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Abstract: Among novel strategies proposed in pest management, synergistic agents are used to
improve insecticide efficacy through an elevation of intracellular calcium concentration that activates
the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to
increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles
(VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to
synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast
to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious
and safer than viruses. Although VLPs are well-known to be used in human health, we propose in
this study the development of a promising strategy based on the use of VLPs as synergistic agents in
pest management. This will lead to increased insecticides efficacy while reducing their concentrations.

Keywords: virus-like particles; synergistic agent; intracellular calcium; insecticide; pest management

1. Introduction

Today, world agriculture faces a major challenge: increasing food production to feed
about 9 billion people by 2050 [1]. To improve productivity, farmers still largely rely on
the extensive use of chemical insecticides to control insect pests. However, the intense
use of limited number of active ingredients has generated insect-selective pressure for
resistance and has led to accumulation of residual effects that impact the environment
and human health [2–4]. Regarding insecticide resistance, hundreds of insect species have
developed resistance to at least one insecticide, impacting insect control [4]. Different
resistance mechanisms have been described, such as insecticide target-site mutations,
detoxification enzymes overproduction, penetration resistance by cuticle modification,
and behavioral resistance [5,6]. The international Insecticide-Resistance Action Committee
(IRAC), including stakeholders, has been developed to improve resistance awareness and
Insecticide-Resistance Management (IRM) programs in crop protection [7]. To limit the
side effects due to overuse of insecticides, integrated pest management (IPM) has been
implemented. It is an effective and environmental approach to pest management, including
the reduction of insecticides [8].

In this context, sustainable strategies have recently been developed. This includes the
use of microbial pest-control agents (viruses, bacteria, and fungi) [9]; chemical mediators
such as pheromones and kairomones [10]; and/or natural substances of plant, animal, or
mineral origin [11]. More recently, RNA interference (RNAi)-based strategies, which do not
require plant genetic modification, have been also investigated as a new method for insect
pest control [12,13]. Among additional innovative strategies, nanoscale formulations of
insecticides can provide controlled release of active ingredients while efficiently enhancing
permeability, stability, and solubility [14,15]. However, the use of such nanopesticides in
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food production has raised many questions about their safety and ecotoxicological risks [16].
Consequently, the design of innovative crop-protection strategies is required for safer and
more efficient treatments.

For several years, we have proposed a new patented concept based on the use of
chemical synergistic agents combined with a given insecticide, which are able to optimize,
in both in vitro and in vivo, the efficacy of the treatment while reducing the concentra-
tions [17–25]. Compared to classical synergists (e.g., pyperonyl butoxide, S,S,S-tributyl
phosphorotrithioate (DEF), diethyl maleate), which are known to inhibit detoxification
enzymes involved in the hydrolysis of insecticides [26], the synergistic agents increase the
sensitivity of membrane receptors and/or ion channels to the insecticide through the acti-
vation of the calcium-dependent signaling pathways following an elevation of intracellular
calcium concentration. This results in the target site conformational changes involved in the
increased sensitivity to insecticides [21,25]. This alternative allows to produce a stronger
effect of a given insecticide used at lower concentrations than that obtained with the same
molecule but used alone in a formulation at higher concentrations.

2. Synergistic Agents as Innovative Strategies to Improve Insecticides Efficacy

As already indicated, calcium ions play a key role on the membrane target sensitivity
to insecticides. They generate versatile activation of specific calcium-dependent intracellu-
lar signaling pathways that determine a large variety of functions [27] known, for some of
them, to regulate the target site conformation, which thereby modulates insecticide sensitiv-
ity [25]. Many calcium-dependent cellular and molecular factors can modulate insecticide
efficacy through the activation of specific, complex signaling cascades that trigger phos-
phorylation/dephosphorylation process. This modulatory effect has been demonstrated
in vitro with different classes of conventional insecticides, including phenylpyrazoles, neon-
icotinoids, pyrethroids, oxadiazines, organophosphates, and carbamates, acting on insect
receptors and ion channels, such as voltage-dependent sodium channel channels (NaV),
nicotinic acetylcholine receptor (nAChR), gamma-aminobutyric acid receptor (GABAR),
and acetylcholinesterase (AChE) [21,24,25,28–33]. These intracellular signal transduction
cascades typically amplify the calcium-dependent messages via the stimulation of effector
enzymes (e.g., adenylyl cyclase, phospholipase C, guanylate cyclase), which catalyze the
production or, in the case of ions, release of the second messengers (e.g., calcium ions,
cAMP, cGMP, diacylglycerol, and IP3). In the last case, these second messengers are present
at very low concentrations in resting insect cells and can reach relatively high concentration
levels when they are stimulated. In all cases, second messengers production is controlled
temporally and spatially, allowing subsequent efficient activations of kinases and/or phos-
phatases (e.g., protein kinase A, G, C, calcium/calmodulin-dependent protein kinase II
(CaM-Kinase II), protein phosphatase (PP1/2A), calcineurin), involved in the regulation of
the membrane target conformation. From these results has emerged the novel synergistic
agent concept [19] based on (i) the role on intracellular calcium rise and the subsequent
stimulation of calcium-dependent signaling pathways, (ii) the target site-conformational
changes, and (iii) the calcium-dependent increase in target sites sensitivity to insecticides.
One of the most interesting features is that the synergistic agent is a chemical or microor-
ganism (e.g., insect viruses) that has no effect or only a limited effect itself. It indirectly
optimizes the efficacy of insecticides at non-toxic concentrations through the activation
of specific calcium-dependent intracellular signaling pathways that are involved in the
regulation of membrane receptor and ion channel functions targeted by insecticides [19].
Among chemicals, N,N-diethyl-meta-toluamide (DEET) and insect repellent (IR3535) can
be considered as synergistic agents. Previous findings performed both in vitro and in vivo
have reported synergism between different synergistic agents (e.g., DEET, IR3535) and
insecticides, including carbamates, oxadiazine, and neonicotinoids [18,20–24,28,34]. All
together, these results demonstrated that chemical synergistic agents combined with a
given insecticide increase (i) the sensitivity of the target site to the insecticide and (ii) the
mortality rate of insects compared to that obtained with insecticides used alone.
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In the same context, insect viruses can also be used as biological synergistic agents [35,36].
In this case, the insect virus is not used as a bioinsecticide (i.e., replicating within host
cells) [9] but used as a synergistic agent. The interaction of the virus (e.g., baculovirus,
densovirus) with the cell membrane is sufficient to produce calcium influx, associated with
an elevation of the intracellular calcium concentration, which produces the activation of
calcium-dependent intracellular signaling pathways [17]. Previous findings have already
reported that the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV)
induces intracellular calcium rise through the activation of CdCl2-sensitive ion channels or
membrane transports in the insect cell membrane. The results have clearly indicated that
AcMNPV interaction with insect cell line plasma membrane increases acetylcholinesterase
sensitivity for the organophosphate insecticide chlorpyrifos-ethyl through elevation of
intracellular calcium concentration [36].

From our results, we then propose another alternative, which is based on the use
of virus-like particles (VLPs) as a novel synergistic agent. By contrast to viruses, VLPs
present some advantages since they are composed of viral structural proteins expressed in
heterologous systems that assemble spontaneously but are lacking the viral genome [37,38].
VLPs have a structure similar to native virions of about 10–200 nm in diameter and can be
enveloped or non-enveloped, spherical or filamentous, and composed of a single, double,
or triple layers [39]. Interest in the design and production of VLPs has increased in recent
years, and several applications have been developed, including vaccination, gene therapy,
drug delivery, and nanotechnology.

3. Various Systems Used to Produce VLPs

VLPs can be produced in a variety of systems, including bacteria, yeast, mammalian
cells, insect cells, and plants (Figure 1) [39–43]. VLPs can be also assembled in vitro from
proteins produced in cell-free expression systems [44]. The characteristics, advantages,
limitations, and yield ranges of the production systems are compared in Table 1 [41,45].
The correct folding and assembly of VLPs is a complex process, which is highly dependent
on the structure of viral proteins, the expression system, and physical parameters, such as,
for instance, pH, ionic strength, and temperature [39,46,47]. Three methods of cell culture
are commonly used for VLPs production, including batch, fed-batch, and continuous
cultivation. Technical challenges remain in the generation of VLPs in terms of yield, design,
stability, and storage. Recently, chimeric VLPs have been developed. They are based on
structural proteins originated from different viruses and generated through genetic fusion
or chemical coupling [48,49]. Surface modifications of VLPs can be made to trigger an
immune response of the host cells and/or to enhance specific recognition of VLPs by target
cells [50].



Viruses 2022, 14, 943 4 of 16
Viruses 2022, 14, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Virus-like-particles (VLPs) production systems and applications. VLPs can be produced 
by a variety of expression platforms, including prokaryotic and eukaryotic systems. The main eu-
karyotic systems include yeast, mammalian cell lines, the baculovirus/insect cell system, and plants. 
The production stage (left part of the figure) includes cloning of the viral structural genes of interest 
(in red) and introduction into the host cell by plasmid transfection or viral transduction. Depending 
on the method used, the transgene is integrated into the host genome or replicates in an episomal 
form. In plants, the rapid and transient expression of recombinant proteins is commonly based on 
Agrobacterium-mediated infiltration and/or plant viral vectors. After expression, the self-assembly 
of viral structural proteins into VLPs is highly dependent of the structure of viral proteins, the ex-
pression system, and the experimental conditions. VLPs that have similar structure as native virions 
can be enveloped or non-enveloped (central panel), spherical or filamentous, and composed of a 
single, double, or triple layer. Different downstream processing steps may be required to obtain 
purified VLPs without residual host contaminants. VLPs have a broad range of potential applica-
tions (right part of the figure), including vaccine production, vectors for gene therapy, and targeted 
drug delivery. Because VLPs are considered safer than viruses and capable of triggering the calcium 
concentration elevation, they could also be exploited as an alternative synergistic agent co-applied 
with a given insecticide for optimizing insecticide efficacy (created with Biorender.com). 

  

Figure 1. Virus-like-particles (VLPs) production systems and applications. VLPs can be produced by
a variety of expression platforms, including prokaryotic and eukaryotic systems. The main eukaryotic
systems include yeast, mammalian cell lines, the baculovirus/insect cell system, and plants. The
production stage (left part of the figure) includes cloning of the viral structural genes of interest (in
red) and introduction into the host cell by plasmid transfection or viral transduction. Depending
on the method used, the transgene is integrated into the host genome or replicates in an episomal
form. In plants, the rapid and transient expression of recombinant proteins is commonly based on
Agrobacterium-mediated infiltration and/or plant viral vectors. After expression, the self-assembly
of viral structural proteins into VLPs is highly dependent of the structure of viral proteins, the
expression system, and the experimental conditions. VLPs that have similar structure as native
virions can be enveloped or non-enveloped (central panel), spherical or filamentous, and composed
of a single, double, or triple layer. Different downstream processing steps may be required to obtain
purified VLPs without residual host contaminants. VLPs have a broad range of potential applications
(right part of the figure), including vaccine production, vectors for gene therapy, and targeted drug
delivery. Because VLPs are considered safer than viruses and capable of triggering the calcium
concentration elevation, they could also be exploited as an alternative synergistic agent co-applied
with a given insecticide for optimizing insecticide efficacy (created with Biorender.com, accessed on
3 November 2021).

Biorender.com
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Table 1. Characteristics, advantages, and disadvantages of the different VPLs platforms (modified
with permission from Ref. [45], Copyright 2017 Elsevier B.V. license number 5296930551852).

Production
Platforms Advantages Disadvantages Yield Range Type of VLP

Produced References

E. coli

Ease of expression
Fast growth rate

High-level expression
Simple process scale-up

Low production cost

No PTMs
Limited protein solubility

Misfolded proteins
Endotoxin contamination
Production of simple VLPs

0.75 to
700 µg/mL Non-enveloped [45,51–53]

Yeast

Capacity of simple PTMs
Ease of expression

High-level expression
Ability to scale-up

Low production cost

Limited PTMs
Risk of incorrect folding

and assembly
Production of simple

VLPs (cell wall)

0.75 to
700 µg/mL

Non-enveloped;
Enveloped (if
using yeast

spheroplasts);
Unique and

multiple
structural proteins

[41,45,54–56]

Insect cells

Capacity of most
eukaryotic-type PTMs

Cell culture in suspension,
without CO2

Free of mammalian
pathogens

Production of complex VLPs

Simpler N-glycosylation
compared to

mammalian cells
Low yield

High production cost
Difficult to scale-up

Baculovirus
contamination

0.2 and
18 µg/mL

Non-enveloped;
Enveloped;
Unique and

multiple
structural proteins

[42,45,48,54,
57–65]

Mammalian
cells

Complex PTMs
Assembly and folding
Possible cell culture in

suspension
Production of complex VLPs

Low cell growth rate
Long expression time

Low yield
High production cost
Difficult to scale-up

Risk of contamination by
mammalian pathogens

0.018 and
10 µg/mL

Non-enveloped;
Enveloped;
Unique and

multiple
structural proteins

[45,48,66–68]

Plants

Complex PTMs (nucleus)
Ease of expression

High expression levels of up
to 80% total soluble protein

Ability to scale-up
Low production cost

VLPs storage (protected
in plants)

Potential oral immunization
by simply ingesting VLPs in

edible plant parts

No PTMs (chloroplasts)
Time-consuming

production of stable
transgenic plants

Low-level expression
Low VLP assembly and

stability
Production of simple VLPs

Technical issues
(transgenic plants)

4 to 2380 pg/mg
of leaf

Non-enveloped;
Unique and

multiple
structural proteins

[45,60,69–76]

3.1. Bacterial Cells

The expression system using Escherichia coli bacteria was the first established recom-
binant expression system. This expression system is characterized by high protein yields
(Table 1), rapid cell growth, short production times, simplicity of scaling-up, and low manu-
facturing costs compared to eukaryotic systems. However, the inability of prokaryotic cells
to undergo post-translational modifications (PTM), such as protein glycosylation and incom-
plete disulfide bond formation, can lead to the expression of misfolded or non-functional
proteins. Bacteria can be engineered to make specific post-translational modifications, but
the process then becomes expensive [52]. Furthermore, the limited solubility of recombi-
nant viral proteins promotes the formation of inclusion bodies [51,53], and contaminant
endotoxins have to be removed in the manufacturing process. Finally, protease degradation
and codon bias can also contribute to lower yields. Even if E. coli remains the dominant
bacterial strain in use, and various VLP vaccines generated using E. coli expression systems
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are under clinical trials, no VLPs are currently marketed. In addition to E. coli, VLPs have
been successfully produced in some other bacterial species, such as Lactobacillus casei using
a lactose-inducible promoter system for papillomavirus (HPV) L1 protein expression [77]
and Pseudomonas fluorescens for the cowpea chlorotic mottle virus (CCMV) coat proteins
expression [78]. Several chimeric VLPs vaccines have also been developed by antigen
conjugation with bacteriophage Qβ RNA in E. coli expression platform [40].

3.2. Yeast Cells

This is the most popular expression system to produce VLPs is the yeast system
due to its easy and high protein expression (Table 1), its ability to scale up, and the
cost of production. Although yeasts provide a degree of PTM processes [41], the lack of
complex PTM pathways is a major drawback of yeast expression systems. High mannose
glycosylation, plasmid loss, and lower yields of protein compared to bacterial expression
system remain additional issues to overcome [54]. The quality and quantity of yeast-
produced VLPs are influenced by the choice of plasmid and promoter and by the ratio
between different structural proteins produced. More than 30 types of VLPs have been
produced in yeasts, particularly in Saccharomyces cerevisiae, in Pichia pastoris, and more
recently in Hansenula polymorpha [41]. The yeast expression systems are generally used
for generating non-enveloped VLPs. Indeed, enveloped viruses that are released through
budding in mammalian cells cannot bud from yeast since the outer membrane is covered
by a wall of mannoproteins and chitin [79]. However, yeast systems whose cell walls have
been almost completely removed have been successfully used for HIV-1 Gag protein VLPs
and Dengue virus serotype 2 VLPs [55,56]. Moreover, recent significant advances in VLPs
production processes have allowed an increasing number of VLPs produced by secretion
and the production of multilayered VLPs composed of more than one type of structural
protein [41]. Several yeast-produced VLPs, such as papillomavirus (HPV) and hepatitis
B virus (HBV) VLPs (Table 2), have already reached approval by regulatory agencies.
Recently, the production of Chikungunya VLPs using the yeast Pichia pastoris has been
reported [80].

3.3. Mammalian Cells

Although mammalian cells present lower yield for VLPs production compared to
other systems (Table 1), they have the advantage to produce VLPs with appropriate PTMs
essential for proper protein folding. Mammalian cells can be used to produce complex
non-enveloped and enveloped VLPs composed of multiple structural proteins (up to five
proteins) [48]. Several mammalian cell lines are suitable for VLPs production, including
Chinese hamster ovary (CHO), baby hamster kidney-21 (BHK-21), human embryonic
kidney 293 (HEK293), Vero cell lines, CAP-T cell line derived from human amniocytes,
and East Lansing line-0 (ELL-0) [68]. The most frequently used CHO cell line, which is
not derived from human, presents a lower risk of contamination by human viruses [68].
CHO cells have already been used for successful production of both dengue virus and
hantavirus VLPs [92,93]. The HEK293 cell line is widely used to produce VLPs from rabies,
HIV, and influenza viruses [66,67,94] (Table 2). More recently, Vero E6 cells has been used
to produce stable SARS-CoV-2 VLPs as a candidate vaccine against the emerged disease
COVID-19 [95].

VLPs are produced in cells that are previously either transiently or stably transfected
or transduced with viral expression vectors (Figure 1). Although stable expression produces
large amounts of protein, transient expression is preferred since high levels of proteins are
obtained for shorter periods [66,67].
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Table 2. Non-exhaustive applications of VLP in vaccines or molecule delivery.

Pathology VLPs Composition VLP Type Expression System Status References

VA
C

C
IN

ES

Hepatitis B virus
(HBV) infection

HBsAg
NE

Yeast (S. cerevisiae) Licensed (Engenerix-B®

and Recombivax HB®) [45,81,82]
S, pre-S1, and pre-S2 Mammalian cells (CHO) Licensed (Sci-B-Vac®)

Human
papillomavirus
(HPV) infection

HPV 6/11/16/18 L1

NE

Yeast (S. cerevisiae) Licensed (Gardasil®)

[45,69,81,82]
HPV 6/11/16/18/31/33/45

/52/58 L1 Yeast (S. cerevisiae) Licensed (Gardasil 9®)

HPV 16/18 L1 Baculovirus/Insect cells
(High-Five™) Licensed (Cervarix®)

Hepatitis E virus
(HEV) infection

p239

NE

Bacteria (E. coli) Licensed (China)
(Hecolin®)

[81–83]

peptide Baculovirus/Insect cells
(Sf 9) Clinical trial phase

Malaria CSP into the HBsAg NE Yeast (S. cerevisiae) Licensed (Mosquirix®) [45,81]

Human
immunodeficiency

virus (HIV)
infection

p17 and p24

E

Yeast (S. cerevisiae)

Clinical trial phase [45,84]
Gag or Env Mammalian cells

(HEK293)

Gag or Env Baculovirus/Insect cells
(High-Five™)

Human parvovirus
B19 infection VP1 and VP2 NE Baculovirus/Insect cells

(Sf 9) Clinical trial phase [45,82]

Influenzavirus A
infection

HA quadrivalent
E

Baculovirus/Insect cell
(Sf 9) Licensed (Supemtek®)

[43,45,69,85]
Plant (Nicotiana

benthamania) Clinical trial phase

SARS-CoV infection SP, EP, MP NE

Baculovirus/Insect cells
(Sf 9) Clinical trial phase

[37,85,86]
Plant (Nicotiana

benthamania) Clinical trial phase

Porcine circovirus
type 2 infection ORF2 NE Baculovirus/Insect cells

(Sf 9) Licensed (Circumvent®) [69,87]

M
O

LE
C

U
LE

D
EL

IV
ER

Y

Cancers Bleomycin cross-linked at the surface
of Dd-Ad3 VLPs NE Baculovirus/Insect cells

(High-Five™) In vitro research [88]

Hepatocellular
carcinoma (HCC)

Cap structure analog or Doxorubicin
cross-linked at the surface of Dd-Ad3

VLPs
NE Baculovirus/Insect cells

(High-Five™) Preclinical research [89]

Systemic lupus
erythematosus

miRNA-146a packaged into
conjugated MS2 bacteriophage capsid

coated with HIV Tat47-57 peptide
NE Bacteria (E. coli) Preclinical research [90]

Hepatocellular
carcinoma (HCC)

Doxorubicin, cisplatin, 5-fluorouracil,
or SiRNA packaged into MS2

bacteriophage capsid coated with SP94
targeting or histidine-rich fusogenic

peptides

NE Bacteria (E. coli) In vitro research [91]

CHO, Chinese hamster ovary; CSP, circumsporozoite protein; Dd-Ad3, Dodecadron derived from Adenovirus
serotype 3; E, enveloped; EP, envelope; HA, hemagglutinin; HBsAg, hepatitis B surface antigen; HEK293, human
embryonic kidney 293; MP, membrane; NE, non-enveloped; p, protein; Sf, Spodoptera frugiperda; SP, spike.

3.4. Baculovirus/Insect Cells

The baculovirus/insect cells system is the most commonly used expression system
for large-scale production of both non-enveloped and enveloped VLPs, simple or complex,
comprising up to five proteins [54]. This is a binary system consisting of a recombinant
baculovirus as the vector and lepidopteran insect cells [42] (Figure 1). Baculoviruses are
insect viruses not pathogenic to humans. They are easily genetically modified to express
heterologous proteins in insect cells. The baculovirus AcMNPV is the most well-known
virus used. Several proteins can be produced simultaneously from multiple promoters,
usually under the control of the polyhedron (polh) or the p10 strong promoters [57]. In this
system, VLP yields vary from 0.2 to hundreds µg/mL [48], which is similar to bacteria and
yeast systems (Table 1). These high expression levels are also explained by the ability of the
virus to shut off the cellular expression for the benefit of the expression of heterologous
genes. The main insect cell lines used are Sf 21 and Sf 9 derived from Spodoptera frugiperda
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and the BTI-TN-5B1-4 cell line (High-Five™) derived from Trichoplusia ni [54,60]. It has
been reported that High-Five™ cells have the highest heterologous protein expression
yield [63,64]. Although the growth rate of insect cells is higher than mammalian cells, it
is lower than yeast or bacteria. Production, therefore, requires longer times than those
required for microbial systems. Culture media is more expensive compared to that used
for yeast or bacteria, and production must be carried out in bioreactors. On the other
hand, if the PTMs are more complex in insect cells compared to those generated in yeast
and bacteria, the N-glycosylation pattern of the recombinant glycoproteins produced
in this system is simpler than that of mammalian cells. Indeed, N-glycans from insect
cells are not processed to terminally sialylated complex-type structures but are instead
modified to a paucimannose structure [62,65]. This may result in a lower or total loss of
biological function of the protein of interest, and this can be a disadvantage for some VLP
applications in this production system. To solve this issue, genetic modifications of either
insect cells or baculoviruses to include genes encoding N-glycosylation functions have been
considered [42,58,59]. One of the main drawbacks of the baculovirus/insect cells system
remains the contamination with the baculovirus particles that are also produced at the
same time as VLPs [61]. To limit expensive purification steps, non-replicative baculoviruses
have been developed to minimize the contamination [96]. Alternative insect cell line that
avoids the use of baculovirus, such as Drosophila Schneider line 2 (S2 cells), can also be
used to produce VLPs [60,97].

3.5. Plant Cells

Plant expression systems for VLPs production allow the production of properly folded
complex proteins and represent a cost-effective eukaryotic system [60] that is easy to
scale-up and free of mammalian pathogens. Advances in plant biotechnology have made
possible the use of transgenic plants as alternatives to cell culture systems [73]. VLPs can be
produced in a variety of plant species, including Solanum tuberosum (potato), Lycopersicon
esculentum (tomato), Glycine max (soybean), Lupinus luteus L. (Lupin callus), Arabidopsis
thaliana, and Nicotiana benthamiana or Nicotiana tabacum L. (tobacco) [70]. Plants can tran-
siently or stably express viral proteins in the nucleus or in the chloroplast. PTMs can be
performed on the viral proteins expressed from the nucleus, while chloroplast transforma-
tion enables high levels of transgene expression (up to 80% of total soluble proteins) [74]
but lacks PTMs [60]. Stable expression is time-consuming and can lead to low expression
yields [72]. On the other hand, transient expression obtained through either Agrobac-
terium infiltration or plant viral vectors is easy, quick, and highly productive [71] (Figure 1).
Transient transgenic plants also have the advantage of not being classified as genetically
modified organisms (GMO).

Advantages provided by transgenic plants are the low cost of production, estimated
to be 10 to 50 times lower than products derived from E. coli and 140 times lower than
production using baculovirus-based insect cells [69,76], and the simple scaling-up that
requires few materials except for cultivation surface. Since the plants are edible, they
could also serve as delivery mode for oral vaccination, thereby reducing the purification
costs. Plants also present advantages in terms of storage for recombinant proteins that are
protected within plant tissue. The main limitations are the long timeline for transgenic
plants establishment, the low expression levels, and antigen degradation during in vivo
delivery [48]. Two replicon systems in particular have been recently developed to induce
strong expression of VLPs in plants: the deconstructed viral vectors composed of tobacco
mosaic virus RNA replicon system (MagnICON) and the Geminiviral BeYDV DNA replicon
system [98,99]. These replication systems have led to an increase of more than 80-fold in
the accumulation of Norwalk virus (NV) capsid protein VLPs in transgenic tobacco and
tomato [100]. Finally, both enveloped and non-enveloped as well as native and chimeric
plant-derived VLPs have been produced [75]. Chimeric VLPs are composed of plant viral
vectors, such as tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), alfalfa mosaic
virus (A1MV), cowpea mosaic virus (CPMV), papaya mosaic virus (PapMV), and the potato
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X virus (PVX) that carry recombinant proteins (viral or not). This strategy has enabled the
production of over 100 experimental plant virus-based vaccines against a wide range of
diseases in both humans and animals [101–103].

4. Current Applications of VLPs

Up to date, VLPs are currently used for vaccination and are in development as delivery
systems for antigens, genes, nucleic acids, or drugs [37,82,104].

4.1. VLP-Based Vaccines

New generations of vaccines improve safety by using viral proteins, VLPs, or nucleic
acids. Having no genomic material, VLPs have an advantage compared to classical vaccines.
They can present viral epitopes via repetitive and highly organized structures, such as
those expressed in natural infectious virions, without any risk of infection. VLPs interact
with various components of the immune system to produce strong immune responses [37].
In addition, VLPs can have adjuvant properties [37]. There are different approaches to
develop VLP-based vaccines: VLP vaccines that mimic the natural virus and chimeric VLPs
(i.e., encapsulating the antigen or displaying the antigen on the exterior) [37].

Several VLP-based vaccines are already available with good results, and many oth-
ers are in clinical trials or research stages [45,81]. VLPs-based vaccines that have been
marketed for use in humans include recombinant vaccines for hepatitis B virus, human
papillomavirus, and hepatitis E virus and in the veterinary field against porcine circovirus
type 2 (Table 2). Several VLPs are under clinical trial as potential vaccines for influenza,
Epstein Barr virus, and malaria and against emerging viral infections such as Ebola, avian
flu, MERS, and SARS-CoV [105]. VLPs provide a promising approach for developing safe
and effective flavivirus vaccines against Zika, Dengue, West Nile, and Japanese encephalitis
viruses [106].

Specific vaccine antigens were generated by different expression systems to induce
protective immune responses (Table 2). For example, vaccines against hepatitis B virus
are produced in a yeast system to express stable HBsAg VLPs (i.e., Engenerix®) or in
mammalian cells (CHO) to express three HBV antigens (S, pre-S1, and pre-S2), leading
to higher immunogenicity (Sci-B-Vac®). The hepatitis E VLP-based vaccine, Hecolin®,
only licensed in China, is produced using E. coli expression system, and another vaccine
expressed in insect cells is under clinical trial (Table 2) [81]. Concerning the malaria vaccine
Mosquirix®, enhanced efficacy was obtained with a yeast-produced direct fusion between
HBsAg and CSP antigen. In this system, HBsAg is only used as a carrier matrix for the
malaria antigen and does not induce antibodies against HBsAg [107].The prophylactic
vaccination against HPV is based on VLPs produced by introducing the L1 gene encoding
a capsid protein into eukaryotic cells (insects or yeasts). Licensed human and veterinary
vaccines are based on artificial VLPs derived from human or animal viruses. However,
plant virus-derived platforms can be used for the creation of novel vaccines [108]. HBV-
and norovirus-derived VLPs are the most studied VLPs, produced in plant-based systems
by three different species of transgenic plants: S. tuberosum [109], L. esculentum [70], and
N. benthamiana [70,75,110]. Many plant virus-derived nanoparticles have also been tested as
antigen carriers for different human or animal vaccines against influenza virus, hepatitis C
virus, Japanese encephalitis virus, canine parvovirus, and classical swine fever virus [108].
Plant VLP vaccines are produced in the different expression systems already described,
such as E. coli, and cloned in commercial plasmid, yeast, insect cells, mammalian cells,
or the most commonly used plants N. tabacum, N. benthamania, and A. thaliana [43,45,108].
For influenza viruses, plant-derived VLPs are an alternative to the currently available
manufacturing platforms for seasonal vaccines, and a seasonal recombinant quadrivalent
VLP vaccine is currently in clinical trial phase [111] (Table 2).
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4.2. Molecule Delivery

For a few decades, nanoparticle (NP)-based delivery agents, such as liposomes, poly-
mers, dendrimers, magnetic nanoparticles, and protein-based NPs, have been used as
carriers for drug delivery. These systems comprise the administration and controlled-
release delivery of pharmaceutical compounds to a specific area in tissues, improving
efficacy and safety [112]. Emerging research focuses on the development of protein-based
NPs derived from viral capsids (VLPs) as targeted therapeutic delivery agents [39,113,114]
(Table 2). Indeed, VLPs can pack and deliver therapeutic cargo such as chemotherapeutic
drugs, nucleic acids, proteins, and peptides. Different strategies have been developed to
carry the cargo either inside or outside the VLPs: (i) viral capsids disassembly by altering
pH and buffer conditions and reassembly to encapsulate the desired cargo using buffer
exchange methods, (ii) infusion of cargo due to changes in pH and salt concentrations,
(iii) genetic engineering techniques utilizing genetically conjugated scaffolding proteins to
encapsulate drugs, and (iv) bioconjugation using exterior surface-exposed residues [37].

Compared to classical NPs, VLPs present several advantages, including specific cell
targeting. VLPs show a natural tropism to certain tissue, and a more specific targeting
function can be obtained through attaching receptor-recognizing domains to the drug
carriers [115] (Table 2). For example, the tumor-targeting peptide (RGD) inserted through
genetic modification into the major immunodominant loop region of HBc (hepatitis B core
protein) VLPs enhanced tumor-homing in mice model [116]. Furthermore, cell targeting has
been achieved through functionalization of the exterior of the bacteriophage MS2 capsids
with the cell penetrating HIV-1 Tat peptide [117]. In addition to specific targeting, VLPs
permit efficient host cell penetration, biocompatibility, and degradability [81]. VLPs, like
original viruses, have the ability to escape the endosome before lysosomal degradation
occurs [115]. Indeed, after interaction with viral receptors, most viruses utilize the en-
docytosis pathways (clathrin-mediated endocytosis, caveolae-mediated endocytosis, and
macropinocytosis) to enter cells efficiently [118]. Once endocytosed, viruses can escape
from late endosomes or lysosomes and release their contents to cytoplasm by different path-
ways, such as membrane pore formation, membrane fusion, membrane penetration, and
membrane disruption. VLPs can be engineered to display cell-penetrating peptides to aid
in escaping the endosome, enhancing the delivery of functional therapeutic cargo [114]. For
example, MS2 VLPs have been modified with a histidine-rich fusogenic peptide (H5WYG)
to promote endosomal escape of internalized VLPs. This drug delivery system is under
research for delivery of doxorubicin, cisplatin, 5-fluorouracil, and siRNA for hepatocellular
carcinoma treatment [91] (Table 2).

5. Future Direction in Pest Management: VLPs as Synergistic Agent of Insecticides

Up to date, VLPs are not used in the context of pest management. However, VLPs
have recently received our attention because (i) they have been used worldwide in hu-
man health for over 30 years for HBV vaccination with a safety and efficacy profile more
than satisfactory, taking into account the available safety data [119–121], and (ii) they
can produce multiphasic elevation of intracellular calcium concentration in insect cells,
as shown in the graph obtained by calcium imaging ratiometric method (data from our
laboratory, inset Figure 2). Like classical synergistic agents [19], VLPs induce multiphasic
components of the calcium elevation, suggesting the involvement of multiple molecular cel-
lular and intracellular events (Figure 2). This includes plasma membrane calcium channel
and/or receptors (e.g., voltage-dependent calcium channels, transient receptor potential
(TRP), store-operated calcium entry (SOCE), and intracellular receptors (ryanodine receptor
(RYR), inositol 1,4,5-trisphosphate-receptor (IP3R)) that participate in calcium rise through
calcium-induced calcium release (CICR) or calcium release-activated channels (CRAC)
mechanisms [122]. As stated above, the increase in intracellular calcium concentration is
the essential prerequisite for producing an optimization of insecticide efficacy while reduc-
ing the concentrations used. Preliminary toxicological in vivo studies performed on the
aphid Acyrthosiphon pisum revealed that the mortality rate (using an artificial diet bioassay
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and measured at 48 h) produced by the insecticide indoxacarb is increased by about 25%
when co-applied with VLPs (5 × 109 particles/µL) (C. Deshayes, unpublished data). VLPs
are considered safer than viruses due to the absence of the virus genome and capability of
triggering calcium concentration elevation. For these reasons, they could be proposed as
alternative synergistic agents co-applied with a given insecticide for optimizing insecticide
efficacy through the elevation of the intracellular calcium concentration and be exploited
in pest management. Nevertheless, ecotoxicological and environmental stability studies
should be required before further applications.
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Figure 2. VLPs induce a multicomponent intracellular calcium rise. The scheme summarizes the
hypothetic mechanisms by which VLPs increase intracellular calcium concentration. Inset: Represen-
tative multicomponent effect of VLPs on intracellular calcium concentration in Fura-2 loaded isolated
insect neuron cell body using the calcium imaging ratiometric method (C. Deshayes, unpublished
data). VDCC, voltage-dependent calcium channel; TRP, transient receptor potential channel; SOCE,
store-operated calcium entry; NCX, sodium–calcium exchanger; RYR, ryanodine receptor; IP3R,
inositol triphosphate receptor; ER, endoplasmic reticulum.
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