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Abstract: Background: Human sperm chromatin condensation is a sum of epigenetic events that
allows for the near-complete replacement of histones with protamines. Under high-magnification
microscopy, nuclear vacuoles have been described as thumbprints with poor chromatin conden-
sation. The objective of this study is to examine whether vacuolated spermatozoa carry specific
epigenetic marks, which may influence embryo development. Methods: The presence and three-
dimensional distribution of ten epigenetic marks (protamine-P2, histone-H3, H3K4me1/me2/me3,
H3K9me1/me2/me3, H3K27me3, H4k20me2) were evaluated and compared in morphometrically
normal spermatozoa according to the presence or absence of a large vacuole occupying more than 15%
of the head surface (n = 4193). Results: Vacuolated spermatozoa were significantly more frequently la-
belled with H3 and H3K4me3 than normal spermatozoa (88.1%± 2.7 and 78.5% ± 5.2 vs. 74.8% ± 4.8
and 49.1% ± 7.4, respectively; p = 0.009 and p < 0.001) and significantly less marked by P2 and
H3K27me3 (50.2% ± 6.2 and 63.9% ± 6.3 vs. 82.1% ± 4.4 and 73.6% ± 5.1, respectively; p < 0.001
and p = 0.028). In three dimensions, vacuoles are nuclear concavities filled with DNA carrying the
H3K4me3 marker. Conclusion: High-magnification microscopy is a simple tool to estimate in real
time the sperm epigenetic profile. The selection of normal spermatozoa without vacuoles and the de-
selection of spermatozoa with vacuoles appear to be epigenetically favorable to embryo development
and safe offspring.

Keywords: sperm vacuoles; vacuole; epigenetic mark; histone; chromatin; human sperm; high
magnification microscopy; H3; H3K4me3; H3K27me3; embryo

1. Introduction

Sperm nuclear maturation begins after meiosis, during spermiogenesis (the final
stage of spermatogenesis, which results in spermatid differentiation into spermatozoa and
includes the establishment of the acrosome, the cytoplasm removal, and the condensation
of haploid deoxyribonucleic acid (DNA)). This nuclear maturation will continue in the
epididymis [1,2]. The structural and molecular changes undergone by the sperm genetic
material result in a compact and insoluble chromatin, which protects the sperm DNA
during its transport in the genital tract. In mammals, and in humans in particular, histones
are initially replaced by transition proteins and then by protamines [3–5]. Thus, in human
sperm, DNA is mainly linked to protamines (85–90%) and, to a lesser extent, to histones
(10–15%) [6,7]. The process of chromatin condensation, which starts in the testes, finalizes
during epididymal maturation with the formation of di-sulfide bonds, which further
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compact the DNA (around a 10-fold increase in chromatin compaction). This gives the
sperm chromatin a toroidal structure, also referred to as a donut structure [8,9].

These chromatin condensation steps are, in reality, much more complex. For example,
histones undergo post-translational modifications (PTMs) during their replacement, and
all these modifications as well as the proteins linked to the sperm DNA are considered
as epigenetic marks, potentially transmissible to the offspring and with an impact on the
development of the future embryo [2,9–14]. The potential association of residual histones
with promoters of specific genes and other genomic regions relevant to embryo develop-
ment gave rise to the concept that such retained histones may regulate gene expression
in the early embryo [2,15–18]. Furthermore, such histones retained in sperm may carried
various PTMs that could participate in regulating gene expression. PTMs include mono-,
di-, and trimethylation of lysine residues, acetylation, phosphorylation, ubiquitination,
ADP-ribosylation, crotonylation, and others (for a review, see [19–26]).

These PTMs, as epigenetic marks, could also be modified by the environment and
have an impact on embryo development (for a review, see [20–27]). As the percentage
of sperm-retained histones and the PTMs involved can influence the success of embryo
development, it becomes necessary to be able to select the spermatozoa presenting the
“best” epigenetic pattern in human assisted reproductive technologies (ART), that is, those
which would be linked to the best and safest embryo development. Nowadays, one of the
ways of selecting a spermatozoon before injection into the human oocyte is use of high-
magnification microscopy with differential interferential contrast (DIC), also called IMSI
(intracytoplasmic morphologically selected sperm injection) [28–32]. This technique allows
the selection of morphometrically normal spermatozoa without vacuoles and without
chromatin granulation, morphological abnormalities related to defects in sperm chro-
matin condensation [28–31,33]. The vacuoles were first described as nuclear craters or
thumbprints, or DNA-free areas, in connection with no or low condensation of the sperm
chromatin [29,31,34–36]. Hence, deselecting sperm with chromatin condensation abnormal-
ities could improve pregnancy rates and decrease miscarriage rates [33,37–45].

This knowledge of the degree of chromatin condensation in spermatozoa with vac-
uoles is, however, rather incomplete, since the markers used until now were indirect
markers of the presence of retained histones, such as aniline blue or chromomycin A3.
Direct markers of these histones or epigenetic marks have not yet been used. To further
understand the links between sperm vacuoles and epigenetic marks carried by human
spermatozoa, the study presented here aimed at (1) assessing the epigenetic status, through
nuclear proteins and PTMs profile, of sperm chromatin at the gamete level according to the
presence of sperm-head vacuoles, and (2) examining their spatial distribution in relation to
vacuole localization.

2. Materials and Methods
2.1. Patients

Among couples attending the Assisted Human Reproduction Laboratory of the hos-
pital center of Poissy Saint-Germain-en-Laye from September 2018 to May 2021, ten men
previously diagnosed (<3 months) as normozoospermic according to WHO criteria [46],
and according to David’s modified classification regarding sperm morphology [47], and ten
diagnosed as oligo-astheno-teratozoospermic were included. The etiologies of the couples’
infertility were idiopathic (n = 6), exclusively male (n = 5), exclusively female (n = 4), or
both male and female (n = 5). The average age of the patients was 35.2 years. All patients
had a normal karyotype. The patients did not present any signs of infection or autoimmune
abnormalities. Specifically, no patient had an abnormal round cell concentration. The main
sperm characteristics of the 20 patients are summarized in Table 1.
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Table 1. Main sperm characteristics of the included patients.

Patients Age Etiology
Abstinence

Time
(Days)

Semen
Volume

(mL)

Sperm
Concen-
tration

(106/mL)

Total Sperm
Count
(106/

Ejaculate)

Sperm
Vitality

(%)

Sperm
Total

Motility
(%)

Sperm
Progressive
Motility (%)

Sperm
Typical
Forms 1

(%)

1 34 Exclusively female 2 3.2 34.3 109.8 78 60 40 25
2 42 Idiopathic 2 4.3 21.6 92.9 83 45 35 31
3 32 Exclusively female 3 2.6 42.7 111.0 65 50 40 24
4 38 Idiopathic 2 2.8 57.2 160.2 71 60 45 36
5 29 Idiopathic 4 5.9 19.9 117.4 81 60 50 39
6 26 Exclusively female 3 3.3 33.2 109.6 82 50 40 33
7 44 Idiopathic 5 4.1 48.3 198.0 76 60 45 27
8 48 Idiopathic 4 2.3 29.0 66.7 79 60 55 29
9 31 Idiopathic 3 2.6 28.3 73.6 64 45 35 32
10 32 Exclusively female 4 2.7 46.1 124.5 69 50 35 25
11 28 Exclusively male 2 6.4 2.2 14.1 64 30 20 13
12 34 Combined male

and female 5 1.9 8.6 16.3 76 50 30 21
13 26 Exclusively male 2 5.8 1.9 11.0 45 20 15 5
14 47 Exclusively male 2 3.1 5.7 17.7 77 40 30 12
15 39 Combined male

and female 3 4.2 6.3 26.5 71 40 30 17

16 44 Combined male
and female 3 1.7 7.2 12.2 48 20 10 2

17 32 Combined male
and female 2 2.5 10.3 25.8 52 30 15 13

18 38 Exclusively male 4 2.1 11.9 25.0 56 30 20 18
19 27 Exclusively male 2 3.0 9.4 28.2 82 50 30 20
20 33 Combined male

and female 4 3.2 10.1 32.3 64 40 30 8

1 The classification used for the measurement of typical forms is the modified David classification [47].

The number of samples (patients) to be included (sample size) was calculated on the
basis of the results obtained for protamine 2 labeling (labeling that we had from the existing
literature, considered the most significant and clinically informative). By considering:

- alpha (the type I error, i.e., the probability of wrongly rejecting H0 and detecting a
statistically significant difference when the groups are not actually different) at 0.05 and

- beta (the type II error, i.e., the probability of wrongly accepting H0 and not detecting
a statistically significant difference when a specified difference between the groups
in reality exists) at 0.1, the power of our analyses reached 90% (1-beta: 0.9) with
12 patients included. As we had already included 20 patients, we analyzed the results
obtained in these 20 patients, thus exceeding the required number of patients.

The semen analyses were carried out by qualified technicians in our ISO 9001-certified
and COFRAC-accredited laboratory. The sperm analyses performed in our laboratory respect
the standardization criteria as described in the checklist published by Bjorndahl et al. [48]
(Table S1). According to French legislation, the 20 patients were informed and agreed
to participate in this study. The study obtained a favorable opinion from the local ethics
committee of the Poissy Saint-Germain-en-Laye hospital, and this was officially confirmed
by the Institutional Review Bord (IRB) of the French-speaking andrology society (IRB SALF
IRB00012652-19).

2.2. Sperm Preparation

Sperm samples were collected by masturbation after 2–7 days of abstinence [46].
Spermatozoa were prepared using migration and centrifugation over a density gradient
column (40% to 80%, PureSperm 100, Nidacon, Mölndal, Sweden). A pellet containing
motile spermatozoa was reconstituted in a HEPES-buffered medium (Ferticult Flushing
medium, Fertipro N.V., Beermen, Belgium).

2.3. Sperm Selection under High-Magnification Microscopy (IMSI-like Methodology)

Morphological sperm selection was realized inside a petri dish (WillCo-dish, WillCo
Wells BV, Amsterdam, The Netherlands) from a drop (5–10 µL) of sperm fraction obtained
after density-gradient selection, diluted in 5 µL of polyvinyl pyrrolidone (10% in Ferticult
Flushing medium, FertiPro N.V., Beermen, Belgium).
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Motile spermatozoa were observed at a magnification of over ×10,000 at room temper-
ature with an inverted microscope (Eclipse 2000-U, Nikon Optics, Tokyo, Japan, equipped
with differential interference contrast (DIC) optics and a ×100 dry objective lens). The
data in the literature do not allow us to define the best technique for observing sperma-
tozoa at high magnification [49]. In this study, we used a ×100 dry lens, coupled with
×10 magnification in the eyepieces, and we used a zoom camera allowing ×100 magni-
fication, that is, a total magnification of ×1000 in the eyepieces and between ×1000 and
×10,000 when viewing the camera. Sperm-head vacuoles can have different sizes and
distributions. However, vacuoles’ surface size might not correspond to their internal
size, so small vacuoles at the cell surface could in fact be larger and deeper internally
when observed with three-dimensional microscopy [34]. To avoid such confusion and to
guarantee a large internal size for distribution analyses, only morphometrically normal
spermatozoa containing a single vacuole occupying more than 15% of head surface were
used as vacuolated spermatozoa and compared to morphometrically normal spermatozoa
with no vacuoles (Figure 1). This selection technique was made possible by using layers
mimicking different vacuole sizes, as previously described [29,50]. For each patient, the
same trained and skilled operator quickly observed and classified spermatozoa into four
grades, according to the criteria of Vanderzwalmen [51], and selected grade I and grade
III spermatozoa (grade I: morphometrically normal motile spermatozoa with a head of
normal shape and size, oval, regular, and without vacuoles; grade III: morphometrically
normal motile spermatozoa that differ from grade I spermatozoa only by the presence of
at least one large vacuole) using fixed, transparent, celluloid outlines of a sperm nucleus
and a vacuole occupying more than 15% of the sperm head were used (as first described
by Bartoov et al. in 2002 [52] and later by other authors [29,50]). Selection was performed
at room temperature to avoid heat-induced vacuolation, as described by Peer et al. in
2007 [53].

Figure 1. Human spermatozoa observed at high magnification with differential interference contrast
(DIC) microscopy (IMSI-like). (A) A grade I morphometrically normal spermatozoon with no vacuole.
(B) A grade III morphometrically normal spermatozoon with one large vacuole.

The selected spermatozoa were distributed over five 10-well slides in phosphate-
buffered saline (PBS) (Biomérieux, France): 20–25 normal spermatozoa in one well and
20–25 vacuolated spermatozoa on the diagonal opposite well. Altogether, more than
4000 spermatozoa (n = 4193 spermatozoa) were assessed, and for each epigenetic mark,
more than 800 spermatozoa (more than 20 vacuolated and 20 vacuole-free spermatozoa
from the twenty patients) were analyzed at the gamete level. The protocol is summarized in
Figure 2. After sperm selection, slides were immediately air-dried, and spermatozoa fixed
with cold methanol for 10 min at 4 ◦C. After fixation, slides were air-dried and conserved
at −20 ◦C until further use.
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Figure 2. Summary diagram of the experimental workflow.

2.4. Selection of Epigenetic Marks of Interest in Male Fertility: Nuclear Proteins and PTMs

A list of all the nuclear proteins and PTMs described in human sperm was established
through a preliminary screening of the PubMed database of references and abstracts and
PubMed Central (PMC) websites using the following keywords: “(“sperm” OR “male
infertility” OR “embryo development”, OR “pregnan*” OR “miscarriage” OR “human em-
bryo”) AND (“chromatin” OR “epigen*” OR “protamine” OR “histone” OR “H3” OR “H4”
OR “lysine” OR “post-translationnal modifications”)”. The review returned 137 marks, all
summarized in Table 2 [20–26]. For each of these epigenetic marks, three authors (L.C., M.B.,
and F.B.) determined their relationship with male infertility, their intra- and inter-individual
variability, and their potential relationship with animal or human embryo development.
Thus, two nuclear proteins, protamine 2 (P2) and histone 3 (H3), and eight PTMs, H3K4me1,
H3K4me2, H3K4me3, H3K9me1, H3K9me2, H3K9me3, H3K27me3, and H4k20me2, were
selected and targeted for this study. Such epigenetic marks were chosen for their abundance
in sperm and for their potential link with male fertility and/or embryo development.

2.5. Fluorescent Immunocytochemistry and Two-Dimensional (2D) Microscopy

The fluorescent immunocytochemistry workflow is detailed in Figure 2. It has been
established for this study based on protocols detailed in other studies [45,54–58]. Briefly,
conserved slides and dehydrated spermatozoa were first rehydrated with PBS (Biomerieux,
France) for 30 min at room temperature (RT). To get access to nuclear protein and PTMs
epitopes, sperm chromatin was decondensed with 10 µL of a mix of dithiothreitol 25 mM
(DTT, Sigma-Aldrich, D0632-10G, Saint-Louis, MO, USA), Triton-X100 0.2% (Sigma-Aldrich,
X-100), and Heparin Choay® 200 IU/mL (SANOFI, 529623) diluted in PBS. Time decon-
densation was determined for each well by observation with phase-contrast microscopy
(Optiphot microscope, Nikon, Japan) coupled to 40X lens (Ph3 DL 40/0.65, Nikon, Japan)
according to spermatozoa coloration and shape (i.e., when spermatozoa, usually birefrin-
gent (bright), became grey and swelled). The decondensation was stopped with a wash
of PBS (5 min) (Sarrate and Anton 2009), and spermatozoa were immediately fixed again
with 10 µL of methanol 100% at RT until drying. Then, cell membranes were permeabilized
with 0.2% Triton-X100 diluted in PBS for 20 min at RT. Permeabilization was stopped with
a wash of PBS.
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Table 2. Nuclear proteins and epigenetics marks of histones described in human spermatozoa
(n = 137).

Nuclear Proteins
(n = 7)

Protamine (2) protamine 1, protamine 2
Core histones (5) H1, H2A, H2B, H3, H4

Protamine epigenetic marks (n = 3)
P1 (3) ph1, ph27ac1, ph3
P2 (0)

Histone variants (n = 23)
H1 (3) H1.4, H1.t, H1.t2

H2A (11) H2A.1a, H2A.2b, H2A.2c, H2A.3, H2A.J, H2A.V, H2A.X, H2A-bbd 2/3,
H2A.Z, macroH2A.1, macroH2A.2

H2B (6) tH2B., H2B.1b, H2B.1c/e/f, H2B.1d, H2B.1 l, H2B.2f
H3 (3) H3, H3.3, H3.1t
H4 (0)

Histones PTMs (n = 104)
H1 (4) K43ac, R50me1, K62me1, K63ac

H1t (13) K112me1, K113ac, K122ac, K124me1, K170ac, K173me1, K183ac, K183me3,
R185me1, S180ph, S187ph, K188me1, K190ac

H2A (3) K5ac, R11me2, R29me1

H2AV/Z (21) K4ac, K4me2/3, K7ac, K7cr, K7me1/2/3, S9ph, K11cr, K11me1/2/3, K13cr,
K13me2/3, K15ac, R19me1, K27ac, K37cr, K37me1

H2B (2) K16me1, K20me3

tH2B (15) K6ac, T9ph, K12ac, K12me1/3, K13me1/3, K16me1/3, K17me1, K28ac,
K29ac, R30me2, K86ac, R87me1

H3 (31)
T3ph, K4me1/2/3, K9ac, K9me1/2/3, K14ac, K18ac, K18me1, K23ac,
K23me1/3, R26me1/2 K27me1/2/3, K36cr, K36me1/2/3, K37ac,
K37me2/3, R53me1, K56ac, K79me1/2, K12Ox

H4 (15) S1ph, R3me1, K5ac, K8ac, K12ac, K16ac, K9ac, K20me1/2/3, K31ac, R35me1,
M84Ox, K91ac, R92me1

Bolded epigenetic marks correspond to those studied in this manuscript (n = 10). Abbreviations: PTMs = post-
translational histone modifications. Modifications: me = methylation, ph = phosphorylation, ac = acetylation,
cr = crotonylation, Ox = oxidation. Residues: K = lysine, S = serine, R = arginine, T = threonine, M = methionine.

For each pair of epigenetic marks (P2-H3 and PTMs) targeted, a rabbit and mouse
antibody were used. Pairings were established according to their relationship with gene
expression and according to antibody availability (Table 3). To avoid interference between
rabbit and mouse antibodies, incubation was realized one by one (sequential targeting): first
the rabbit and then the mouse antibody. For each kind of antibody, unspecific epitopes were
saturated with 60 µL of a mix of BSA 3% (BSA, Sigma-Aldrich, A7906-500G) and powdered
milk 5% (Régilait, France) diluted in PBS for 1 h at 37 ◦C. Primary rabbit antibodies were
incubated for 2 h at 37 ◦C, while primary mouse antibodies were incubated overnight at
4 ◦C. After primary antibody incubation, slides were washed (5 min) three times with
PBS. Secondary antibodies against rabbit or mouse primary antibodies, respectively, were
incubated for 1 h at 37 ◦C. After 3 washes (5 min) with PBS, spermatozoa nucleus was
counter-colored with 4′,6-diamino-2-phenylindole (DAPI). Fluorescence was preserved
with a drop of anti-fading mounting medium (Vectashield, H-100), sealed with a cover slip,
and conserved at 4 ◦C in darkness until observation.

Primary and secondary antibodies were used at 1/500 in BSA 1% diluted in PBS.
Primary antibodies are detailed in Table 3. Secondary antibodies were coupled to cyanin
3 (Cy™3 AffiniPure Goat Anti-Rabbit IgG, Jackson ImmunoResearch 111-165-003) for
rabbit antibodies, and to Fluorescein isothiocyanate (FITC AffiniPure Goat Anti-Mouse
IgG, Jackson ImmunoResearch 115-095-003) for mouse antibodies. Thus, rabbit antibodies
were visualized in red, while mouse antibodies were visualized in green.
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Table 3. Pairing of epigenetic marks and primary antibodies used.

Pairing Rabbit Antibody
Cy3 (Red)

Mouse Antibody
FITC (Green)

1 Pan H3
Millipore 06-755

Protamine 2
Briar Patch Biosciences Hup-2B

2 H3K27me3
Millipore 07-449

H3K9me2
Active motif 39683 clone MABI 0307

3 H3K9me1
Millipore ABE101

H3K4me2
Millipore 05-1338 clone CMA303

4 H3K4me3
Abcam ab8580

H4K20me2
GeneTex GTX630545 clone GT1851

5 H3K9me3
Active motif 39765

H3K4me1
GeneTex GTX50902 clone MABI0302

For each pair of epigenetic marks targeted, rabbit and mouse antibodies were used. Antibodies marked in red
are antibodies coupled to Cyanin 3 (Cy3) and antibodies marked in green are antibodies coupled to Fluorescein
isothiocyanate (FITC).

All the slides were observed with two-dimensional fluorescent microscopy (Axio
Imager.Z2, Zeiss, France) using an X100 immersion lens (EC Plan-Neofluar 100X/1.3,
Zeiss, France). A minimum of 400 spermatozoa were observed for each mark tested
(minimum 20 for each patient). Each spermatozoon was observed and classified as having
a positive or negative targeting for the corresponding epigenetic mark. Positivity was
considered if a strong fluorescence was observed (for example, see Figure 3A–C,G–I), while
negativity was considered if weak or inexistent fluorescence was observed (for example, see
Figure 3D–F,J–L), as previously described [59,60]. A percentage of positive spermatozoa
was calculated for normal and vacuolated spermatozoa for each patient and compared
between the two classes of spermatozoa using a Wilcoxon test for non-parametric paired
data. Data are reported as mean +/− standard error of the mean (SEM) and as median
(Q1–Q3; Q1 is the median of the lower half of the data and Q3 is the median of the upper
half of the data). Comparisons were performed on SigmaPlot 11.0 software, and significance
was considered when p ≤ 0.05.

2.6. Three-Dimensional (3D) Microscopy

Finally, for epigenetic marks that were significantly over-represented in vacuolated
spermatozoa, normal and vacuolated spermatozoa were reconstructed in 3D by deconvolu-
tion microscopy. Epifluorescence images were first acquired using a Nikon TE2000-E micro-
scope at 100X (numerical aperture [NA] = 1.3, pixel/micron conversion factor = 15 pixels/µm),
configured for imaging in transmitted light, DIC, and epifluorescence modes, and capable
of simultaneous DIC/epifluorescence observation of each spermatozoon. Deconvolution
microscopy allows the visualization of the cellular structures of fixed specimens in three
dimensions [61]. This technique was used on spermatozoa for the first time in 2011 [29].
Here, a cross-section was measured every 100 nm. We thus obtain a stack of about thirty
optical sections over the total thickness of the spermatozoon. After deconvolution of the
image (the time required for analysis is approximately one night per spermatozoon), Imaris
software (Imaris 7.4; Bitplane, South Windsor, CT, USA) was used to produce a 3D image
from the non-deconvolved image stack and thus allowed us to observe the interior of each
sperm cell.
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Figure 3. Spermatozoa observed under a two-dimensional fluorescence microscope. A spermatozoon
observed with (A) DAPI labelling (blue), (B) H3-Cy3 positive labelling (red), and (C) DAPI/H3-Cy3
merge. Another spermatozoon observed with (D) DAPI labelling, (E) H3-Cy3 negative labelling,
and (F) DAPI/H3-Cy3 merge. A spermatozoon observed with (G) DAPI labelling, (H) P2-FITC
positive labelling, and (I) DAPI/P2-FITC merge. Another spermatozoon observed with (J) DAPI
labelling, (K) P2-FITC negative labelling, and (L) DAPI/P2-FITC merge. H3: histone 3; Cy3: cyanin3;
P2: protamine 2; FITC: fluorescein isothiocyanate; DAPI: 4′,6-diamino-2-phenylindole.

3. Results
3.1. Sperm Epigenetic Marks and Sperm Morphology under High-Magnification Microscopy

Vacuolated spermatozoa were statistically more frequently labelled with H3 and
H3K4me3 than morphologically normal spermatozoa without vacuoles (88.1% ± 2.7 and
78.5% ± 5.2 vs. 74.8% ± 4.8 and 49.1% ± 7.4, respectively; p = 0.009 and p < 0.001) (Table 4,
Figure 4).

Conversely, sperm with a large vacuole were statistically less marked by P2 and
H3K27me3 than morphologically normal spermatozoa without vacuoles (50.2% ± 6.2 and
63.9% ± 6.3 vs. 82.1% ± 4.4 and 73.6% ± 5.1, respectively; p < 0.001 and p = 0.028) (Table 4,
Figure 4).

For the other epigenetic marks (H3K4me1, H3K4me2, H3K9me1, H3K9me2, H3K9me3,
and H4K20me2), no significant difference was reported between the two types of spermato-
zoa (Table 4, Figure 4).
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Table 4. Mean and median values of H3, P2, and PTMs observed in the 20 patients according to
sperm morphology.

Non-Vacuolated Sperm (%) Vacuolated Sperm (%)

Nuclear Proteins
and PTMs Mean ± SEM Median Q3–Q1 Mean ± SEM Median Q3–Q1 p-Value

H3 74.8 ± 4.8 80.9 62.5–90 88.1 ± 2.7 90 83.7–95 0.009 *
P2 82.1 ± 4.4 88.8 67.8–100 50.2 ± 6.2 35 28.8–76.3 <0.001 *

H3K4me1 5.4 ± 0.8 5.0 3.1–8 6.2 ± 0.8 8 5–8.5 0.325
H3K4me2 6.4 ± 1.0 5.0 5.0–10 6.3 ± 0.9 6.5 5– 8.3 0.71
H3K4me3 49.1 ± 7.4 46.3 13.8–76.7 78.5 ± 5.2 88.2 73.3–95 <0.001 *
H3K9me1 31.1 ± 6.3 25 10–43.5 42.3 ± 4.8 35 33.3–68.2 0.165
H3K9me2 22.6 ± 6.5 7.5 0.0–32.5 15.4 ± 4.7 73 0.0–25.9 0.13
H3K9me3 61.8 ± 6.9 69.1 26.7–85.7 62.2 ± 4.9 65 47.7–71.2 0.911

H3K27me3 73.6 ± 5.1 85.7 58.8–90 63.9 ± 6.3 79.2 42.5–85.9 0.028 *
H4K20me2 18.7 ± 2.6 17.4 9.9–27.3 24.7 ± 4.5 17.4 9.1–31 0.121

Values are represented as mean ± standard error to mean (SEM), median, interquartile ranges (Q1–Q3), and
estimators (Wilcoxon statistic and p-value). Significance is considered when p ≤ 0.05 and is indicated by an
asterisk *. H3: histone 3, P2: protamine 2, PTMs: post-translational histone modifications.

Figure 4. Percentage of non-vacuolated spermatozoa (blue box) and vacuolated spermatozoa (orange
box) positively targeted for each of the ten epigenetic marks evaluated. Boxes represent data included
in third and first interquartile range (Q3–Q1), horizontal bars represent median, and black squares
represent mean. Whiskers represent upper (95%) and lower (5%) confidence intervals. Asterisks
indicate significative differences among vacuolated and non-vacuolated spermatozoa (p < 0.05).

3.2. Anatomical Relationships between Vacuoles and Epigenetic Marks
3.2.1. 2D Microscopy

When observing the statistically more present epigenetic marks in vacuolated sperma-
tozoa (H3 and H3K4me3) under 2D microscopy, the H3 epigenetic mark was always diffuse
and occupied the entire sperm head in all H3-marked vacuolated spermatozoa (n = 354)
(Figure 5A–C).

In contrast, H3K4me3 labelling was always localized and was prevalent in certain
areas corresponding to DAPI-free zones in all H3K4me3-labelled vacuole spermatozoa
(n = 330) (Figure 5D–F).

Morphometrically normal spermatozoa without vacuoles and those negatively labelled
with H3 and H3K4me3 are shown in Figure 6.

3.2.2. 3D- Deconvolution Microscopy

Based on 2D observations, it was decided to reconstruct morphometrically normal
H3K4me3-unlabelled spermatozoa and vacuolated H3K4me3-labelled spermatozoa in
three dimensions to assess the anatomical distribution of H3K4me3 relative to the vacuole
(Figures 7 and 8).
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Figure 5. Morphometrically normal spermatozoa with one large vacuole observed with a two-
dimensional fluorescence microscope. A vacuolated spermatozoon observed with (A) DAPI labelling
(blue) and (B) histone 3 labelling (red, anti-H3). The vacuole is circled in dotted line. H3 labelling is
diffuse and occupies the entire sperm head ((C) merged DAPI/H3-Cy3). Another vacuolated sperma-
tozoon observed with (D) DAPI labelling and (E) H3K4me3 labelling (anti-H3K4me3). The vacuole is
circled in dotted line. H3K4me3 labelling is prevalent in certain areas corresponding to DAPI-free
zones ((F) merged DAPI/H3K4me3-Cy3). DAPI: 4′,6-diamino-2-phenylindole, Cy3: cyanin3.

Figure 6. Morphometrically normal spermatozoa without vacuole observed with a two-dimensional
fluorescence microscope. A morphometrically normal without vacuole spermatozoon ob-
served with (A) DAPI labelling (blue), (B) histone 3 labelling (red, anti-H3), and (C) merged
DAPI/H3-Cy3. Another morphometrically normal without vacuole spermatozoon observed with
(D) DAPI labelling, (E) H3K4me3 labelling (anti-H3K4me3), and (F) merged DAPI/H3K4me3-
Cy3. DAPI: 4′,6-diamino-2-phenylindole, Cy3: cyanin3.

Normal spermatozoa without vacuole contained a DAPI-labelled nucleus (nucleus
observed in different cross-sections; see Figure 7C,E–G). H3K4me3 labelling was weak
(Figure 7D–G).

For vacuolated H3K4me3-labelled sperm, the vacuole was a DAPI-free area (Figure 8B,C),
labelled in its entirety by H3K4me3 (Figure 8D–G). This was the case in each of the observed
vacuolated and H3K4me3-labelled spermatozoa (n = 423 spermatozoa).
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Figure 7. Three-dimensional reconstruction by optical sectional microscopy and deconvolution of a
morphometrically normal spermatozoon without vacuole, tagged for H3K4me3. (A) Schematic of the
upper plane (a), frontal plane (b), and a cross-section (c) of the spermatozoon. (B) The spermatozoon
visualized with differential interference contrast (DIC). Three-dimensional reconstructed images
of the spermatozoon with (C) DAPI labelling, (D) H3K4me3 labelling, and (E–G) DAPI/H3K4me3
labelling. DAPI: 4′,6-diamino-2-phenylindole.

Figure 8. Three-dimensional reconstruction by optical sectional microscopy and deconvolution of a
morphometrically normal spermatozoon with one vacuole (occupying more than 15% of head surface),
tagged for H3K4me3. (A) Schematic of the upper plane (a), frontal plane (b), and a cross-section (c)
of the spermatozoon. (B) The spermatozoon visualized with differential interference contrast (DIC).
Three-dimensional reconstructed images of the spermatozoon with (C) DAPI labelling, (D) H3K4me3
labelling, and (E–G) DAPI/H3K4me3 labelling. DAPI: 4′,6-diamino-2-phenylindole.
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4. Discussion

According to our study, morphometrically normal spermatozoa with a vacuole oc-
cupying more than 15% of the head surface show a different epigenetic profile than nor-
mal, non-vacuolated spermatozoa. Vacuoles were identified as nuclear areas enriched
in H3K4me3.

In our study, vacuoles are observed as DAPI-free areas. This had already been reported
previously [29,31,34]. These DAPI-free areas were, until now, wrongly described as DNA-
free areas [29,34]. Now, according to data presented, vacuoles can be defined as areas
enriched in retained histones. Those retained histones are probably associated with DNA.
However, the hypothesis of the presence of DNA-free nucleoplasm enriched in H3K4Me3
cannot be excluded. The sperm vacuole is now described as H3K4me3 enriched. It can be
hypothesized that DAPI labelling of the nucleus in these nuclear areas of weakly condensed
chromatin is too weak to be observed by fluorescence microscopy.

Excessive retention of histone H3 and the presence of H3K4me3 are statistically over-
represented, and by contrast, the presence of protamine 2 (P2) and H3K27me3 are statis-
tically under-represented in vacuolated spermatozoa compared to normal spermatozoa
with no vacuoles. The nuclei of vacuolated spermatozoa show excess retention of histone
H3 and a protamination defect compared to normal spermatozoa. A protamination defect
with decreased protamine P2 was recently observed in vacuolated sperm [62]. This pro-
tamination defect allows one to define an immature status of the spermatozoon. Indeed,
during spermatogenesis, and particularly during the transitional stages from spermatid
to spermatozoon status, the majority of histones have to be replaced by protamines. As
histone H3 is one of the most abundant histones, a lack of its replacement leads to poor or
non-condensed chromatin. Thus, sperm chromatin remains immature and therefore more
susceptible to external factors and sperm DNA damage [63–66]. Indeed, several studies
have described vacuolated spermatozoa as exhibiting higher sperm DNA fragmentation
rates [35,67–71].

These defects in sperm chromatin protamination and chromatin condensation are
also related by the differential rate of histone H3 PTMs. The epigenetic marks H3K4me3
and H3K27me3 are indeed statistically differentially detected according to sperm mor-
phology at high magnification. H3K4me3, overrepresented in vacuolated spermatozoa,
is an epigenetic mark associated with gene expression that is described as particularly
enriched at transcription start sites. In contrast, H3K27me3, statistically underrepresented
in vacuolated spermatozoa, is an epigenetic mark associated with gene silencing [14].
During the spermatid transition, many histone PTMs take place [11,22]. Several studies
have described that the H3k4me3 mark is present in spermatids and should disappear
during spermiogenesis [11,22,72,73]. Conversely, these studies showed that H3K27me3
was an overrepresented mark in mature spermatozoa compared to spermatids [22,73].
Thus, vacuolated spermatozoa are described here as spermatozoa with a spermatid-like
epigenetic profile, whether by protamination defects or chromatin condensation defects, or
by post-translational modifications of histone H3 contained in their nucleus. Enrichment of
H3K4me3 and lower H3K27me3 levels in vacuolated spermatozoa may also support the
idea that silencing of some regions of the genome could be compromised.

Furthermore, the epigenetic profile of vacuolated spermatozoa may have deleterious
consequences for embryo development. Histones were indeed described as mostly retained
on gene promoters with a high content of unmethylated CpG regions and on regulatory
elements, suggesting a role in the transcriptional regulation of these genes and genome or-
ganization after fertilization of oocytes [16,74,75]. H3K4me3 and H3K27me3 were described
as associated to the bivalent domain on promoters linked to developmental genes (i.e.,
HOX genes and genes under paternal imprinting) [16,74]. To determine the exact location
of certain epigenetic marks, Yamaguchi et al. used nucleoplasmin to remove protamines
before ChIP-seq analysis. This allowed them to clearly localize histones in sperm chromatin.
They showed that enrichment of H3K4me3 was located in CpG-rich promoters genes [75],
as had already been partially shown by other teams [12,14,15,76]. Concerning H3K4me3,



Cells 2022, 11, 1788 13 of 18

Lambrot et al. have recently shown that sperm H3K4me3 marked developmental genes
and correlated with embryonic gene expression in humans [77]. Other authors have also
shown that certain histone methylations have this same role in embryo development, and
support the fact that paternal epigenetic information transmission to the embryo occurs
through the homogeneous retention of methylated histone in a sperm cell population [78].
Epigenetic alteration of sperm histone methylation (as H3K4me3) profiles has also been
shown to result in changes in embryo gene expression and congenital abnormalities that are
transmitted from one generation to the next [79–81]. Epigenetic marks are indeed inherently
transmissible to offspring, and it is now increasingly recognized that certain epigenetic
alterations can be accompanied by pathological epigenetic traits in the offspring [82–87].
For the first time, in this study, epigenetic profile assessment was performed at the one-cell
scale. Hence, the selection of morphometrically normal spermatozoa without vacuoles and
the deselection of spermatozoa with vacuoles (H3 and H3K4me3 enriched) appear to be
epigenetically favorable to embryo development and safe offspring.

Finally, it has been widely demonstrated that histones and their PTMs are the epige-
netic memory of the spermatozoon [81,88–91]. Thus, the sperm vacuoles could be witnesses
of the patient’s history and the environment the man has been confronted with. Indeed,
according to the literature, the effects of diet or exposure to certain toxic substances on
the epigenetic marks carried by spermatozoa have been studied [84,92–95]. Furthermore,
H3K4me3 was described in rats on a low-folate diet as being altered in sperm at the level
of developmental genes and putative enhancers, leading to an increase in the severity of
developmental defects in the offspring [96]. Thus, the over-representation of H3K4me3
in human sperm vacuoles could be caused by the patient’s environment and is likely to
be transmitted to the offspring [96,97]. These epigenetic marks, and more broadly these
vacuoles, would then constitute an adequate indicator for monitoring a particular drug or
environmental exposure in men. This will have to be the subject of larger-scale randomized
studies, but a simple morphological study such as high-magnification observation of these
living spermatozoa could allow the epigenetic profile of spermatozoa to be assessed at the
one-cell scale. This would provide a simple tool for real-time assessment of the epigenetic
profile of each spermatozoon.

5. Conclusions

The epigenetic profile of human morphometrically normal spermatozoa varies accord-
ing to its morphology at high magnification and, more precisely, according to the presence
or absence of sperm-head vacuoles. Vacuoles are nuclear concavities, containing DNA
enriched in H3K4me3. The overexpression of certain epigenetic marks (H3 and H3K4me3)
in vacuolated spermatozoa could influence embryo development and be transmitted to the
offspring. The selection of normal spermatozoa without vacuoles and the deselection of
spermatozoa with vacuoles appear to be epigenetically favorable to embryo development
and safe offspring. Finally, high-magnification microscopy could become a simple tool
to estimate in real time the sperm epigenetic profile and to monitor the exposure to an
environmental factor. Large-scale studies are needed to confirm these results.
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