables, which resulted in 134 distinct genomic intervals
(Supplementary Table 9). These intervals had a median length of

100,001 kb (with a minimum of 100,001 kb and a maximum of
1,072,169 kb). We then searched for overlaps between them and
the Vcost version 3 annotations totalizing 42,413 gene models
from Canaguier et al. (2017), also using the correspondence be-
tween IGGP (International Grapevine Genome Program) and NCBI
RefSeq gene model identifiers provided by the URGI (https://urgi.
versailles.inra.fr/Species/Vitis/Annotations).

Genetic architecture assumed dense

To estimate the proportion of variance of empirical BLUPs of ge-
notypic values explained by the cumulative contribution of SNPs
(Yang et al. 2010) (PVESNPs), we used the well-known multi-SNP
model termed ridge regression (also known as “RRBLUP”) which
assumes a dense architecture: eBLUP(g) ¼ 1 l þ Ma b þ e where b

� NP(0, rb
2 Id). It is known to be equivalent to the “GBLUP” model

(Habier et al. 2007; Vitezica et al. 2013): eBLUP(g) ¼ 1 l þ ga þ e
where ga � NN(0, ra

2 A) with A, the N�N matrix of additive ge-
netic relationships, proportional to the matrix product Ma MT

a

once Ma is centered using allele frequencies. It is similar for the
dominance genotypic values gd � NN(0, rd

2 D) where D is the
N�N matrix of dominance genetic relationships. Because the
estimators of additive and dominance relationships from SNPs
assume linkage equilibrium, a 0.5 LD threshold was applied when
computing A and D. We fitted the models with R/lme4 and com-
puted confidence intervals for variance components by bootstrap
as above.

Genomic prediction

Out-of-sample prediction was assessed within the panel by 5-fold
cross-validation repeated 10 times with R/caret version 6 (Kuhn
2018), using R/varbvs that assumes a sparse genetic architecture
and R/rrBLUP version 4.5 (Endelman 2011) that assumes a dense
architecture (infinitesimal model). Note that the QTL results
from the GWAS analysis were not used when training each
model, to avoid overfitting. We assessed prediction accuracy be-
tween empirical BLUPs of genotypic values and their predictions
with various metrics: root mean square error, Pearson’s linear
correlation coefficient (corP), Spearman’s rank correlation coeffi-
cient (corS), as well as outputs from the simple linear regression
of observations on predictions such as the intercept, slope, ad-
justed coefficient of determination (R2), and the P-value of the
test for no bias.

Out-of-sample prediction was also assessed by training
rrBLUP and varbvs methods on the whole panel and predicting
empirical BLUPs of genotypic values for the 23 genotypes of the
Syrah � Grenache cross.

Results
Estimation of broad-sense heritability and genetic
coefficient of variation
We took advantage of the V. vinifera L. panel of 279 cultivars suit-
able for GWAS and representing the INRAE Vassal germplasm re-
pository to set up a randomized-complete-block field trial
(Supplementary Fig. 1). It was phenotyped for 127 traits from
which 25 extra variables were computed. All 152 response varia-
bles displayed substantial variation (Supplementary Fig. 5). For
some polyphenol variables, part of the variation was obviously
associated with skin color, 137 cultivars out of 279 having colored
skin berries. When phenotyped, the control cultivar allowed us to
establish that (1) part of this variation was due to genetic differ-
ences between panel cultivars (Supplementary Fig. 5), and that
(2) spatial heterogeneity was negligible (Supplementary Fig. 6).
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The amount of missing data among response variables ranged
from 15.78% to 43.93% (Supplementary Table 4). To account for
such unbalance, we fitted linear mixed models and obtained
BLUPs of genotypic values. After model selection, the final set of
fixed and random effects differed between response variables
(Supplementary Table 4), with year and genotype–year interac-
tion effects being selected in most cases.

We then assessed the accuracy with which genotypic values
were estimated using broad-sense heritability (the higher, the bet-
ter). As shown in Fig. 1, 76.6% of broad-sense heritability estimates
were above 0.5, with narrow confidence intervals (Supplementary
Table 4). Two estimators, H2

C and H2
O, handling missing data differ-

ently, gave very similar estimates (Supplementary Table 4), thus
indicating that genotypic values of all cultivars were accurately
estimated for most response variables. Moreover, 92.7% of the ge-
netic coefficients of variation were above 5% and 59.1% above
20% (Fig. 1; Supplementary Table 4).

Combining genotyping technologies to explain
more genetic variance
We then aimed to explain the variance of these genotypic BLUPs
with SNP genotypes. For that purpose, we used 2 sets of SNPs, the
“microarray-only SNPs” (10,503 SNPs) and “microarray-GBS SNPs”
(63,105 SNPs).

Because LD is known to be short in V. vinifera L. (Myles et al.
2011; Nicolas et al. 2016), we increased the SNP density initially
obtained with the microarray by sequencing with complexity re-
duction (GBS). Raw reads had high quality along their sequences,
although many displayed adapters’ content at their 5’ end, which
had to be trimmed off. After demultiplexing, more than 95% of
the reads were assigned to a cultivar. After alignment on the ref-
erence genome, the median coverage depth of regions having at
least 1 read, averaged over cultivars, was 21.7, which allowed to
accurately call both homozygous and heterozygous SNP geno-
types after filtering out SNPs supported by <10 reads.

Compared with the microarray-only SNP set, the combined
microarray-GBS set displayed a substantially higher SNP density

along all chromosomes (Supplementary Fig. 4). We then esti-
mated the additive genetic relationships between cultivars
(Supplementary Fig. 7), confirming the weak structure in 3 sub-
groups corresponding to wine west, wine east, and table east. The
matrix of genetic relationships was used to estimate the propor-
tion of variance in genotypic BLUPs explained by SNPs (PVESNPs).
Assuming an additive-only, polygenic architecture, PVESNPs was
higher with microarray-GBS SNPs than with microarray-only
SNPs for 97.8% of responses variables (Fig. 2; Supplementary
Table 5). This showed the advantage of combining SNPs so that
more QTLs are in LD with at least 1 genotyped SNP.

Models with both additive and dominance relationships either
failed to converge or then, only with difficulty, most probably be-
cause the matrix of dominance relationships was very similar to
the identity matrix, making it indistinguishable from the error
term (Supplementary Fig. 7).

QTL detection by GWAS and identification of
candidate genes
The GWAS methods used in the following were first checked on 2
previously phenotyped traits, flower sex and berry skin color, for
which the already known genetic architecture consists in a major
QTL. Results were coherent with the literature (Fournier-Level
et al. 2009; Picq et al. 2014): a major QTL on chromosome 2 for
flower sex (around coordinate 4,769,151) and for berry skin color
(around coordinate 15,753,009). Other weaker QTLs were also
found, on the Unknown chromosome for flower sex [note that
Tello et al. (2019) found chunks of chromosome 2 in the Unknown
chromosome when building genetic maps], and on chromosome
7 and 13 for berry skin color (consistent with QTLs for skin antho-
cyanidin content found by Guo et al. 2015).

Each response variable phenotyped in this study was analyzed
with an SNP-by-SNP model to identify significant SNPs
(Supplementary Table 6). For each response variable, QTLs were
defined as LD-based intervals around each significant SNP
(Supplementary Table 7), and then merged when overlapping
(Supplementary Table 8). As summarized in Table 1, at least 1
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Fig. 1. Estimation in a diverse panel of Vitis vinifera L. of (a) broad-sense heritabilities for 152 response variables using the estimator from Oakey et al.
(2006), H2

O, and (b) their genetic coefficients of variation, CVg. Vertical lines indicate the median (plain), and quantiles at 0.25 and 0.75 (dotted).
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QTL was found for 66.4% of response variables with the
microarray-GBS SNPs, when compared with 57.9% with the
microarray-only SNPs.

To benefit from a potential gain in power, we fitted 2 multi-
SNP models that both provided more response variables with at
least 1 QTL compared with the SNP-by-SNP model, whatever the
SNP set (Table 1). Within multi-SNP methods, mlmm.gwas found
more significant SNPs and QTLs than varbvs, and for more re-
sponse variables. Yet, the interpretation is not straightforward as
these methods do not use the same criterion for declaring an SNP
as significant. Surprisingly, for mlmm.gwas, the numbers of re-
sponse variables with at least 1 QTL, significant SNPs and QTLs
were lower with more tested SNPs.

By summing over the 150 response variables with at least 1
QTL, a total of 3,490 QTLs were found (Supplementary Table 8),
which corresponded to an increase of 196% in the number of
QTLs and of 70% in the number of response variables with at
least 1 QTL, compared with applying the SNP-by-SNP method on
the microarray-only SNPs. Among these QTLs, 136 were found by
all 3 methods, while 3,001 were found by a single method only
and 1,598 by multi-SNP methods only (Supplementary Fig. 9).
Furthermore, over these 150 response variables, 26 had no QTL
according to the SNP-by-SNP method but at least one found by
both multi-SNP methods (Supplementary Fig. 10).

All chromosomes harbored at least 1 QTL (Supplementary
Fig. 11), and most QTLs found only by the multi-SNP mlmm.gwas
method fell far from QTLs found by other methods (Supplementary
Fig. 12). Moreover, 90% of the QTLs found only by the SNP-by-SNP
method GEMMA clustered on chromosome 2 for 64 response varia-
bles, all of them being polyphenols, in relation with the anthocyanin-
related MYB genes on this chromosome (Matus et al. 2008). This was
expected because GEMMA ignores LD between SNPs. In contrast, the
multi-SNP varbvs method was more parsimonious, yet had enough
power to identify significant SNPs in regions in which GEMMA did
not identify any signal (Supplementary Fig. 12).

To prioritize QTLs for further investigation, 489 QTLs involving
124 response variables were deemed reliable as they were found
by at least 2 methods (Supplementary Table 9 and Supplementary
Fig. 13). They corresponded to 59% less QTLs but 41% more re-
sponse variables with at least 1 QTL, compared with applying the
SNP-by-SNP method on the microarray-only SNPs. All chromo-
somes harbored at least 1 such reliable QTL, except chromosome
19 (Fig. 3).

The 489 reliable QTLs were compared with the largest list of
QTLs detected in grapevine bi-parental crosses compiled so
far (Vezzulli et al. 2019). Among the 22 traits in common, QTLs
were found on the same chromosome for 7 only (Supplementary
Table 8): cluster number (on chromosome 7), berry weight (on
chromosomes 1, 2, 8, 11, 15, and 17), malate (on chromosomes 9
and 18), glucose to fructose ratio (on chromosome 2), mean de-
gree of polymerization of tannins (chromosome 17), total concen-
tration of native anthocyanins (on chromosome 2), and %B-ring
methylated anthocyanins (on chromosome 2).

We also compared our reliable QTLs with significant GWAS
hits published in grapevine. Only 2 traits (cluster and berry
weight) were phenotyped in at least 1 other study with at least 1
significant GWAS hit found (Zarouri 2016; Laucou et al. 2018; Guo
et al. 2019). For berry weight, out of the 10 QTLs we found, 8 were
deemed new on chromosomes 1, 2, 8, 11, 15, and 17. We also
found 2 QTLs on chromosome 8 close to a known GWAS hit
(Zarouri 2016), but did not recover other hits on chromosomes 5,
17, 18, and 19 as in Zarouri (2016) and Guo et al. (2019). For cluster
weight, we found 2 new QTLs on chromosomes 1 and 3 but did
not recover other hits on chromosomes 5 and 13 (Zarouri 2016;
Laucou et al. 2018).

The comparison of our reliable QTLs with the reference gene
annotations detected 1,926 distinct gene models (Supplementary
Table 10). Out of these, only 980 had a proposed putative function
(Supplementary Table 11).

Assessment of genomic prediction and insight
into genetic architectures
We assessed the accuracy of genomic prediction by cross-
validation within the panel of 279 cultivars (Supplementary
Table 12). We compared 2 methods assuming contrasted genetic
architectures: additive infinitesimal for rrBLUP and additive
sparse for varbvs. Both the median Pearson and Spearman corre-
lation coefficients between observed and predicted genotypic val-
ues fell between 0.37 and 0.44, similarly for both SNP sets and
methods (Fig. 4). These correlations showed substantial correla-
tion with broad-sense heritability (Supplementary Fig.14), higher
for varbvs (�0.65) than for rrBLUP (�0.54). However, the distribu-
tions of varbvs’ correlation coefficients were clearly multi-modal,
with the majority being lower than rrBLUP’s but still a substantial
fraction being higher. This confirmed the robustness of rrBLUP’s
predictions irrespective of the underlying architecture (Wang et al.
2015). Yet varbvs can provide substantially better predictions than
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Fig. 2. Estimation in a diverse panel of Vitis vinifera L. of the proportion of
variance in genotypic BLUPs explained by SNPs for 152 response variables
and 2 SNP densities, assuming an additive-only, polygenic architecture.

Table 1. Comparison between methods in terms of the number of
QTLs (#QTLs) found in a diverse panel of Vitis vinifera L. for 2 SNP
data sets, summed up over all response variables.

Method Microarray-
only SNPs

Microarray-
GBS SNPs

Model Software #RVs #sSNPs #QTLs #RVs #sSNPs #QTLs

SNP-by-SNP GEMMA 88 2,295 1,179 101 7,855 1,784
Multi-SNP mlmm.gwas 148 1,257 1,243 125 703 692

Varbvs 118 266 257 119 258 257

Also indicated are the number of response variables with at least one QTL
(#RVs), and the number of significant SNPs (#sSNPs).
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rrBLUP for traits for which the genetic architecture is likely to be
rather sparse.

Moreover, rrBLUP results did not seem to depend on the SNP
set whereas they were slightly better with the microarray-GBS
SNPs for varbvs. This suggests that, among the extra SNPs pro-
vided by GBS, varbvs managed to identify those that improved its
prediction accuracy. Concerning the P value of the test for no
bias, varbvs showed similar values across both SNP sets, higher
than rrBLUP in general and above 0.05, suggesting an absence of
bias. On the contrary, rrBLUP showed lower P values with the
microarray-GBS SNPs, suggesting that its assumption of all SNP
effects being nonzero may be too strong for these traits, espe-
cially when SNP density is high.

We also used the 279 cultivars panel as a training set to pre-
dict MBW in a subset of a Syrah � Grenache progeny. With
rrBLUP (respectively, varbvs), this gave a Pearson correlation of
0.56 (0.35), an adjusted coefficient of regression of 0.28 (0.08),
and a P value of 1.6x10�4 (3.5x10�3) when testing for no bias.

The correlation is particularly promising for rrBLUP compared
with varbvs, in agreement with the results obtained by cross-
validation within the panel (Pearson correlation of 0.71 with
rrBLUP and 0.61 with varbvs).

Finally, combining results from both genome-wide association
and genomic prediction studies provides insight into the genetic
architecture of the studied traits. In Table 2, trait classes are
sorted according to the following metric: the difference between
the accuracy of genomic prediction assuming a sparse additive
genetic architecture (as implemented in varbvs) vs a dense one
(as implemented in rrBLUP), using the Spearman correlation coef-
ficient from the cross-validation above as a proxy of prediction
accuracy (Supplementary Table 13).

Overall, the median of this metric is positive only for response
variables corresponding to biochemical traits (mostly polyphe-
nols), suggesting they display a sparse genetic architecture.
All other trait classes have a negative median metric, suggesting
a dense genetic architecture. When taking into account the
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distribution of the metric, the classification in sparse or dense ar-

chitecture is deemed more trustworthy when the quantile inter-

val does not include 0, which is the case for phenological and

morphological traits.
Apart from the abiotic stress variable d13C, all response varia-

bles had a high median broad-sense heritability (around 0.7 and

above), indicating a higher measurement quality, hence also con-

tributing to increased trustworthiness in the suggested genetic

architecture. Moreover, in the case of the biochemical response

variables, the median number of reliable QTLs is higher than for

the other trait classes, although there is a large variation. This is

consistent with their genetic architecture deemed sparse, for

which one expects to have QTLs with an effect large-enough to

be found significant.

Discussion
Design and analysis of field trials for perennials
Acquiring phenotypic data from which genotypic values can be

deduced with sufficient accuracy is a major challenge, especially

because a large panel is a prerequisite to provide enough statisti-

cal power to detect QTLs (Nicolas et al. 2016). Our randomized

block design certainly helped in reaching medium to high broad-
sense heritability for most traits. Those with low heritability may
be linked to the difficulty of sampling fruits at a similar physio-
logical stage, a particularly pressing issue for grapevine due to
the strong intra- and inter-cluster heterogeneity between berries
(Shahood 2017). Automatizing new protocols (Bigard et al. 2018)
remains to be done to phenotype large panels.

At the first stage of the analysis, we chose to include PRUW,
the number of wooding shoots and vigor as explanatory factors
in the global model, but neither flower sex nor berry color. Our
rationale was that the former 3 are more influenced by the way
the field trial is conducted than the latter 2, which are under a
stronger genetic determinism (Fournier-Level et al. 2009; Picq et al.
2014). This approach would hence keep most genetically based
variation between genotypes for the second stage of the analysis
(genome-wide association and genomic prediction). More gener-
ally, this raises the question of how to deal with multiple traits to
exploit their correlations (Supplementary Table 14 and
Supplementary Fig. 15). Most multivariate linear models place all
the traits on the same level, which complicates the understand-
ing of their genetic architecture (Kemper et al. 2018). A more am-
bitious approach would leverage functional–structural plant
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Fig. 4. Assessment of genomic prediction accuracy within a diversity panel of Vitis vinifera L. by repeated 5-fold cross-validations, comparing 2 SNP sets
(microarray-only and microarray-GBS) and 2 methods (rrBLUP assuming a dense genetic architecture and varbvs assuming a sparse genetic
architecture) for 152 responses variables. The 4 displayed metrics were averaged over folds and replicates.

Table 2 Types of additive genetic architecture per trait class in a diversity panel of Vitis vinifera L. based on the accuracy of genomic
prediction assuming a sparse genetic architecture (method “varbvs) or a dense one (method “rrBLUP”) over all response variables (RVs).

Trait class #RVs Median of corS(varbvs)—corS(rrBLUP) Additive genetic architecture #relQTLs H2
O

Biochemical 136 þ0.05 [�0.12, þ0.18] Sparse (�) 3.0 [0.0, 8.0] 0.69 [0.41, 0.96]
Abiotic stress 2 �0.04 [�0.09, þ0.02] Dense (�) 0.5 [0.1, 0.9] 0.37 [0.21, 0.52]
Phenological 3 �0.04 [�0.06, �0.03] Dense (þ) 2.0 [0.4, 2.0] 0.80 [0.72, 0.83]
Morphological 5 �0.08 [�0.08, �0.07] Dense (þ) 1.0 [0.0, 1.6] 0.82 [0.74, 0.87]
Agronomical 6 �0.12 [�0.09, þ0.19] Dense (�) 1.5 [0.5, 5.0] 0.79 [0.38, 0.95]

Also indicated are a symbol for the confidence level in the classification (þ for high, � for low), the number of reliable QTL (#relQTLs) and the broad-sense
heritability estimated according to Oakey et al. (2006) (H2

O); for both, the median, quantile at 10% and quantile at 90 are given.
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models (Sievanen et al. 2014) but it notably requires the pheno-
typing of key phenological stages for the whole panel, as well as
the nondestructive phenotyping of major physiological processes
over time.

Increase of genotyping density
Validating heterozygous SNP genotypes from GBS data is notori-
ously difficult (Swarts et al. 2014). We hence looked at the propor-
tion of variance in BLUPs of genotypic values explained by SNP
genotypes (PVESNPs). The improvement obtained with the
microarray-GBS set increased our trust in the genotyping and im-
putation procedures. Yet, PVESNPs did not equal 1 for all response
variables. Several factors can underlie this discrepancy. First, em-
pirical BLUPs of genotypic values are not fully accurate versions
of the “true” genotypic values, as reflected by broad-sense herita-
bility. Second, the microarray-GBS SNPs may not be in strong-
enough LD with all “true” QTLs. The number of SNPs required
might reach half a million in grapevine (Nicolas et al. 2016), a
value likely to be similar in other perennial fruit crops with low
LD. Moreover, many pan-genome structural variations could re-
main undetected, which calls for whole-genome sequencing
(Marroni et al. 2014).

Sensitivity and specificity of QTL detection
Our study which detected many reliable QTLs benefited from a
highly favorable context combining a representative panel, an
adequate experimental design and a large number of phenotyped
traits. When comparing GWAS methods, a major misleading fac-
tor is LD, which SNP-by-SNP methods do not take it into account
whereas multi-SNP methods do, albeit differently depending on
the details of each method. We hence compared the 3 methods
in terms of QTLs, defined here as intervals around significant
SNPs, instead of significant SNPs directly. We used the genome-
wide distribution of LD to define the extent of QTLs, which
ignores local variations along the genome. Haplotype-based
methods could provide complementary information, but is be-
yond the scope of this work.

We compared our reliable QTLs with those from the literature
on bi-parental crosses passing a 5% genome-wide significance
threshold. Therefore, when we deemed one of our QTLs new, it
may have been found at a chromosome-wide significance thresh-
old; nevertheless, it is reported as reliable for the first time in our
study. This comparison could be achieved for a very small subset
of common traits only. Part of the reason why may be that the
traits studied here include an exhaustive list of polyphenols that
have rarely been quantified elsewhere. In addition, we faced the
notorious difficulty to assess whether the same trait acronym
used in different articles indeed corresponded to the same biolog-
ical trait. A wider usage of a trait ontology, such as the Vitis ontol-
ogy, seems the only way forward (Krajewski et al. 2015).

Furthermore, when comparing our results on cluster and
berry weights with those from the literature obtained by GWAS,
we found discrepancies: several of our QTLs were new, and sev-
eral QTLs reported by others were not found in our analysis. This
may be due to 4 types of differences, (1) the composition of the
association panels, (2) the genotyping densities, (3) the phenotyp-
ing protocols, and (4) the statistical models. Reanalyzing these
data sets was out of the scope of this work but could be done in
the future depending on data availability.

Focus on some candidate genes
For various traits, our association study identified many QTLs
(Supplementary Tables 8 and 9) containing numerous genes

(Supplementary Tables 10 and 11). As such, this large database is
of interest per se for further investigations. We chose to focus
here our discussion on a subset of traits, i.e. phenolic com-
pounds, organic acids and d13C.

Candidate genes for phenolic compounds
Our results confirm known features of the genetic regulation of
phenolic compounds in grape, such as the region on chromosome
2 containing the MybA genes cluster. It governs not only the
amount and quality of anthocyanins, but also the traits concern-
ing flavonols as already observed (Malacarne et al. 2015). Our
study also confirms a large QTL for tannins composition, located
on chromosome 17 and already detected in a Syrah � Grenache
progeny (Huang et al. 2012), which contains the candidate gene
VvLAR2 (leucoanthocyanidin reductase, Vitvi17g00371). LAR was
initially characterized as being able to catalyze the formation of
catechin terminal units (Bogs et al. 2005), but it was demonstrated
more recently that VvLAR could have an additional role in con-
trolling the degree of polymerization (Yu et al. 2019).

Our study also identified new regions for already-studied
traits, such as one involved in anthocyanin acylation and tri-
hydroxylation on chromosome 13. This QTL was not detected
neither in a Syrah � Pinot Noir progeny (Costantini et al. 2015),
nor in a Red Globe � Muscat of Hamburg progeny (Sun et al.
2020), and is distinct from either the functionally validated an-
thocyanin acyltransferase on chromosome 3 (Rinaldo et al. 2015)
and the Flavonoid 30,50-hydroxylase cluster located on chromo-
some 6. This region contains 2 WRKY transcription factors
(Vitvi13g00189 and Vitvi13g01916) orthologuous of AtWRKY55
and AtWRKY54/70 (Wang et al. 2014). WRKY transcription factor
mediates stress responses in plants (Phukan et al. 2016), and
AtWRKY70 was also described to control JA-induced anthocya-
nins accumulation (Li et al. 2006). In grape, anthocyanin acylation
and hydroxylation are affected under abiotic stress (Oll�e et al.
2011), thus these WRKY transcription factors appear as candidate
genes to modulate anthocyanin composition.

Moreover, this is the first GWAS in grape for some phenolic
compounds such as phenolic acids or dihydroflavonols. A region
on chromosome 6 controlling the amount of astilbin, resulting
from the rhamonsylation of taxifolin, contains 4 uncharacterized
flavonoid O-glycosyltransferases (Vitvi06g01093, Vitvi06g01097,
Vitvi06g01099, Vitvi06g01100) that could be involved in this reaction.

Candidate genes for organic acids and d13C
No QTL for citrate had yet been found, but our study yielded one
on chromosome 3. This 56-kb region contains several candidates’
genes: 5 copies of allene oxide synthase (Vitvi03g00391 to 5), and
the long chain acyl coA synthase 2 (Vitvi03g00388). Oxylipins
formed by allene oxide synthases are precursors of jasmonates
(Farmer and Goossens 2019) involved in rewiring central metabo-
lism, thus decreasing the levels of those metabolites associated
with active growth such as citrate (Savchenko et al. 2019).
Moreover, the closest homologue of the last gene in Arabidopsis
participates in oil synthesis in seed endoplasmic reticulum,
where its overexpression triggers the activation of genes involved
in glycolysis (Ding et al. 2020). Acyl coA synthase 2 and citrate
synthase may hence compete for AcetylCoA, which yields citrate
when condensed with oxaloacetate.

Regarding malate, Vitvi09g00195 located on chromosome 9,
possibly in a QTL found by Bayo-Canha et al. (2019) in a parental
genetic map from a bi-parental progeny, encodes a chloroplastic
glyoxylate/succinic semialdehyde reductase 2 which has 2 con-
nections with malate synthesis. First, this enzyme may scavenge
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glyoxylate in the chloroplast matrix and protect photosynthesis
from its adverse effects (Simpson et al. 2008). Glyoxylate is, with
acetyl CoA, the direct substrate of malate synthase in glyoxy-
some and such diversion from the classical photorespiratory
pathway was documented in Chlorella (Xie et al. 2016). Second,
succinic semialdehyde dehydrogenase is the last enzyme in the
gamma-aminobutyric acid shunt of the TCA cycle (Zarei et al.
2017), forming succinate that is readily oxidized to fumarate, the
precursor of malate in mitochondria. In another new malate QTL
on chromosome 12, Vitvi12g00505 encodes a cytosolic aconitate
hydratase that may complement the activities of the mitochon-
drial and glyoxysomal ones, respectively, involved in the metabo-
lism of dicarboxylate and glyoxylate. On chromosome 18,
Vitvi18g01038 encodes V-type proton ATPase subunit a2, a part of
the hydrophobic V0 rotor that generates the membrane potential
essential for the storage of organic acids in grapevine fruit (Terrier
et al. 2001). Noticeably, in a Riesling � Gewurztraminer progeny,
subunits G of V-ATPase on chromosomes 8 and 13 were suggested
as candidate genes for acidity QTLs (Duchêne et al. 2020).

Relevant candidate genes were also found under novel QTLs
for d13C, in particular Vitvi08g02203 on chromosome 8 that enco-
des the transcriptional regulator TAC1-like. In rice it corresponds
to a major QTL controlling tiller angle, with a direct influence on
leaf exposition to light (Yu et al. 2007). We also noticed the pres-
ence of different candidate genes involved in stele expansion or
differentiation, such as CASP-like proteins and Lonesome
Highway (LHW) transcription factor.

Genomic prediction, and the wider goal of
understanding genetic architectures
The accuracy of genomic prediction, assessed for the first time
for such a large number of traits by cross-validation within a
grapevine diversity panel, reached promising levels according to
the median Pearson correlation (around 0.4), even though the co-
efficient of determination remains substantially lower (around
0.17, Fig. 4). Nevertheless, breeders mostly aim at accurately pre-
dicting the ranks of candidate genotypes, and the median
Spearman correlation around 0.4 is relevant for that purpose.

Cross-validation results are interesting per se as they provide
an upper threshold for prediction accuracy. Yet, the ultimate
goal for breeders lies in training a model on a reference panel to
predict genotypic BLUPs in a segregating population. When test-
ing this with a subset of a Syrah � Grenache progeny not belong-
ing to the panel, the accuracy metrics were lower than with the
within-panel cross-validation, although they displayed the same
trend in terms of methods. Ridge regression model (rrBLUP) per-
formed better than the sparse regression model (varbvs), which
may be due to the essentially infinitesimal architecture of the
trait despite a few larger QTL segregating for this trait in the prog-
eny (Doligez et al. 2013). This promising result was studied in
more details with other traits and other progenies in grapevine
(Brault et al. 2022), as well as in other perennial fruit crops
(Minamikawa et al. 2017; Roth et al. 2020).

In terms of genetic architectures, we focused on additive ones
and attempted to distinguishing trait classes with a sparse vs
dense architecture. Leaving aside the trait class “abiotic stress”
that had low broad-sense heritability, our results based on pre-
diction accuracy indicated a sparser architecture for biochemical
traits, vs a denser one for phenological, morphological and agro-
nomical traits. In the framework of genotype–phenotype maps,
this may correspond to the fact that biochemical traits are closer,
in a causal sense, to genetic variation (such traits are sometimes
called “endophenotypes”), hence making QTL detection easier.

On the opposite, the other trait classes are more integrated, in
the sense of resulting from multiple developmental and ecophys-
iological processes (Granier and Vile 2014). Moreover, the deter-
mination of genetic architecture is also known to depend on
sample size and LD extent (Wimmer et al. 2013). In contrast to
what is expected on annual plant breeding populations, we iden-
tified traits with better prediction accuracy assuming a sparse ar-
chitecture rather than a dense one, in spite of the rather small
sample size of our panel. This was likely due to the short LD
within this diversity panel, a notable feature of perennial plants,
although these results may not stand for grapevine bi-parental
breeding populations with longer LD.

Conclusion
This work demonstrated the feasibility of performing a GWAS in
a perennial fruit crop such as grapevine for numerous, mostly
complex traits related to various aspects of plant biology and
breeding. A key ingredient for field trials remains the experimen-
tal design necessary to achieve high broad-sense heritability. We
also provided dense genotyping data for further studies on the
panel, although, given the low LD, an even higher number of
SNPs would be advantageous. In terms of GWAS, we confirmed
that a gain in power is possible when using multiple-SNP models.
Overall, we identified new QTLs as well as promising genes under
them, leading to mechanistic hypotheses yet to be tested. In
terms of genomic prediction, we provided a distribution of predic-
tion accuracy across many traits likely to have various genetic
architectures. We confirmed the usage of the RRBLUP/GBLUP
model assuming a dense architecture as a relevant default. Yet,
we showed that a model assuming a sparse architecture can
reach higher prediction accuracy for some traits, notably in the
case of traits closer to the genetic variation. As such, our work
provided important results for the contribution of genomic pre-
diction to perennial crop species breeding.
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Miccono M, Ramos R, Le Cunff L, Boursiquot J-M, et al. Molecular,

genetic and transcriptional evidence for a role of VvAGL11 in

stenospermocarpic seedlessness in grapevine. BMC Plant Biol.

2011;11(1):57.doi:10.1186/1471–2229-11–57.

Meuwissen T, Hayes B, Goddard M. Prediction of total genetic value

using genome-wide dense marker maps. Genetics. 2001;157(4):

1819–1829.

Migicovsky Z, Sawler J, Gardner KM, Aradhya MK, Prins BH,

Schwaninger HR, Bustamante CD, Buckler ES, Zhong G-Y, Brown

PJ, et al. Patterns of genomic and phenomic diversity in wine and

table grapes. Hortic Res. 2017;4:17035.doi:10.1038/hortres.2017.35.

Minamikawa MF, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi

A, Goto S, Yoshioka T, Imai A, Hamada H, Hayashi T, et al.

Genome-wide association study and genomic prediction in citrus:

potential of genomics-assisted breeding for fruit quality traits.

Sci Rep. 2017;7(4721):1–13. doi:10.1038/s41598-017–05100-x.

http://www.nature.com/articles/s41598-017–05100-x [accessed

2019 Mar 6].

Myles S, Boyko A, Owens C, Brown P, Grassi F, Aradhya M, Prins B,

Reynolds A, Chia J-M, Ware D, et al. Genetic structure and domes-

tication history of the grape. Proc Natl Acad Sci U S A. 2011;

108(9):3530–3535. doi:10.1073/pnas.1009363108.

Naegele RP, Londo JP, Zou C, Cousins P. Identification of SNPs associ-

ated with magnesium and sodium uptake and the effect of their

accumulation on micro and macro nutrient levels in Vitis vinifera.

PeerJ. 2021;9:e10773.doi:10.7717/peerj.10773.

Nicolas S, P�eros J-P, Lacombe T, Launay A, Le Paslier M-C, B�erard A,

Mangin B, Valière S, Martins F, Le Cunff L, et al. Genetic diversity,

linkage disequilibrium and power of a large grapevine (Vitis vinif-

era L.) diversity panel newly designed for association studies.

BMC Plant Biol. 2016;16(74):1–19. doi:10.1186/s12870-016–0754-z.

12 | G3, 2022, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkac103/6575896 by IN

R
A Avignon user on 16 June 2022

10.1371/journal.pone.0019379
10.3835/plantgenome2011.08.0024
10.1093/jxb/erz254
10.1534/genetics.109.103929
0.5281/zenodo.�3580267
0.5281/zenodo.�3580267
10.1016/j.pbi.2014.02.009
10.1038/s41438-018&hx2013;0089-z
10.1534/genetics.107.081190
10.7939/r34t6f673
10.1186/1471&hx2013;2229-12&hx2013;30
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-018&hx0026;ndash;0377-y
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-018&hx0026;ndash;0377-y
10.1093/jxb/erv271
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
10.18637/jss.v082.i13.
10.1371/journal.pone.0192540
http://arxiv.org/abs/1303.3997
10.1111/j.1365-313X.2006.02712.x
10.1093/jxb/erv243
10.1016/j.pbi.2014.01.003
10.14806/ej.17.1.200
10.1186/1471&hx2013;2229-8&hx2013;83
10.1186/1471&hx2013;2229-11&hx2013;57
10.1038/hortres.2017.35
http://www.nature.com/articles/s41598-017&hx0026;ndash;05100-x
10.1073/pnas.1009363108
10.7717/peerj.10773
10.1186/s12870-016&hx2013;0754-z


Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H. Joint modeling of ad-

ditive and non-additive genetic line effects in single field trials. Theor

Appl Genet. 2006;113(5):809–819. doi:10.1007/s00122-006–0333-z.

Oll�e D, Guiraud JL, Souquet JM, Terrier N, Ageorges A, Cheynier V,

Verries C. Effect of pre- and post-veraison water deficit on proan-

thocyanidin and anthocyanin accumulation during Shiraz berry

development: water stress and flavonoid biosynthesis. Aust J

Grape Wine Res. 2011;17(1):90–100. doi:10.1111/j.1755-0238.2010.

00121.x.

Pebesma EJ. Multivariable geostatistics in S: the gstat package. Comput

Geosci. 2004;30(7):683–691. doi:10.1016/j.cageo.2004.03.012.

Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molec-

ular regulation and stress responses in plants. Front Plant

Sci. 2016;7(760):1–14. doi:10.3389/fpls.2016.00760. http://journal.

frontiersin.org/Article/10.3389/fpls.2016.00760/abstract [accessed

2021 Jan 5].

Picq S, Santoni S, Lacombe T, Latreille M, Weber A, Ardisson M,

Ivorra S, Maghradze D, Arroyo-Garcia R, Chatelet P, et al. A small

XY chromosomal region explains sex determination in wild dioe-

cious V. vinifera and the reversal to hermaphroditism in domesti-

cated grapevines. BMC Plant Biol. 2014;14:229.doi:10.1186/s12870-

014–0229-z.
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