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Highlights 26 

Visible-NIR was applied on single apples and their corresponding cooked purees. 27 

Apple inter and intra-variability made highly variable cooked purees for viscosity. 28 

A strong correlation of spectra was detected between single apples and their purees. 29 

The indirect prediction of puree quality from apple spectra was confirmed. 30 

  31 
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Abstract 32 

This study was designed to have the absolute definition of ‘one apple to one puree’, 33 

which gave a first insight into the impacts of fruit inter-variability (between varieties) 34 

and intra-variability (between individual fruits) on the quality of processed purees. Both 35 

the inter-variability of apple varieties and the intra-variability of single apples induced 36 

intensive changes of appearance, chemical and textural properties of their 37 

corresponding microwave-cooked purees. The intra-variability of cooked purees was 38 

different according to apple cultivars. Some strong correlations of visible-near infrared 39 

(VIS-NIR) spectra were observed between fresh and cooked apples, particularly in the 40 

regions 665-685 nm and 1125-1400 nm. These correlations allowed then the indirect 41 

predictions of puree color (a* and b*, RPD ≧ 2.1), viscosity (RPD ≧ 2.3), soluble 42 

solids content (SSC, RPD = 2.1), titratable acidity (RPD = 2.8), and pH (RPD = 2.5) 43 

from the non-destructive acquired VIS-NIR spectra of raw apples.  44 

 45 

Keywords:  46 

Malus x domestica Borkh.; Apple variability; Two-dimensional correlation 47 

spectroscopy (2D-COS); Partial least square regression; Machine learning regression. 48 

  49 
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1. Introduction 50 

 Apple puree is one of the most popular fruit processed products (over 0.3 million 51 

tons consumed per year in France) (FranceAgriMer, 2017) used as a basic ingredient of 52 

jams, preserves or compotes and fruit-based baby food (Defernez, Kemsley, & Wilson, 53 

1995). The usual industrial conditions to process apple purees are a cooking at 93 - 98 ℃ 54 

for about 4 - 5 min and a pasteurization at 90 ℃ for around 20 min to obtain a shelf-55 

life of 6 months at room temperature (Oszmiański, Wolniak, Wojdyło, & Wawer, 2008). 56 

Such conventional cooking conditions allow the investigation of the ‘inter-variability’ 57 

among apple cultivars (Buergy, Rolland-Sabaté, Leca, & Renard, 2021; Lan, Bureau, 58 

Chen, Leca, Renard, & Jaillais, 2021). In these conditions, the different apple batches 59 

of one variety and their cooked purees still presented a high variability due to 60 

agricultural practices and storage conditions, affecting the quality characteristics and 61 

levels of final products (Lan, Jaillais, Leca, Renard, & Bureau, 2020). However, these 62 

experiments did not make possible to address the impact of ‘intra-variability’ between 63 

the individual apples on their corresponding cooked purees. Knowing the ‘intra-64 

variability’ between raw fruits and cooked purees can help field growers and industrial 65 

manufacturers to sort fruits and produce sustainable and expected final products. From 66 

a research point of view, understanding the relationships between raw and processed 67 

apples, made possible here by the exact link between each apple and its puree, could 68 

contribute to a better management of fruit processing. 69 

 Microwave processing has the advantage of heating solids such as apples, rapidly 70 

and uniformly, inactivating the enzymes and then preserving quality, such as color, 71 

texture, polyphenols etc. (Guo, Sun, Cheng, & Han, 2017). It has already been applied 72 

on apple batches to produce purees (Oszmiański et al., 2008; Picouet, Landl, Abadias, 73 

Castellari, & Viñas, 2009) and also reported to be a mini-processing strategy to process 74 

one apple into one puree (Picouet et al., 2009). With our objective to assess the impact 75 

of ‘inter’ and ‘intra’ variability of raw fruits on the processed purees, microwave 76 

processing gives the possibility to individually cook apples in order to study the direct 77 

relationship of quality and properties between one apple and one puree. 78 
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 Visible-near infrared (VIS-NIR) spectroscopy, known as a rapid, relatively cheap, 79 

easy-to-use and non-destructive technique for apple online sorting (Huang, Lu & Chen, 80 

2020) and quality assessment (Xia, Fan, Li, Tian, Huang, & Chen, 2020). And it has 81 

been applied for detecting the different apple species in mixed purees (Lan, Bureau, 82 

Chen, Leca, Renard, & Jaillais, 2021) and evaluating apple puree major components 83 

(soluble solids, titratable acidity and dry matter, etc.) (Lan, Jaillais, Leca, Renard, & 84 

Bureau, 2020). From our previous works, strong correlations of chemical and textural 85 

properties have been pointed out between raw apples and their corresponding purees 86 

(Lan, Jaillais, Leca, Renard, & Bureau, 2020; Lan, Renard, Jaillais, Leca, & Bureau, 87 

2020). These results opened a new possibility to predict the quality of final processed 88 

purees from the nondestructive spectral information acquired on a batch of raw apples 89 

by developing regression models associating the infrared spectra of raw apples with the 90 

reference data of corresponding processed purees (Lan, Jaillais, Leca, Renard, & 91 

Bureau, 2020). However, these relationships between fresh and processed apples were 92 

obtained using a laboratory-scale cooker-cutter processing system (Roboqbo, Qb8-3, 93 

Bentivoglio, Italy) needing at least 2.5 kg of raw fruits. This means around 15 apples 94 

were processed in a single puree, ignoring the ‘intra-variability’ brought by each 95 

individual apple. Indeed, a strong variability and heterogeneity due to color, chemical 96 

and textural properties of raw apples (Lan, Jaillais, Renard, Leca, Chen, Le Bourvellec, 97 

& Bureau, 2021; Pissard, Baeten, Romnée, Dupont, Mouteau, & Lateur, 2012) and a 98 

large variability of puree characteristics (different cultivars) have been clearly 99 

highlighted (Lan, Bureau, Chen, Leca, Renard, & Jaillais, 2021). As far as we know, 100 

there has been no attempt to investigate the effect of both ‘inter’ and ‘intra’ variability 101 

at the level of single fruit (size, appearance and chemical properties etc.) on the quality 102 

of final processed products. Besides, no similar work linking VIS-NIR spectra of 103 

individual fruits to their processed products characteristics and spectra had been 104 

reported. The challenge here was to know how much the inter- and/or intra-variability 105 

of raw apples impacts cooked purees? How VIS-NIR spectral data were affected due to 106 

the physical and chemical changes considering the experimental design of ‘one apple 107 

to one puree’? The potential of predicting the quality traits of the final cooked purees 108 



 

6 

using the VIS-NIR spectra of intact raw apples was also investigated. 109 

 Accordingly, VIS-NIR spectroscopy and reference data determination were 110 

performed on 120 individual apples of 4 varieties and their corresponding individual 111 

processed purees, in order to reach three aims: i) investigating the inter- and intra-112 

variability of both, the individual apples and corresponding purees; ii) exploring the 113 

spectral correlations and variations before and after each apple processing; and iii) 114 

predicting the textural properties and biochemical composition of cooked purees from 115 

the VIS-NIR spectra of individual raw apples using direct modelling methods. 116 

2. Material and methods 117 

2.1 Apple materials 118 

Apple of four varieties: ‘Golden Delicious’ (GD), ‘Granny Smith’ (GS), ‘Breaburn’ 119 

(BR) and ‘Royal Gala’ (GA) were harvested at a commercial maturity from La Pugère 120 

experimental orchard (Mallemort, Bouches du Rhône, France) (Fig. 1). All apples were 121 

stored for four months at 4°C before processing. In total, 120 individual apples (4 122 

varieties × 10 apples × 3 weeks) were measured with the non-destructive techniques 123 

(color, VIS-NIR spectra).  124 

2.2. Nondestructive characterization of individual apples 125 

The color of all apple skins (un-blushed and blushed sides) was determined three 126 

times using a CE-400 chromameter (Minolta, Osaka, Japan), and expressed in the CIE 127 

1976 L* a* b* color space (illuminant D65, 0° view angle, illumination area diameter 128 

8 mm). 129 

VIS-NIR spectra of raw apples were acquired using two multi-purpose analyzer 130 

spectrometers (Bruker Optics®, Wissembourg, France) at 23°C, which provide diffuse 131 

reflectance measurements at wavelength from 500-780 nm (VIS) and 780-2500 nm 132 

(NIR), with a spectral resolution of 2 nm. For each spectrum, 32 scans were recorded 133 

and averaged. The spectral acquisition and instrument adjustments were controlled by 134 

OPUS software Version 5.0 (Bruker Optics®). For each apple, VIS-NIR spectra were 135 

collected on the blushed and un-blushed sides through a 18 mm diameter area of 136 
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infrared light. Afterwards, the averaged VIS-NIR spectra, corresponding to the blushed 137 

and un-blushed sides of each apple were calculated for further analysis. A reference 138 

background measurement was automatically activated before each data set acquisition 139 

using an internal Spectralon reference. In total, 120 VIS-NIR spectra of different apples 140 

(4 varieties × 10 apples × 3 weeks) were treated before and after cooking. 141 

2.3 Individual apple processing 142 

 Individual and intact apples were sealed in a domestic preserving container (the 143 

length, width, and height of 20 cm × 20 cm × 12 cm) and placed at the center of an 144 

experimental microwave oven (CM1529, Samsung, Korea). Microwave processing was 145 

conducted at a power of 1.5 kW for 3 min, and then at 0.7 kW for 1 min. Afterwards, 146 

each apple was immediately refined with a 0.5 mm sieve using a manual refiner 147 

(A45306, Moulinex, France). Finally, each individual puree was conditioned in a 148 

hermetically sealed can, and then placed at 23 °C during one day before further analyses. 149 

Totally 120 purees (4 varieties × 10 purees × 3 weeks) were obtained during the three 150 

successive weeks of processing replicates. 151 

2.4 Determination of quality traits of individual purees 152 

The color of processed purees, put in measuring cells, was determined using the 153 

same method as for apples (described in part 2.2). 154 

The viscosity of the purees was carried out using a Physica MCR-301 controlled 155 

stress rheometer (Anton Paar, Graz, Austria) equipped with a Peltier cell (CPTD-200) 156 

and a 6-vane geometry (FL100/6W) with a gap of 3.46 mm, at 22.5°C. The 157 

measurements were performed after a pre-shearing period of 1 min at a shear rate of 50 158 

s-1, followed by 3 min at rest (Lan, Bureau, Chen, Leca, Renard, & Jaillais, 2021). The 159 

values of viscosity at 50 s-1 and 100 s-1 (η50 and η100 respectively) were taken as 160 

indicators of puree viscosity, which are considered representative of the mouth sensory 161 

characteristics during consumption (Chen & Engelen, 2012).  162 

For all purees, soluble solids content (SSC), titratable acidity (TA), pH and dry 163 

matter content (DMC) were characterized based on our previous study (Lan, Jaillais, 164 



 

8 

Leca, Renard, & Bureau, 2020). SSC was determined with a digital refractometer (PR-165 

101 ATAGO, Norfolk, VA, USA) and expressed in °Brix at 22.5°C. TA was determined 166 

by titration up to pH 8.1 with 0.1 mol/L NaOH and expressed in mmol H+/kg of fresh 167 

weight (FW) using an autotitrator (Methrom, Herisau, Switzerland). The pH values 168 

were characterized using a pH meter (FE-20, Mettler-Toledo, China). DMC was 169 

estimated from the weight of freeze-dried samples upon reaching a constant weight by 170 

a freeze-drying machine (Cryonext, Saint Aunes, France) after 5 days. These 171 

measurements were performed with three replicates.  172 

2.5 Spectrum acquisition on individual purees 173 

VIS-NIR spectral data of processed purees were acquired using the same 174 

conditions as for apples (described in part 2.2). Each sample was transferred into a 10 175 

mL glass vial (5 cm height × 18 mm diameter) which was placed on the automated 176 

sample wheel of the spectrophotometer. Each puree sample was randomly measured 177 

three times on different aliquots and the averaged spectrum was calculated for data 178 

treatment and chemometrics. The mean spectra of three replicates of each puree were 179 

used for further analysis. A reference background measurement was automatically 180 

activated before each data set acquisition using an internal Spectralon reference. Finally, 181 

the 120 VIS-NIR spectra of processed purees were obtained and correspond one by one 182 

to the spectra of raw individual apples. 183 

2.6 Statistical analyses and chemometrics 184 

After checking the normal distribution of the reference data, T-test analysis was 185 

carried out to determine the significant differences between varieties considering them 186 

two by two (Fig. 2) using R software (version 4.0.2) (R Core Team, 2019) with the 187 

package of ‘ggpubr’ (Kassambara, 2020). The significant results (p-values) were 188 

displayed as ‘ns’ (p-values > 0.05), ‘*’ (p-values ≤ 0.05), ‘**’ (p-values ≤ 0.01), ‘***’ 189 

(p-values ≤ 0.001) and ‘****’ (p-values ≤ 0.0001), respectively. Pearson correlation 190 

analysis was performed between the color parameters (L* a* b*) of apples and the 191 

different quality traits of their corresponding processed purees using XLSTAT (version 192 
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2018.5.52037, Addinsoft SARL, Paris, France) data analysis toolbox. 193 

Spectral pre-processing and multivariate data analysis were performed with Matlab 194 

7.5 (Mathworks Inc. Natick, MA, USA) software using the SAISIR package (Cordella 195 

& Bertrand, 2014). Particularly, the VIS-NIR spectra of apples and corresponding 196 

purees from 500-2500 nm were preprocessed with several strategies, including 197 

smoothing with a window size of 23 variables, standard normal variate (SNV) and the 198 

first derivative Savitzky–Golay transformation with the 11 gap sizes. The two-199 

dimensional correlation spectroscopy method (2D-COS) was used to investigate the 200 

spectral correlations between raw apples and purees (Noda, 1993).  201 

The partial least square (PLS), support vector machine (SVM) and random forest 202 

(RF) models were built using R software (version 4.0.2) (R Core Team, 2019) with 203 

several packages, including ‘prospectr’ (Stevens & Ramirez-Lopez, 2013), ‘pls’ (Mevik, 204 

Wehrens, & Liland, 2011), ‘kernlab’ (Karatzoglou, Smola, Hornik, & Zeileis, 2004), 205 

‘caret’ (Kuhn, 2015) and ‘Boruta’ (Kursa & Rudnicki, 2010). The whole VIS-NIR 206 

spectra dataset included 120 spectra of individual apples (4 varieties × 10 apples × 3 207 

weeks) and the 120 corresponding puree spectra. The dataset was split using stratified 208 

random sampling as follows: two-thirds of the spectral dataset from each variety (4 209 

variety × 20 spectra of apples and their related cooked purees) were used for calibration 210 

and one-third of the spectral dataset (4 variety × 20 spectra of apples and their related 211 

cooked purees) for validation. The procedure was repeated 10 times with the different 212 

sets of calibration and validation, and the model performance was described by the 213 

averaged values of the determination coefficients of validation (Rv
2), of the root mean 214 

square errors of validation (RMSEV), of the numbers of latent variables (LVs) for PLS 215 

models and of the residual predictive derivation (RPD) values as described by Nicolaï 216 

et al. (2007). 217 

3. Results and discussion 218 

3.1 Effect of the inter- and intra- variability of apples on the corresponding cooked 219 

purees 220 

In this study, both the inter-variability of apple cultivars and the intra-variability of 221 
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individual apples affected the physical (L*, a*, b*), biochemical (SSC, DMC, TA, pH) 222 

and viscosity (η50 and η100) properties of corresponding purees (Fig. 2 and Fig. S1). 223 

3.1.1 Color parameters of apples and purees 224 

For color parameters, inter-variability was observed according to the four different 225 

apple varieties on redness (a* values) and yellowness (b* values) of their processed 226 

purees (Fig. S1). Both for apples and purees, significantly (p < 0.0001) higher redness 227 

and lower yellowness were characterized in GA and BR than in GD and GS. GD apples 228 

and their cooked purees had the highest (p < 0.0001) yellowness among the four puree 229 

varieties. Moreover, a larger intra-variability of color parameters observed in the set of 230 

the 30 different BR (a* = 11.2 ± 10.9, b* = 33.1 ± 8.3) and 30 GA (a* = 19.6 ± 14.0, b* 231 

= 33.7 ± 7.0) apples resulted in a more intensive variation of the redness and yellowness 232 

in their corresponding purees (in Fig. 2) than in the 30 GD (a* = -7.0 ± 3.9, b* = 47.2 233 

± 2.3) and 30 GS (a* = -15.0 ± 4.6, b* = 43.6 ± 2.5) apples. 234 

Briefly, the variation of color properties of cooked purees came from both, the 235 

inter- and intra- variability of individual apples. It can be assessed based on the good 236 

correlation of redness (R2 = 0.70) and yellowness (R2 = 0.58) between apples and purees. 237 

3.1.2 Viscosity of purees  238 

Concerning the inter-variability due to varieties on puree rheological properties, 239 

BR and GS purees presented a significant (p < 0.0001) higher viscosity (η50 and η100) 240 

than GA and GD purees. BR and GS purees were described to have a bigger particle 241 

size and a promoted cell adhesion with more branched pectins than GA and GD 242 

involving probably their higher viscosity (Buergy, Rolland-Sabaté, Leca, & Renard, 243 

2020; Buergy, Rolland-Sabaté, Leca, & Renard, 2021). Moreover, the viscosity at the 244 

share rate of 50 s-1 (η50) was similar (p > 0.05) in GD and GA purees. This result was 245 

different from our previous one giving a higher viscosity of GD than of GA purees (Lan, 246 

Bureau, Chen, Leca, Renard, & Jaillais, 2021). This could be due to the different levels 247 

of enzyme inactivation such as pectin methyl-esterase (PME) during apple processing, 248 

between microwave processing used in this study and the conventional thermal cooking 249 
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used previously (Arjmandi, Otón, Artés, Artés-Hernández, Gómez, & Aguayo, 2017). 250 

It also could be due to the different apple compositions harvested from two different 251 

years in France (2019 for (Lan, Bureau, Chen, Leca, Renard, & Jaillais, 2021) and 2020 252 

for this study). The processing conditions provide indeed different kinds of puree 253 

viscosity directly in relation to varieties (Dale, Okos, & Nelson, 1982). 254 

The intra-variability of puree viscosity (η50 and η100) in GS and BR apple sets 255 

presented a larger variation than in GA and GD sets (Fig. 2). This intra-variability of 256 

puree viscosity was not directly related to the appearance of the raw apples. Indeed, for 257 

the two kinds of BR apples (the averaged a* values of 10 apples for each sets), the more 258 

(a* = 12.2 ± 6.2) or less apple redness (a* = 9.6 ± 5.9) gave a different puree viscosity 259 

(η50 = 2.36 ± 0.12 Pa.s and η50 = 1.57 ± 0.18 Pa.s). However, this was not the case for 260 

the two GA apple sets with different redness (a* = 27.2 ± 5.0 and a* = 14.2 ± 2.3) 261 

resulting in a similar puree viscosity of η50 = 1.26 ± 0.18 Pa.s and 1.39 ± 0.30 Pa.s, 262 

respectively (Fig. S1). 263 

Thus, both, inter-variability of apple varieties (BR and GS > GA and GD) and the 264 

intra-variability of individual apples (especially for individual GS and BR apples) 265 

generated a wide range of puree viscosity. The color properties of single apples will not 266 

allow anticipating the viscosity of cooked purees. 267 

3.1.3 Biochemical compositions of purees 268 

The significant inter-variability (p < 0.05) was observed for SSC between the four 269 

puree varieties, except between BR and GS purees (p > 0.05) (Fig. 2). Clearly, 270 

individual GD apples introduced the largest intra-variability of SSC in cooked purees 271 

compared to the other three varieties. Interestingly, the a* values of fresh GD apples 272 

were positively correlated to the SSC (R2 = 0.57) of their corresponding purees. In 273 

addition, the inter-variations of DMC were significantly different (p < 0.05) among BR, 274 

GA and GD purees, but not between GS purees and these three groups (BR, GA, and 275 

GD purees). This result can be explained by the large intra-variability of DMC in GS 276 

purees (Fig. 2). A significant difference (p < 0.001) was observed also for TA and pH 277 

among the four puree varieties. For TA, the inter-variability was ranked as GS > BR > 278 
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GD > GA and it was the contrary for pH, as expected. However, the intra-variability of 279 

TA was different and in the following order: BR > GS > GD > GA.  280 

Consequently, both, inter and intra-variability of apples induced variations of SSC, 281 

DMC, TA and pH in the cooked purees. With a first insight of individual apple 282 

processing, the large intra-variability of GD, GS and BR apples resulted in intensive 283 

variations of SSC, DMC and TA in cooked purees, respectively. 284 

3.2 Spectral analysis of apples and purees 285 

3.2.1 The inter and intra variability of apples and purees measured by VIS-NIRS 286 

After the pre-processing, the VIS-NIR spectra of all individual raw apples and their 287 

related cooked purees with the most of variability could be observed at around 500-700 288 

nm, 1140 nm, 1386-1392 nm, 1880 nm, 1930-2197 nm and 2250-2450 nm (Fig. 3a, 3b 289 

and 3c). The specific chlorophyll absorption wavebands at 657-665 nm (Khatiwada, 290 

Subedi, Hayes, Carlos, & Walsh, 2016) and 682-689 nm (Mehl, Chen, Kim, & Chan, 291 

2004) were clearly observed in the visible part of spectra for raw apples and their 292 

corresponding purees (Fig. 3a and 3b), giving information of the color diversity. The 293 

second overtone vibrations of C-H bonds between 1100-1250 nm in both, apples and 294 

cooked purees (Fig. 3c) presented minor changes, indicating a limited effect of 295 

processing on sugar contents (Ma, Li, Inagaki, Yang, & Tsuchikawa, 2018). The 296 

important bands at 1386-1392 nm, 1880 nm, 1930-2197 nm, and 2250-2450 nm were 297 

mainly explained by the combination bands of O-H bonds of waters and C-H bonds of 298 

sugars and organic acids in apples (Camps, Guillermin, Mauget, & Bertrand, 2007; 299 

Kemps, Leon, Best, De Baerdemaeker, & De Ketelaere, 2010). Compared to raw apples, 300 

the lower absorption peaks in their corresponding purees could be due to that apple 301 

cooking attenuated the variation of water contents in the processed purees (Lan, Renard, 302 

Jaillais, Leca, & Bureau, 2020). Generally, the spectral variability was clearly higher in 303 

apples than in their corresponding purees, as already observed in purees prepared from 304 

4 kg of apples (Lan, Renard, Jaillais, Leca, & Bureau, 2020). Besides the possible effect 305 

of processing, this difference between apples and purees was probably due to the sample 306 

structure (solid fruit and liquid purees), affecting the diffuse reflectance. 307 
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3.2.2 Correlations between the VIS-NIR spectra of apples and purees 308 

 2D-COS was performed on all smoothed and SNV pre-treated VIS (500-780 nm) 309 

(Fig. 4a) and NIR (800-2500 nm) spectra (Fig. 4b) to point out the highly correlated 310 

wavelengths between apples and their processed purees. The correlations were much 311 

higher in VIS than in NIR ranges. Particularly in the VIS range (Fig. 4a), a clear positive 312 

relationship was obtained from 665 nm to 685 nm, thus confirming a strong color 313 

correlation between apples and purees. It was also in line with the colorimetric 314 

measurements previously described (Part 3.1).  315 

In the NIR region, the wavelengths around 1125-1400 nm, 1850-2150 nm, and 2250-316 

2450 nm in apples (X-axis) were positively correlated to the corresponding spectral 317 

areas at the same wavelengths of the purees (Y-Axis). The positive correlations at 1125-318 

1400 nm may be due to the high correlation of SSC between apples and purees, whereas 319 

the 1850-2150 nm and 2250-2450 nm could be due to the water and major soluble 320 

matters (sugars and organic acids) which varied in the same way in apples and purees. 321 

Reversely, the wavelengths between 1125-1400 nm in apples were negatively 322 

correlated with the spectral regions at 1850-2150 nm and 2250-2450 nm in cooked 323 

purees. Some possible reasons might be: i) the decrease of water content during cooking 324 

while limited changes of biochemical compounds such as SSC between apples and 325 

purees, so their corresponding wavelengths were negatively correlated, or ii) the 326 

wavelengths specific to sugars in purees were negatively correlated with those to water 327 

in the corresponding apples. 328 

 As mentioned in our previous work (Lan, Renard, Jaillais, Leca, & Bureau, 2020), 329 

a strong relationship of physical and biochemical properties is observed between raw 330 

and processed apples and allows us to predict the puree properties from the spectra 331 

collected on apples. The observed spectral correlations in this study, considering the 332 

large inter-variability with varieties and their intra-variability with individual apples, 333 

support these previous results.  334 

3.3 Prediction of puree quality traits 335 

 PLS, SVM and RF models were built to predict color, viscosity and biochemical 336 
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characteristics of apple purees using VIS-NIR spectra acquired on purees (in Table 1), 337 

or on the corresponding individual raw apples (in Table 2). 338 

3.3.1 Prediction of puree characteristics using spectra of purees 339 

 Both, the linear (PLS) and non-linear (SVM and RF) regressions of puree 340 

rheological parameters (η50 and η100) did not give satisfactory predictions (Rv
2 < 0.46, 341 

RPD < 1.4). These results were in agreement with the poor PLS predictions of puree 342 

viscosity at the share rate of 100 s-1 (η100) using VIS-NIR (500-2500 nm) (Rv
2 = 0.35, 343 

RPD = 1.2) and NIR (800-2500 nm) techniques (Rv
2 = 0.39, RPD = 1.3) (Lan, Renard, 344 

Jaillais, Leca, & Bureau, 2020). However, they were much lower than the acceptable 345 

VIS-NIR predictions obtained in a previous experiment consisting in studying the 346 

preparation of apple puree mixtures with different proportions of variety (Rv
2 > 0.73, 347 

RPD> 1.9) (Lan, Bureau, Chen, Leca, Renard, & Jaillais, 2021) and presenting less than 348 

half as much variability (the SD of η50 of 0.12 Pa.s lower than the SD of η50 of 0.36 Pa.s 349 

in this study). Thus, the VIS-NIR or NIR techniques cannot provide acceptable 350 

estimations of the puree viscosity, considering both a large inter- and intra-variability 351 

of raw apples. 352 

 For the color parameters, two regression methods, PLS and RF, gave acceptable 353 

predictions of L*, a* and b* values, with RPD values reaching 2.0, 2.7 and 2.3, 354 

respectively. PLS slightly improved the a* prediction (Rv
2 = 0.86, RMSEV= 0.46, RPD 355 

= 2.7) in comparison with RF (Rv
2 = 0.85, RMSEV = 0.49, RPD = 2.6), using 514 nm, 356 

524 nm and 672 nm as the most contributing wavelengths, all in the visible range. These 357 

same wavelengths are already identified in apple purees (Lan, Bureau, Chen, Leca, 358 

Renard, & Jaillais, 2021), corresponding probably to the carotenoids (Wang, Wang, 359 

Chen, & Han, 2017), anthocyanins (de Brito, de Araújo, Lin, & Harnly, 2007) and 360 

chlorophylls (Khatiwada, Subedi, Hayes, Carlos, & Walsh, 2016) in fruits. The specific 361 

peak at 672 nm was the major contributor to predict yellowness (b*) values. A relatively 362 

large puree variability for b* (SD = 4.1) compared to our previous study (SD = 1.7) 363 

significantly improved the VIS-NIR prediction results, with RPD values from 1.5 to 2.2 364 

(Lan, Renard, Jaillais, Leca, & Bureau, 2020). When variability was large enough, 365 
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prediction of color parameters by VIS-NIR was possible. 366 

 For the biochemical parameters, VIS-NIR coupled with PLS regression provided a 367 

better prediction of DMC, SSC, TA and pH than the SVM and RF ones (Table 1). 368 

Particularly, a good prediction of SSC (Rv
2 = 0.80, RMSEV = 0.6, RPD = 2.3) was 369 

obtained based on the dominant wavelengths corresponding to the absorptions of 370 

carbohydrates between 1150-1400 nm, as already described in Part 3.2. Although SSC 371 

and DMC were highly correlated (R2 = 0.65) in apple purees, VIS-NIR coupled with 372 

PLS models showed a better ability to predict SSC than DMC (Rv
2 = 0.73, RMSEV = 373 

0.01, RPD = 1.9), as previously observed (Lan, Renard, Jaillais, Leca, & Bureau, 2020). 374 

However, these predictions of SSC and DMC were relatively lower than our previous 375 

prediction by NIR of SSC (Rv
2 = 0.92, RPD = 3.1) and DMC (Rv

2 = 0.85, RPD = 2.4). 376 

The main reason was probably related to the lower variations of SSC and DMC in these 377 

four purees varieties at one date (SD of SSC = 1.4 °Brix and of DMC = 0.01 g/g) in 378 

comparison with the previous study including two varieties at different dates during a 379 

six months cold storage (SD of SSC = 2.1 °Brix and DMC = 0.02 g/g) (Lan, Renard, 380 

Jaillais, Leca, & Bureau, 2020). Considering the different expressions of apple puree 381 

acidity, TA and pH, VIS-NIR coupled with PLS provided their excellent predictions 382 

with Rv
2 > 0.89 and RPD > 3.1. Additionally, VIS-NIR gave a better prediction of puree 383 

acidity (TA) than NIR in apple purees (Lan, Renard, Jaillais, Leca, & Bureau, 2020), 384 

presenting similar ranges of variations with SD values of 21.0 mmol H+/kg and 20.2 385 

mmol H+/kg, respectively. The specific visible wavelengths at around 672 nm were one 386 

of the main contributors for the prediction of puree acidity. Consequently, prediction of 387 

SSC and DMC in purees needs enough intra-variability from individual apples and 388 

inter-variability from both different fruit varieties and experimental conditions 389 

(varieties, cold storage periods of raw fruits) to be acceptable by VIS-NIR. However, 390 

for acidity, VIS-NIR models integrating the variability of different apples and varieties 391 

were enough to give an excellent estimation of TA and pH. 392 

3.3.2 Prediction of puree characteristics using spectra of intact apples 393 

 Based on the strong internal VIS-NIR spectral correlations between apples and 394 
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purees (Part 3.2.2), good predictions (Rv
2 > 0.78, RPD > 2.1) of puree viscosity (η50 395 

and η100), a*, b*, SSC, TA and pH were obtained using the VIS-NIR spectra of their 396 

corresponding individual apples (Table 2). Particularly, PLS models provided the best 397 

predictions of η50, η100, b*, SSC and TA than SVM and RF ones. Compare to the PLS 398 

models developed from puree spectra (Table 1), more spectral latent variables (LVs 399 

from 5-11) were required using the VIS-NIR spectra of apples. 400 

What stands out in these results was the much better PLS predictions of puree 401 

viscosity (η50 and η100) using the spectra of apples (Rv
2 > 0.81, RPD > 2.3) than the 402 

spectra of purees directly (Rv
2 < 0.46, RPD < 1.4). Particularly, specific wavelengths at 403 

around 578 nm, 678 nm, 810-835 nm, 1410-1498 nm, 1880 nm and 1940 nm highly 404 

contributed to the PLS predictions of puree viscosity, which were located in the spectra 405 

regions presenting strong correlations between apples and purees (Fig. 4). This result 406 

was in line with our previous study, which used the averaged NIR spectra of a set of 407 

apples to predict the viscosity (η100) of their related one cooked puree (Lan, Renard, 408 

Jaillais, Leca, & Bureau, 2020). A possible explanation might come from the 409 

characteristics of purees, resulting from soft and deformable insoluble particles (pulp) 410 

in an aqueous medium (serum) (Rao, Thomas, & Javalgi, 1992), that prevent from an 411 

efficient light diffusion in comparison with the structure of intact apples that favors the 412 

light diffusion and a good signal to noise ratio. Thus, it is possible to hypothesize that 413 

VIS-NIRS applied on raw apples give an acceptable prediction of the viscosity of 414 

cooked purees. 415 

For puree color parameters, VIS-NIR spectra of individual apples coupled with 416 

PLS and RF regressions provided an acceptable prediction of redness (a* value) (Rv
2 > 417 

0.77, RPD > 2.1) and yellowness (b* values) (Rv
2 = 0.79, RPD > 2.2) in corresponding 418 

purees, but not of lightness (L* values) (Rv
2 < 0.59, RPD < 1.5). The major wavelengths 419 

contributing to these models were highly consistent with the models developed using 420 

the puree spectra, such as 514 nm and 672 nm. Besides, these good predictions were 421 

also in line with their strong internal correlations between apples and purees (Part 3.1). 422 

However, these good results need to be interpreted with caution because they concerned 423 

the only microwave cooked apples and not the conventional thermal processing (at 424 
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laboratory scale) in probable relation with a rapid inactivation of enzymes by 425 

microwaves and so, a limitation of apple oxidization and color change (Picouet et al., 426 

2009).  427 

For puree biochemical parameters, PLS regression models had a good ability to 428 

estimate SSC, TA, and pH of all purees with acceptable Rv
2 (> 0.78) and RPD (> 2.1), 429 

but not DMC (Rv
2 < 0.71, RPD < 1.8). Particularly, the SSC prediction in purees was 430 

based on the specific wavelengths at 950 nm, 1150 nm, 1400 nm and 1880 nm, 431 

corresponding to the sugars and water variations (Part 3.2). Impressively, for acidity, 432 

both, TA and pH of cooked purees were excellently predicted using the VIS-NIR spectra 433 

of related apples, giving RPD values of 2.8 and 2.5, respectively. These results were 434 

better than our previous predictions of puree TA using the apple NIR spectra and giving 435 

RPD around 2.1-2.3 (Lan, Renard, Jaillais, Leca, & Bureau, 2020). Indeed, some 436 

specific peaks in the visible region at 524 nm and 672 nm contributed to the better 437 

prediction of puree TA. It can thus be suggested that integrating the visible range of 438 

spectra acquired on apples provided a better prediction of puree acidity than just using 439 

the NIR range. Concerning DMC, its bad prediction might be explained by the lower 440 

variations, here, compared to our previous work (Lan, Renard, Jaillais, Leca, & Bureau, 441 

2020), and probably not by a limited potential of the VIS-NIR range. 442 

Accordingly, VIS-NIR spectra acquired on raw apples could give satisfactory 443 

predictions of color (a* and b* values), viscosity (η50 and η100), SSC, TA and pH of the 444 

individual cooked purees using both, PLS or RF regressions. 445 

4. Conclusion 446 

This study was designed applying the absolute definition of ‘one apple to one puree’, 447 

which gave a first insight into the impacts of fruit inter- or intra-variability during 448 

processing, from the spectroscopic point of view. Importantly, the intra-variability in 449 

fruits introduced intensive changes of visual aspects, chemical and textural properties 450 

of their corresponding microwave-cooked purees. Taking into account the variability of 451 
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fruit varieties and intra-variations between apples in each one, could improve the 452 

prediction accuracy of regression models. Notably, our results show that simple non-453 

destructive measurement using near infrared spectroscopy applied on apples can 454 

provide to processors of apple industry the basic information on the inter- and intra-455 

variability of raw materials and help them to determine the best blend of apples in order 456 

to obtain always the same final products such as puree. Further, strong correlations 457 

while apple processing obtained from spectral data provided further evidence on such 458 

the indirect predictions of color parameters, viscosity and biochemical parameters (SSC, 459 

TA and pH) of purees from the non-destructive spectral information acquired on raw 460 

apples. Therefore, by systematically scanning all apples, the obtained is could provide 461 

objective data on apple quality traits should help to 1) better manage apples according 462 

to their quality, 2) predict final product characteristics and 3) reduce fruit wastes at the 463 

end.  464 

Future work will be needed to identify the quantitative parameters to describe how 465 

much change of both, apple inter- and intra-variability according to the processing 466 

conditions (temperature, time, grinding, oxygen and so on).467 
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Figure captions: 601 

Fig. 1. Experimental design of apple processing, spectral acquisition and quality 602 

characterization. 603 

Fig. 2. The boxplots and the T-test results of color, rheological and biochemical 604 

properties of four apple puree varieties. (The significances were displayed as ‘ns’ (p 605 

values > 0.05), ‘*’ (p values ≤ 0.05), ‘**’ (p values ≤ 0.01), ‘***’ (p values ≤ 0.001) 606 

and ‘****’ (p values ≤ 0.0001)). 607 

Fig. 3. The pre-processed (smoothing with 13 windows + SNV+ 1st derivation with 11 608 

windows) VIS-NIR spectra of (a) individual apples and (b) their related cooked purees, 609 

and (c) the averaged pre-processed spectra of all apples (blue line) and cooked purees 610 

(red line). 611 

Fig. 4. The 2D-COS (two-dimensional correlation spectroscopy) plot between the 612 

spectra of all individual apples and their related cooked purees in the (a) visible (500-613 

780 nm) and near infrared (800-2500 nm) ranges. 614 

Fig. S1. The pictures of individual apples and the corresponding microwave cooked 615 

purees. 616 

 617 
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Fig. S1 628 
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Table 1. Prediction of puree quality traits from the VIS-NIR spectra of cooked purees 630 

       PLS-R   SVM-R   RF-R 

Parameter Range SD Rv
2 RMSEV RPD LVs   Rv

2 RMSEV RPD   Rv
2 RMSEV RPD 

η50 0.87 - 3.07 0.36 0.34 0.30 1.2 5   0.38 0.29 1.2   0.45 0.26 1.4 

η100 0.52 - 1.76 0.20 0.35 0.16 1.2 4   0.36 0.16 1.2   0.46 0.14 1.4 

L* 39.0 - 55.2 3.5 0.75 1.7 2.0 4   0.50 2.5 1.3   0.73 1.7 2.0 

a* (-6.1) - 2.4 1.5 0.86 0.5 2.7 6   0.74 0.8 1.9   0.85 0.5 2.6 

b* 7.4 - 23.7 4.1 0.81 1.8 2.3 5   0.68 2.6 1.6   0.81 1.8 2.3 

DMC (g/g FW) 0.08 - 0.25 0.01 0.73 0.01 1.9 9   0.57 0.01 1.4   0.56 0.01 1.4 

SSC (°Brix) 9.7 - 17.4 1.4 0.80 0.6 2.3 8   0.64 1.0 1.5   0.69 0.9 1.5 

TA (mmol H+/kg FW) 19.8- 119.4 21.0 0.89 0.6 3.1 9   0.65 1.5 1.4   0.80 1.0 2.1 

pH 3.4 - 4.8 0.3 0.90 0.1 3.3 10   0.65 0.2 1.4   0.83 0.1 2.3 

Notes: All regression models based on the smoothed (13 windows) and SNV pre-treated VIS-NIR spectra of purees at 500-2500 nm. PLS-R: partial least square 631 

regression; SVM-R: support vector machine regression; RF-R: random forest regression. Totally, 120 puree spectra and reference data from four varieties (‘Golden 632 

Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’). The averaged results of 10 times random calibration (80 samples) and validation (40 samples) tests. Rv
2: 633 

determination coefficient of the validation test; RMSEv: root mean square error of validation test; RPD: the residual predictive deviation of validation test, LVs: the 634 

optimal numbers of latent variables. 635 

  636 
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Table 2. Prediction of puree quality traits from the VIS-NIR spectra of corresponding raw apples 637 

       PLS-R    SVM-R     RF-R  

Parameter Range SD Rv
2 RMSEV RPD LVs   Rv

2 RMSEV RPD   Rv
2 RMSEV RPD 

η50 0.87 - 3.07 0.36 0.81 0.15 2.3 8   0.73 0.19 1.9   0.65 0.21 1.7 

η100 0.52 - 1.76 0.20 0.85 0.07 2.6 10   0.75 0.10 2.0   0.68 0.11 1.8 

L* 39.0 - 55.2 3.5 0.59 2.1 1.6 4   0.53 2.3 1.5   0.58 2.2 1.6 

a* (-6.1) - 2.4 1.5 0.84 0.7 2.5 5   0.67 1.0 1.8   0.81 0.8 2.3 

b* 7.4 - 23.7 4.1 0.79 1.9 2.2 7   0.61 2.3 1.8   0.59 1.8 2.3 

DMC (g/g FW) 0.08 - 0.25 0.01 0.71 0.01 1.8 11   0.59 0.01 1.4   0.57 0.01 1.3 

SSC (°Brix) 9.7 - 17.4 1.4 0.78 0.7 2.1 9   0.60 1.2 1.3   0.59 1.2 1.3 

TA (mmol H+/kg FW) 19.8- 119.4 21.0 0.87 0.8 2.8 10   0.78 1.0 2.1   0.83 0.9 2.5 

pH 3.4 - 4.8 0.3 0.84 0.1 2.5 11   0.78 0.2 2.1   0.84 0.1 2.5 

Notes: All regression models based on the smoothed (13 windows) and SNV pre-treated VIS-NIR spectra of apples at 500-2500 nm. PLS-R: partial least square 638 

regression; SVM-R: support vector machine regression; RF-R: random forest regression. Totally, 120 spectra of raw apples and their reference data of cooked purees 639 

from four varieties (‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’). The averaged results of 10 times random calibration (80 samples) and 640 

validation (40 samples) tests. Rv
2: determination coefficient of the validation test; RMSEv: root mean square error of validation test; RPD: the residual predictive 641 

deviation of validation test, LVs: the optimal numbers of latent variables. 642 
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