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Some non-intuitive properties of serial chemostats with and

without mortality

M. Dali-Youcef∗,∗∗, J. Harmand∗∗∗, A. Rapaport∗ and T. Sari∗∗∗∗

Abstract

This paper discusses a model of two interconnected chemostats in series, characterized by biomass
mortality. A comparison is established with a single chemostat of the same total volume in two
different cases, that are with or without mortality rate. The outlet substrate concentration and the
biogas flow rate are the main criteria for comparison. According to conditions depending on the
operating parameters and the distribution of the total volume, our results show which structure,
the series of chemostats or the single chemostat, performs better in terms of minimizing the outlet
substrate concentration or maximizing the biogas flow rate, and this with or without account on
mortality. Moreover, the differences and similarities in the results corresponding to the case with
mortality and the one without mortality, are highlighted.
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1 Introduction

’Process design’ means determining which type of ideal reactor (e.g. CSTR, PFR) - or interconnection of reactors
- is best suited for a given ‘task’, the degrees of freedom being whether or not to multi-feed, the volumes of the
tanks, the different interconnection points, etc... The ‘task’ in question here is the transformation of some matter
- the ‘substrate’ - into a ‘product’ through a bioreaction auto-catalyzed by a microbial ecosystem, hereafter called
the ‘biomass’. This - very general - problem is of a crucial practical importance when dealing with large industries
where the number of tanks, their volumes, the technology on which they rely on or the way they are connected
to others directly impact not only the capital but also the operating costs. Being the first industry in terms
of the volume of matter processed, the study of wastewater treatment plants (WWTP) have attracted a lot of
attention for quite a long time, cf. for instance [11]. Because of their interest in producing energy from waste, the
optimal design of anaerobic processes (AD) has also been extensively studied, cf. [10]. Such studies - among many
others mainly conducted in the field of chemical and/or biochemical engineering - have in common to consider
steady state characteristics of the bioprocess. Indeed, in these industries it is the rule rather than the exception
to process continuously very large quantities of matter instead of stocking them, notably because the matter in
question (liquid or solid waste in the examples here above) are produced continuously: the price to pay to stock
them would be very high. They are however different in the objectives pursued: it is expected from a classical
WWTP that the output concentration of pollutant (the output substrate concentration) be minimal while in the
case of the AD, the objective is to maximize biogas production, the final product of the bioreaction. And looking
at the results of the different available studies, it appears the best designs are not the same. In other words,
given a bio-transformation process, different objectives may lead to different ‘optimal’ configurations. This is
precisely summarized as a preamble by Gooijer and his coauthors in their 1996 survey on the design procedures
of bioprocesses in series, citing what Herbert claimed in 1964 at a conference of bioengineering: ‘If one fermenter
gives good results, two fermenters will give better results and three fermenters better still. This is sometimes
true, but often false.’, cf. [5]. One difficulty when working with the design of bioprocesses comes from the fact
that the quantities assumed to be known and the degress of freedom are not the same depending on the specific
problem to be solved. For instance, when dealing with water treatment, it is the rule rather than the exception
to minimize the total volume of the system given input-output constraints specified by normative values. But,
if the system considered is already existing, it could also be interested to find conditions such that the output
pollution concentration be minimized, for instance in playing with operating conditions or with the interconnexion
of reactors. In addition, excluding a very few number of studies (cf. for instance [7] who worked with kinetics
defined by qualitative properties), most available literature solve the problem in fixing kinetics once and for all,
limiting the genericity of the results. Thus, it is particularly difficult to draw general conclusions and get a global
idea about the advantages and drawbacks of a given configuration. In the present paper, we revisit the properties
of a specific configuration - the two tanks in series - from a generic viewpoint. To do so, we adopt an approach in
which we systematically compare the performances of a single CSTR with those obtained using two tanks in series
in which both r, the fraction of the total volume used to calculate the volume of each tank as rV and (1− r)V ,



respectively, and the input substrate concentration Sin are free. It should be noticed that it is easy to compare
both configurations since the CSTR can be seen as a special case of the two tanks in series model when r = 0 or
r = 1. The paper is organized as follows: first, we recall the model of the systems. It should be noticed that we
consider here the presence of a mortality term which, as we will see, may play an important role in the design
results. Then, considering the biomass growth rate follows a ‘Monod-like’ kinetics we establish the properties of
the CSTR and the two tanks in series configuration for two different objectives pursued that are the search for
the best design when we want to minimize the output substrate concentration and when we want to maximize
biogas production. Finally, some conclusions and perspectives are drawn.

2 Presentation of the model and preliminaries

We consider two serial interconnected chemostats of total volume V . The first tank is of volume V1 := rV and
the second tank is of volume V2 := (1 − r)V where r ∈ (0, 1). The substrate and the biomass concentrations in
the tank i are respectively designated Si and xi, i = 1, 2. At the input, the first tank is fed by the substrate
concentration denoted Sin. The dilution rate of the whole structure denoted D is defined by D := Q/V where Q
designating the flow rate is constant. The dilution rates of the tanks i are different and are defined by Di := Q/Vi,
i = 1, 2. The mortality of the biomass is denoted a such that a ≥ 0. The mathematical model is given by the
following equations:

Ṡ1 = D
r

(Sin − S1)− f(S1)x1

ẋ1 = −D
r
x1 + f(S1)x1 − ax1

Ṡ2 = D
1−r (S1 − S2)− f(S2)x2

ẋ2 = D
1−r (x1 − x2) + f(S2)x2 − ax2

(1)

Notice that for r = 0 or r = 1, the configuration is reduced to a single reactor, which corresponds to the single
chemostat model given by the system

Ṡ = D(Sin − S)− f(S)x
ẋ = −Dx+ f(S)x− ax (2)

For sake of completeness, the analysis of system (2) is given in [4]. The considered growth function f is assumed
to be of Monod type i.e. it verifies the following assumption.

Hypothesis 1 The function f belongs to C1(R+,R+) and satisfies f(0) = 0, f ′(S) > 0 for all S > 0.

As f is increasing, then the break-even concentration is well defined by λ(D) = f−1(D) for 0 ≤ D < m with
m := supS>0 f(S), (that may be +∞).

System (1) can admits at most three steady states: the washout steady state E0 = (Sin, 0, Sin, 0), the
steady state E1 = (Sin, 0, S2, x2) of washout in the first reactor but not in the second one and the steady state
E2 = (S∗1 , x

∗
1, S
∗
2 , x
∗
2) of persistence of the biomass in both reactors. Expressions of equilibria E1 and E2 are given

in Table 1 where E2 requires the definition of the function h as

h(S2) =
D + (1− r)a

1− r
S∗1 − S2

DSin+raS∗
1

D+ra
− S2

(3)

with S∗1 = λ(D/r + a).

In order to simplify the notations, we posit δ := f(Sin)− a.

Proposition 1 Let a ≥ 0, D ≥ 0 and r ∈ (0, 1) be fixed. For all Sin > λ(D/r + a), the function Sin 7→
S∗2 (Sin, D, r) is decreasing.

The proof of Proposition 1 is given in [3, 4]. This proposition asserts that increasing the input substrate
concentration decreases the output substrate concentration at steady sate of the series configuration.

3 Output substrate concentration

We consider the map r 7→ Soutr (Sin, D) defined by (4), which represents the output substrate concentration at
steady state of the serial configuration.

Soutr (Sin, D) =



Sin if D ≥ rδ and
D ≥ (1− r)δ

λ
(

D
1−r + a

)
if D ≥ rδ and

D ≤ (1− r)δ
S∗2 (Sin, D, r) if D < rδ.

(4)



E1 = (Sin, 0, S2, x2)
S2 = λ

(
D

1−r + a
)

and

x2 = D
D+(1−r)a (Sin − S2)

E2 = (S∗
1 , x

∗
1, S

∗
2 , x

∗
2)

S∗
1 = λ

(
D
r + a

)
,

x∗1 = D
D+ar (Sin − S∗

1 )

S∗
2 is the unique solution of equation
h(S2) = f(S2) and
x∗2 = D

D+(1−r)a (x∗1 + S∗
1 − S∗

2 )

Existence condition Stability condition
E0 Always exists D > rδ and D > (1− r)δ
E1 D < (1− r)δ D > rδ
E2 D < rδ Stable if it exists

Table 1: The steady states of (1) and their conditions of existence and stability

The following results draw comparisons of Soutr with the output substrate concentration Sout of the single chemo-
stat at steady state given by

Sout(Sin, D) =

{
Sin if D ≥ δ
λ(D + a) if D < δ.

(5)

For a fixed r ∈ (0, 1), let the function gr : [0, r(m− a)) 7→ R be defined by

gr(D) := λ
(
D
r

+ a
)

+ r(D+ar)
(1−r)(D+a)

(
λ
(
D
r

+ a
)
− λ(D + a)

)
. (6)

We introduce the following hypothesis that is satisfied by any concave growth function (and hence by the Monod
growth function), and also by some non concave functions such as Hill functions (see Sections 5 of [3, 4] for more
details.)

Hypothesis 2 For any a ≥ 0 and D ∈ [0,m− a), the function r ∈ (D/(m− a), 1) 7→ gr(D) ∈ R is decreasing.

Let the function D ∈ [0,m− a) 7→ g(D) ∈ R be defined by

g(D) := λ(D + a) +Dλ′(D + a). (7)

whose expressions are given in Table 2 for a Monod function.

gr(D) K(D+ar)((D+a)2−m(D(1+r)+a))
(m−a−D)(mr−ar−D)(D+a)

g(D) K(m(2D+a)−(D+a)2)
(m−a−D)2

Table 2: Analytical expressions obtained for the Monod function f(S) = mS
K+S .

Proposition 2 Assume that Assumptions 1 and 2 are satisfied, and take a ≥ 0,

• If Sin ≤ g(D) then for any r ∈ (0, 1), Soutr (Sin, D) > Sout(Sin, D).

• If Sin > g(D) then Soutr (Sin, D) < Sout(Sin, D) if and only if r1(Sin, D) < r < 1 where r1(Sin, D) is the
unique solution of Sin = gr(D).

In addition, Soutr (Sin, D) = Sout(Sin, D) for r = 0, r = r1(Sin, D) and r = 1.

Proposition 2 ensures that for given input substrate concentration Sin and dilution rate D, the serial configuration
can be more efficient than a single chemostat in terms of minimizing the output substrate concentration, if
practitioner can choose arbitrarily the volumes distribution among the two tanks. A proof of this proposition is
available in [3] for a = 0 and in [4] for any a > 0.

In the Monod case, Sin = gr(D) is a second degree algebraic equation in r that gives two solutions, one
which corresponds to r1(Sin, D) considered in the proposition and a second one which is not considered because
it does not belong to (0, 1). Proposition 2 is illustrated in Figure 1 for f(S) = 4S/(5 + S), a = 0.3 and D = 1.
For these parameters values, one has g(1) ≈ 5.1509. As shown in panel (a) (resp. panel (b)) of the figure, for
Sin = 6.4 > g(1) (resp. Sin = 18 > g(1)), it exists r = r1(6.4, 1) (resp. r = r1(18, 1)) solution of 6.4 = gr(1)
(resp. 18 = gr(1)), such that for any r > r1(6.4, 1) (resp. r > r1(18, 1)), the output substrate concentration of
the serial configuration is smaller than the output substrate concentration of the single chemostat. In addition, as



shown in Figure 1, there exists a unique value rmin of the parameter r which gives the smallest output substrate
concentration of the series configuration, defined as

rmin := argmin
0<r<1

S∗2 (Sin, D, r). (8)

r

Sout,Sout
r

λ(D + a)

r01 − r0 r1 rmin

(a)

r

Sout,Sout
r

λ(D + a)

r0 r1 rmin

(b)

Figure 1: The output substrate concentrations of the serial configuration in red and the single chemostat
in blue with r0 = D/δ, f(S) = 4S/(5 + S), a = 0.3, D = 1 and rmin is defined by (8). (a): Sin = 6.4,
r0(6.4, 1) ≈ 0.51 and r1(18, 1) ≈ 0.75 . (b): Sin = 18, r0(18, 1) ≈ 0.35 and r1(18, 1) ≈ 0.39.

According to Proposition 1, notice that for a fixed dilution rate D, the lowest output substrate concentration
Soutrmin

(Sin, D) = S∗2 (Sin, D, rmin) gets smaller by increasing Sin. This was numerically highlighted in [12] for
Monod and Contois growth functions.

4 Biogas flow rate

Recall that the biogas production rate of a single chemostat is proportional to the microbial activity f(S)x and
to its volume V (see [1, 9]). For the serial interconnection of two chemostats, the total biogas flow rates G1, G2

corresponding respectively to the steady states E1, E2, are thus given by

G1(Sin, D, r) := V2x2f(S2),
G2(Sin, D, r) := V1x

∗
1f(S∗1 ) + V2x

∗
2f(S∗2 ).

(9)

According to Table 1 and (9), one deduces that for all rδ ≤ D and D < (1− r)δ, one has

G1(Sin, D, r) := V D(Sin − S2) (10)

and for all D < rδ, one has
G2(Sin, D, r) := V D(Sin − S∗2 ). (11)

Remark 1 According to the definitions (4), (10) and (11), one deduces that analyzing the output substrate con-
centration at steady state amounts to analyzing the biogas flow rate at steady state. In other words, minimizing
the output substrate concentration at steady state allows to maximizing the biogas flow rate at steady state.

The biogas flow rate of the single chemostat at steady state being defined by

Gchem(Sin, D) :=

{
0 if D ≥ δ
V D(Sin − λ(D + a)) if D < δ.

(12)

we have the following result as a direct consequence of Proposition 2, accordingly to Remark 1,

Proposition 3 Assume that Assumptions 1 and 2 are satisfied. For all 0 ≤ D < δ and a ≥ 0, one has

• For every r ∈ (0, 1), G1(Sin, D, r) < Gchem(Sin, D).

• If Sin ≤ g(D) then G2(Sin, D, r) < Gchem(Sin, D) for every r ∈ (0, 1). If Sin > g(D) then G2(Sin, D, r) <
Gchem(Sin, D) if and only if r1(Sin, D) < r < 1 where r1(Sin, D) is the unique solution of Sin = gr(D).

In addition, G1(Sin, D, r) = Gchem(Sin, D) for r = 0, and G2(Sin, D, r) = Gchem(Sin, D) for r = r1(Sin, D) and
r = 1.

For a deeper analysis, we fix the input substrate concentration Sin and the parameter r, and consider the maps
D 7→ Gchem(Sin, D), D 7→ G1(Sin, D, r) and D 7→ G2(Sin, D, r).
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Figure 2: The curves of the functions D 7→ G1(Sin, D, r) (in blue) and D 7→ G2(Sin, D, r) (in red) , for
Sin = 7 and the corresponding value of Gchem(Sin, D) (in black), with Dr = Dr(S

in), f(S) = 4S/(5+S)
and a = 0.

Proposition 4 For all r ∈ (0, 1), a ∈ [0, 1) and 0 ≤ D < δ, one has
1. G1(Sin, D, r) < Gchem(Sin, D).
2. G2(Sin, D, r) > Gchem(Sin, D) if and only if Sin > gr(D).

Proposition 4 is illustrated with Figures 2 and 3 which have been established for fixed Sin and parameter r (i.e.
both volumes of the two reactors are fixed). The difference between the figures is due to the mortality rate which
is null in Figure 2 and positive in Figure 3. On the one hand, observe that for any D ∈ (0, δ), the biogas flow
rate of the serial configuration for the steady state E1 with or without mortality (curves in blue) is always smaller
than the biogas flow rate of the single chemostat (curves in black). On the other hand, notices that for any

D

y

Dr rδ (1 − r)δ δ

(a) r = 0.3

D

y

Dr rδ(1 − r)δ δ

G
Gmax

(b) r = 0.75

Figure 3: The curves of the functions D 7→ G1(Sin, D, r) (in blue) and D 7→ G2(Sin, D, r) (in red) , for
Sin = 2 and the corresponding value ofGchem(Sin, D) (in black), withGmax = Gmax(Sin), G = G(r, Sin),
f(S) = 4S/(5 + S) and a = 0.6.

D ∈ (0, Dr(S
in)), the biogas flow rate of the serial configuration for the steady state E2, with or without mortality

(curves in red) is greater than the biogas flow rate of the single chemostat (curves in black). Therefore, for any
D ∈ (0, Dr(S

in)) the serial configuration is more efficient than the single chemostat. Notice that for fixed Sin,
a and r, the value D = Dr(S

in) is solution of the equation Sin = gr(D) where gr is defined by (6). This value
exists and is unique under the following assumption which is satisfied by any concave growth function such as the
Monod function, but also for the Hill function (for more details one can see Sections 5 of [3, 4]).

Hypothesis 3 For any a ≥ 0 and r ∈ (0, 1), the function D ∈ [0, r(m− a)) 7→ gr(D) ∈ R is increasing.

In addition, one can remark in Figure 2 that the biogas flow rate of the serial configuration without mortality
never exceed the maximal biogas flow rate of the single chemostat. This observation is indeed always true and
given by the Proposition 5 below.

For Sin > 0 and a ≥ 0, let Gmax be defined by

Gmax(Sin) := max
D∈(0,δ)

Gchem(Sin, D).



Proposition 5 Let Sin be fixed and a = 0. For any D > 0 and r ∈ (0, 1), one has G1(Sin, D, r) < Gmax(Sin)
and G2(Sin, D, r) < Gmax(Sin).

The proof is given in [3].
Thus, for a null mortality rate, when Sin and r are fixed, if the dilution rate D can be chosen then there

is no interest to consider a serial configuration. Therefore, for optimizing the biogas flow rate production, the
practitioner should consider a single chemostat (of same total volume). However, in Figure 3, one can notice
that the maximal biogas flow rate of the serial configuration at the positive steady state E2 with mortality (that
is maxD≥0G2(Sin, D, r), the maximum of the red curve), can exceed the maximal biogas flow rate of the single
chemostat (which is Gmax(Sin), the maximum of the black curve). This phenomenon can happen only when
the mortality rate is non null. Proposition 6 asserts that without mortality, for a fixed r close enough to 1, the
maximal biogas flow rate of the series configuration with mortality is certainly higher than the one of the single
chemostat.

For Sin > 0 fixed, we assume that the maximum of the function D 7→ G2(Sin, D, r) is unique, and we denote
by G(r, Sin) the maximal value of G2(Sin, D, r):

G(r, Sin) = max
D∈[0,rδ]

G2(Sin, D, r). (13)

Note that Gmax(Sin) = G(1, Sin). The following result follows from Proposition 8 of [4].

Proposition 6 Assume that f is C2. If a > 0, then there exists r∗ ∈ (0, 1) such that for any r ∈ (r∗, 1) we have
G(r, Sin) > Gmax(Sin).

r

G

G(1, 2)

Figure 4: The map r 7→ G(r, Sin) with G defined by (13) with f(S) = 4S/(5 + S), a = 0.6 and Sin = 2.

Proposition 6 is illustrated with Figure 4, where one observes that the tangent of G at r = 1 is horizontal i.e
G
′
(1, 2) = 0 and that G

′′
(1, 2) is positive and remains positive in a neighborhood V1 of r = 1. In real ecosystems,

a biomass mortality often occurs, but is sometimes neglected when it is very small. Indeed, this last result shows
that the occurrence of a biomass mortality, even small, may be advantageous: considering two interconnected
reactors in series where the volume of the first reactor rV is close to the total volume V (but not equal to, so
that the second reactor has a small but non null volume (1− r)V ) gives the possibility to choosing a dilution rate
sufficiently close or equal to D(r), defined in Proposition 6, which optimizes the production of the biogas flow
rate and gives a better and more efficient functioning than a single tank configuration.

In Figure 5, graphs of the family of functions r 7→ G2(Sin, D, r) for different values of D are plotted in black
(Sin > 0 being fixed). The function r 7→ G(r, Sin) plotted in Figure 4 is thus the upper envelope of this family. Two
particular curves are added on Figure 5. The green one corresponds to the value of D that maximizes the biogaz
production for the single chemostat, that is D which realizes the maximum of the function D 7→ Gchem(Sin, D).
The blue one corresponds to the value of D of the maximizer of (D, r) 7→ G2(Sin, D, r) (which has been obtained
numerically), or equivalently D is the maximizer of D 7→ G2(Sin, D, r) when r maximizes r 7→ G(r, Sin). One can
see that the envelope of this family of functions is non monotonic and admits a maximum which is not reached
for r = 1 (see the blue curve). Moreover, all the curves are locally decreasing about r = 1, excepted the one for D
that realizes the maximum of D 7→ Gchem(Sin, D) (the green one), which is increasing with an horizontal slope
at r = 1. Indeed, all the other curves reach 0 (wash-out) at smaller values of r and thus intersect the green one.

5 Conclusion

In this paper, we present different results following the study of a mathematical model of two interconnected
chemostats in series. The particularity of our study is the consideration or not of mortality. On the one hand, we
show that for fixed substrate concentration Sin and dilution rate D, whatever the mortality is; strictly positive



Figure 5: Curves r 7→ G2(Sin, D, r) for different values of D, with f(S) = 4S/(5 + S), a = 0.6 and
Sin = 2. In blue, the one for D ' 0.213 such that maxr G(r, Sin) = maxr G2(Sin, D, r). In green, the
one for D ' 0.283 such that Gmax(Sin) = Gchem(Sin, D).

or null, for a volume distribution such that r is greater than the threshold r1(Sin, D), there exists a series
configuration of two chemostats that gives a smaller substrate concentration than a single chemostat. In addition,
with respect to the parameter r, we can even define the best performing series configuration which corresponds
to r = rmin defined by (8). This result was numerically noticed by [8] who built on the work done by [6] and [2].
Indeed, in the case with null mortality, using a growth function of type Monod, [8] found that two or three reactors
in series optimally designed (e.g. the first reactor has the biggest volume), could provide substrate conversions
similar to a PFR. Under the experimental study done by [6], where when using a Monod growth function, it is
deduced that a PFR is always more efficient than a single chemostat, [8] deduced that under precise conditions, a
configuration of two or three reactors in series more efficient than a single chemostat can exist. On the other hand,
for a fixed inlet substrate concentration Sin and a previously defined volume distribution into the two tanks i.e.
r, if the practitioner can choose the dilution rate D then, for null mortality, we prove that the single chemostat is
always more efficient and allows to have a higher biogas flow rate than the serial device. Knowing that biogas flow
rate is proportional to the microbial activity and as shown in [3], the biogas flow rate and the productivity of the
biomass of the two series interconnected chemostats configuration are defined by the same equations at steady
state, then all the results with no mortality, quoted so far, are valid for three different performances criteria:
output substrate concentration, biogas flow rate and biomass productivity. Now, in the case where mortality is
positive, the last result is not the same and changes significantly. Indeed, for a positive mortality, for a fixed Sin

and r, if the practitioner can choose the dilution rate D, then the series configuration becomes the structure that
should be considered. Indeed, for the right chosen dilution rate D, the series configuration gives a higher biogas
flow rate than the single chemostat. This can only happen with presence of mortality. Therefore, considering
mortality in a biological experiment corresponding to the hypotheses posed in our results, can represent a solution
to improve the out-turn of the experiment.
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