

# Assessment of spike-AMP and qPCR-AMP in soil microbiota quantitative research

Meiling Zhang, Liyu Zhang, Shuyu Huang, Wentao Li, Wei Zhou, Laurent

Philippot, Chao Ai

## ► To cite this version:

Meiling Zhang, Liyu Zhang, Shuyu Huang, Wentao Li, Wei Zhou, et al.. Assessment of spike-AMP and qPCR-AMP in soil microbiota quantitative research. Soil Biology and Biochemistry, 2022, 166, pp.108570. 10.1016/j.soilbio.2022.108570 . hal-03698155

## HAL Id: hal-03698155 https://hal.inrae.fr/hal-03698155v1

Submitted on 22 Jul 2024

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

| 1  | Types of paper: Research Paper                                                                                                                            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Date of preparation: August, 2020                                                                                                                         |
| 3  | Number of text pages: 37                                                                                                                                  |
| 4  | Number of tables and figures: 1 table and 7 figures                                                                                                       |
| 5  | Supplementary Information: 6 methods, 15 figures and 8 tables                                                                                             |
| 6  |                                                                                                                                                           |
| 7  | Title: Assessment of spike-AMP and qPCR-AMP in soil microbiota quantitative research                                                                      |
| 8  |                                                                                                                                                           |
| 9  | Authors: Meiling Zhang <sup>ID_a, 1</sup> , Liyu Zhang <sup>a</sup> , Shuyu Huang <sup>a</sup> , Wentao Li <sup>b</sup> , Wei Zhou <sup>a</sup> , Laurent |
| 10 | Philippot <sup>ID c, *</sup> , Chao Ai <sup>ID_a, c, 1, *</sup>                                                                                           |
| 11 |                                                                                                                                                           |
| 12 | <sup>a</sup> Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural                                          |
| 13 | Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR                                                            |
| 14 | China.                                                                                                                                                    |
| 15 | <sup>b</sup> Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, PR China.                                                         |
| 16 | <sup>°</sup> Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 21000 Dijon, France.                                                 |
| 17 |                                                                                                                                                           |
| 18 | <sup>1</sup> Meiling Zhang and Chao Ai contributed equally to this work.                                                                                  |
| 19 | * Corresponding authors:                                                                                                                                  |
| 20 | Chao Ai, Tel: +86 10 82108669; E-mail: aichao@caas.cn.                                                                                                    |
| 21 | Laurent Philippot, Tel: +86 10 82108671; E-mail: laurent.philippot@inrae.fr.                                                                              |

## 22 Abstract

| 23 | Relative microbiome profiling (RMP) using new sequencing approaches has limited capacity to detect         |
|----|------------------------------------------------------------------------------------------------------------|
| 24 | shifts in microbial abundances. The growing need for absolute abundances has led to advances in            |
| 25 | absolute microbiome profiling (AMP). However, the performance and universal applicability of these         |
| 26 | various AMP methods remain unclear. Here, the two most popular AMP methods, spike-in method                |
| 27 | (spike-AMP) and quantitative PCR combined with high-throughput sequencing (qPCR-AMP), were                 |
| 28 | evaluated in soil microbiota research. Our results showed that the quantitative results based on spike-    |
| 29 | AMP were inconsistent with expected trends. The spike-derived absolute abundance was indeterminate         |
| 30 | and highly dependent on the amount of spike added. Furthermore, no good correlation was found              |
| 31 | between the addition of spike copies and output of spike reads, especially at low spike levels,            |
| 32 | contradicting the theoretical assumption of the spike-in method. Spike addition consumed substantial       |
| 33 | sequencing resources, and more importantly, it altered the original microbial community structure,         |
| 34 | explaining 16.1%-36.2% of structural variation. In contrast, the more common qPCR-AMP method               |
| 35 | provided valuable insights into the understanding of soil microbial dynamics in response to straw          |
| 36 | addition. Our results showed that the straw-induced variations in some dominant phyla such as              |
| 37 | Proteobacteria, Actinobacteriota and Ascomycota could only be detected by absolute rather than             |
| 38 | relative microbial profiling. We inferred microbial networks based on absolute and relative data           |
| 39 | matrices, respectively, and observed that the choice of data type essentially impacted the patterns of co- |
| 40 | occurrence networks and the recognition of module hubs. The keystones and enriched phyla only              |
| 41 | detected by absolute microbial profiling were confirmed to be involved in straw decomposition by a         |
| 42 | stable isotope probing experiment. Overall, AMP can provide valuable insights into the understanding       |

- 43 of soil microbial dynamics in response to environmental fluctuations. Given its stability and technical
- 44 feasibility, qPCR-AMP may be broadly applicable to soil microbiota quantitative research.
- 45
- 46 Keywords: absolute microbiome profiling, spike-in, absolute abundance, qPCR, soil microbial
- 47 community

## **1. Introduction**

| 49 | Microorganisms are diverse forms of life and thrive in almost all environments. Their                                 |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 50 | composition and function have substantial impacts on human health (Fan and Pedersen, 2021), global                    |
| 51 | element cycling (Crowther et al., 2019), crop production (Charpentier and Oldroyd, 2010) and plant                    |
| 52 | disease resistance (Kwak et al., 2018). Advances in high-throughput sequencing technologies have                      |
| 53 | contributed to the surge of microbial sequencing data (White et al., 2016), but similar to previous                   |
| 54 | fingerprinting approaches, such as denaturing gradient gel electrophoresis or terminal restriction                    |
| 55 | fragment length polymorphism, relative microbiome profiling (RMP) obtained from sequencing data                       |
| 56 | overlooks absolute microbial abundance. However, without absolute quantification, it is challenging to                |
| 57 | build a more comprehensive understanding of how dynamics of microbiome abundance vary across                          |
| 58 | space, time, and in response to environmental fluctuations (Vandeputte et al., 2017; Zhang et al., 2017;              |
| 59 | Tkacz et al., 2018; Guo et al., 2019; Boshier et al., 2020).                                                          |
| 60 | Currently, absolute microbiome profiling (AMP) has been developed to overcome the innate                              |
| 61 | limitation of high-throughput sequencing (Tourlousse et al., 2017; Vandeputte et al., 2017). There are                |
| 62 | three main types of AMP: (i) spike-in method (spike-AMP) (Fig. 1a-d, f); (ii) quantitative PCR                        |
| 63 | combined with sequencing data (qPCR-AMP) (Fig. 1e, f); and (iii) flow cytometry (FCM) combined                        |
| 64 | with sequencing data (FCM-AMP). Spike-AMP, similar to strategies adopted for RNA-seq (Jiang et al.,                   |
| 65 | 2011), has been used to extrapolate absolute abundances of microbial communities by adding a known                    |
| 66 | amount of spike to environmental samples. According to the form of the spike, spike-AMP can be                        |
| 67 | further divided into three different workflows (Fig. 1b-d). First, a known amount of single spike was                 |
| 68 | added into environmental samples (Smets et al., 2016) or into DNA extracts (Guo et al., 2019), and the                |
| 69 | absolute abundance of a specific taxon can be obtained based on the input of spike copies and output of $\frac{4}{2}$ |

| 70 | sequencing reads (i.e., method #1 in Fig. 1b, f). However, the challenge of the single spike-in method     |
|----|------------------------------------------------------------------------------------------------------------|
| 71 | was the selection of a suitable spike concentration because low levels of spikes can easily be retained in |
| 72 | environmental samples (e.g., soils) and high levels of spikes might be oversaturated (Tkacz et al.,        |
| 73 | 2018). In general, preliminary tests that a single spike with different gradient concentrations was added  |
| 74 | into environmental samples (Tkacz et al., 2018) or DNA extracts (Guo et al., 2019) were conducted to       |
| 75 | determine the appropriate amount of spike addition (i.e., method #2 in Fig. 1c). In an exploratory study,  |
| 76 | Tkacz et al. (2018) found that the optimum spike levels of 16S rRNA gene, 18S rRNA gene and ITS            |
| 77 | region should account for 20%-80% of total sequencing reads. If the absolute microbial abundances          |
| 78 | between samples vary greatly, the optimal spike concentration of each sample needs to be determined.       |
| 79 | Because of the laboriousness and complexities of method #2, an alternative method was to use one           |
| 80 | spike mixture to replace method #2 (Tourlousse et al., 2017; Jiang et al., 2019; Gao and Sun, 2020;        |
| 81 | Mou et al., 2020) (i.e., method #3 in Fig. 1d). The absolute abundance of specific taxa can be             |
| 82 | determined based on the generated spike linear relationship (Fig. 1d, f). However, the spike mixture       |
| 83 | might account for a larger proportion of sequencing data when compared with the addition of a single       |
| 84 | spike. For example, the spike mixture with nine different spikes could consume 41.7% of total reads in     |
| 85 | a given amplicon library (Jiang et al., 2019). In addition to spike-AMP, integrating qPCR-based gene       |
| 86 | copies (Zhang et al., 2017; Lou et al., 2018; Boshier et al., 2020) (Fig. 1e, f) or FCM-based cell counts  |
| 87 | (Vandeputte et al., 2017; Zhang et al., 2017; Vieira-Silva et al., 2019) into sequencing workflow have     |
| 88 | been applied to calculate the absolute abundance of a specific taxon in human gut, soil and vagina         |
| 89 | microbiomes. In addition to using spike-AMP or qPCR/FCM-AMP alone, Zemb et al. (2020) have                 |
| 90 | proposed a framework in which spike-ins and qPCR data were integrated to calculate the absolute            |
| 91 | microbial abundances.                                                                                      |

| 92  | AMP represented a significant advance in microbial quantification, enriching the interpretation of            |
|-----|---------------------------------------------------------------------------------------------------------------|
| 93  | microbial sequencing data from human gut (Stammler et al., 2016; Vandeputte et al., 2017; Vieira-             |
| 94  | Silva et al., 2019; Rao et al., 2021), vagina (Boshier et al., 2020), soil (Smets et al., 2016; Tourlousse et |
| 95  | al., 2017; Zhang et al., 2017; Tkacz et al., 2018; Yang et al., 2018; Jiang et al., 2019), plant (Guo et al., |
| 96  | 2019) and ocean water (Gao and Sun, 2020). However, the universal applicability of these methods has          |
| 97  | not yet been demonstrated in complex and diverse soil samples. Here, we first designed a set of               |
| 98  | bacterial and fungal spikes with different gradient concentrations and then added these spikes to             |
| 99  | distinct soil DNA extracts to evaluate the universal feasibility of spike-AMP (i.e., method #2 in Fig.        |
| 100 | 1c). After finding that spike-AMP did not exhibit any advantages in accuracy and reliability, we further      |
| 101 | applied qPCR-AMP to determine the absolute profiling of soil bacterial and fungal communities in              |
| 102 | response to the addition of organic matter (i.e., maize straw). The superiority of AMP was further            |
| 103 | confirmed by a stable isotope probing (SIP) experiment. The objectives of this investigation were to (i)      |
| 104 | evaluate the universal feasibility of spike-AMP and the effect of spike application on the original           |
| 105 | microbial community structure; (ii) verify whether AMP has significant advantages in determining key          |
| 106 | species that respond to environmental fluctuations (i.e., the addition of maize straw).                       |
| 107 | 2. Materials and Methods                                                                                      |
| 108 | 2.1. Soil samples collection                                                                                  |
| 109 | Soil cores were collected from two locations distant from each other: Hailun, North China (47.86 $^{\circ}$   |

110 N, 127.01° E) (HL) and Sanya, South China (18.34° N, 109.65° E) (SY) (Fig. S1a). Three soil cores as

- 111 biological replicates were collected from both upland and paddy soils at each location, thus resulting in
- 112 12 soil samples that were used for the further incubation experiment. The physico-chemical properties,
- 113 microbial community structure and taxonomic distribution for these samples are shown in Fig. S2 and

| 114 | Table S1. Next, SIP microcosms were prepared by adding 0.1 g ground <sup>13</sup> C-labeled maize straw (95.05    |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 115 | atom % $^{13}$ C) to the ~23 g fresh soil (equivalent to 20 g on a dry weight) (Fig. S1b). The soil               |
| 116 | microcosms without straw addition were performed as pairwise comparison for each SIP microcosms                   |
| 117 | (i.e., control microcosms). Then, a 60-day incubation study was conducted on the 12 SIP microcosms                |
| 118 | and 12 control microcosms. Detailed processing steps about the <sup>13</sup> C labeling and incubation experiment |
| 119 | are outlined in Methods 1 and 2, respectively (see Supplementary Information). During the incubation              |
| 120 | period, approximately 5 g of incubated soil was successively collected from the same set of 24                    |
| 121 | microcosms at four time points (days 0, 7, 30 and 60). Finally, we collected a total of 96 incubated soil         |
| 122 | samples.                                                                                                          |
| 123 | Based on the collected incubated soil samples, we implemented the following two sections in this                  |
| 124 | study (Fig. S3). In section I, considering the representativeness of samples, we selected a set of straw-         |
| 125 | amended soil samples at three time points (one of the three biological replicates at days 0, 7 and 30)            |
| 126 | from two soil types (HL paddy soils (HLP) and SY upland soils (SYU)), thus resulting in 6 soil                    |
| 127 | samples to evaluate the feasibility of the spike-AMP method. In section II, qPCR-AMP were                         |
| 128 | performed to detect the absolute microbial profiling of 72 incubated samples (including control and               |
| 129 | straw-amended soils at days 7, 30 and 60 from two field types (upland and paddy) from two sites (HL               |
| 130 | and SY)). In contrast to RMP, the superiority of AMP was verified by the SIP experiment. Detailed                 |
| 131 | information of the qPCR-AMP and SIP experiment can be found in Methods 2 and 3 (see                               |
| 132 | Supplementary Information).                                                                                       |

#### 133 2.2. Overview of spike-AMP

- 134 2.2.1. Determination of the total copy numbers of 16S rRNA gene and ITS region
- 135 To estimate the background abundances of 16S rRNA gene and ITS region in the six soil samples 136 used in section I, we performed qPCR by using 338F/806R (338F: 5'-ACT CCT ACG GGA GGC 137 AGC A-3'; 806R: 5'-GGA CTA CHV GGG TWT CTA AT-3') and ITS1F/ITS2 (ITS1F: 5'-CTT GGT 138 CAT TTA GAG GAA GTA A-3'; ITS2: 5'-GCT GCG TTC TTC ATC GAT GC-3') primer sets, 139 respectively. In particular, to improve the confidence of quantitative results, the 16S rRNA gene and 140 ITS region abundances of each sample were reproduced in two independent qPCR experiments (i.e., 141 Experiments 1 and 2; Fig. 2). The qPCR processing steps including DNA samples preparation, qPCR 142 amplification and data analysis, are described in Method 4 (see Supplementary Information). The
- 143 qPCR reaction efficiency for targeted 16S rRNA gene and ITS region ranged from 87.59% to 92.53%
- 144 and 90.24% to 104.03%, respectively. The presence of PCR inhibitors in the soil DNA extracts was
- 145 verified by mixing a known amount of plasmid DNA (pMD<sup>TM</sup>18-T vector) either with DNA extracts or
- sterilized water; no inhibition was observed in the assays in this study.
- 147 2.2.2. Design of synthetic spike

148 The synthetic spike sequences included two regions: 1) conserved primer binding sites from

- 149 338F/806R and ITS1F/ITS2 for amplification of 16S rRNA gene and ITS region, respectively; 2)
- 150 artificial variable regions that lack identity to nucleotide sequences in public databases (Tourlousse et
- al., 2017; Tkacz et al., 2018) (Fig. 1a). Design of the artificial variable sequence was conducted in
- accordance with a previous publication (Tourlousse et al., 2017); the amplicon lengths were 469 and
- 153 421 bp for bacterial and fungal spikes, respectively (Table S2). Detailed steps on how the final spikes

were obtained are outlined in Method 5 (see Supplementary Information). Spike concentrations were
measured by Quant-iT<sup>TM</sup> PicoGreen<sup>TM</sup> dsDNA Assay (Thermo Fisher Scientific, Eugene, OR, USA).
Finally, spike copies were calculated according to the equation described in a previous study (Lee et al.,

157 2006):

158 Spike copies number (copies 
$$\mu L^{-1}$$
) =  $\frac{6.02 \times 10^{23} (\text{copies mol}^{-1}) \times \text{Spike concentration } (ng \,\mu L^{-1}) \times 10^{-9}}{\text{Spike length } (bp) \times 660 (\text{datton } bp^{-1})}$  (1)

159 2.2.3. Spiking into DNA samples and high-throughput sequencing

160 On the basis of the background abundances of 16S rRNA gene and ITS region in the six soil 161 samples, we designed eight bacterial and nine fungal spike gradient concentrations ranging from 162  $6.94 \times 10^2$  to  $2.81 \times 10^8$  and  $4.91 \times 10^1$  to  $1.99 \times 10^7$  copies  $\mu L^{-1}$ , respectively (Table 1). To ensure that the 163 spike dilution level was correct, we tested the spike gradient concentration using qPCR. The standard 164 curves of spike dilutions showed that both bacterial and fungal spikes exhibited excellent linearity 165 between spike concentration and Ct values with  $R^2 \ge 0.999$ . Then, bacterial and fungal spikes were 166 added separately to DNA samples extracted from the six tested samples. For each DNA samples, 114 167 samples were prepared corresponding to the bacterial/fungal control, eight bacterial and nine fungal 168 spike levels performed in six technical replicates (Table 1). The DNA samples and synthetic spikes 169 were co-amplified in duplicate using the bacterial 338F/806R or fungal ITS1F/ITS2 primer pairs. An 8 170 bp barcode sequence located in front of the forward primer was used for multiplexing of samples 171 during sequencing. The description of amplicon library preparation for Illumina NovaSeq 6000-PE250

172 sequencing can be found in Method 6 (see Supplementary Information).

## 173 2.2.4. Bioinformatics analysis of sequence data

| 174 | The sequence data were processed using QIIME2-2020.8 (Bolyen et al., 2019), QIIME v.1.9.1              |
|-----|--------------------------------------------------------------------------------------------------------|
| 175 | (Caporaso et al., 2010), USEARCH v.11.0 (Edgar, 2010), VSEARCH v.2.12.0 (Rognes et al., 2016)          |
| 176 | and mothur v.1.40.4 (Schloss et al., 2009). The quality of paired-end sequencing data was confirmed by |
| 177 | FastQC v.0.10.1 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Subsequently,            |
| 178 | sequencing data were processed using VSEARCH and QIIME commands as follows: join paired-end (-         |
| 179 | fastq_mergepairs), extract barcodes (extract_barcodes.py) and demultiplex paired-end fastq (demux).    |
| 180 | The representative sequences were obtained by USEARCH and VSEARCH pipelines based on the               |
| 181 | merged sequences using the following commands: remove primers (-fastx_filter), find non-redundancy     |
| 182 | reads (-derep_fulllength), cluster unique reads (-cluster_size) and remove chimeric sequences (-       |
| 183 | uchime3_denovo). All sequences were clustered at 97% nucleotide similarity to obtain operational       |
| 184 | taxonomic units (OTUs) (-usearch_global). OTUs were aligned against the databases of bacterial         |
| 185 | SILVA 138 (Quast et al., 2012) or fungal UNITE (Abarenkov et al., 2010). The OTUs defined as           |
| 186 | unknown, chloroplast, mitochondria, eukaryote, cyanophyta, cyanobacteria, cercozoa and protista were   |
| 187 | removed. In the spike-AMP experiment, OTU1 was mapped into synthetic spike sequences with a            |
| 188 | perfect match (-usearch_global, id=1). Abnormal samples with spike reads more than 2.5 times the       |
| 189 | mean values of the other technical replicates were removed, and thus five fungal samples were          |
| 190 | removed. The OTUs table were rarefied at 21,073 and 32,734 sequences per sample for subsequent         |
| 191 | analysis of bacterial and fungal spike-AMP, respectively.                                              |
| 192 | 2.2.5 Calculation in the spike-AMP method                                                              |

192 2.2.5. Calculation in the spike-AMP method

193 The absolute microbial abundance can be calculated using a single spike (Fig. 1b) or using a spike

194 linear relationship (i.e., the blue dashed box in Fig. 1c).

195 In theory, there is a correlation between copy number and sequencing reads number as follows:

196 
$$\frac{C_s}{C_m} = \frac{R_s}{R_m} \quad \rightarrow \quad C_m = C_s \times \frac{R_m}{R_s} \quad (2)$$

197 where  $C_s$  and  $C_m$  are the spike copies and microbial copies (i.e., the absolute abundance of 16S 198 rRNA gene or ITS region) of the sample, respectively. The corresponding spike sequencing reads and 199 microbial sequencing reads are denoted as  $R_s$  and  $R_m$ , respectively. Therefore, the absolute microbial 200 abundance (i.e.,  $C_m$ ) can be calculated by Eq. (2) according to the amount of spike added (i.e.,  $C_s$ ). 201 The alternative method is based on a linear relationship as follows: 202  $\frac{C_s}{C_m} = \frac{R_s}{R_m} \rightarrow \frac{R_s}{R_m} = \frac{l}{C_m} \times C_s \rightarrow y = a \times x \rightarrow C_m = \frac{l}{a}$  (3) 203 where we can define  $\frac{R_s}{R_m}$  as the dependent variable, y, and  $C_s$  as the independent variable, x. In

204 theory,  $C_m$  is invariable in a given sample, thus we can define  $\frac{1}{C_m}$  as a constant, *a*. This linear

205 relationship  $(y = a \times x)$  can be obtained by the gradient concentration of spike addition, where a is the

slope of the linear model. In this case, the absolute microbial abundance can be calculated via  $C_m = \frac{1}{c}$ .

207 If we present the above equation on a  $log_{10}$  scale, the linear relationship still exists as follows:

208 
$$Log_{10} \frac{R_s}{R_m} = Log_{10} \left( \frac{1}{C_m} \times C_s \right) \rightarrow Log_{10} \left( \frac{R_s}{R_m} \right) = Log_{10} \left( \frac{1}{C_m} \right) + Log_{10} \left( C_s \right)$$

$$209 \qquad \rightarrow Y = b + X \rightarrow C_m = \frac{1}{10^b} \quad (4)$$

210 where we can define 
$$Log_{10}(\frac{R_s}{R_m})$$
 as the dependent variable, *Y*,  $Log_{10}(C_s)$  as the independent

211 variable, X, and  $Log_{10}(\frac{1}{C_m})$  as a constant, b, where b is the intercept of the linear model. The  $C_m$  can be

212 calculated via  $C_m = \frac{1}{10^b}$ .

213 The theoretical assumption of the spike-based method is 
$$\frac{C_s}{C_m} = \frac{R_s}{R_m}$$
 (Eq. (2)). To evaluate the

214 consistency between  $\frac{C_s}{C_m}$  and  $\frac{R_s}{R_m}$  in actual sequencing data, we defined the bias degree as follows:

215 
$$Bias \ degree = Log_{10} \ \frac{R_s}{R_{non-spike \ total}} - Log_{10} \ \frac{C_s}{C_{non-spike \ total}}$$
(5)

| 216 | where $C_{non-spike total}$ and $R_{non-spike total}$ represent the total non-spike microbial copies estimated by |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 217 | qPCR and the total non-spike microbial sequencing reads, respectively. $C_s$ and $R_s$ represent the spike        |
| 218 | copies added and the corresponding spike sequencing reads, respectively. If bias degree tends to zero             |
| 219 | (i.e., the absolute abundance calculated by the single spike is equivalent to the qPCR data), it means            |
| 220 | that the spike-based calculation of absolute abundance is theoretically feasible; on the contrary, it             |
| 221 | means that the spike-based method has bias in quantifying absolute microbial abundance.                           |
| 222 | To show the difference in OTUs relative abundance (RA) between spike-added samples and                            |
| 223 | control, we calculated OTU abundance error (OA error) as follows:                                                 |
| 224 | $OA \ error = Log_{10} \ RA \ (spike-added \ samples) - Log_{10} \ RA \ (control) $ (6)                           |
| 225 | where RA (spike-added samples) and RA (control) represent the OTUs relative abundance in                          |
| 226 | spike-added samples and no-spike samples, respectively. The OTUs relative abundance in spike-added                |
| 227 | samples was calculated after removing spike sequences. Only OTUs with relative abundance above                    |
| 228 | $0.01\%$ were selected for this comparison. To keep all values finite when working with a $\log_{10}$ scale, the  |
| 229 | zero relative abundance was mapped to 1/ (sequencing depth).                                                      |
| 230 | 2.3. Statistical analysis                                                                                         |
| 231 | SPSS Statistics 23 (https://www.ibm.com/products/spss-statistics) was employed to perform                         |
| 232 | statistical tests including one-way ANOVA, univariate analysis of variance and nonparametric test.                |
| 233 | Significance was set for $P < 0.05$ . All pairs of comparisons between samples were assessed by post hoc          |
| 234 | Duncon's test. Corrections for multiple testing were performed using p.adjust function where                      |
| 235 | applicable (Benjamini and Hochberg, 1995).                                                                        |

| 236 | Spike-AMP. Differences in quantitative results between spike levels were assessed using                               |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 237 | univariate analysis of variance. One-way ANOVA was employed to analyze the differences in absolute                    |
| 238 | gene abundance between the six samples. After deleting spike sequences from all samples, we                           |
| 239 | performed permutational multivariate analysis of variance (PERMANOVA) based on Bray-Curtis                            |
| 240 | distance matrices with 999 permutations to assess the effect of adding spikes on microbial $\beta$ -diversity         |
| 241 | (Anderson, 2001). Canonical analysis of principal coordinates (CAP) was calculated using the capscale                 |
| 242 | function in R (Anderson and Willis, 2003), by constraining for the variable of spike level. Bar plots                 |
| 243 | were generated using GraphPad Prism 8. Box plots and heatmaps were generated using the ggplot2 and                    |
| 244 | pheatmap packages in R, respectively. To evaluate the quantitative performance of a single spike at the               |
| 245 | OTUs level, we conducted linear regression analysis in GraphPad Prism 8 to determine the consistency                  |
| 246 | of results provided by the single-spike-based and qPCR-based methods. To reduce rare OTUs in the                      |
| 247 | data set, we only chose OTUs with mean absolute abundance above $10^2$ copies $g^{-1}$ soil when                      |
| 248 | performing the linear regression analysis. To keep all values finite when working with a log <sub>10</sub> scale, the |
| 249 | zero absolute abundance was mapped to 1.                                                                              |
| 250 | <i>qPCR-AMP</i> . The OTUs tables of both qPCR-AMP and SIP study were rarefied at 10000                               |
| 251 | sequences per sample for subsequent analysis according to the minimum reads number of samples. The                    |
| 252 | sequencing data at three sampling times were merged given that the incubation time had no significant                 |
| 253 | impact on both overall bacterial and fungal community structures according to ADONIS analysis (Fig.                   |
| 254 | S4). Differences in top 10 phyla between control and straw-added soils were assessed using univariate                 |
| 255 | analysis of variance. To assess the influence of AMP on the outcomes of differential OTU abundance                    |
| 256 | analysis, we investigated the differentially abundant OTUs between control and straw-added soils by                   |

| 257 | using the edgeR package in R (Robinson et al., 2010). Co-occurrence networks based on the relative     |
|-----|--------------------------------------------------------------------------------------------------------|
| 258 | abundance (RMP networks) or absolute abundance (AMP networks) were reconstructed by performing         |
| 259 | OTUs Pearson correlation in the Molecular Ecological Network Analyses (MENA) pipeline                  |
| 260 | (http://ieg4.rccc.ou.edu/mena/). The networks were graphed using Gephi (https://gephi.org/). To reduce |
| 261 | rare OTUs in the data set, only OTUs with relative abundance above 0.01% that were detected in 75%     |
| 262 | of all soil samples were selected for network construction. To depict the topology of the AMP and      |
| 263 | RMP networks, a set of indexes including total nodes, total edges, average degree (avgK), betweenness  |
| 264 | centrality and modularity were characterized according to a previous study (Deng et al., 2012).        |
| 265 | Nonparametric tests (Kruskal-Wallis tests) were performed to evaluate the differences in avgK and      |
| 266 | betweenness centrality between control and straw-added soil networks. Module hubs were defined as      |
| 267 | those nodes with the degree value >10 in a network, and module hubs detected as unclassified genera    |
| 268 | were not displayed in heatmaps. All the sequence data in the present study have been deposited in the  |
| 269 | NCBI Sequence Read Archive (SRA) database under accession numbers SAMN19600335-                        |
| 270 | SAMN19601257. Rmarkdown code to reproduce the results described in this paper is available at          |
| 271 | https://github.com/PlantNutrition/ZhangSBB.                                                            |
| 272 | 3. Results                                                                                             |
| 273 | 3.1. Section I: spike-AMP vs. qPCR-AMP                                                                 |
| 274 | 3.1.1. Determination of the total copies of 16S rRNA gene and ITS region                               |
| 275 | Considering the complexity of soil samples, two independent qPCR experiments were employed             |
| 276 | to quantify total abundances of bacterial 16S rRNA gene and fungal ITS region in each soil samples     |
|     |                                                                                                        |

277 (i.e., Experiments 1 and 2). Overall, two independent qPCR experiments yielded the same trends in

| 278 | quantitative results of 16S rRNA gene and ITS region. For example, the abundance of both genes                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 279 | increased with time in SYU soils (Fig. 2a, b). Further, qPCR exhibited good reproducibility between                                   |
| 280 | two independent experiments, with mean variation of 1.18- and 1.19-fold in 16S rRNA gene and ITS                                      |
| 281 | region abundances, respectively (Table S3). After combining the two independent qPCR results, 16S                                     |
| 282 | rRNA gene and ITS region abundances (per g of soil) among six samples broadly ranged from                                             |
| 283 | $1.98 \times 10^9$ to $1.61 \times 10^{10}$ and $3.03 \times 10^7$ to $2.02 \times 10^9$ , respectively (Table S3). The 16S rRNA gene |
| 284 | abundances were 4.86–65.31 times higher than the ITS region abundances in six soils. On the basis of                                  |
| 285 | these results, the total copies of 16S rRNA gene and ITS region determined by qPCR were defined as                                    |
| 286 | the background values of six soils in further analysis.                                                                               |
| 287 | 3.1.2. Quantitative performance of spike-AMP                                                                                          |
| 288 | On the basis of the 16S rRNA gene and ITS region abundances estimated by qPCR, we designed                                            |
| 289 | eight bacterial spike levels and nine fungal spike levels, with the mean proportion of spike copies to                                |
| 290 | total copies per PCR reaction ranging from approx. 0.01% to 97% (i.e., $C_s/C_{total}$ ) (Table 1). After                             |
| 291 | sequencing, we calculated the ratio of spike reads to total sequencing reads (i.e., $R_s/R_{total}$ ) (Fig. 3a, b).                   |
| 292 | There was approximately 10-fold gradient variation in $C_s/C_{total}$ at spike levels 1–4 for both bacteria and                       |
| 293 | fungi; however, the $R_s/R_{total}$ did not show a consistent increase (Tables S4 and 5). For example, the                            |
| 294 | $C_s/C_{total}$ of HLP_Day7 at bacterial spike levels 2 and 3 was 0.04% and 0.44% respectively, but the                               |
| 295 | $R_s/R_{total}$ at these two spike levels were both 0.27% (Table S4). At the higher spike levels such as                              |
| 296 | bacterial levels 6 and 7, the $R_s/R_{total}$ (6.33% and 44.33%) was 5.85- and 1.84-fold lower than the                               |
| 297 | $C_s/C_{total}$ (37.06% and 81.73%), respectively (Table S4). These results indicated that there was no good                          |
| 298 | correlation between the addition of spike copies and the output of spike reads.                                                       |

| 299 | A linear relationship between $C_s$ and $\frac{R_s}{R_m}$ (Eq. (4)) is essential for spike-AMP, as shown by the           |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 300 | dashed line in Fig. 3c, d. However, our results revealed that the theoretical linear relationship only                    |
| 301 | partly occurred at bacterial spike levels 6–8 and fungal spike levels 4–6 (i.e., the blue rectangle in Fig.               |
| 302 | 3c, d), with the corresponding mean $R_s/R_{total}$ of 6.33%–83.57% and 13.49%–54.13%, respectively                       |
| 303 | (Tables S4 and 5). Similar patterns also were confirmed in our preliminary survey (Fig. S5 and Table                      |
| 304 | S6). Furthermore, we found that the gene abundance estimated by the single spike method (Eq. (2))                         |
| 305 | was strongly correlated with spike level, even within the partial linear relationship between $C_s$ and $\frac{R_s}{R_m}$ |
| 306 | (Fig. 3e, f). For example, the estimated 16S rRNA gene abundances showed a notable decrease from                          |
| 307 | spike levels 6 to 8 (univariate analysis, $P < 0.0001$ ; Fig. 3e and Table S7). In contrast, there was no                 |
| 308 | significant difference in ITS region abundances estimated by fungal spike levels 4, 5 and 6 (univariate                   |
| 309 | analysis, $P \ge 0.19$ ; Fig. 3f). These results demonstrated that the single-spike-based quantification was              |
| 310 | strongly dependent on the amount of spike added and the objective gene abundance.                                         |
| 311 | The gene abundance inferred by single spike inside the partial linear relationship (Eq. (2)) was                          |
| 312 | theoretically equal to that detected by linear relationship (Eq. (3)). However, we found that the 16S                     |
| 313 | rRNA gene abundances calculated by spike levels 6 and 7 were significantly higher than those                              |
| 314 | computed by linear relationship (univariate analysis, $P < 0.0001$ ; Fig. 3e and Table S7). In comparison,                |
| 315 | there were no noteworthy discrepancies in ITS region abundances estimated by spike levels 4-6 and by                      |
| 316 | linear relationship (univariate analysis, $P \ge 0.37$ ; Fig. 3f). Additionally, the variation trends between             |
| 317 | samples calculated by the two spike-based methods (i.e., single-spike-based or linear-relationship-                       |
| 318 | based methods) were obviously different from those calculated by qPCR (Fig. 3e, f). For instance, both                    |
| 319 | spike-based methods revealed that 16S rRNA gene abundances in HLP_Day0 was remarkably lower                               |
| 320 | than that in HLP_Day30, but the qPCR results showed no significant differences between them (Fig.                         |

321 3e). Collectively, these results indicated that even though a linear relationship between  $C_s$  and  $\frac{R_s}{R_m}$  was

322 found, the estimated gene abundance may not be reliable.

323 3.1.3. Comparison of OTUs absolute abundances calculated by spike-AMP and qPCR-AMP

324 By definition, when bias degree was closest to zero, the corresponding spike level was the best 325 matching spike level (Eq. (5)). However, the best matching spike level was variable and dependent on 326 the absolute abundances of original samples. In general, as the original abundance of 16S rRNA gene 327 or ITS region increased, the best matching spike level increased (Fig. 4a, b). Focusing on the best 328 matching spike level, we further compared the differences in OTUs absolute abundances estimated by 329 spike-AMP or by qPCR-AMP (Fig. 4c, e). For example, these two methods produced consistent results 330 when bacterial and fungal OTUs abundance were higher than  $10^7$  and  $10^5$  copies g<sup>-1</sup> soil, respectively, 331 in HLP Day30 sample (Fig. 4d, f). However, this consistency remarkably decreased with declining 332 OTUs abundance, especially when bacterial and fungal OTUs abundance were lower than 10<sup>6</sup> and 10<sup>4</sup> copies  $g^{-1}$  soil, respectively. Similar results were also found in the other five samples (Fig. S6–10). 333 334 Therefore, there was potential error in the estimation of low-abundant OTUs, even when using the best 335 matching spike level. 336 3.1.4. Effects of spike addition on the OTUs relative abundances and microbial  $\beta$ -diversity 337 To assess the effects of spike addition on the OTUs relative abundances, we compared the 338 variation in OTUs relative abundances between control (i.e., no spike) and spike-added samples (i.e., 339 the OA error defined by Eq. (6)). In both bacterial and fungal communities, 91.30%–99.66% of >0.5 340 OA error occurred in OTUs group with relative abundances below 0.1% (Fig. 5a, b), indicating that 341 low-abundant OTUs were more susceptible to interference from spike addition. Specially, the larger 342 error (e.g., OA error >2) was mainly detected in higher spike level samples, as indicated by the blue

| 343 | "tail" in the scatter plots (Fig. 5a, b). Furthermore, CAP revealed a substantial effect of spike addition |
|-----|------------------------------------------------------------------------------------------------------------|
| 344 | on bacterial and fungal microbial community structure, explaining 16.1%-18.9% and 20.2%-36.2% of           |
| 345 | overall structural variation, respectively ( $P = 0.001$ ; Fig. 5c, e and Fig. S11). Saliently, the best   |
| 346 | matching spike level in Fig. 4a and b also significantly changed the structures of bacterial and fungal    |
| 347 | communities (i.e., the red border) (Fig. 5d, f).                                                           |
| 348 | 3.2. Section II: The utilization of qPCR-AMP in assessing soil microbial dynamics                          |
| 349 | With the finding that spike-AMP method did not exhibit any advantages in accuracy, stability or            |
| 350 | labor intensity, we then used the more common qPCR-AMP method to detect the absolute profiling of          |
| 351 | soil bacterial and fungal communities in response to the addition of organic matter (i.e., maize straw).   |
| 352 | 3.2.1. Differences between RMP and AMP in revealing key microbiota involved in straw decomposition         |
| 353 | We applied qPCR to a sequencing dataset from a 60-day incubation study. On average, the total              |
| 354 | copies of 16S rRNA gene and ITS region in HL soils were 1.40 and 1.36 times higher than those in SY        |
| 355 | soils, respectively (univariate analysis, $P < 0.0001$ ; Fig. 6a, b). The 16S rRNA gene and ITS region     |
| 356 | copies in SYU soils increased 1.03- and 4.38-fold, respectively, with straw addition (univariate analysis, |
| 357 | P < 0.0001; Fig. 6a, b). Furthermore, we compared the differences in the top 10 phyla between straw-       |
| 358 | added and control soils using RMP and AMP analysis. These two quantification methods produced              |
| 359 | substantially different results, especially in SYU soils (Fig. 6c-f). Among these discrepancies, we        |
| 360 | highlighted that Actinobacteriota was notably increased by straw addition in SYU soils when using          |
| 361 | AMP, whereas this straw-induced increase was not observed when using RMP (univariate analysis, P           |
| 362 | <0.0001; Fig. 6c, d). In addition, RMP seriously underestimated the changes in bacterial                   |
| 363 | Proteobacteria and fungal Ascomycota abundances. For example, the abundances of Ascomycota, a              |

| 364 | dominant phylum in the fungal community, were significantly increased by straw addition in SYU soils,            |
|-----|------------------------------------------------------------------------------------------------------------------|
| 365 | with average increases of 4.42-fold based on AMP compared with 0.11-fold based on RMP (Fig. 6e, f).              |
| 366 | Similar results were also found in paddy soil (Fig. S12). To validate whether the enriched phyla                 |
| 367 | detected by AMP play crucial roles in straw decomposition, we performed a SIP experiment on the                  |
| 368 | same samples to explore the <sup>13</sup> C-labeled communities. The results showed that <i>Proteobacteria</i> , |
| 369 | Actinobacteriota and Ascomycota were dominant in <sup>13</sup> C-enriched phyla, accounting for 40.54%, 31.58%   |
| 370 | and 82.30% of total relative abundance in <sup>13</sup> C-labeled communities, respectively (Fig. 6d, f). These  |
| 371 | results suggested that the enriched phyla detected by qPCR-AMP were strongly associated with straw               |
| 372 | decomposition.                                                                                                   |
| 373 | The compositions of straw-associated communities based on RMP and AMP analyses was                               |
| 374 | obviously different over time. A far larger number of significantly enriched OTUs were detected by               |
| 375 | AMP (Fig. 6g and Fig. S12). When arranging these enriched OTUs according to their taxonomic                      |
| 376 | information, we observed that the compositions of the enriched OTUs detected by AMP and RMP                      |
| 377 | could not be overlapped (Fig. 6h, i). For example, the enriched bacterial OTUs belonging to                      |
| 378 | Planctomycetota, Myxococcota, Gemmatimonadota, Elusimicrobiota, Desulfobacterota, Chloroflexi,                   |
| 379 | Armatimonadota and Acidobacteriota were only detected by AMP, implying that key microbiota                       |
| 380 | dynamics related to straw decomposition may be masked by RMP results.                                            |
| 381 | 3.2.2. Different patterns of co-occurrence network based on RMP and AMP                                          |
| 382 | To assess the impact of quantitative information on the OTUs co-occurrence pattern, we                           |
| 383 | reconstructed networks using both RMP and AMP data matrices. Multiple network topological indexes                |
| 384 | consistently showed that the OTU-OTU interactions were remarkably different between AMP-based                    |
| 385 | and RMP-based networks (Table S8). In paddy soils (i.e., HLP and SYP), straw application resulted in             |

| 386 | a simpler network in comparison with the control when using RMP data, whereas an inverse pattern                     |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 387 | occurred when applying AMP data (Fig. 7a, b and Fig. S13). Taking the HLP networks as an example,                    |
| 388 | the degree and betweenness were averagely 1.24- and 9.01-fold lower in straw-added soils than in the                 |
| 389 | control, respectively, when using RMP data (nonparametric tests, $P < 0.0001$ ), while this prominent                |
| 390 | difference could not be observed when applying AMP data (Fig. 7c). Focusing on the straw-networks,                   |
| 391 | we observed that more connections were detected in AMP-based networks than in the RMP-based                          |
| 392 | networks (954 vs. 573) and there were only 237 common connections between these two networks,                        |
| 393 | indicating that the correlations detected by the two methods were quite different (Fig. 7d). Notably,                |
| 394 | most of the unique links in AMP-based networks belonged to Ascomycota, Proteobacteria and                            |
| 395 | Actinobacteriota, all of which were associated with straw decomposition (Fig. 6d, f). Moreover, a set                |
| 396 | of module hubs only detected by AMP in the straw-added network were the dominant <sup>13</sup> C-enriched            |
| 397 | groups (i.e., the black box in Fig. 7e), accounting for 19.29% of <sup>13</sup> C-labeled communities. These results |
| 398 | indicated that these module hubs were involved in straw decomposition (Fig. 7e). Similar results were                |
| 399 | obtained for the other soils tested (Fig. S13–15). Taken together, the data type determined by RMP or                |
| 400 | AMP had a considerable impact on the co-occurrence network patterns.                                                 |
| 401 | 4. Discussion                                                                                                        |
| 402 | AMP is crucial in deciphering the variation in absolute microbial abundance between samples or                       |
| 403 | over time. For example, the absolute abundance of Proteobacteria increased remarkably in fertilized                  |
| 404 | soil when compared with the unfertilized soil, while this growth could not be identified by RMP (Jiang               |
| 405 | et al., 2019). The growing interest in absolute abundance has led to methodological and technological                |
| 406 | advances, such as spike-AMP (Tourlousse et al., 2017; Tkacz et al., 2018), qPCR-AMP (Lou et al.,                     |
| 407 | 2018; Boshier et al., 2020) and FCM-AMP (Vandeputte et al., 2017; Vieira-Silva et al., 2019). The 20                 |

| 408 | spike-AMP, as an emerging quantification method, potentially offered some advantages over the            |
|-----|----------------------------------------------------------------------------------------------------------|
| 409 | traditional qPCR/FCM-AMP in some special studies. For example, spike-AMP may be an                       |
| 410 | indispensable strategy for host-associated microbiome quantification, such as plant root microbiome      |
| 411 | (Guo et al., 2019). The host genome (chloroplasts and mitochondria) typically accounted for >80% of      |
| 412 | the 16S rRNA gene sequences in root microbiome samples (Bulgarelli et al., 2012; Lundberg et al.,        |
| 413 | 2013). Universal primers, such as 799F/1193R for the 16S rRNA gene, cannot distinguish the               |
| 414 | sequences from root endophytes or plant genome, restricting accurate estimation of the absolute gene     |
| 415 | abundance by commonly used qPCR (Guo et al., 2019). Such issues can be solved by use of the spike-       |
| 416 | AMP approach. In addition, the operational procedures of spike-AMP are simple for a sample where         |
| 417 | optimal spike level was predetermined. Currently, the wide-ranging applicability of spike-AMP and        |
| 418 | qPCR-AMP having not yet been fully demonstrated for complex and diverse soil samples. In this study,     |
| 419 | we used a set of soil samples with dramatic differences in total gene abundances to evaluate the         |
| 420 | universal applicability of both spike-AMP and qPCR-AMP.                                                  |
| 421 | 4.1. The evaluation of spike-AMP in soil microbiota quantitative research                                |
| 422 | In section I, we first evaluated the universal applicability of spike-AMP by applying a set of           |
| 423 | synthetic spikes with a gradient of concentrations to a set of soil samples with dramatic differences in |
| 424 | 16S rRNA gene and ITS region (Table 1 and Fig. 2). We found that there was no good correlation           |
| 425 | between the input of spike copies and the output of spike sequencing reads (Tables S4 and 5), violating  |
| 426 | the theoretical assumption of the spike-in method (Jiang et al., 2011; Guo et al., 2019). This           |
| 427 | phenomenon was especially obvious at low spike levels, such as levels 1–4, which might be explained      |
| 428 | by the fact that low spike levels might remain undetected because of poor amplification (Reid and        |

| 429 | Heathfield, 2020) or low sequencing depth. Because of this inconsistent input-output ratio, the 16S    |
|-----|--------------------------------------------------------------------------------------------------------|
| 430 | rRNA gene and ITS region abundance calculated by single spike seemed to be indeterminate and           |
| 431 | strongly correlated with spike addition (Fig. 3e, f). For example, the maximum differences in 16S      |
| 432 | rRNA gene and ITS region abundance estimated by single spike were up to 840- and 269-fold,             |
| 433 | respectively. Furthermore, the perfect input-output ratio of spike was extremely dependent on the      |
| 434 | targeted gene abundance in the original sample (Fig. 4a, b). However, large spatio-temporal variations |
| 435 | in microbial population abundance have been reported (Hallam and McCutcheon, 2015; Leach et al.,       |
| 436 | 2017), which means that the optimal spike level for different samples may be variable. Therefore, the  |
| 437 | single-spike-based method needs a preliminary test to determine the optimal spike level for each given |
| 438 | environmental sample, which substantially increases the time and workload when using this method.      |
| 439 | A spike mixture (e.g., spike-in method #3 in Fig. 1d) (Tourlousse et al., 2017; Jiang et al., 2019;    |
| 440 | Mou et al., 2020) was used to circumvent the flaws of the single-spike-based method by constructing a  |
| 441 | linear regression between input of spike amount and output of sequencing reads. We found that the      |
| 442 | linear relationship was partially obtained, with corresponding bacterial and fungal spike reads        |
| 443 | accounting for 6.33%-83.57% and 13.49%-54.13% of total sequencing reads, respectively (Fig. 3c, d).    |
| 444 | In a soil microbiota research, Tkacz et al. (2018) showed that the optimum spike amount for 16S rRNA   |
| 445 | gene, 18S rRNA gene and ITS region should account for 20%–80% of total sequencing reads. In a          |
| 446 | plant study, Guo et al. (2019) provided evidence that the coverage of spike concentration should be    |
| 447 | 10%-60% in the amplicon library. These discrepancies could be because the linear interval may be       |
| 448 | related to the nature of complex environmental samples, such as microbial population size.             |
| 449 | Furthermore, the quantitative results calculated even by linear-relationship-based method were also    |

| 450 | questionable. As shown in HLP_Day30, the 16S rRNA gene abundance calculated by linear interval            |
|-----|-----------------------------------------------------------------------------------------------------------|
| 451 | (levels 6–8) was 336.05% higher than the qPCR abundance (Fig. 3e). This deviation from the expected       |
| 452 | result may be partly attributed to the skew proportions of spike reads in sequencing data, which may      |
| 453 | occur during multiple steps of the spike-AMP process, such as mixing inaccuracies, PCR bias or            |
| 454 | sequencing error (Tourlousse et al., 2017). Meanwhile, spike addition consumed substantial sequencing     |
| 455 | resources. For example, the bacterial spike at level 8 accounted for 77.02%-98.02% of total sequencing    |
| 456 | reads in each soil (Fig. 3a), which makes the process infeasible in an actual study. More importantly,    |
| 457 | spike addition significantly changed the original community structure (Fig. 5d, f). The relative          |
| 458 | abundance of OTUs changed from the original values, especially for low-abundant OTUs (Fig. 5a, b).        |
| 459 | For instance, deviations of more than 3.16-fold (i.e., OA error=0.5) mostly occurred in groups with       |
| 460 | OTUs relative abundances below 0.1%. Thus, our results suggested that spike-AMP may not be                |
| 461 | suitable for quantifying absolute abundance of soil microbiota, at least for those samples with distinct  |
| 462 | microbial characteristics.                                                                                |
| 463 | 4.2. The verification of AMP in soil microbiota quantitative research                                     |
| 464 | We also applied qPCR-AMP to soil samples from a 60-day incubation study to analyze dynamic                |
| 465 | changes in microbial profiles. We found that microbial abundance in SYU soils showed a drastic            |
| 466 | response to straw addition (mean 1.03-fold and 4.38-fold in 16S rRNA gene and ITS region,                 |
| 467 | respectively), implying that the variation in total absolute abundance possibly represents a key feature  |
| 468 | of microbiota in response to environmental disturbance (Vandeputte et al., 2017; Guo et al., 2019;        |
| 469 | Jiang et al., 2019). For instance, the genuine increases in abundance of bacterial phyla Proteobacteria   |
| 470 | and Actinobacteriota, and fungal phyla Ascomycota were only detected by qPCR-AMP in straw-added           |
| 471 | soil, and these three phyla were further shown to be highly correlated with straw decomposition in the 23 |

| 472 | SIP experiment (Fig. 6c-f and Fig. S6c-f). These findings were in line with previous studies that many            |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 473 | sub-groups belonging to these three phyla were involved in assimilation of carbon from plant residues             |
| 474 | (Lee et al., 2011; Fan et al., 2014; Zhao et al., 2019). Therefore, AMP allowed us to identify the                |
| 475 | dominant species involved in straw decomposition. Without the information on absolute abundance,                  |
| 476 | the underlying physiology and ecological responses of specific phyla to organic matter addition may be            |
| 477 | masked by relative abundance.                                                                                     |
| 478 | Inappropriate data types and statistical methods can lead to spurious results or hide useful                      |
| 479 | information when applied to compositional analysis of sequencing data (Vandeputte et al., 2017; Carr              |
| 480 | et al., 2019). We found that the overlap of OTU–OTU links between RMP-based and AMP-based                         |
| 481 | networks was only 13.7% in this study. More unique connections detected by AMP belonged to the                    |
| 482 | <sup>13</sup> C-dominant phyla (Fig. 7c), indicating that AMP can better reflect the impacts of straw addition on |
| 483 | microbial communities. Previous studies suggested that the module hubs may play a critical role in                |
| 484 | maintaining the structure and function of ecological communities (Jiao et al., 2016; Shi et al., 2016).           |
| 485 | Indeed, most of the network module hubs in AMP-based straw-networks were related to straw                         |
| 486 | decomposition (Fig. 7e). For example, the <sup>13</sup> C-enriched module hubs (genus level), such as             |
| 487 | Intrasporangium, Arenimonas, Cellvibrio and Gibberella, were only detected by AMP-based networks                  |
| 488 | and their organic matter degradation ability has been observed for lignocellulose and plant residues              |
| 489 | (DeBoy et al., 2008; Cai et al., 2018; Song et al., 2018; Zhan et al., 2021). Additionally, some of the           |
| 490 | module hubs, such as Pseudarthrobacter and Micromonospora, were shown to be important                             |
| 491 | participants during straw decomposition in this study, although they have not previously been reported            |
| 492 | to be responsible for straw degradation. However, these details of microbial dynamic changes and                  |
| 493 | microbiota interactions may be ignored or misinterpreted when using RMP-based network analysis.<br>24             |

## **5.** Conclusion

| 495                                    | In this study, we highlight several prominent issues of spike-AMP including reliability, stability                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 496                                    | and labor intensity, all of which stymie the universal feasibility of spike-AMP in soil microbiota                                                                                                                                                                                                                                                                                                                                                                                 |
| 497                                    | quantitative research. This is because neither the potentially optimal spike level is determined, nor can                                                                                                                                                                                                                                                                                                                                                                          |
| 498                                    | the straight line between $C_s$ and $\frac{R_s}{R_m}$ be fixed. In contrast to spike-AMP, the commonly used qPCR-AMP                                                                                                                                                                                                                                                                                                                                                               |
| 499                                    | provides a straightforward and high-throughput tool for quantifying absolute profiling of soil                                                                                                                                                                                                                                                                                                                                                                                     |
| 500                                    | microbiota. Therefore, in the absence of a gold-standard quantitative approach, qPCR-AMP may be the                                                                                                                                                                                                                                                                                                                                                                                |
| 501                                    | preferred method in soil microbial research. However, in special ecological niches, such as root                                                                                                                                                                                                                                                                                                                                                                                   |
| 502                                    | endophytes, the existence of plant plastids (mitochondria and chloroplasts) prevents the accurate                                                                                                                                                                                                                                                                                                                                                                                  |
| 503                                    | detection of total microbial load (Guo et al., 2019). Further research is required to explore the                                                                                                                                                                                                                                                                                                                                                                                  |
| 504                                    | implementation of AMP in these environments.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 505                                    | 6. Acknowledgements                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 505<br>506                             | 6. Acknowledgements<br>This research was financially supported by the National Natural Science Foundation of China                                                                                                                                                                                                                                                                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 506                                    | This research was financially supported by the National Natural Science Foundation of China                                                                                                                                                                                                                                                                                                                                                                                        |
| 506<br>507                             | This research was financially supported by the National Natural Science Foundation of China (31601829), the Earmarked Fund for China Agriculture Research System (No. CARS-01-24), and                                                                                                                                                                                                                                                                                             |
| 506<br>507<br>508                      | This research was financially supported by the National Natural Science Foundation of China (31601829), the Earmarked Fund for China Agriculture Research System (No. CARS-01-24), and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001). We thank Catherine Dandie,                                                                                                                                                                                                |
| 506<br>507<br>508<br>509               | This research was financially supported by the National Natural Science Foundation of China (31601829), the Earmarked Fund for China Agriculture Research System (No. CARS-01-24), and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001). We thank Catherine Dandie, PhD for editing the English text of a draft of this manuscript. We are grateful to two anonymous                                                                                               |
| 506<br>507<br>508<br>509<br>510        | This research was financially supported by the National Natural Science Foundation of China (31601829), the Earmarked Fund for China Agriculture Research System (No. CARS-01-24), and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001). We thank Catherine Dandie, PhD for editing the English text of a draft of this manuscript. We are grateful to two anonymous reviewers for their constructive comments and suggestions on this paper.                      |
| 506<br>507<br>508<br>509<br>510<br>511 | This research was financially supported by the National Natural Science Foundation of China (31601829), the Earmarked Fund for China Agriculture Research System (No. CARS-01-24), and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001). We thank Catherine Dandie, PhD for editing the English text of a draft of this manuscript. We are grateful to two anonymous reviewers for their constructive comments and suggestions on this paper.<br><b>References</b> |

- 515 Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral
- 516 Ecology 26, 32-46.
- 517 Anderson, M.J., Willis, T.J., 2003. Canonical analysis of principal coordinates: A useful method of
- 518 constrained ordination for ecology. Ecology 84, 511-525.
- 519 Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful
- approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 57, 289300.
- 522 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C., Al-Ghalith, G.A., Alexander, H.,
- 523 Alm, E.J., Arumugam, M., Asnicar, F., 2019. Reproducible, interactive, scalable and extensible
- 524 microbiome data science using QIIME 2. Nature Biotechnology 37, 852-857.
- 525 Boshier, F.A.T., Srinivasan, S., Lopez, A., Hoffman, N.G., Proll, S., Fredricks, D.N., Schiffer, J.T.,
- 526 Caporaso, J.G., 2020. Complementing 16S rRNA gene amplicon sequencing with total bacterial load to
- 527 infer absolute species concentrations in the vaginal microbiome. mSystems 5, e00777-00719.
- 528 Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F.,
- 529 Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst,
- 530 T., Schulze-Lefert, P., 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting
- 531 bacterial microbiota. Nature 488, 91-95.
- 532 Cai, L., Chen, T.B., Zheng, S.W., Liu, H.T., Zheng, G.D., 2018. Decomposition of lignocellulose and
- 533 readily degradable carbohydrates during sewage sludge biodrying, insights of the potential role of
- 534 microorganisms from a metagenomic analysis. Chemosphere 201, 127-136.

- 535 Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N.,
- 536 Pena, A.G., Goodrich, J.K., Gordon, J.I., 2010. QIIME allows analysis of high-throughput community
- 537 sequencing data. Nature Methods 7, 335.
- 538 Carr, A., Diener, C., Baliga, N.S., Gibbons, S.M., 2019. Use and abuse of correlation analyses in
- microbial ecology. The ISME Journal 13, 2647-2655.
- 540 Charpentier, M., Oldroyd, G., 2010. How close are we to nitrogen-fixing cereals? Current Opinion in
- 541 Plant Biology 13, 556-564.
- 542 Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard,
- 543 D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365, eaav0550.
- 544 DeBoy, R.T., Mongodin, E.F., Fouts, D.E., Tailford, L.E., Khouri, H., Emerson, J.B., Mohamoud, Y.,
- 545 Watkins, K., Henrissat, B., Gilbert, H.J., Nelson, K.E., 2008. Insights into plant cell wall degradation
- 546 from the genome sequence of the soil bacterium Cellvibrio japonicus. Journal of Bacteriology 190,

547 5455-5463.

- 548 Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological network
- analyses. BMC Bioinformatics 13, 113.
- 550 Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26,

551 2460-2461.

- 552 Fan, F., Yin, C., Tang, Y., Li, Z., Song, A., Wakelin, S.A., Zou, J., Liang, Y., 2014. Probing potential
- 553 microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-
- 554 DNA-SIP. Soil Biology and Biochemistry 70, 12-21.
- 555 Fan, Y., Pedersen, O., 2021. Gut microbiota in human metabolic health and disease. Nature Reviews
- 556 Microbiology 19, 55-71.

- Gao, R., Sun, C., 2020. A marine bacterial community that degrades poly(ethylene terephthalate) and
  polyethylene. bioRxiv.
- 559 Guo, X., Zhang, X., Qin, Y., Liu, Y.-X., Zhang, J., Zhang, N., Wu, K., Qu, B., He, Z., Wang, X.,
- 560 Zhang, X., Hacquard, S., Fu, X., Bai, Y., 2019. Host-associated quantitative abundance profiling
- 561 reveals the microbial load variation of root microbiome. Plant Communications 1, 100003.
- 562 Hallam, S.J., McCutcheon, J.P., 2015. Microbes don't play solitaire: how cooperation trumps isolation
- in the microbial world. Environmental Microbiology Reports 7, 26-28.
- Jiang, L., Schlesinger, F., Davis, C.A., Zhang, Y., Li, R., Salit, M., Gingeras, T.R., Oliver, B., 2011.
- 565 Synthetic spike-in standards for RNA-seq experiments. Genome Research 21, 1543-1551.
- 566 Jiang, S.Q., Yu, Y.N., Gao, R.W., Wang, H., Zhang, J., Li, R., Long, X.H., Shen, Q.R., Chen, W., Cai,
- 567 F., 2019. High-throughput absolute quantification sequencing reveals the effect of different fertilizer
- 568 applications on bacterial community in a tomato cultivated coastal saline soil. Science of the Total
- 569 Environment 687, 601-609.
- 570 Jiao, S., Liu, Z., Lin, Y., Yang, J., Chen, W., Wei, G., 2016. Bacterial communities in oil contaminated
- 571 soils: Biogeography and co-occurrence patterns. Soil Biology and Biochemistry 98, 64-73.
- 572 Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee,
- 573 H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018.
- 574 Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology 36,
- 575 1100-1109.
- 576 Leach, J.E., Triplett, L.R., Argueso, C.T., Trivedi, P., 2017. Communication in the Phytobiome. Cell
- 577 169, 587-596.

- 578 Lee, C., Kim, J., Shin, S.G., Hwang, S., 2006. Absolute and relative QPCR quantification of plasmid
- 579 copy number in Escherichia coli. Journal of Biotechnology 123, 273-280.
- 580 Lee, C.G., Watanabe, T., Sato, Y., Murase, J., Asakawa, S., Kimura, M., 2011. Bacterial populations
- 581 assimilating carbon from 13C-labeled plant residue in soil: Analysis by a DNA-SIP approach. Soil
- 582 Biology and Biochemistry 43, 814-822.
- 583 Lou, J., Yang, L., Wang, H., Wu, L., Xu, J., 2018. Assessing soil bacterial community and dynamics by
- 584 integrated high-throughput absolute abundance quantification. PeerJ 6, 4514.
- 585 Lundberg, D.S., Yourstone, S., Mieczkowski, P., Jones, C.D., Dangl, J.L., 2013. Practical innovations
- 586 for high-throughput amplicon sequencing. Nature Methods 10, 999-1002.
- 587 Mou, J., Li, Q., Shi, W., Qi, X., Song, W., Yang, J., 2020. Chain conformation, physicochemical
- 588 properties of fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus and its in vitro
- fermentation by human gut microbiota. Carbohydrate Polymers 228, 115359.
- 590 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2012.
- 591 The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
- 592 Nucleic Acids Research 41, D590-D596.
- 593 Rao, C., Coyte, K.Z., Bainter, W., Geha, R.S., Martin, C.R., Rakoff-Nahoum, S., 2021. Multi-kingdom
- 594 ecological drivers of microbiota assembly in preterm infants. Nature 591, 633-638.
- 595 Reid, K.M., Heathfield, L.J., 2020. Evaluation of direct PCR for routine DNA profiling of non-
- 596 decomposed deceased individuals. Science & Justice 60, 567-572.
- 597 Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a Bioconductor package for differential
- 598 expression analysis of digital gene expression data. Bioinformatics 26, 139-140.

- 599 Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source
- 600 tool for metagenomics. PeerJ 4, e2584.
- 601 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A.,
- 602 Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J.,
- 603 Weber, C.F., 2009. Introducing mothur: open-source, platform-independent, community-supported
- 604 software for describing and comparing microbial communities. Applied and Environmental
- 605 Microbiology 75, 7537-7541.
- 606 Shi, S., Nuccio, E.E., Shi, Z.J., He, Z., Zhou, J., Firestone, M.K., Johnson, N., 2016. The
- 607 interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology
- 608 Letters 19, 926-936.
- 609 Smets, W., Leff, J.W., Bradford, M.A., McCulley, R.L., Lebeer, S., Fierer, N., 2016. A method for
- 610 simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA
- 611 gene sequencing. Soil Biology and Biochemistry 96, 145-151.
- 612 Song, Y., Kong, Y., Wang, J., Ruan, Y., Huang, Q., Ling, N., Shen, Q., 2018. Identification of the
- 613 produced volatile organic compounds and the involved soil bacteria during decomposition of
- 614 watermelon plant residues in a Fusarium-infested soil. Geoderma 315, 178-187.
- 615 Stammler, F., Glasner, J., Hiergeist, A., Holler, E., Weber, D., Oefner, P.J., Gessner, A., Spang, R.,
- 616 2016. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria.
- 617 Microbiome 4, 28.
- 618 Tkacz, A., Hortala, M., Poole, P.S., 2018. Absolute quantitation of microbiota abundance in
- 619 environmental samples. Microbiome 6, 110.

- 620 Tourlousse, D.M., Yoshiike, S., Ohashi, A., Matsukura, S., Noda, N., Sekiguchi, Y., 2017. Synthetic
- spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Research
  45, e23.
- 623 Vandeputte, D., Kathagen, G., D'Hoe, K., Vieira-Silva, S., Valles-Colomer, M., Sabino, J., Wang, J.,
- 624 Tito, R.Y., De Commer, L., Darzi, Y., Vermeire, S., Falony, G., Raes, J., 2017. Quantitative
- 625 microbiome profiling links gut community variation to microbial load. Nature 551, 507-511.
- 626 Vieira-Silva, S., Sabino, J., Valles-Colomer, M., Falony, G., Kathagen, G., Caenepeel, C., Cleynen, I.,
- 627 van der Merwe, S., Vermeire, S., Raes, J., 2019. Quantitative microbiome profiling disentangles
- 628 inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses.
- 629 Nature Microbiology 4, 1826-1831.
- 630 White, R.A., Callister, S.J., Moore, R.J., Baker, E.S., Jansson, J.K., 2016. The past, present and future
- of microbiome analyses. Nature Protocols 11, 2049-2053.
- Kang, L., Lou, J., Wang, H., Wu, L., Xu, J., 2018. Use of an improved high-throughput absolute
- 633 abundance quantification method to characterize soil bacterial community and dynamics. Science of
- the Total Environment 633, 360-371.
- 635 Zemb, O., Achard, C.S., Hamelin, J., De Almeida, M.L., Gabinaud, B., Cauquil, L., Verschuren,
- 636 L.M.G., Godon, J.J., 2020. Absolute quantitation of microbes using 16S rRNA gene metabarcoding: A
- 637 rapid normalization of relative abundances by quantitative PCR targeting a 16S rRNA gene spike-in
- 638 standard. Microbiologyopen 9, e977.
- 639 Zhan, P., Liu, Y., Wang, H., Wang, C., Xia, M., Wang, N., Cui, W., Xiao, D., Wang, H., 2021. Plant
- 640 litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial
- 641 community dynamics and co-occurrence network. Science of the Total Environment 753, 142194.

- 642 Zhang, Z., Qu, Y., Li, S., Feng, K., Wang, S., Cai, W., Liang, Y., Li, H., Xu, M., Yin, H., Deng, Y.,
- 643 2017. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes
- 644 of taxa. Scientific Reports 7, 4837.
- 645 Zhao, S., Qiu, S., Xu, X., Ciampitti, I.A., Zhang, S., He, P., 2019. Change in straw decomposition rate
- 646 and soil microbial community composition after straw addition in different long-term fertilization soils.
- 647 Applied Soil Ecology 138, 123-133.

#### 649 Figure legends

- 650 Fig. 1 A review of absolute microbiome profiling (AMP). a-f Two main types of AMP: the spike-in
- 651 method (spike-AMP; **a-d**, **f**) and quantitative PCR (qPCR) combined with high-throughput sequencing
- 652 (qPCR-AMP; e-f). Spike-AMP includes several key steps: (1) The design of a synthetic spike
- 653 containing synthetic sequences with negligible identity to known nucleotide sequences in public
- databases and primer binding sites (e.g., 515F/806R targeting V4 variable region of the bacterial 16S
- rRNA gene, ITS1F/ITS2 targeting variable region of the fungal ITS region or a combination of primer
- 656 regions) (a). (2) A known amount of synthetic spike is added to environmental samples or DNA
- 657 extracts in the form of a single spike with certain concentration (spike-in method #1, b), a single spike
- 658 with different gradient concentrations (spike-in method #2, c), or a spike mixture with different spikes
- and concentrations (spike-in method #3, d). (3) Environmental samples and synthetic spike are co-
- amplified and co-sequenced. (4–5) The absolute abundance of each taxon can be calculated based on
- the relationship between input of spike copies and output of sequence reads (equations in red box) (**a**-**d**,
- 662 f). In general, the optimal spike concentration is determined by preliminary tests using spike-in method

#2 (c), and then spike-in method #1 (b) is used to calculate the absolute abundance of each taxon. The
equations in the "blue dashed box" were constructed in this study (c). For detailed description, please
see the main text.

666

667 Fig. 2 The total copies of 16S rRNA gene and ITS region detected by quantitative PCR (qPCR) in

- six soil samples. The test soil samples included three time points (days 0, 7 and 30) in two soil types
- (Hailun paddy (HLP) and Sanya upland (SYU)). **a-b** The copy numbers of bacterial 16S rRNA gene (**a**)
- 670 and fungal ITS region (b) were quantified by qPCR. The gene abundance of each sample was
- 671 reproduced in two independent qPCR experiments (i.e., Experiments 1 and 2). Each dot represents a
- 672 technical PCR replicate and error bar represents the standard deviation. Different uppercase and
- 673 lowercase letters indicate significant difference between the six soil samples in Experiments 1 and 2,
- 674 respectively.
- 675

#### 676 Fig. 3 Application of spike-in method #2 based on a gradient of bacterial and fungal single spike.

677 **a-b** The proportion of spike reads in total sequencing reads at each spike level (i.e., R<sub>s</sub>/R<sub>total</sub>). **c-d** The

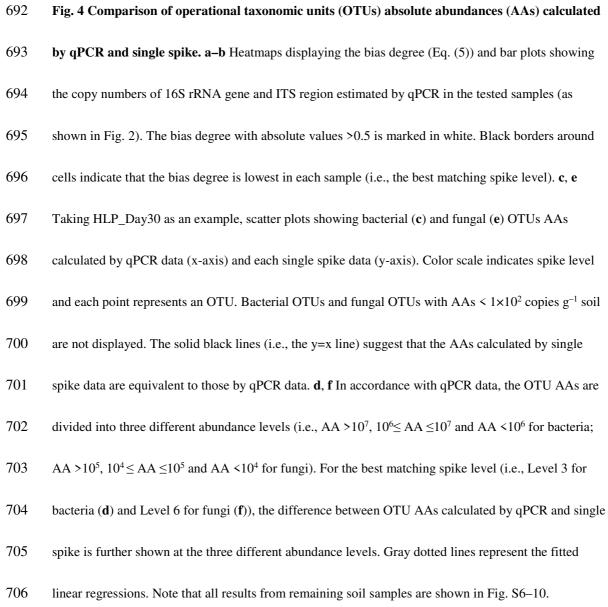
678 relationship between the spike copies ( $C_s$ ) and the ratio of spike reads to DNA sample reads ( $\frac{R_s}{R_m}$ ), as

679 described in Eqs. (3–4). In theory, there is a straight line between  $C_s$  and  $\frac{R_s}{R_w}$ , which is shown by a

- dashed line. For measured data, the range of spike levels marked by the blue rectangle represents a
- 681 partial linear response of  $\frac{R_s}{R_m}$  to  $C_s$ . Data in **c** and **d** are pooled from two independent experiments (i.e.,
- 682 Preliminary test and spike-AMP). e-f Bar plots showing estimated absolute abundance of bacterial 16S
- 683 rRNA gene (e) and fungal ITS region (f) by using single spike (Eq. (2),  $C_m = C_s \frac{R_m}{R_s}$ ), spike linear

684 relationship (Eq. (3),  $C_m = \frac{l}{a}$ ) and qPCR results (as shown in Fig. 2), respectively. The range of spike

| 685 | levels marked by the blue background represents a partial linear response of $\frac{R_s}{R_m}$ to $C_s$ as shown in <b>c-d</b> . |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 686 | Differences in absolute abundances between the six tested soil were analyzed using one-way ANOVA                                 |
| 687 | followed by post hoc Duncon's multiple comparisons test. Different letters indicate significant                                  |
| 688 | difference among six soil samples. Each dot represents a technical replicate and error bars represent                            |
| 689 | standard deviation (In spike-AMP, n=6 technical replicates for each bar). Note that the results from                             |
| 690 | preliminary tests are shown in Fig. S5 and Table S6.                                                                             |
| 691 |                                                                                                                                  |

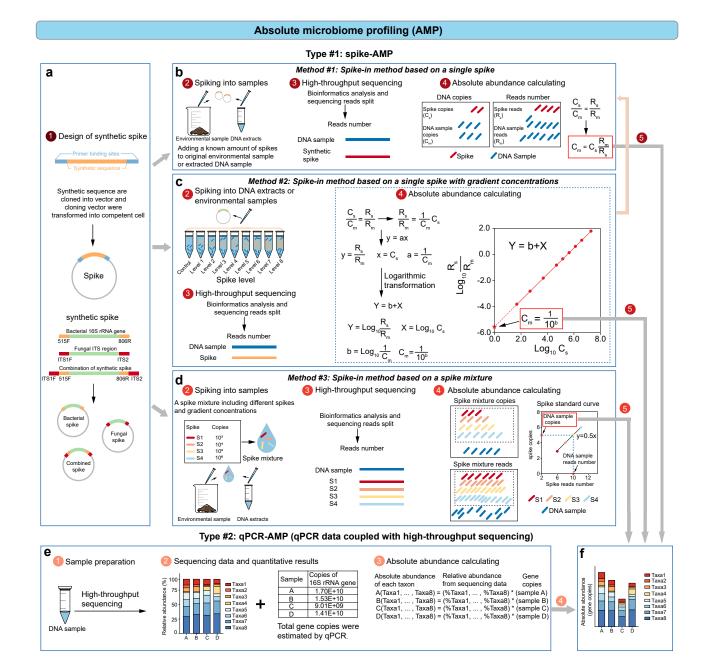


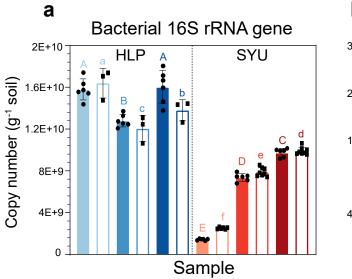
| 708 | Fig. 5 Effects of spike addition on the operational taxonomic units (OTUs) relative abundances                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 709 | and microbial $\beta$ -diversity. <b>a</b> - <b>b</b> The OTUs relative abundances (RAs) of bacteria ( <b>a</b> ) and fungi ( <b>b</b> ) in |
| 710 | control soils (i.e., no spike) are plotted against the OTU abundance error (OA error), as described in Eq.                                  |
| 711 | (6). Color scale represents spike levels and each point corresponds to an OTU. OTUs with OA                                                 |
| 712 | error >0.5 are indicated with solid red lines (i.e., the variations in OTU RAs between spike-added                                          |
| 713 | samples and control are 3.16-fold). All spike sequences have been deleted in the calculation of relative                                    |
| 714 | abundance in spike-added samples. The dotted black line divides OTU RAs into three groups (i.e.,                                            |
| 715 | RA >1%, $0.1\% \le$ RA $\le 1\%$ and RA < $0.1\%$ ), and the occurrence of >0.5 OA error in each RA group is                                |
| 716 | marked with percentages. c, e Canonical analysis of principal coordinates (CAP) was performed based                                         |
| 717 | on bacterial ( $\mathbf{c}$ ) and fungal ( $\mathbf{e}$ ) Bray-Curtis distance matrices by constraining for the variable of spike           |
| 718 | level. Each point corresponds to a different sample colored by spike level. d, f The effects of adding                                      |
| 719 | spikes on $\beta$ -diversity were assessed by permutational multivariate analysis of variance                                               |
| 720 | (PERMANOVA). Note that all spike sequences have been deleted when performing CAP and                                                        |
| 721 | PERMANOVA. White cells indicate that there are no significant changes in community structure                                                |
| 722 | between spike-added samples and control, whereas light (ADONIS, $P \le 0.05$ ) and dark (ADONIS, $P \le 0.05$ )                             |
| 723 | (0.01) blue cells represent that adding spike caused a significant change in bacterial ( <b>d</b> ) or fungal ( <b>f</b> )                  |
| 724 | community structure. Red borders around cells indicate that the absolute abundance calculated by                                            |
| 725 | single spike was closest to those calculated by qPCR (i.e., the best matching spike level), as shown in                                     |
| 726 | Fig. 4a, b. The CAP plots of SYU soils are shown in Fig. S11.                                                                               |
| 727 |                                                                                                                                             |

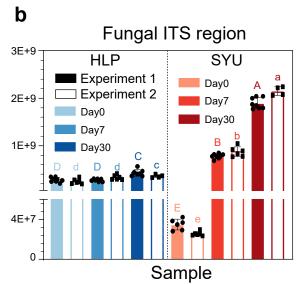
| 728 | Fig. 6 Influence of straw addition on soil microbial community structure. Taking upland soils                                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 729 | (Hailun upland (HLU) and Sanya upland (SYU)) as an example, the impacts of straw addition on                                           |
| 730 | bacterial and fungal community structure were assessed by using both relative microbiome profiling                                     |
| 731 | (RMP) and qPCR-based absolute microbiome profiling (qPCR-AMP). We merged sequencing data                                               |
| 732 | across all three time points and mainly focused on the comparison between control and straw-added                                      |
| 733 | soils in <b>a-f</b> . <b>a-b</b> Box plots showing the copies of 16S rRNA gene ( <b>a</b> ) and ITS region ( <b>b</b> ) in Hailun (HL) |
| 734 | and Sanya (SY) soils. The color scales of green represent time points. The horizontal bold lines within                                |
| 735 | boxes represent medians. The top and bottoms of boxes indicate the 75th and 25th percentiles,                                          |
| 736 | respectively. Univariate analysis of variance was performed to evaluate the differences in gene                                        |
| 737 | abundance, ns, no significant difference, **** indicates $P < 0.0001$ . c, e Bacterial (c) and fungal (e)                              |
| 738 | phylum-level community composition determined by RMP and qPCR-AMP. <b>d</b> , <b>f</b> The significant                                 |
| 739 | differences in phyla abundance between control (i.e., no straw addition) and straw-added soils were                                    |
| 740 | assessed using univariate analysis of variance followed by post hoc Duncon's multiple comparisons                                      |
| 741 | test (left panel). The bar plots (right panel) show the relative abundance of bacterial $(\mathbf{d})$ and fungal $(\mathbf{f})$       |
| 742 | phyla in <sup>13</sup> C-labeled communities (stable isotope probing (SIP) experiment). <b>g</b> A comparison of                       |
| 743 | numbers of enriched OTUs in straw-added soils between RMP and qPCR-AMP at each time point. h-i                                         |
| 744 | Taxonomic distribution of straw-enriched OTUs at bacterial phylum level (h) and fungal class level (i).                                |
| 745 | The red and blue circle sizes represent the relative abundance and absolute abundance (on a $log_{10}$ scale),                         |
| 746 | respectively. All results from paddy soils are shown in Fig. S12.                                                                      |
| 747 |                                                                                                                                        |
| 748 | Fig. 7 Co-occurrence networks of operational taxonomic units (OTUs) in control and straw-                                              |

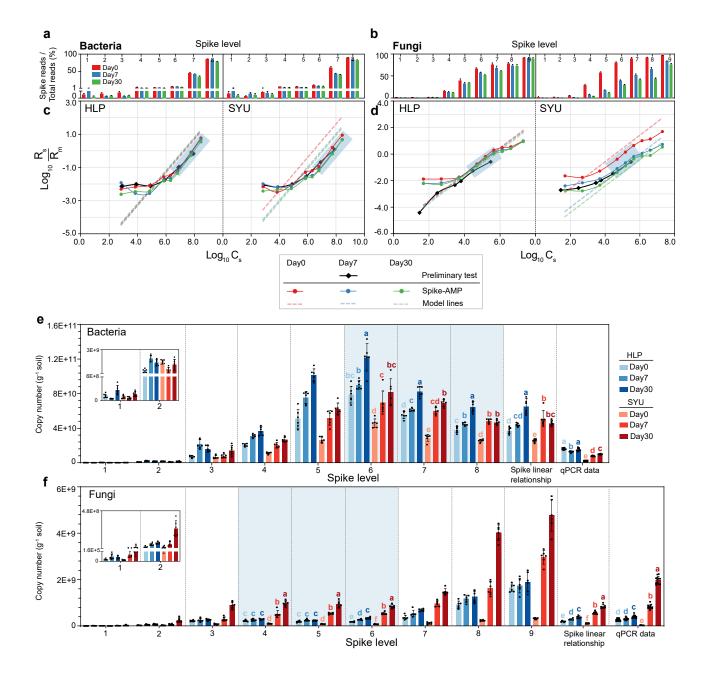
749 added soils. a–b Taking Hailun paddy soil (HLP) as an example, visualization of bacterial and fungal

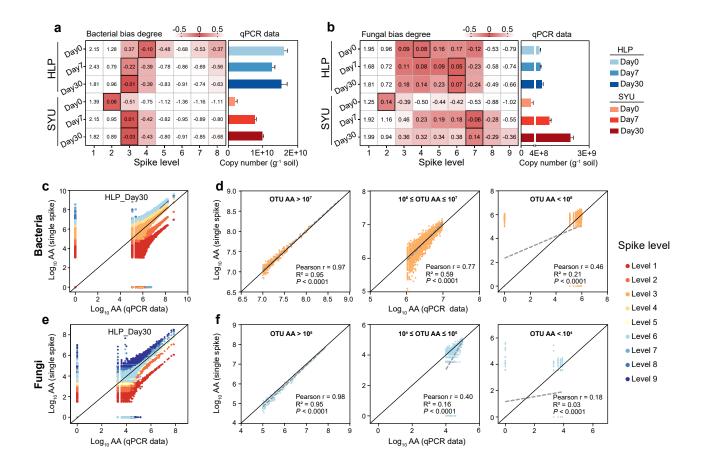
| 750 | OTUs interactions by using relative microbiome profiling (RMP) (a) and qPCR-based absolute                          |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 751 | microbiome profiling (qPCR-AMP) (b). Larger modules with nodes >10 are labeled with different                       |
| 752 | colors, and smaller modules are shown in gray. The nodes represent individual OTUs and node size                    |
| 753 | corresponds to their abundance. Topological features of each network are listed in Table S8. c Degree               |
| 754 | and betweenness centrality (on a $log_{10}$ scale) of nodes in control and straw-added soil networks                |
| 755 | detected by RMP and AMP. Nonparametric tests (Kruskal-Wallis tests) were performed to evaluate the                  |
| 756 | differences in the two topological indexes between control and straw-added soil networks. ***                       |
| 757 | indicates $P < 0.001$ , ns, no significant difference. <b>d</b> Venn plot showing the difference between links in   |
| 758 | the straw-added soil network between RMP and AMP. Bar plot showing the taxonomic distribution of                    |
| 759 | nodes that belong to the unique links detected by RMP and AMP, respectively. e Heatmap showing the                  |
| 760 | taxonomic distribution of module hubs detected in <b>a</b> and <b>b</b> networks. The barplot (right panel) showing |
| 761 | the relative abundances of module hubs in <sup>13</sup> C-labeled communities (stable isotope probing (SIP)         |
| 762 | experiment). The genera in the black boxes represent module hubs that were only found in the straw-                 |
| 763 | added network based on AMP. Network plots of the other three soil types are shown in Fig. S13–15.                   |

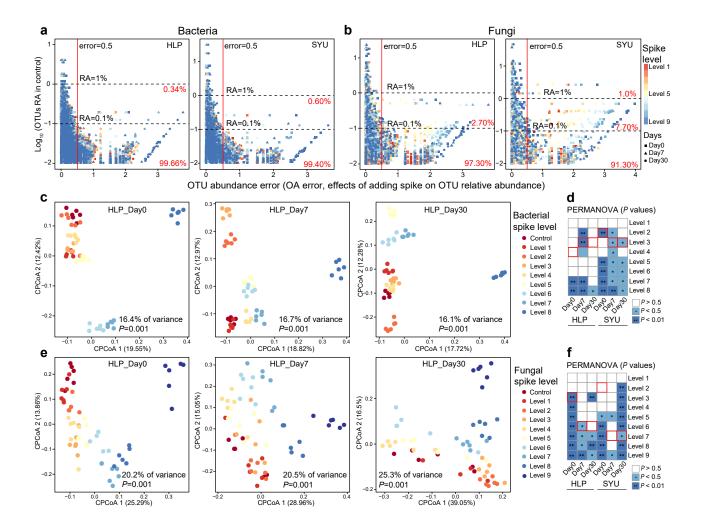


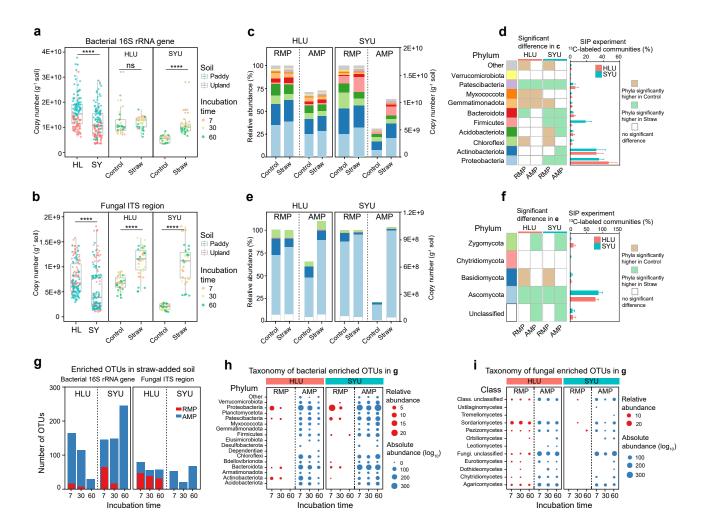


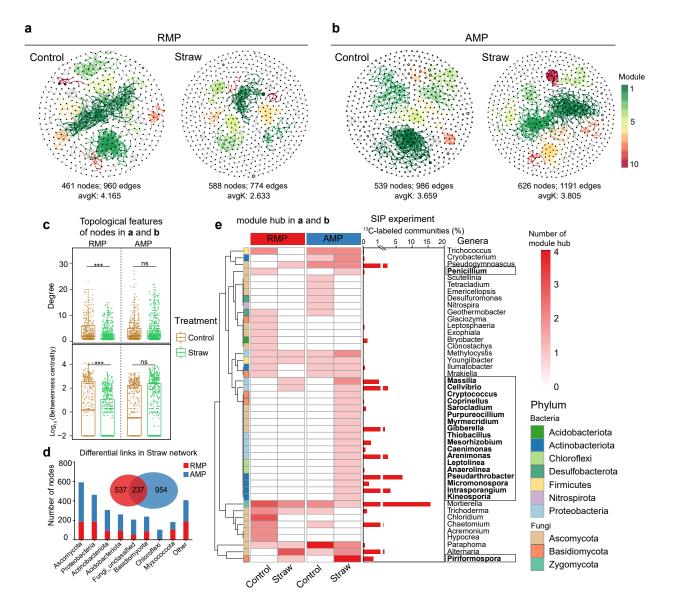












|                 | Bacterial synthetic spike |                              | Fungal synthetic spike |                      |
|-----------------|---------------------------|------------------------------|------------------------|----------------------|
| Synthetic spike | Spike copies added        | Spike copies / total         | Spike copies added     | Spike copies / total |
| level           | per PCR reaction          | gene copies (%) <sup>a</sup> | per PCR reaction       | gene copies (%)      |
| Control         | 0                         | 0                            | 0                      | 0                    |
| Level 1         | 6.94E+02                  | 0.01                         | 4.91E+01               | 0.03                 |
| Level 2         | 6.94E+03                  | 0.09                         | 4.91E+02               | 0.29                 |
| Level 3         | 6.94E+04                  | 0.86                         | 4.91E+03               | 2.65                 |
| Level 4         | 6.94E+05                  | 7.54                         | 4.91E+04               | 16.05                |
| Level 5         | 2.08E+06                  | 18.22                        | 1.47E+05               | 29.86                |
| Level 6         | 6.24E+06                  | 37.06                        | 4.42E+05               | 49.17                |
| Level 7         | 5.62E+07                  | 81.73                        | 1.33E+06               | 69.73                |
| Level 8         | 2.81E+08                  | 95.59                        | 3.98E+06               | 85.35                |
| Level 9         | -                         | -                            | 1.99E+07               | 96.28                |

 Table 1 Amount of synthetic spike added into DNA sample.

<sup>a</sup> The total gene copies is the sum of synthetic spike copies and DNA copies per PCR reaction.