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Abstract 40 

The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major 41 

importance for biodiversity, the water cycle and climate, and human activities. Accurate estimates of 42 

inundation extent and its variations across spatial and temporal scales are therefore fundamental to 43 

understand and manage the basin’s resources. More than fifty inundation estimates have been generated for 44 

this region, yet major differences exist among the datasets, and a comprehensive assessment of them is 45 

lacking. Here we present an intercomparison of 29 inundation datasets for the Amazon basin, based on 46 

remote sensing only, hydrological modeling, or multi-source datasets, with 18 covering the lowland 47 

Amazon basin (elevation < 500 m, which includes most Amazon wetlands), and 11 covering individual 48 

wetland complexes (subregional datasets). Spatial resolutions range from 12.5 m to 25 km, and temporal 49 

resolution from static to monthly, spanning up to a few decades. Overall, 31% of the lowland basin is 50 
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estimated as subject to inundation by at least one dataset. The long-term maximum inundated area across 51 

the lowland basin is estimated at 599,700 ± 81,800 km² if considering the three higher quality SAR-based 52 

datasets, and 490,300 ± 204,800 km² if considering all 18 datasets. However, even the highest resolution 53 

SAR-based dataset underestimates the maximum values for individual wetland complexes, suggesting a 54 

basin-scale underestimation of ~10%. The minimum inundation extent shows greater disagreements among 55 

datasets than the maximum extent: 139,300 ± 127,800 km² for SAR-based ones and 112,392 ± 79,300 km² 56 

for all datasets. Discrepancies arise from differences among sensors, time periods, dates of acquisition, 57 

spatial resolution, and data processing algorithms. The median total area subject to inundation in medium 58 

to large river floodplains (drainage area > 1,000 km²) is 323,700 km². The highest spatial agreement is 59 

observed for floodplains dominated by open water such as along the lower Amazon River, whereas 60 

intermediate agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon 61 

mainstem floodplain). Especially large disagreements exist among estimates for interfluvial wetlands 62 

(Llanos de Moxos, Pacaya-Samiria, Negro, Roraima), where inundation tends to be shallower and more 63 

variable in time. Our data intercomparison helps identify the current major knowledge gaps regarding 64 

inundation mapping in the Amazon and their implications for multiple applications. In the context of 65 

forthcoming hydrology-oriented satellite missions, we make recommendations for future developments of 66 

inundation estimates in the Amazon and present a WebGIS application (https://amazon-67 

inundation.herokuapp.com/) we developed to provide user-friendly visualization and data acquisition of 68 

current Amazon inundation datasets. 69 

Key words: flooding, surface water, floodplains, interfluvial wetlands 70 

 71 

1. Introduction 72 

https://amazon-inundation.herokuapp.com/
https://amazon-inundation.herokuapp.com/
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Aquatic ecosystems cover extensive areas of the Amazon basin, and are associated with temporally 73 

and spatially dynamic habitats such as floodable forests, savannas, grasslands, large and small 74 

rivers, and lakes (Hess et al., 2015; Junk et al., 2011; Melack and Coe, 2021; Reis et al., 2019a). 75 

These systems, hereafter called wetlands, support plants and animals that are adapted to the flood 76 

pulse (Junk et al., 1989), play key roles in regional and global biogeochemical cycles, especially 77 

the carbon cycle (Richey et al 1990; Dunne et al., 1998; Abril et al., 2014; Melack et al., 2004; 78 

Pangala et al., 2017; Martínez-Espinosa et al., 2020), and regulate the riverine transport of 79 

dissolved and particulate material, including sediment and organic matter (Armijos et al., 2020; 80 

Fassoni-Andrade and Paiva, 2019; Melack and Forsberg, 2001; Ward et al., 2017). Additionally, 81 

human settlements along Amazon wetlands (Blatrix et al., 2018; Denevan, 1996) benefit from 82 

ecosystem services, including food provision from native plants and animals as well as crop and 83 

livestock production (Coomes et al., 2016; Jardim et al., 2020). 84 

Many of the wetlands of the Amazon basin are considered floodplain because they are subject to 85 

seasonal or periodic inundation by river overflow (i.e., the flood pulse; Junk et al., 1989). The 86 

region also hosts large interfluvial wetlands, which unlike fringing floodplains along large rivers, 87 

are flooded mainly by local rainfall and runoff and characterized by shallow water (Belger et al., 88 

2011; Bourrel et al., 2009; Junk et al., 2011). Water sources, inundation patterns, and 89 

geomorphology interact to determine the structure and function of these biodiverse ecosystems 90 

(Junk et al., 2011; Latrubesse, 2012; Park and Latrubesse, 2017).  91 

The extent of inundated land (also called flooded land or surface water extent), and its temporal 92 

variation, are core variables to understand wetland processes and are of interest for multiple 93 

scientific disciplines, including ecology (Silva et al., 2013; Hawes et al., 2012; Luize et al. 2015), 94 

land-atmosphere interactions (Prigent et al., 2011; Santos et al., 2019; Taylor et al., 2018), carbon 95 
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cycling and greenhouse gas emissions (Guilhen et al., 2020; Melack et al., 2004; Richey et al., 96 

2002), and natural hazard management (Restrepo et al., 2020; Trigg et al., 2016). The Amazon 97 

basin has been a focus for remote sensing developments and applications in hydrology (Fassoni‐98 

Andrade et al., 2021), especially for inundation estimation, given the basin’s large scale and global 99 

environmental relevance, relatively pristine landscape, and technical challenges posed by 100 

persistent cloud cover (Asner, 2001) and dense vegetation. This resulted in the development of 101 

more than 50 inundation maps and datasets for this region in recent decades. Tables 1 (datasets 102 

used in this study) and S1 (datasets not used due to redundancy or unavailability) summarize most 103 

of the datasets developed for mapping inundation in the Amazon basin.  104 

Digital wetland maps were first produced for the Amazon basin by Matthews and Fung (1987) 105 

from aeronautical charts. Optical remote sensing systems in the visible or thermal spectral range, 106 

such as Landsat, are of limited value for most Amazon wetlands, since inundation under persistent 107 

cloud cover and dense vegetation canopies can be difficult to detect. Because of this, microwave 108 

systems have been employed. Large-scale inundation mapping was pioneered in the region through 109 

analysis of Scanning Multi-channel Microwave Radiometer (SMMR) and Special Sensor 110 

Microwave/Imager (SSM/I) passive microwave observations, which provided all-weather 111 

capability and sensitivity to inundation even in the presence of partial vegetative cover (Hamilton 112 

et al., 2002; Prigent et al., 2001; Sippel et al., 1998). Meanwhile, research demonstrated the all-113 

weather capability and superior spatial resolution of synthetic aperture radar (SAR) systems. L-114 

band SAR that can penetrate forest canopies and reveal underlying water through the “double 115 

bounce” effect was shown to be promising for mapping inundation in the Amazon (Hess et al., 116 

2003). More specifically, the high-resolution, dual-season classification of the Japanese Earth 117 

Resources Satellite-1 (JERS-1) L-band SAR data for the entire lowland Amazon basin by Hess et 118 
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al. (2015), validated with airborne videography images, has been used as a benchmark for the 119 

inundation extent of Amazon wetlands. Since these initial studies, and with the availability of other 120 

imagery (e.g., Advanced Land Observing Satellite (ALOS) 1 and 2 missions), the remote sensing 121 

community seeking to map and characterize inundation employed various combinations of active 122 

and passive microwave data to benefit from the higher spatial resolution of the former and the 123 

higher temporal resolution of the latter (Aires et al., 2013; Jensen and McDonald, 2019; Papa et 124 

al., 2010; Parrens et al., 2019, 2017; Prigent et al., 2007, 2020; Schroeder et al., 2015).  125 

Besides the basin-scale mappings (which, in our context, refer to both basin-scale datasets and 126 

those that cover only the lowland areas below 500 m.a.s.l. elevation) of annual maximum and 127 

minimum inundation (Chapman et al., 2015; Hess et al., 2015; Rosenqvist et al., 2020), dynamic 128 

datasets with high spatial and temporal resolution are mainly based on satellite passive microwave 129 

observations of coarse spatial resolution (Global Inundation Extent Multi-Satellite – GIEMS), 130 

Surface Water Microwave Product Series (SWAMPS), Surface Water Fraction (SWAF), Wetland 131 

Area and Dynamics for Methane Modeling (WAD2M) datasets; see Table 1), which can be 132 

downscaled using ancillary data (Aires et al., 2017, 2013; Parrens et al., 2019). Basin-scale, 133 

dynamic inundation estimates based on the ALOS satellite are limited given its low temporal 134 

resolution (repeat cycle of 46 days). Thus, some studies have analyzed time series of ALOS-135 

Phased Array L-band Synthetic Aperture Radar (PALSAR) (Arnesen et al., 2013; Ferreira-Ferreira 136 

et al., 2015) and ALOS-2 PALSAR-2 backscatter retrievals (Jensen et al., 2018) for subsets of 137 

Amazon wetlands. However, with a few exceptions using subregional datasets (Arnesen et al., 138 

2013; Ferreira-Ferreira et al., 2015; Hess et al., 2003; Jensen et al., 2018; Resende et al., 2019), in 139 

situ validation of the basin-scale estimates has seldom been performed, given the remoteness of 140 
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much of the Amazon basin and the often dense forest cover, which hampers airborne monitoring 141 

of below-canopy inundation.  142 

Complementary to the remotely sensed datasets, process-based hydrological models estimating 143 

variables such as river discharge and flood extent have been developed and assessed from basin to 144 

local scales in the major rivers of the basin (Beighley et al., 2009; Coe et al., 2008; Getirana et al., 145 

2017, 2012; Hoch et al., 2017; Luo et al., 2017; Miguez-Macho and Fan, 2012; Paiva et al., 2013; 146 

Yamazaki et al., 2011), thanks to the advent of new computational and modeling capabilities. 147 

Local-scale hydraulic models with coarse (Trigg et al., 2009; Wilson et al., 2007; Fleischmann et 148 

al., 2020) and detailed input data (Ji et al., 2019; Pinel et al., 2019; Rudorff et al., 2014; Fassoni-149 

Andrade, 2020) have further developed model capabilities for mapping inundation dynamics, 150 

especially for the floodplains fringing the Amazon mainstem. These models complement satellite-151 

based flood mapping due to their higher temporal and spatial resolution, and capability to estimate 152 

long-term time series, for both past and future (e.g., due to climate change) scenarios. The 153 

understanding of their uncertainties can lead to optimal data fusion with satellite-based estimates, 154 

such as considering multiple constraints within the water cycle representation (Pellet et al., 2021). 155 

Among these numerous inundation datasets for the Amazon basin (Tables 1 and S1), divergences 156 

can be substantial due to the differences in sensor systems, timing, and data processing algorithms 157 

(Aires et al., 2018; Fleischmann et al., 2020; Parrens et al., 2019; Pham-Duc et al., 2017; 158 

Rosenqvist et al., 2020), and a comprehensive assessment of inundation estimates for the Amazon 159 

is lacking. The need to compare different hydrological datasets for the Amazon has been recently 160 

highlighted in the context of river discharge (Towner et al., 2019), precipitation (Wongchuig et al., 161 

2017; Zubieta et al., 2019) and evapotranspiration (Paca et al., 2019; Wu et al., 2020). Meanwhile, 162 

rapid environmental changes in the basin underscore the urgency for a better understanding of 163 
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Amazon water resources (Fassoni‐Andrade et al., 2021), for which management and planning can 164 

be hindered by the discrepancies among datasets. These questions regarding current data 165 

limitations in the largest basin in the world are also timely in anticipation of forthcoming 166 

hydrological satellite missions such as Surface Water and Ocean Topography (SWOT) and NASA-167 

ISRO SAR (NISAR). 168 

To better understand and quantify the state of understanding of inundation patterns in the Amazon 169 

wetlands, we address the following questions: 1) How much Amazon land area is subject to 170 

seasonal or permanent flooding, and how accurate are the estimates? 2) Which areas are in 171 

particular disagreement and thus deserve further attention? 3) How do basin-scale estimates with 172 

coarser resolution and less calibrated classification methods differ from those for individual 173 

wetland complexes, with independent validation? 4) How do the various inundation estimation 174 

approaches (optical imagery, SAR, passive microwave, hydrologic models) differ in terms of 175 

inundation mapping and for different wetland types (e.g., floodplains and interfluvial areas)? In 176 

order to answer these questions, we gathered 29 inundation datasets for the Amazon basin, 177 

spanning a wide range of spatial (12.5 m to 25 km) and temporal (static, dual-season, monthly, 178 

daily) resolutions, and coverages from the whole basin to individual wetland complexes (Table 1), 179 

into a framework that provides a comprehensive assessment of current knowledge of Amazon 180 

inundation.  181 

 182 

Table 1. List of 29 studies that mapped inundation over areas ranging from the entire Amazon basin to individual 183 

wetland complexes. These data sources were selected based on data availability and relevance for this intercomparison. 184 

In the case of hydrological models, time resolutions are the values assessed or provided by the models, which can be 185 

provided at finer time resolution if necessary, since many of them compute flood maps at daily or sub-daily time steps 186 
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and report time-integrated results. The column “Data type” refers to: OS: optical sensor; SAR: synthetic aperture 187 

radar; HM: hydrological model; HR: multiple datasets at high resolution; CR: multiple datasets at coarse resolution. 188 

The column “Type of inundation estimated” has three classes: “All”, meaning both open water and vegetated wetlands, 189 

“Open water”, and “Wetland only (no open water)”.  190 

Data 

type 

Dataset name and 

main mission/ 

model associated (if 

applicable) 

Spatial 

resolution 

Temporal 

resolution 

Time 

period Region 

Type of 

inundation 

estimated Reference 

CR GIEMS-2 25 km Monthly 

1992-

2015 Basin All Prigent et al., 2020 

CR SWAMPS 25 km Monthly 

1992-

2020 Basin All 

Jensen and McDonald, 

2019 

CR WAD2M 25 km Monthly 

2000-

2018 Basin 

Wetland 

only (no 

open 

water) Zhang et al., 2020 

HR GIEMS-D3 90 m Monthly 

1993-

2007 Basin All Aires et al., 2017 

HR CIFOR 232 m 

Static (max 

inundation) 

1950-

2000 Basin All Gumbricht et al., 2017 

HR ESA-CCI 300 m Annual 

1992-

2015 Basin All Bontemps et al., 2013 

HR GIEMS-D15 500 m 

Monthly 

climatology 

1993-

2004 Basin All 

Fluet-Chouinard et al., 

2015 

HR GLWD 1 km Static 

1992-

2004 Basin All Lehner and Döll, 2004 



 

10 
 

HR 

SWAF-HR / SMOS 

mission 1 km 

Weekly to 

monthly 

2010-

2020 Basin All Parrens et al., 2019 

HM THMB model 5-min Monthly 

1961-

2010 Basin All Coe et al., 2008 

HM CaMa-Flood model 500 m Monthly 

1980-

2014 Basin All Yamazaki et al., 2011 

HM MGB model 500 m Monthly 

1980-

2015 Basin All Siqueira et al., 2018 

HM Bonnet model 180 m Monthly 

2006-

2019 Janauacá All Bonnet et al., 2017 

HM 

TELEMAC-2D 

model 30 m Monthly 

2006-

2015 Janauacá All Pinel et al., 2019 

HM 

LISFLOOD-FP 

model 90 m Monthly 

1994-

2015 Curuai All Rudorff et al., 2014 

OS 

G3WBM / Landsat 

mission 30 m 

Static (open 

water areas) 

1990-

2010 Basin 

Open 

water Yamazaki et al., 2015 

OS 

GLAD / Landsat 

mission 30 m 

Annual and 

monthly 

climatology 

1999-

2018 Basin 

Open 

water Pickens et al., 2020 

OS 

GSWO / Landsat 

mission 30 m 

Monthly 

(cloud cover 

may occur) 

1984-

2019 Basin 

Open 

water Pekel et al., 2016 

OS 

Ovando / MODIS 

mission 500 m 8 days 

2001-

2014 

Llanos de 

Moxos 

Open 

water Ovando et al., 2016 

OS 

Park / MODIS 

mission 230 m 

Monthly 

climatology 

2000-

2015 

Amazon 

River 

down-

Open 

water 

Park and Latrubesse, 

2019 
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stream of 

Manaus 

SAR 

Hess / JERS-1 

mission 90 m 

Max. and 

min. annual 

inundation 

(dual 

season) 

1995-

1996 

Basin 

(lowlands) All Hess et al., 2003, 2015 

SAR 

Chapman / ALOS-

PALSAR mission 90 m Monthly 

2006-

2011 Basin All Chapman et al., 2015 

SAR 

Rosenqvist / 

ALOS-2 PALSAR-

2 50 m 

Max. and 

min. annual 

inundation 

(dual 

season) 

2014-

2017 Basin All Rosenqvist et al., 2020 

SAR 

Jensen / ALOS-2 

PALSAR-2 mission 50 m 

Irregular (26 

images) 

2014-

2018 

Pacaya-

Samiria All Jensen et al., 2018 

SAR 

Arnesen / ALOS-

PALSAR mission 90 m 

Irregular (12 

images) 

2006-

2010 Curuai All Arnesen et al., 2013 

SAR 

Ferreira-Ferreira / 

ALOS-PALSAR 

mission 12.5 m 

Flood 

frequency 

only 

2007-

2010 Mamirauá All 

Ferreira-Ferreira et al., 

2015 

SAR 

Ovando-2 / ALOS-

PALSAR mission 100 m 

Irregular (6 

images) 

2006-

2010 

Llanos de 

Moxos All Ovando et al., 2016 

SAR 

Pinel-2 / ALOS-

PALSAR mission 30 m 

Irregular (16 

images) 

2007-

2011 Janauacá All Pinel et al., 2019 

SAR 

Resende / ALOS-

PALSAR mission 25 m 

Static (max 

inundation) 

2006-

2011 Uatumã All Resende et al., 2019 
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 191 

 192 

2. Methodology 193 

2.1 Study area 194 

The Amazon basin spans around 6 million km² in nine South American countries (Figure 1), with 195 

high annual rainfall (∼2,200 mm year−1), and the Amazon River discharge makes a major 196 

contribution to global freshwater and sediment exports to the ocean (Fassoni-Andrade et al., 2021). 197 

We delineated the catchment area upstream from Gurupá city, within the tidal river ~390 km from 198 

the ocean; hence not including the Tocantins-Araguaia basin and parts of the Amazon estuary and 199 

Marajó Island. We selected the 5.11 x 106 km² of Amazon lowlands defined as areas lower than 200 

500 m elevation based on the Shuttle Radar Topography Mission Digital Elevation Model (SRTM 201 

DEM) for the area of dataset comparisons in our study. This decision is consistent with several 202 

studies limited to lowlands because of the limitations of certain methods in estimating flooding in 203 

mountainous terrain (Hess et al., 2015).  204 

In addition to basin-scale datasets, estimates of inundated areas for 11 individual wetland 205 

complexes (also referred to as “subregional”) in the Amazon basin were analyzed, including seven 206 

areas for which more detailed estimates were available. This was performed to understand how the 207 

basin-scale datasets may vary in accuracy across different wetland types (Figure 1): Curuai 208 

floodplain lake (Arnesen et al., 2013; Rudorff et al., 2014), Janauacá floodplain lake (Bonnet et 209 

al., 2017; Pinel et al., 2019), Uatumã river floodplain (Resende et al., 2019), Mamirauá Reserve 210 

(Ferreira-Ferreira et al., 2015), Pacaya-Samiria wetlands (Jensen et al., 2018), Llanos de Moxos 211 



 

13 
 

wetlands (Ovando et al., 2016), lower Amazon floodplain (Park and Latrubesse, 2019), Amazon 212 

mainstem floodplain (from Iquitos to Gurupá), Purus floodplain, Roraima savannas, and Negro 213 

savannas. A brief summary of these wetlands is provided in supplementary Table S2, and their 214 

main features are summarized in the following. Curuai is representative of the shallow lakes in the 215 

lower Amazon floodplain. It is separated from the river by narrow levees (Rudorff et al., 2014) 216 

and has a high suspended sediment concentration. Janauacá is typical of the middle Amazon River 217 

floodplain, and is composed of a ria lake (i.e., a blocked valley lake with relatively sediment-free 218 

waters; Latrubesse (2012)) and “várzea” environments (white-water floodplains) in its northern 219 

part (Pinel et al., 2019). Uatumã River is an Amazon tributary with black-water floodplain 220 

(“igapó”), and includes the Balbina hydroelectric reservoir, operating since 1987, which affects 221 

the river’s hydrological regime (Schöngart et al., 2021). The Uatumã floodplain reach assessed 222 

here is the 300-km reach between Balbina dam and the confluence with the Amazon River. The 223 

Mamirauá Sustainable Development Reserve is located in the confluence between Solimões and 224 

Japurá rivers, and is characterized by a mosaic of “chavascal”, herbaceous, and low and high 225 

várzea vegetation (Ferreira-Ferreira et al., 2015). The Purus River is a major tributary, and its 226 

floodplain was chosen because of its large floodplain to river width ratio. Pacaya-Samiria wetlands 227 

are composed of flooded forests, palm swamps and peatlands in the upper Solimões River (Draper 228 

et al., 2014; Lähteenoja et al., 2012). The Llanos de Moxos floodable savannas occupy the 229 

interfluvial areas between the Beni, Mamoré and Madre de Dios rivers in the upper Madeira basin 230 

(Hamilton et al., 2004). The Negro savannas, locally known as “campina wetlands” and 231 

“campinarana wetlands”, depending on the vegetation density, are thought to have formed from 232 

regional neotectonic depressions and were called the “Septentrional Pantanal” given their large 233 

area (Rossetti et al., 2017a, 2017b; Santos et al., 1993). The Roraima floodable savannas extend 234 
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from Roraima State in Brazil to the Rupununi savannas in Guyana, and comprise mainly smaller 235 

river floodplains interspersed with poorly drained interfluvial savannas subject to flooding by local 236 

rainfall (Hamilton et al., 2002); here we only considered the Roraima wetlands in the upper Branco 237 

River basin, which is within the Amazon basin. 238 

 239 

 240 

Figure 1. The Amazon basin and its major wetland systems: (a) Amazon basin delineation (red lines) over the countries 241 

of South America (black lines). (b) Land cover based on a 2010 map from the European Space Agency Climate Change 242 

Initiative (ESA-CCI) (Bontemps et al., 2013), showing the distribution of forest and savanna across the basin, as well 243 

as large floodplains (see methodology section 2.3). (c) Basin distribution of major wetland systems showing locations 244 
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of interest for this study. Elevations lower than 500 m are shown in grey (based on SRTM DEM). The orange polygons 245 

show the areas for which a subregional dataset was available for this study (Figure 4), and the green ones show wetland 246 

areas of interest that do not have datasets specifically designed for these subregions. Photos depicting different wetland 247 

complexes for (d) Mamirauá (courtesy of João Paulo Borges Pedro), (e) Llanos de Moxos (courtesy of Alex Ovando), 248 

(f) Cabaliana floodplain lake close to Manacapuru (courtesy of Stephen Hamilton), and (g) Pacaya-Samiria (courtesy 249 

of Katherine Jensen) regions, respectively. 250 

 251 

2.2 Datasets 252 

Twenty-nine inundation datasets covering areas ranging from the whole-basin scale to individual 253 

wetland complexes, based on multiple data sources and spatiotemporal resolutions, were 254 

assembled for our comparison (Table 1). Most of these datasets are recent, with 18 out of the 29 255 

published since 2016, and 27 since 2011. They were chosen due to data availability and 256 

representativeness; other datasets that were either unavailable or methodologically redundant to 257 

those in our comparison were not used but are catalogued in Table S1. Overall, there are eight 258 

dynamic (weekly to monthly; Figure 2) and 10 static (which include long-term maximum, annual 259 

or dual-season categories; Figure 3) basin-scale datasets.  260 

 261 
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 262 

Figure 2. Basin-scale, dynamic inundation datasets used in this study, divided into three classes (hydrological models; 263 

merging of multiple datasets at high resolution; merging of multiple datasets at coarse resolution). Long-term flood 264 

frequency maps are provided for each dataset, calculated as the percentages of observations labelled as flooded 265 

throughout the entire time-series. 266 

 267 
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 268 

Figure 3. Basin-scale, static or dual-season inundation datasets used in this study, divided into three classes (merging 269 

of multiple datasets at high resolution; based on optical sensors; and based on SAR data). Flood frequency maps are 270 

not provided because the datasets are mainly static or annual-based. 271 

 272 

Passive microwave (PM) data are the basis of SWAF-HR, GIEMS family (GIEMS-D15, GIEMS-273 

D3, GIEMS-2), and SWAMPS, while ancillary data (i.e., optical imagery and microwave 274 

scatterometry) are used to complement the PM signal. SWAF-HR data result from the 275 

disaggregation of water surface fraction in a dataset at coarser spatial resolution (SWAF), based 276 

on L-band passive microwave observations from the Soil Moisture and Ocean Salinity (SMOS) 277 

satellite (Parrens et al. 2017). The disaggregation of SWAF relies on water occurrence maps from 278 
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GSWO and the Digital Elevation Model (DEM) Multi-Error-Removed-Improved-Terrain 279 

(MERIT) (Parrens et al., 2019). A global implementation of SWAF based on multi-angular and 280 

multi-polarization information has also been implemented (Al Bitar et al. 2020). GIEMS merges 281 

multiple satellite passive and active microwave observations, along with the optically-derived 282 

NDVI (Normalized Difference Vegetation Index), to detect the surface water and estimate the 283 

vegetation attenuation, for a monthly quantification of the surface water extent at ~25 km spatial 284 

resolution (Prigent et al., 2001, 2007, 2020; Papa et al., 2010). It is further disaggregated at 90-m 285 

resolution (GIEMS-D3) using a topographical downscaling methodology (Aires et al. 2017).  286 

Three basin-scale datasets are based mainly on SAR data from JERS-1 (Hess et al., 2003, 2015), 287 

and its successor missions ALOS-PALSAR (Chapman et al., 2015) and ALOS-2 PALSAR-2 288 

(Rosenqvist et al., 2020). These three datasets cover different decades of observation but are 289 

methodologically similar. 290 

Three of the optical-based datasets are based on Landsat data: GSWO (Pekel et al., 2016), 291 

G3WBM (Yamazaki et al., 2015) and GLAD (Pickens et al., 2020). Although GSWO and GLAD 292 

can provide monthly estimates for the Landsat archive (1984-today), given the inability of optical 293 

data to estimate flooding under cloud cover or dense vegetation canopies, only annual maximum 294 

and minimum values are used. For GLAD and GSWO, we consider a threshold of occurrence of 295 

surface water of 95% to estimate the minimum inundation (i.e., for the permanently inundated 296 

areas; Aires et al., 2018); otherwise, only a few isolated open water areas would be considered for 297 

the minimum extent. 298 

The European Space Agency Climate Change Initiative dataset (ESA-CCI) is based on surface 299 

reflectance from MERIS, the Advanced Very High-Resolution Radiometer (AVHRR) and 300 
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PROBA-V data and Global Water Bodies from the Envisat Advanced Synthetic Aperture Radar 301 

(ASAR) (Bontemps et al., 2013). Since the wetland pixels in ESA-CCI varied negligibly 302 

throughout the years of observations, we use only the 2010 dataset as the ESA-CCI estimate for 303 

maximum inundation. 304 

Another set of data is based on the merging of multiple global datasets: GLWD, GIEMS-D15 and 305 

WAD2M. GLWD is one of the first globally consistent databases of wetlands, which was based 306 

on a collection of wetland estimates from diverse institutions worldwide (Lehner and Döll, 2004). 307 

GIEMS-D15 combines GLWD, the Hydrosheds drainage network, and Global Land Cover 2000. 308 

WAD2M is based on SWAMPS and CIFOR within its merging framework. WAD2M is the only 309 

dataset to exclude open water areas (removal based on GSWO) due to its goal of estimating 310 

wetland methane emissions. SWAF-HR (Parrens et al., 2019) and GIEMS-D3 (Aires et al., 2017) 311 

use additional data and methodologies to downscale the original 25-km passive microwave-based 312 

SWAF (Parrens et al., 2017) and GIEMS (Papa et al., 2010; Prigent et al., 2007) datasets to 1 km 313 

and 90 m, respectively. While GIEMS-D3 has a different inundation magnitude than the original 314 

GIEMS due to merging with ancillary data, SWAF-HR conserves the same inundation magnitude 315 

across scales. 316 

Among hydrological models, we selected representative datasets from each of the following broad 317 

modeling types: 1) process-based hydrologic models that use flood routing to represent inundation 318 

processes (i.e., from a simple kinematic wave model coupled to an inundation method to more 319 

complex flow routing methods); or 2) hydraulic (or hydrodynamic) models that consider the 320 

shallow water equations (or its simplifications) at any dimension (1D, 2D or 3D). For our analysis, 321 

we adopted two basin-scale models – one hydrologic (THMB; Coe et al. (2008)) and one 322 

hydrologic-hydrodynamic (MGB, Siqueira et al. (2018)), as well as a global-scale hydrodynamic 323 
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model (CaMa-Flood, Yamazaki et al. (2011)), in the Earth2Observe version available at 324 

<http://www.earth2observe.eu/>). The inundated area estimation is largely affected by the DEMs. 325 

The DEMs adopted in the model runs were: Bare-Earth (O’Loughlin et al., 2016) for MGB, 326 

MERIT (Yamazaki et al., 2017) for CaMa-Flood, and SRTM (Farr et al., 2007) for THMB. The 327 

rainfall/runoff input data are MSWEP v.1.1 daily precipitation (Beck et al., 2017) for MGB, 328 

HTESSEL daily runoff (Balsamo et al., 2009) for CaMa-Flood, and CRU TS v.3.2.1 monthly 329 

precipitation (Harris et al. 2014) for THMB. Although other hydrologic models have been applied 330 

to the Amazon basin (Tables 1 and S1), the models chosen here were selected as representative of 331 

global to local models, for having been well validated and applied over the Amazon basin, and for 332 

representing state-of-the-art Amazon hydrologic modeling. All basin-scale models represent one-333 

dimensional (1D) flows only (i.e., floodplains are represented as storage units without active flow), 334 

and thus do not represent 2D surface flows that occur in wetlands (Alsdorf et al., 2007; 335 

Fleischmann et al., 2020). A detailed comparison of model capabilities and structural uncertainties 336 

is beyond our current scope. Hydrologic models have different temporal resolution depending on 337 

their numerical stability and forcing data. For instance, MGB and CaMa-Flood models run at an 338 

adaptive time step (sub-minute timestep in the case of MGB), but are assessed at daily resolution 339 

given their daily precipitation forcing. We aggregated the models’ estimates to monthly averages 340 

to make them comparable to the remote sensing dynamic datasets.  341 

The datasets available for individual wetland complexes are presented in Figure 4. ALOS-2 342 

PALSAR-2 data were used for the Pacaya-Samiria region (Jensen et al., 2018), and the ScanSAR 343 

mode of ALOS/PALSAR for the following datasets: Curuai floodplain lake (Arnesen et al., 2013), 344 

Mamirauá Reserve (Ferreira-Ferreira et al., 2015), Uatumã river floodplain (Resende et al., 2019), 345 

and Janauacá floodplain lake (Pinel et al., 2019). MODIS optical data were used for the Llanos de 346 

http://www.earth2observe.eu/
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Moxos savannas in the upper Madeira River basin (Ovando et al., 2016) and the lower Amazon 347 

floodplain (Park and Latrubesse, 2019). Two local-scale 2D hydraulic models (LISFLOOD-FP for 348 

Curuai lake, Rudorff et al. (2014), and TELEMAC-2D for Janauacá lake, Pinel et al. (2019)), and 349 

one local-scale hydrologic model (for Janauacá lake; Bonnet et al. (2017)) were considered; 350 

together, these are representative of the state-of-the-art of hydrological modeling in Amazon 351 

wetlands.  352 

The datasets were stored in various formats (i.e., raster and polygon shapefiles) and projections 353 

(mainly projected UTM and geographic coordinate system with WGS84 datum), and were 354 

converted to the WGS84 geographic coordinate system to compute areas. SWAMPS was provided 355 

at the Equal-Area Scalable Earth (EASE) Grid, which was used to estimate its flooded areas. 356 

Hydrologic model outputs were provided as either binary inundation maps or flood depth raster 357 

files, which were then converted into binary maps by assuming depth > 0 m as inundated pixels. 358 

 359 
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 360 

Figure 4. Long-term flood frequency maps from subregional inundation datasets (i.e., for individual wetland 361 

complexes) used in this study. The Uatumã dataset (2) is static and is displayed as the maximum extent. Flood 362 

frequency maps are produced by computing the long-term average of all inundation maps available for each dataset. 363 

 364 

2.3 Comparison framework 365 

The comparison framework involved the following analyses, considering the entire basin and 11 366 

wetland complexes (seven areas with available subregional estimates, and four additional areas of 367 

interest without subregional estimates; Figure 1): 368 
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● Annual maximum and minimum inundation estimates for each of the 18 basin-scale 369 

datasets (section 3.1); 370 

● Basin-scale, long-term maximum and minimum inundation estimates for each of the 18 371 

basin-scale datasets (section 3.1); 372 

● Long-term maximum and minimum inundation estimates for each of the 18 basin-scale 373 

and 11 subregional datasets (section 3.2); 374 

● Comparison between basin-scale and subregional datasets with temporal (nRMSD and 375 

Pearson correlation) and spatial (Fit metric) assessment (section 3.2); 376 

● Assessment of spatial agreement among the 18 basin-scale datasets at 1 km, for both long-377 

term maximum and minimum inundation maps (section 3.3); 378 

● Estimation of long-term maximum inundation for two classes of wetlands for the entire 379 

basin: (i) medium to large river floodplains and (ii) interfluvial wetlands and small 380 

floodplains (section 3.4). 381 

 382 

The long-term maximum and minimum inundation extents were computed for each dataset as the 383 

area of all pixels that were inundated at least once in the whole monthly time series, for the 384 

maximum, and as those pixels that were always inundated, for the minimum. We stress that 385 

analyzing long-term changes in inundation patterns is beyond the scope of this study, and thus we 386 

assumed stationarity in our comparisons of long-term maximum and minimum inundation extents 387 

from different time-periods. 388 

The agreement of all basin-scale, high-resolution datasets (i.e., all basin-scale ones except for 389 

THMB, GIEMS-2, SWAMPS and WAD2M, which have a coarse resolution between 9 and 25 390 
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km) was assessed for long-term maximum and minimum inundation at 1 km resolution, which is 391 

the resolution of SWAF-HR, the coarsest resolution among the high-resolution datasets. For each 392 

1 km pixel, the total number of datasets agreeing that it was inundated (either for maximum or 393 

minimum extent) was computed, following Trigg et al. (2016). Given the size of the Amazon basin, 394 

a 1 km resolution was considered adequate for the analysis. The analysis was done by aggregating 395 

all datasets to 1 km, and considering that a 1 km pixel is flooded if more than 50% of its area is 396 

flooded (following Hamilton et al., 2002). A sensitivity test was performed using a 25% threshold 397 

and led to similar conclusions at the whole basin scale (Figure S1).  398 

The basin-scale and four additional subregional datasets were compared to seven subregional ones, 399 

which were used as independent validation datasets, and cover the following sites: Curuai 400 

(Arnesen et al., 2013), Uatumã (Resende et al., 2019), Janauacá (Pinel et al., 2019), Mamirauá 401 

(Ferreira-Ferreira et al., 2015), Pacaya-Samiria (Jensen et al., 2018), Llanos de Moxos MODIS 402 

(Ovando et al., 2016) and lower Amazon River (Park and Latrubesse, 2019). Varying degrees of 403 

validation exercises were performed for these validation datasets, with some being extensively 404 

validated with airborne videography (Hess et al., 2003) or local surveys (Arnesen et al., 2013; 405 

Ferreira-Ferreira et al., 2015; Jensen et al., 2018; Resende et al., 2019), while others were assessed 406 

through comparisons with other datasets (Pinel et al., 2019),  or visually inspected, as in the large 407 

domains of the Llanos de Moxos (Ovando et al., 2016) and lower Amazon River (Park and 408 

Latrubesse, 2019) subregional datasets. The four additional subregional datasets are: Curuai 409 

LISFLOOD-FP model (Rudorff et al., 2014), Janauacá hydrological model (Bonnet et al., 2017), 410 

Janauacá TELEMAC-2D model (Pinel et al., 2019), and Llanos de Moxos ALOS-PALSAR 411 

(Ovando et al., 2016).  412 
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To use the subregional studies to assess the accuracy of the datasets covering broader areas, the 413 

basin-scale and four additional subregional datasets were compared to the subregional validation 414 

datasets at monthly temporal resolution, considering the total inundated area per wetland area (i.e., 415 

the whole Curuai Lake domain, the whole Uatumã floodplain, and so forth). The polygons of each 416 

wetland area, which were used to extract the information from the basin-scale datasets, were 417 

delineated as a 1-km buffer around the maximum inundated area, according to each subregional 418 

dataset. For the four areas of interest without subregional datasets (Amazon mainstem and Purus 419 

floodplains, and Roraima and Negro wetlands), the polygons were created considering the 420 

maximum lateral extent in accordance with the MERIT DEM (Yamazaki et al., 2017) and ESA-421 

CCI land cover for savannas. The time series were compared with Pearson linear correlation (R) 422 

and the normalized root mean square deviation (nRMSD), computed as the RMSD between a given 423 

inundation map and the subregional validation map (i.e., the individual wetland complexes) 424 

divided by the subregional long-term average inundation. The term ‘deviation’ was preferred over 425 

‘error’ to stress the uncertainties inherent to all datasets, for both basin and subregional scales, 426 

although those derived for an individual wetland complex are considered as superior in accuracy 427 

for having a more dedicated data processing for that particular area, and being validated with 428 

ground surveys in some cases. 429 

The ability of a particular dataset to estimate the local spatial patterns at maximum inundation was 430 

assessed with the Fit metric (Bates and De Roo, 2000), which has been successfully applied to 431 

compare inundation datasets (Bernhofen et al., 2018), and is computed as: 432 

𝐹𝑖𝑡 = 100% ∗
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
(1) 433 
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Where 𝐴 and 𝐵 are the subregional validation dataset estimates (e.g., the subregional map that 434 

corresponds to maximum inundation) and the basin-scale maximum inundation maps. 435 

To assess different wetland environments, we differentiate medium to large river floodplains from 436 

interfluvial wetlands and small floodplains. An estimation of the total flooded area of large river 437 

floodplains was computed, considering river reaches with upstream drainage area larger than 1,000 438 

km², and a buffer mask around the river reaches (mask presented in Figure 1). The buffer was 439 

defined based on the Hydrosheds drainage network (Lehner and Grill, 2013), segmented into 15 440 

km-long reaches as in Siqueira et al. (2018). The buffer was proportional to the local reach drainage 441 

area and further manually adjusted to include the maximum floodplain lateral extent, as estimated 442 

from a visual inspection of the MERIT DEM (Yamazaki et al., 2017) and the three basin-scale 443 

SAR-based datasets (Hess, Chapman and Rosenqvist datasets). Buffer values varied from 4 km in 444 

upper reaches to 150 km on the Amazon mainstem close to the Mamirauá Reserve. Estimating 445 

floodplain total inundated area is relevant to differentiate the Amazon riverine fringing floodplains 446 

from non-floodplain wetlands (here referred to as interfluvial wetlands).  447 

Finally, in order to assess the current capabilities of basin-scale mapping of inundation dynamics 448 

at high spatial and temporal resolution, a further assessment of the four high-resolution dynamic 449 

datasets (GIEMS-D3, CaMa-Flood, SWAF-HR and MGB) at their native resolutions was 450 

performed by computing their long-term flood frequency for the entire basin.  451 

 452 

3. Results and Discussion 453 

3.1 How much inundation is estimated to occur in the Amazon basin? 454 
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3.1.1 Overall assessment 455 

Comparisons among the various estimates of inundation area can begin with the maximum and 456 

minimum inundated area across the entire Amazon basin. We found wide variation in the annual 457 

maximum and minimum inundation estimates for the entire basin scale (Figure 5), as well as the 458 

long-term maxima and minima (Figure 6 and Table 2). The annual maximum inundation area 459 

represents the total area subject to inundation at some point over the year, whereas the annual 460 

minimum inundation area represents the area that remained inundated all year. SAR estimates, 461 

especially those based on L-band sensors and those having undergone validation (i.e., the Hess et 462 

al. (2003) dataset), are assumed to be the most accurate given their high spatial resolution and 463 

capability of mapping flooded areas under dense vegetation canopies and cloud cover. Given the 464 

lack of ground validation for most basin-scale datasets, we assess their accuracy by comparing 465 

them to subregional validation datasets in section 3.2.  466 

By computing means and standard deviations of the long-term maximum area subject to inundation 467 

by type of data (Table 2), we obtain the following values: 138,200 ± 45,300 km² (mean ± S.D.) for 468 

optical, 533,500 ± 217,800 km² for multiple datasets at high resolution, 579,100 ± 108,900 km² 469 

for those at coarse resolution, 542,800 ± 80,600 km² for hydrological models, and 599,700 ± 470 

81,800 km² for SAR. The mean area for optical-based datasets is thus around 23% of the SAR-471 

based estimate. If we assume that the ensemble of datasets could be a proxy of inundation 472 

uncertainty in the Amazon basin, and neglecting the optical and land cover-based data (G3WBM, 473 

GLAD, GSWO and ESA-CCI) and CIFOR datasets, given their lower capability to map inundation 474 

as discussed below, 13 datasets are left, yielding an estimation for the long-term maximum 475 

inundation of 559,300 ± 81,100 km². This value is around 40,000 km² lower than the mean of the 476 

maximum inundation area from the three SAR datasets. The mean of the maximum inundation 477 
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area considering all 18 datasets is 490,300 ± 204,800 km². Compared to the maximum inundation 478 

area, the relative deviation among available estimates is higher for the long-term minimum area 479 

inundated —125,900 ± 77,600 km² (mean ± S.D.), with a coefficient of variation of 0.62, for the 480 

12 basin-scale datasets that provide minimum area, and 139,300 ± 127,800 km² for the three SAR-481 

based datasets, with a coefficient of variation of 0.92. 482 

None of the datasets can map small, narrow floodplains or riparian zones, for which only simple 483 

calculations are currently available (e.g., Junk et al., 1993), and whose total area can only be 484 

estimated through statistical extrapolation of observable rivers. These small zones contribute to 485 

the overall uncertainties of the inundation estimates. For instance, a wetland mask developed by 486 

Hess et al. (2015) for SAR-based wetland classification yielded a basin-scale estimation of wetland 487 

area including the smallest floodplains of 840,000 km². This estimate is much larger than the 488 

largest long-term maximum inundated area obtained with SAR data (659,100 km² with 489 

Rosenqvist’s dataset). In section 3.2, it will be shown that almost all datasets tend to underestimate 490 

the maximum inundation, when compared to subregional ones. The two SAR-based datasets with 491 

highest accuracy underestimate maximum inundation by 9% (Rosenqvist) and 13% (Hess), based 492 

on the average difference between these and the subregional estimates for the seven locations with 493 

available data. If this holds true for the whole basin, the basin-scale maximum inundation would 494 

be around 10% higher.  495 

 496 

3.1.2 Estimates based on SAR datasets 497 

At the basin scale, SAR-based estimates of maximum annual inundation range from 424,600 km² 498 

(Rosenqvist) to 633,500 km² (Hess), and minimum inundation from 53,900 km² (Rosenqvist) to 499 
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284,200 km² (Hess), as shown in Figure 5. By considering long-term maximum inundation (i.e., 500 

all pixels that were inundated at least once in the entire available time series), instead of annual 501 

maxima, the SAR-based estimates range from 506,400 km² (Chapman) to 659,100 km² 502 

(Rosenqvist) for the entire basin (Table 2). The minima vary from 42,400 km² (Rosenqvist) to 503 

284,200 km² (Hess). This highlights the large differences that exist, especially for the minima, 504 

usually referred to as the “low-water period.” Chapman’s dataset, based on the 2006-2011 ALOS-505 

PALSAR archive, has a smaller total maximum inundation area than the other two SAR datasets, 506 

as well as a smaller estimate for minimum inundation in relation to Hess’ estimate, which in turn 507 

was developed from SAR mosaics at two seasons spanning only      one year      (1995–1996). 508 

Differences among the three datasets may originate from differences in acquisition dates, 509 

interannual and seasonal inundation variability, algorithms, spatial resolutions, or inconsistencies 510 

regarding the data processing. For example, Chapman estimates long-term maxima and minima 511 

based on multiple years, while Hess and Rosenqvist provide annual values. The calibration 512 

uncertainty was also higher for the JERS-1 data used in Hess’ mapping than in the subsequent 513 

satellites (ALOS-PALSAR and ALOS-2 PALSAR-2) (Hess et al., 2003). For long-term minimum 514 

inundation, the interannual variability seems to be a minor factor since the Hess dataset, which 515 

estimated a larger figure than the other ones, was developed for a year with minimum water levels 516 

higher than those during Chapman’s acquisition dates, but lower than those during Rosenqvist’s 517 

ones (see Fig. 8 in Rosenqvist et al., 2020). Thus, the larger minimum inundation extent by Hess 518 

et al. (2015) seems to be more related to algorithm differences (Figure S2). For the maximum 519 

water levels, Hess’ period was associated with an average year, below the water levels in Chapman 520 

and Rosenqvist, and this may explain the relatively higher long-term maximum inundation by 521 

Rosenqvist, while Chapman’s smaller values are likely due to algorithm differences. For the 522 
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western basin, Hess’ estimate is based on JERS-1 data mostly from June 1996 (Hess et al., 2015), 523 

which likely missed some of the inundation in this region as in the Pacaya-Samiria region, and 524 

may partly explain the larger value by Rosenqvist (see section 3.2.2). Spatial resolution is also an 525 

important factor: Rosenqvist’s resolution is 50 m, and it is capable of representing smaller 526 

floodplains than the other two (Figure S3), as will be discussed in section 3.2.2. 527 

 528 

3.1.3 Assessment of other datasets  529 

The coarse-resolution datasets and hydrologic models generally estimate smaller annual maximum 530 

inundation areas in comparison to the SAR datasets, with the exception of SWAF-HR, WAD2M 531 

and CaMa-Flood that yield similar annual maximum inundation. This results from the low 532 

sensitivity of the passive microwave signal, which underlies most coarse-resolution datasets, to 533 

detect small fractional flooded areas within the grid cells, flooding under particularly dense 534 

vegetation, and flooding of short duration (i.e., less than one month of consecutive inundation) 535 

(Hamilton et al., 2002). The higher sensitivity of the SWAF-HR may be associated with the use of 536 

L-band passive microwave emission. Given the long-term data availability from dynamic, coarse-537 

resolution datasets, their long-term mean estimates are closer to the SAR ones, varying from 538 

450,800 km² (THMB) to 630,900 km² (SWAF-HR), when compared to the annual scale analysis. 539 

Therefore, no clear relationship between long-term minimum or maximum inundation and the 540 

spatial resolution of the datasets is observed (Figure 6), which could be expected when analyzing 541 

the annual values (Figure 5).  542 

As expected, the optical-based datasets (GSWO, G3WBM, GLAD) cannot map inundation under 543 

dense vegetation canopies and thus lead to much lower estimates of basin-wide inundation area 544 
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(Aires et al., 2018; Parrens et al. 2017). Similarly, ESA-CCI, which is based on land cover 545 

classification of optical imagery with the addition of SAR inputs for delineation of wetland areas, 546 

yields low basin-wide inundation areas, although relatively higher than the purely optical-based 547 

estimates. In contrast, the multi-satellite-based CIFOR provides an unrealistically large estimate 548 

of maximum inundation area (872,700 km²), which may be due to overestimation of soil moisture 549 

by the topographic index used. This method is sensitive to rainfall overestimation, which may have 550 

occurred in 2011, the year for which CIFOR was developed (Gumbricht et al., 2017). While the 551 

dataset does represent well the spatial extent of peatlands across the Pacaya-Samiria region 552 

(Gumbricht et al., 2017), its estimation of widespread inundation across the basin has limitations 553 

to represent the large Amazon river floodplains, especially the forested ones, which are classified 554 

as “swamps (including bogs)” by this dataset together with extensive interfluvial areas (Figure S4). 555 

 556 
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 557 

Figure 5. (a) Annual maximum and minimum flooded areas for the Amazon basin (< 500 m in elevation) for 18 basin-558 

scale datasets over their respective observation time periods. Note that some datasets provide only average estimates 559 

based on multiple years of observation (e.g., GLWD, Chapman, G3WBM), and are marked as horizontal lines for the 560 

period of observation. 561 

 562 

 563 
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 564 

Figure 6. Summary of long-term (a) minimum and (b) maximum inundation for the 18 basin-scale datasets, which are 565 

categorized into five types (optical data; combination of datasets at high resolution; combination of datasets at low 566 

resolution; synthetic aperture radar; and hydrological models). Estimates by dynamic datasets are not directly 567 

comparable to the static ones; thus, each is colored differently: red (dynamic) and black (static). Legend for dataset 568 

types: OS: Optical Sensor; SAR: Synthetic Aperture Radar; HM: Hydrological Model; HR: multiple datasets at High 569 

Resolution; CR: multiple datasets at Coarse Resolution. 570 

Table 2. Basin-scale, long-term minimum and maximum inundation estimates for 18 datasets. 571 

 Dataset Minimum (km²) Maximum (km²) 

Multiple datasets at coarse resolution GIEMS-2 45,800 486,600 

SWAMPS 157,400 491,100 

WAD2M 225,500 707,900 

Multiple datasets at high resolution GIEMS-D3 116,600 500,700 

CIFOR - 872,700 

ESA-CCI - 267,400 

GIEMS-D15 157,700 545,400 

GLWD - 481,200 
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SWAF-HR 53,200 630,900 

Hydrological model THMB 65,200 450,800 

CaMa-Flood 188,100 576,700 

MGB 83,600 600,900 

Optical sensor G3WBM - 98,500 

GLAD 25,700 187,600 

GSWO 37,000 128,500 

Synthetic Aperture Radar Hess 284,200 633,500 

Chapman 91,200 506,400 

Rosenqvist 42,400 659,100 

 572 

3.2 How much inundation is estimated to occur in individual wetland regions?       573 

3.2.1 Overall assessment 574 

The 18 basin-scale inundation datasets were compared with the 11 subregional ones through 575 

analysis of long-term means of annual maximum inundated areas (Table 3), long-term means of 576 

annual minimum areas (Supplementary Table S3), and multiple comparison metrics 577 

(Supplementary Table S4). The subregional datasets, covering individual wetland complexes, are 578 

considered as independent validation datasets, given the ground validation performed for most of 579 

them, as well as the use of a region-specific classification, and the often higher spatial resolution 580 

(e.g., 12.5 m for some based on ALOS-PALSAR imagery). 581 

The Amazon River floodplains (from Iquitos to Gurupá) and the Llanos de Moxos regions are the 582 

largest Amazon wetland complexes: 106,800 ± 25,800 km² and 113,500 ± 53,400 km², respectively 583 

when considering the three SAR-based datasets, and 94,100 ± 32,500 km² and 85,300 ± 52,400 584 
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km² when considering all 18 basin-scale datasets. Besides these two areas, the third largest 585 

Amazon wetland region is Pacaya-Samiria, with 29,700 ± 20,600 km² (all datasets) and 40,000 ± 586 

4,200 km² (SAR datasets). 587 

The comparison of the long-term means of annual maximum and minimum observed inundation 588 

over the available time periods indicates differences between basin-scale datasets and the 589 

subregional validation datasets. Overall, the subregional datasets had a larger maximum inundation 590 

extent than that estimated for the subregion from the basin-scale datasets. The underestimation by 591 

the basin-scale ones varied from 49% for the Pacaya-Samiria region to 5% for the lower Amazon 592 

River floodplain. Only three datasets overestimated the maximum extent of inundation: GIEMS-593 

D3, GIEMS-D15 and GLWD. The basin-scale, SAR-based ones (Hess, Chapman and Rosenqvist) 594 

underestimated the maximum extent in the regions represented by all subregional datasets, except 595 

Rosenqvist for Janauacá Lake, and Hess for the Llanos de Moxos region. This is likely related to 596 

the higher resolution of many of the subregional datasets (e.g., 12.5 m original and 25 m final 597 

resolution for the Uatumã ALOS-PALSAR classification by Resende et al., 2019), differences in 598 

image acquisition period, and fine-tuning that may occur with dedicated processing for a particular 599 

region.  600 

To investigate the depiction seasonal patterns of inundation by the various datasets, we assessed 601 

the correlation between the time series of absolute inundated areas from the dynamic ones and the 602 

estimates for individual wetland complexes (Table S3). Overall, all datasets agreed well (average 603 

Pearson correlation larger than 0.63 for the four wetland complexes with available time series), 604 

showing a similar depiction of the inundation seasonality. However, their ability to monitor high-605 

resolution flood frequency is limited, as will be further discussed in section 4. A visual comparison 606 

of the time series (Figure S6) shows agreement on seasonal timing of flooding and drainage, but 607 
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disagreement in the extent of inundation. In particular, two datasets have a small overall annual 608 

amplitude (SWAMPS and WAD2M). 609 

Overall, four datasets had the best overall representation of spatial patterns in inundation (Fit 610 

metric; see Equation 1), as analyzed at 1 km pixel resolution, in comparison to the subregional 611 

validation datasets: Hess, GLWD and the two hydrodynamic models (MGB and CaMa-Flood), 612 

which were associated with average Fit metric between 0.64 and 0.67 (Table S3). While hydrologic 613 

models such as MGB, CaMa-Flood and THMB have a satisfactory agreement basin wide, they are 614 

unable to represent wetlands not primarily inundated by rivers (Fleischmann et al., 2020; Zhou et 615 

al., 2021). For example, the Llanos de Moxos inundation is underestimated by both CaMa-Flood 616 

and MGB with low Fit metric values (0.19-0.28; Table S3). This is expected for interfluvial 617 

wetlands such as Llanos de Moxos and Roraima, where much of the flooding is caused by poor 618 

drainage of local rainfall and tends to be shallower, as opposed to overflow of large rivers onto 619 

adjacent floodplains. The four alternative subregional datasets assessed here - three hydrological 620 

models (one for Curuai and two for Janauacá) and one classification of ALOS-PALSAR data for 621 

the Llanos de Moxos area - were generally better or similar to some of the best-performing basin-622 

scale ones, as could be expected given their fine tuning for the specific areas, which often includes 623 

local topographic surveys.   624 

Some of the datasets merging multiple data sources overestimated the inundation area of individual 625 

wetland complexes the most, especially GIEMS-D15, GIEMS-D3 and GLWD. Furthermore, 626 

CIFOR was originally designed for peatland mapping in the tropics, and generally overestimates 627 

inundation, suggesting a widespread distribution of wetlands along interfluvial terraces across the 628 

whole basin that may include areas of poorly drained soils lacking surface water. For the individual 629 

wetland complexes, however, CIFOR generally underestimated inundation and had a poor 630 
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representation of spatial patterns of inundation (low Fit metric). WAD2M underestimated the 631 

maximum inundation the most, which is understandable given its removal of open water areas and 632 

because its main inputs (CIFOR and SWAMPS) also underestimated inundated areas as indicated 633 

by the subregional validation datasets.  634 

 635 

3.2.2 Individual inundation patterns based on SAR data 636 

     Regarding the maximum inundation extent, the Janauacá case provides a representative 637 

example to understand the differences among multiple L-band SAR datasets: these estimated total 638 

inundated area as 209 km², 184 km² and 446 km² for Hess, Chapman and Rosenqvist, respectively, 639 

in contrast to 404 km² with the subregional ALOS-PALSAR-based dataset (12.5 m resolution; 640 

Pinel et al., 2019). Part of these differences occur because of interannual variability, but other 641 

factors such as spatial resolution and algorithm differences seem relevant. Rosenqvist led to a more 642 

consistent estimation of the spatial inundation extent in terms of maximum inundation (Table 3) 643 

and inundation spatial patterns (Fit metric; Table S3), which can be a consequence of its higher 644 

spatial resolution (50 m) in contrast to the other two (90 m; Figure S3). Overall, Rosenqvist 645 

provided the largest inundation extent among SAR datasets across all areas along the Amazon 646 

mainstem floodplain, except for the Curuai floodplain and the savanna wetlands, as well as the 647 

closest agreement with subregional validation datasets (-9% ± 13%; average ± S.D.). Hess 648 

estimated the largest inundation area in the savanna wetlands (Llanos de Moxos, Roraima and 649 

Negro). However, Hess’ estimate is 39% larger than the subregional validation dataset for Llanos 650 

de Moxos, while the other two SAR estimates are lower (-26% and -41% for Chapman and 651 

Rosenqvist, respectively).  652 
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One important question remains about the low-water period, as discussed in the previous section 653 

for the basin-scale analysis. Hess suggests much more inundation for this period for the Amazon 654 

mainstem floodplains (54,500 km²), mainly for the upstream forested reaches, and for the whole 655 

basin in general (284,200 km²), than recent estimates with ALOS (28,500 and 91,200 km²) and 656 

ALOS-2 data (19,500 and 42,400 km²). An assessment with the subregional datasets along the 657 

Amazon floodplain suggests that Hess overestimates the minimum extent for Curuai, Mamirauá 658 

and lower Amazon River, and is accurate for the Janauacá floodplain lake. Rosenqvist generally 659 

underestimates the minimum inundation. For instance, for the Mamirauá dataset, the minimum 660 

extent (i.e., permanently flooded areas) sums up to 715 km², which is increased to 1545 km² if 661 

considering all pixels flooded for more than 295 days per year. For this area, the SAR estimates 662 

are 1756 km² (Hess), 866 km² (Chapman) and 422 km² (Rosenqvist). Overall, this suggests that 663 

the actual value of minimum inundation across the central Amazon floodplains is somewhere 664 

between the Hess and Rosenqvist estimates.  665 

 666 

3.2.3 Challenges over floodable savannas 667 

Large discrepancies are observed for the Roraima and Negro floodable savannas. Roraima 668 

wetlands are small river floodplains interspersed with open savannas subject to flooding, which 669 

can be identified by optical data. In addition, the typical timing of high and low water in the 670 

Roraima region coincides approximately with the JERS-1 dual-season mosaics that were designed 671 

to reflect the seasonality of the central Amazon River floodplain (Hamilton et al. 2002). For these 672 

reasons, the JERS-1-based dataset by Hess et al. (2015) seems to satisfactorily represent most of 673 

the Roraima wetlands. However, it misses some small-scale riparian forests, given its 90 m spatial 674 

resolution and snapshot coverage that likely missed flooding events on smaller, flashier rivers 675 
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(Figure S5). Thus, the maximum inundation is likely higher than the Hess estimate (8,900 km²), 676 

which in turn is larger than the other ones based on SAR  (1,900 - 4,100 km²). The only dataset to 677 

estimate a higher value is the coarse SWAF-HR (18,100 km²), which is similar to the value 678 

previously estimated by Hamilton et al. (2002) (16,500 km²), also with coarse data (SMMR passive 679 

microwave), though a part of the discrepancy may be due to interannual variability. More studies 680 

are necessary for this area to understand its actual inundation extent and dynamics. Similarly, the 681 

inundation estimates in the Negro interfluvial savannas are subject to large uncertainty, with the 682 

long-term maximum inundation varying between 95 (GLWD) and 20,700 km² (CIFOR), 683 

considering all basin-scale datasets. SAR-based estimates were between 5,900 and 15,800 km². In 684 

contrast, for the Pacaya-Samiria interfluvial area, which includes a large complex of forested 685 

wetlands, peatlands and palm swamps, the discrepancies are smaller than for the savanna 686 

interfluvial regions, although still considerable. The basin-scale SAR ranged between 24,000 km² 687 

(Chapman) and 56,200 km² (Rosenqvist), with the subregional validation dataset yielding 57,900 688 

km². The good agreement between Rosenqvist and the subregional dataset was already reported 689 

by Rosenqvist et al. (2020). 690 

 691 

Table 3. Long-term maximum inundation areas (km²) for the 11 wetland complexes (up to three subregional datasets 692 

per complex) and the 18 basin-scale datasets. The subregional values refer to the following datasets, in this order 693 

(comma-separated values relate to areas with more than one dataset available): Curuai - ALOS (Arnesen et al., 2013) 694 

and LISFLOOD-FP model (Rudorff et al., 2014); Uatumã - ALOS (Resende et al., 2019); Janauacá - ALOS (Pinel et 695 

al,. 2019), hydrologic model (Bonnet et al., 2017) and TELEMAC-2D model (Pinel et al., 2019); Mamirauá - ALOS 696 

(Ferreira-Ferreira et al., 2015); Pacaya-Samiria - ALOS-2 PALSAR-2 (Jensen et al., 2020); Llanos de Moxos - 697 

MODIS (Ovando et al., 2016) and ALOS (Ovando et al., 2016); and Lower Amazon River - MODIS (Park et al., 698 
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2019). Average, standard deviation (S.D.) and coefficient of variation (CV) are presented for each area in the last 699 

rows.  700 

 Dataset Curuai Uatumã Janauacá Mamirauá 

Pacaya-

Samiria 

Llanos de 

Moxos 

Lower 

Amazon 

Amazon 

mainstem Purus 

Roraima 

savannas 

Negro 

savannas 

 

Subregional 

4162, 

3720 

1471 

404, 336, 

176 

4476 57913 

125422, 

133470 

56722 - - - - 

Multiple 

datasets 

at coarse 

resolutio

n 

GIEMS-2 3080 984 623 3344 23344 156176 79871 116379 7208 7173 12237 

SWAMPS 3359 722 280 1131 9929 88753 58626 72468 5618 4970 8819 

WAD2M 681 243 166 888 42635 102780 29276 49261 6698 3173 15450 

Multiple 

datasets 

at high 

resolutio

n 

GIEMS-D3 4643 2732 505 3569 11562 150285 92908 127552 9045 12355 15123 

CIFOR 3796 994 177 1714 52590 116201 43509 86301 10844 3728 20712 

ESA-CCI 3236 855 260 3045 28727 39795 37475 84803 8883 510 12623 

GIEMS-D15 4635 2681 416 2444 44536 117979 86123 127150 11186 8129 14854 

GLWD 4275 2267 535 4259 79124 40661 67746 140921 14840 1048 95 

SWAF-HR 4439 2199 388 3205 16900 159712 69539 110468 10785 18146 15375 

Hydrolo

gical 

model 

THMB 2883 554 164 2840 27748 52693 39193 89658 19733 4307 3640 

CaMa-Flood 4246 1613 534 3208 34096 80725 63963 118577 20947 3454 6560 

MGB 4098 1549 474 3750 33344 21757 61997 115047 20394 240 3224 

Optical 

sensors 

G3WBM 2732 628 135 795 2694 9564 27451 37718 2351 352 1238 

GLAD 3479 832 204 1141 4196 38897 36930 53121 3903 3495 3885 

GSWO 3163 675 150 962 3637 19240 31191 44731 2982 1442 1880 

Syntheti

c 

Aperture 

Radar 

Chapman 2796 934 184 2694 24001 73710 39677 77632 12499 4077 5935 

Hess 3996 1045 209 3985 39741 174198 52156 115822 15155 8950 15758 

Rosenqvist 3055 1238 446 4362 56160 92693 55262 126806 20738 1867 9935 

 Average 3477 1264 325 2630 29720 85323 54050 94134 11323 4856 9297 

 S.D. 949 748 163 1226 20591 52387 19956 32503 6185 4666 6201 

 CV 27% 59% 50% 47% 69% 61% 37% 35% 55% 96% 67% 

 701 

3.3 How much do the datasets agree on the spatial distribution of inundation? 702 

Agreement maps of the high resolution datasets (≤ 1 km spatial resolution) were developed for 703 

both long-term maximum (14 datasets available) and minimum inundation areas (10 datasets), 704 

based on the number of inundation datasets coinciding over a 1 km pixel (Figures 7 and 8 and their 705 

categorization for specific regions in Figure 9). Overall, 31% of the Amazon lowlands area (i.e., 706 
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1.59 x 106 km² out of 5.11 x 106 km²) has been estimated as subject to inundation by at least one 707 

dataset (bottom left panel, Figure 7). Based on the agreement between two datasets, this value 708 

decreases to 948,300 km², which is larger than the value estimated when there is agreement among 709 

four datasets (553,200 km²). This latter estimate is more similar to the average maximum 710 

inundation as estimated by the ensemble of datasets (559,300 km²) and the three SAR-based ones 711 

(599,700 km²). Furthermore, there is a lower agreement for the minimum inundation than for the 712 

maximum inundation among individual regions (Figure 9).  713 

For specific regions, a high degree of agreement for floodplains dominated by open water areas is 714 

evident for the lower Amazon River reaches, followed by the forested floodplains fringing large 715 

rivers, especially along the Amazon mainstem, Purus and Negro rivers. The generally higher 716 

accuracies over central Amazon floodplains may also be related to the attention that dataset 717 

developers have devoted to it, in contrast to other regions. Furthermore, the maximum floodplain 718 

extent can be somewhat delineated with terrain elevation data (i.e., DEMs) using algorithms such 719 

as HAND (Rennó et al., 2008), which helps to explain the relatively small disagreement for 720 

floodplains fringing the largest rivers, and is particularly effective with vegetation bias-removed 721 

DEMs (O’Loughlin et al., 2016; Yamazaki et al., 2017). The best agreement (for both maximum 722 

and minimum inundation extent) occurred over the Curuai floodplain along the lower Amazon 723 

mainstem, with 37% of its area being estimated as subject to inundation by all 14 datasets (Figure 724 

9a). An agreement among all 14 datasets occurred, in part (i.e., more than 10% of the wetland 725 

area), for the central Amazon floodplains (Curuai, Uatumã, Janauacá and lower Amazon River) 726 

because of their relatively large fractions of open water areas. 727 

In the interfluvial wetlands (Negro and Roraima savannas, Pacaya-Samiria and Llanos de Moxos), 728 

the inundation patterns are less dependent on riverine overflow and more dependent on local 729 
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rainfall, making them less predictable (Hess et al., 2003). The disagreement for both maximum 730 

and minimum inundation area is the largest across all regions, e.g., 65–78% of their flooded areas 731 

were mapped by only one model for the minimum inundation (Figure 9b). The Llanos de Moxos 732 

is conspicuous as a region of particular disagreement, perhaps because flooding is mainly shallow 733 

and in vegetated areas (mainly savannas/grasslands), and is highly variable from year to year. In 734 

general, the smaller the flooded patches the higher the challenge to map them, not only because of 735 

resolution but also due to small-scale variation in topography. Similar disagreement occurred in 736 

other interfluvial wetlands such as the Negro and Roraima savannas, and would be expected 737 

elsewhere in savanna floodplains of South America (e.g., Pantanal, Llanos de Orinoco and Bananal 738 

Island; Hamilton et al., 2002). The poor agreement over interfluvial areas, however, may also 739 

partly reflect the longer history of study of Amazon mainstem floodplains, for which there are 740 

river gage records that reflect floodplain water levels and inundation, while more remote areas 741 

such as the Negro savannas and Pacaya-Samiria regions are more challenging to represent with a 742 

few gages, and have received less attention. The challenges in estimating inundation over 743 

interfluvial areas also affect the SAR-based datasets, which disagreed the most over these regions 744 

(see section 3.5 and discussion in Rosenqvist et al., 2020). 745 

 746 
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 747 

Figure 7. Agreement for maximum inundation area among 14 basin-scale datasets at high resolution (<1 km spatial 748 

resolution): G3WBM, ESA-CCI, GLAD, GSWO, GLWD, CIFOR, GIEMS-D15, GIEMS-D3, Chapman, Hess, 749 

Rosenqvist, SWAF-HR, CaMa-Flood and MGB. A given pixel of a dataset with resolution higher than 1 km that had 750 

more than 50% of flooding at the maximum inundation extent is classified as inundated. 751 

 752 

 753 
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 754 

Figure 8. Agreement for minimum inundation area among 10 basin-scale datasets at high resolution (<1 km spatial 755 

resolution): GIEMS-D15, Chapman, Hess, Rosenqvist, SWAF-HR, CaMa-Flood, MGB, GIEMS-D3, GSWO and 756 

GLAD. A given pixel of a dataset with resolution higher than 1 km that had more than 50% of flooding at the minimum 757 

inundation extent is classified as inundated. 758 

  759 

 760 
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 761 

Figure 9. Degree of agreement for (a) maximum and (b) minimum inundation area for 10 individual wetland 762 

complexes, based on the 1 km agreement map (Figures 7 and 8). The percentage values indicate the fraction of each 763 

area where a given number of datasets agreed that it was flooded, e.g., 14 models agreed that 37% of the Curuai area 764 

was flooded in the maximum inundation extent. The class with number 1 indicates the fraction of the area that only 765 

one dataset estimated as being inundated. The class “others” refers to all classes that had less than 5% of pixels 766 

estimated as being inundated. 767 

 768 

3.4 Quantifying the inundation extent of different wetland types 769 
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Amazon wetlands include a myriad of ecosystems varying in geomorphology, hydrology, and 770 

vegetation cover. The classification system proposed by Junk et al. (2011) differentiated Amazon 771 

wetlands according to amplitude and range of water level change. Wetland types ranged from the 772 

forested swamps with stable water levels to river floodplains with oscillating water levels, and to 773 

interfluvial areas with small seasonal water level amplitude due to the main contribution of local 774 

rainfall and runoff (Fleischmann et al., 2020; Junk et al., 2011; Ovando et al., 2018).  775 

A simpler yet hydrologically meaningful classification is the categorization into river floodplains 776 

and interfluvial wetlands adopted here, since the former typically have a greater hydrological 777 

connection to the main river and thus are subject to a different control of inundation area by river 778 

levels (Reis et al., 2019a). We performed a quantitative analysis of the inundation area in these 779 

two main hydrological classes. All pixels considered flooded by at least two datasets, based on the 780 

1 km agreement map for maximum inundation extent (Figure 7), are presented in Figure 10. 781 

Overall, the medium to large river floodplains (upstream drainage area > 1000 km²) have a larger 782 

inundation extent than the category with small floodplains and interfluvial areas. An average total 783 

area subject to inundation of 317,800 ± 84,400 km² (average ± S.D.; median equal to 323,700 km²) 784 

was obtained for the medium to large floodplains, not including the optical and land cover datasets 785 

(G3WBM, GLAD, GSWO and ESA-CCI). A greater area for large floodplains was estimated by 786 

all except for CIFOR, SWAMPS and WAD2M. Two datasets estimated a similar value between 787 

the two classes (Chapman and GIEMS-2), which may be related to an overestimation of basin-788 

scale isolated flooded patches. 789 

Large floodplains fringing the main rivers, especially along the Amazon River, have been largely 790 

addressed by previous studies (Table 1 and Table S1). However, large river floodplains are also 791 

present in less studied reaches, e.g., in the upper Napo and Içá rivers in northwest Amazon basin, 792 
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and upper Xingu in the southeastern portion (see location in Figure 1). These upper reaches are 793 

subject to more sporadic, flashy river hydrological regimes (Hamilton et al., 2007), which make 794 

their inundation area difficult to map with current datasets of relatively low temporal resolution. 795 

In our analysis, the non-floodplain areas include mainly the large interfluvial areas (black 796 

rectangles in Figure 10), small river floodplains that are challenging to detect with currently 797 

available datasets, and some reservoirs, such as Balbina reservoir on the Uatumã River.  798 

Besides the central Amazon floodplains, which have been widely studied, other wetland 799 

complexes require more attention, such as the Negro and Roraima savannas; the latter was only 800 

assessed by a single study to our knowledge (Hamilton et al., 2002). The inundation mapping of 801 

the Pacaya-Samiria region in the upper Amazon has received scientific attention recently (Jensen 802 

et al., 2018; Rodriguez-Alvarez et al., 2019), partially because of the region’s role as a carbon sink 803 

via formation of peat (Draper et al., 2014; Lähteenoja et al., 2012). Regarding open water areas, 804 

Melack (2016) reported values ranging from 64,800 km² (Melack and Hess, 2010) to 72,000 km² 805 

(SRTM Water Body Data) and 92,000 km² (Hansen et al., 2013) for the Amazon basin (< 500 m 806 

in elevation). The three Landsat-based datasets assessed here, which are mainly capable of 807 

detecting open water areas, estimate 98,500 km² (G3WBM), 128,500 km (GSWO) and 187,600 808 

km² (GLAD). 809 

 810 
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 811 

Figure 10. Quantification of maximum inundated areas over river floodplains with drainage area larger than 1,000 812 

km², and interfluvial wetlands and small floodplains (area < 1,000 km²) within the Amazon basin. The maximum 813 

inundation map depicts all 1 km pixels with at least two datasets agreeing (i.e., a reclassification of Fig. 7), in order to 814 

avoid overestimation caused by pixels with only one dataset classifying them as subject to inundation. The four large 815 

areas of interfluvial wetlands are highlighted with black rectangles (Pacaya-Samiria, Llanos de Moxos, Negro and 816 

Roraima savannas).    817 

 818 

3.5 Limitations in comparing the inundation area datasets 819 

Some of the differences in large-scale inundation mapping highlighted by our comparison occur 820 

because distinct datasets map temporal variation in inundation in different ways, varying for 821 

example in sensor type, post processing, and spatial resolution. Figure 11 shows the agreement 822 

maps for maximum inundation for four classes of datasets, considering the 14 basin-scale high-823 
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resolution datasets. Those based on multiple datasets (GLWD, CIFOR, GIEMS-D3, GIEMS-D15, 824 

SWAF-HR) have the best agreement for the Llanos de Moxos area, and to a smaller degree, for 825 

Pacaya-Samiria, Negro and Roraima wetlands. The L-band SAR datasets have less overall 826 

agreement (Figure 11c), while the optical data are mainly applicable to open water areas in the 827 

Amazon mainstem floodplain (Figure 11b). The 1D hydrological models cannot represent 828 

interfluvial wetlands where flooding is not controlled by river level and discharge (Figure 11d). 829 

 830 

 831 

Figure 11. Amazon basin (< 500 m elevation) agreement maps at 1 km resolution, for maximum inundation and for 832 

each type of dataset, considering only the high-resolution datasets (≤ 1 km spatial resolution): (a) six datasets based 833 

on merging of multiple datasets (GLWD, CIFOR, GIEMS-D3, GIEMS-D15, SWAF-HR, ESA-CCI), (b) three datasets 834 

based on optical sensors (G3WBM, GLAD, GSWO), (c) three datasets based on synthetic aperture radar (Hess, 835 

Chapman, Rosenqvist), and (d) two hydrological models (MGB and CaMa-Flood). The right column graphs present 836 

the total inundation area in the Amazon basin for a given number of datasets agreeing, e.g., the basin area where the 837 

two hydrological models (Fig. d) agree to be flooded is 390,900 km². 838 
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The different methodologies used to produce each dataset complicate their direct comparison 839 

(Rosenqvist et al., 2020), and some methodological differences produce systematic differences and 840 

bias among the data sources included in our comparison. Here we used datasets covering long-841 

term dynamics (e.g., GIEMS or hydrologic models), short-term dual-season (e.g., Rosenqvist, 842 

spanning four years), and a particular year (e.g., Hess). Some datasets use alternative approaches 843 

to derive long-term maximum inundation area, such as GIEMS-D15, which generated estimates 844 

by merging 3-year moving-window maximum values of GIEMS with the GLWD dataset. 845 

Therefore, a comparison of all these datasets must be performed with consideration of their 846 

methodology. For instance, the comparison of dual-season datasets against monthly datasets can 847 

yield erroneous conclusions, although it has been a common practice to directly compare such 848 

datasets. Some datasets also consider a “high-water assumption” (Ferreira-Ferreira et al., 2015; 849 

Hess et al., 2003), whereby the high-water maps are forced to contain all flooded pixels from the 850 

low-water map.  851 

In addition to methodological differences, each dataset was developed for different periods (Table 852 

1), and thus interannual and seasonal variability accounts for some of the differences among them. 853 

To address this, we performed an annual analysis (Figure 5), which suggests that the long-term 854 

inundation estimate is fairly stable for each dataset despite some interannual differences. In fact, 855 

the temporal variability of each dataset is generally smaller than the differences in comparison 856 

with the other estimates. However, the Amazon hydrological cycle has been shifting over decades 857 

(Barichivich et al., 2018; Gloor et al., 2013), and a recent increase in maximum water levels in the 858 

central Amazon suggests a new hydroclimatic state (Espinoza et al., 2019). Some wetlands have 859 

also been subject to forest loss, and so the detectability of inundation by remote sensing may have 860 

increased over time, e.g., major deforestation has occurred along the lower Amazon River 861 
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floodplain (Renó et al., 2011). Similarly, widespread burning might be converting black-water 862 

floodplain forests into savanna vegetation (Flores and Holmgren, 2021). In addition, in some 863 

regions, such as the southern Amazon, an increase in the dry-season length has been observed, 864 

which is a major climatic constraint for forest sustainability (Fu et al. 2013; Staver et al., 2011). 865 

However, analyzing long-term change in inundation patterns is beyond the scope of this study, and 866 

thus we assumed stationarity in our comparison framework. 867 

Another important challenge is to find a common definition of wetlands among datasets. Here we 868 

focused on inundation extent, however some datasets (e.g., CIFOR) represent peatland locations 869 

instead of inundated areas, although their areas of peat formation often include inundated areas. 870 

Estimates based on SAR or passive microwave emission may also be sensitive to saturated soil 871 

without standing water above it, and thus the observed inundation estimates can have some 872 

ambiguity. Hydrologic models provide simulated surface water extent, and we mapped inundation 873 

accounting for pixels with water depth greater than zero. While hydrologic models have 874 

uncertainties related to model structure (e.g., inadequate representation of inundation processes), 875 

input data (e.g., DEM and climate forcing) and parameterization (e.g., soil water capacity and river 876 

channel width and depth; assumptions of level water surfaces between rivers and their floodplains), 877 

remote sensing-based datasets have uncertainties related to spatial and temporal resolutions (e.g., 878 

coarse spatial resolution not capable of detecting small patches), and detection uncertainty (e.g., 879 

dense vegetation canopies can obscure passive microwave emission from underlying surfaces). 880 

Thus, a comparative framework provides an opportunity to highlight and stress the uncertainties 881 

and limitations of each dataset.  882 

Hydrologic models currently available at the Amazon basin scale are one-dimensional, and thus 883 

are capable of simulating flooding mainly along river floodplains, as corroborated by various 884 



 

52 
 

validation exercises in the Amazon that have relied on the Hess, GIEMS and SWAF-HR datasets 885 

(Fleischmann et al., 2020; Luo et al., 2017; Paiva et al., 2013; Zhou et al., 2021). These models 886 

are also largely dependent upon accurate DEMs, which are still challenging to obtain over tropical 887 

forested floodplains. Furthermore, given that a 500 m elevation mask (Amazon lowlands) has been 888 

used for some SAR datasets (Hess et al., 2015), and the difficulty of some radar and passive 889 

microwave ones to detect inundation at high elevations due to slope and snow effects, for instance 890 

(Parrens et al., 2017), we have adopted the same 500 m threshold in our lowland mask to improve 891 

the comparability among datasets. However, even though higher elevation wetlands amount to 892 

much less total area compared to lowland wetlands, understanding their flooding dynamics is 893 

important for some parts of the Amazon basin. Although some datasets, especially the hydrological 894 

models (MGB, CaMa-Flood and THMB), are capable of estimating inundation in higher elevation 895 

parts of the basin, in this case uncertainties may also be large given errors in precipitation (low 896 

density of in situ gauges and high rainfall spatial heterogeneity) and thus runoff fields over 897 

mountainous areas, as well as the tendency for river flows to vary over short time scales (Espinoza 898 

Villar et al., 2009; Zubieta et al., 2015). Furthermore, the availability of in situ river discharge 899 

measurements for model calibration and validation is lower in the Andean Amazon (Feng et al., 900 

2020; Wongchuig et al., 2019; Zubieta et al., 2017). 901 

Our analyses were performed at 1 km resolution and at regional scales, which avoids geolocation 902 

problems that affect analyses at higher resolutions (e.g., 30 or 90 m). Small disagreements among 903 

our estimates and the values presented in the original publications may also arise from the use of 904 

the WGS84 datum with a geographical coordinate system for all datasets (except for SWAMPS 905 

which was provided in the EASE-Grid format). Also, the coarse-resolution datasets, especially 906 

GIEMS-2 and SWAMPS with 25 km spatial resolution, can be difficult to compare with estimates 907 
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for individual wetland complexes (e.g., Curuai and Janauacá), since only a few 25-km pixels may 908 

be located within the wetland boundaries. 909 

The quantification of inundation over larger river floodplains (Figure 10) is also subject to 910 

uncertainties. The maximum floodplain lateral extent was estimated based on an automatic buffer 911 

procedure around the Hydrosheds drainage network, further manually edited by considering the 912 

three SAR-based, basin-scale datasets and the MERIT DEM-based topography. Although it 913 

captures the basin-scale geomorphological differences along major floodplains, some uncertainties 914 

remain regarding the true lateral extent for areas where rain-fed savanna floodplains are present 915 

(e.g., Llanos de Moxos, Roraima), and where flooding extend far from the main rivers (e.g., 916 

Pacaya-Samiria). For these areas in particular, we assumed buffer values similar to adjacent 917 

upstream and downstream floodplains (e.g., the Amazon River downstream of Pacaya-Samiria), 918 

which is reasonable but should undergo future scrutiny, including local ground-based surveys. 919 

 920 

4. Perspectives and recommendations 921 

Considerable advances have been achieved in recent decades in the mapping of inundation extent 922 

across the Amazon basin. Here, we have presented an analysis of 29 inundation datasets for the 923 

basin, covering multiple scales, spatial and temporal resolutions, and data sources. We showed 924 

that large discrepancies persist, and this is especially true at local scales. Below we present some 925 

perspectives and recommendations for future development of inundation mapping in the world’s 926 

largest river basin.  927 
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 928 

4.1 Which are the most reliable data sources for inundation mapping in the Amazon River 929 

basin?  930 

At basin scale, the Rosenqvist ALOS-2 PALSAR-2 dataset is available at 50 m, and shows a good 931 

overall agreement with the 90 m Hess one over the large river floodplains, while the latter seems 932 

more accurate for interfluvial savanna floodplains (e.g., Negro and Roraima). The high agreement 933 

is observed mainly for the maximum inundation estimates, while for the minimum inundation area, 934 

important disagreements persist and more studies should be performed to understand them. 935 

Overall, the Hess’ dataset has been the Amazon inundation benchmark for many years, and still 936 

provides satisfactory estimates. Detection of inundation by L-band SAR has a sound theoretical 937 

and empirical basis that has been validated for the Amazon (Rosenqvist et al., 2002; Hess et al., 938 

2003). Optical datasets with resolution higher than 30 m are available, but detection of inundation 939 

is restricted to non-vegetated wetlands and clear-sky periods, and is most applicable in the lower 940 

Amazon River floodplains. ALOS-PALSAR at 12.5 m resolution and Sentinel SAR at 10 m 941 

resolution (with C-band and limited vegetation penetration) can be applied to specific regions. 942 

Time series of these datasets can estimate seasonal variations in inundation, but are limited by the 943 

length of the acquisitions. Weekly to monthly, spatially coarser data (25 km) are available from 944 

passive microwave-based datasets such as GIEMS, SWAF and SWAMPS. Downscaling 945 

techniques have improved their spatial resolution to 90 m (GIEMS-D3) and 1 km (SWAF-HR). 946 

Hydrological models (e.g., CaMa-Flood and MGB) are capable of accurately estimating 947 

inundation over river floodplains, and at high temporal resolution depending on the input rainfall 948 

data (e.g., hourly to daily). However, they are still limited over interfluvial wetlands with less 949 
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connection with rivers, unless they are upgraded for simulating 2D inundation processes and 950 

complex floodplain flow paths (Fleischmann et al., 2020; Yamazaki et al., 2014). 951 

 952 

4.2 What are the current capabilities of flood frequency mapping? 953 

At the basin scale, high-resolution, long-term average flood frequency can be estimated by four of 954 

the datasets analyzed here (GIEMS-D3, SWAF-HR, MGB and CaMa-Flood), with spatial 955 

resolutions ranging from 90 m to 1 km. Although multiple SAR data are currently available (e.g., 956 

Sentinel-1, ALOS-PALSAR and ALOS-2 PALSAR-2), they have a limited temporal resolution, 957 

and we still do not have a flood frequency dataset of higher spatial resolution (i.e., better than 90 958 

m) for the whole basin based on SAR. The discrepancies among the available datasets are notable 959 

(Figure 12). The average of the basin-scale flood frequency shows a higher agreement for areas 960 

with high flood frequency along the lower Amazon River (Figure 12a). These are associated with 961 

a high proportion of open water areas, and have lower uncertainty (Figure 12b). Generally, there 962 

is a smaller variation along floodplains bordering the major rivers (except for their fringes) than in 963 

interfluvial areas, especially in the Negro and Roraima wetlands (Figure 12b). Detailed inundation 964 

mapping for the Mamirauá Sustainable Development Reserve in the Amazon mainstem floodplain 965 

(Figure 12c) reinforces the challenges for mapping local spatio-temporal inundation dynamics. 966 

The northern part of the Mamirauá reserve has a shorter flood frequency in all datasets, while three 967 

of them (SWAF-HR, GIEMS-D3, CaMa-Flood) estimate that large portions are never flooded. For 968 

the southern part, there is some convergence for areas that are frequently flooded.  969 

 970 
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 971 

Figure 12. Analysis of flood frequency for (a) basin-scale average and (b) coefficient of variation of the long-term 972 

flood frequency estimated from four high-resolution dynamic datasets (GIEMS-D3, SWAF-HR, CaMa-Flood and 973 

MGB). (c) The four basin-scale datasets are compared to a subregional validation dataset (i.e., the ALOS-PALSAR-974 

based classification by Ferreira-Ferreira et al. (2015), displayed in the top left panel) for the Mamirauá Sustainable 975 

Development Reserve along the central Amazon River mainstem (location shown by black outline in figure a). 976 

 977 
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4.3 Implications for biogeochemistry, ecology and flood management 978 

The divergent estimates of Amazon inundation extent have major implications for the 979 

quantification of the role of wetlands in global biogeochemical cycles, ecosystem processes and 980 

natural disaster management.  981 

First, different datasets have been used to quantify the role of Amazon wetlands in the carbon cycle 982 

(Guilhen et al., 2020; Melack et al., 2004; Richey et al., 2002; Saunois et al., 2020). An 983 

intercomparison assessment of global models forced with different inundation datasets for the 984 

Amazon could provide insights into their sensitivity to the estimated inundation. This would be 985 

particularly important for modeled estimates of methane flux, given the region’s significant 986 

contribution to global methane emissions from natural wetlands (Basso et al., 2021). Furthermore, 987 

for a proper estimation of methane and carbon dioxide fluxes, dynamic inundation estimates are 988 

necessary; this study shows that most coarse-resolution dynamic datasets capture relatively well 989 

the seasonality (i.e., the timing of high and low water periods) of annual flooding at a large scale 990 

(but not at the local scales), but the magnitude of inundation area over time is still associated with 991 

significant errors (Fig. S6). 992 

The understanding of the ecology of Amazon freshwaters has benefited from advances in remote 993 

sensing-based mapping of inundation. Hydrological variables of interest in relation to wildlife 994 

(Alvarenga et al., 2018; Bodmer et al., 2018) and vegetation distribution (Hess et al., 2015, 2003) 995 

include hydroperiod, floodplain water depth (Arantes et al., 2013; Fassoni-Andrade et al., 2020), 996 

and (lateral) surface water connectivity (Castello, 2008; Duponchelle et al., 2021; Reis et al., 997 

2019a, 2019b), and should be better estimated by future datasets. In addition, many wetland 998 

ecosystem studies are performed at the tree stand level (e.g., floristic inventories) and require high 999 
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spatial resolution inundation estimates to perform meaningful spatial analyses accounting for 1000 

spatial heterogeneity of wetland vegetation. Furthermore, besides a simple interfluvial/floodplain 1001 

categorization of wetlands as performed here (section 3.4), which is reasonable from a hydrologic 1002 

perspective, improving our understanding of the ecology of Amazon freshwater systems requires 1003 

accurate mapping of habitats and their diverse vegetation types (e.g., grasslands, particular 1004 

monodominant tree species, herbaceous plants). For instance, floodplain forest cover has been 1005 

positively correlated to fishery yields (Arantes et al., 2018) and fish abundance (Lobón-Cerviá et 1006 

al., 2015). While this wetland habitat mapping has already been done by some initiatives at the 1007 

basin (Hess et al., 2015, 2003) and subregional scales (Ferreira-Ferreira et al., 2015; Silva et al., 1008 

2013), there is still a need for higher resolution and dynamic datasets.  1009 

Regarding flood monitoring in the context of natural hazard management, the flood warning 1010 

systems of regional water authorities in the basin provide information based on river discharge and 1011 

water level at monitoring stations (e.g., Brazil’s Geological Survey SACE system; 1012 

<http://sace.cprm.gov.br/amazonas/#>). In addition, there are other available monitoring and 1013 

forecasting services that have been developed for the global scale, such as the Global Flood 1014 

Detection System (https://www.gdacs.org/flooddetection/), based on remote sensing, and the 1015 

Global Flood Monitoring System (http://flood.umd.edu/) and the Global Flood Awareness System 1016 

(https://www.globalfloods.eu/), based on hydrological modeling. The currently available, basin-1017 

scale inundation datasets are unable to map flood hazard at the detailed resolution required for 1018 

flood management applications, especially concerning urban areas (Almeida et al., 2018). High-1019 

resolution flood mapping has been achieved using hydraulic modeling based on local surveys of 1020 

river bathymetry and floodplain LiDAR DTM, but only for a few specific sites such as the lower 1021 

Madeira River (Fleischmann et al., 2021).  1022 

http://sace.cprm.gov.br/amazonas/
https://www.gdacs.org/flooddetection/
http://flood.umd.edu/
https://www.globalfloods.eu/
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 1023 

4.4 Future opportunities and recommendations 1024 

Future satellite missions will provide opportunities for improved inundation mapping in the 1025 

Amazon, especially the polarimetric and interferometric L-band SAR data from the upcoming 1026 

NASA/ISRO mission (NISAR), the P-Band BIOMASS mission from ESA, and the Ka-band Radar 1027 

Interferometer (KaRIn) swath observations from the forthcoming SWOT mission (Biancamaria et 1028 

al., 2016). New inundation detection technology under development with Global Navigation 1029 

Satellite System-Reflectometry (GNSS-R), such as the Cyclone GNSS (CYGNSS) constellation 1030 

of GNSS-R satellites, holds promise to provide higher frequency observations of water level 1031 

changes (Jensen et al., 2018; Ruf et al., 2018; Rodriguez-Alvarez et al., 2019). Further studies with 1032 

the ALOS-2 PALSAR-2 data also are promising, in order to achieve new dynamic inundation 1033 

detection, as well as ongoing assessments of the accuracy of the newly available high temporal 1034 

resolution inundation datasets (e.g., SWAF-HR with 3-day availability). Consistent and updated 1035 

validation products of Amazon inundation are required, which could be derived from airborne, 1036 

satellite, or UAV-based LiDAR surveys along multiple wetlands, in particular for overlooked 1037 

wetlands such as the Negro and Roraima floodable savannas where measured water levels in rivers 1038 

may not adequately predict inundation area. This is especially important for the minimum 1039 

inundation extent, which showed large uncertainties among the multiple datasets.  1040 

Comprehensive comparisons among multiple inundation datasets are scarce in the literature, yet 1041 

are valuable ways to understand benefits and limitations of each of them. A few examples include 1042 

a continental-scale assessment of flood model hazard maps in Africa (Trigg et al., 2016) and 1043 

regional assessment of inundation in floodplains of Nigeria and Mozambique (Bernhofen et al., 1044 

2018), both based on global hydrological models. Similar initiatives for other areas worldwide 1045 
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would be welcome, especially for those that lack consistent flood mapping, such as the Congo and 1046 

other large wetland systems in Africa (Papa et al., 2022). Furthermore, the combination and 1047 

integration of multiple inundation datasets present a promising and effective approach (Gumbricht 1048 

et al., 2017; Hu et al., 2017). We recommend that future developments include optimal data 1049 

merging approaches, e.g., by integrating inundation extent into models accounting for water cycle 1050 

components with multiple constraints (Meyer Oliveira et al, 2020; Pellet et al., 2021), and by 1051 

considering new types of datasets (e.g., GNSS-R; Jensen et al., 2018). Bias of different datasets 1052 

could be corrected based on intercomparisons such as those we present here. For instance, recent 1053 

studies have performed inundation bias correction using the Hess dataset (Aires et al., 2013; 1054 

Sorribas et al., 2016). However, merging of different datasets must be performed with caution, in 1055 

a consistent way, avoiding double counting of surfaces, as well as missing others: its success 1056 

critically depends upon a good understanding of the limitations and assets of each individual 1057 

dataset. The optimal combination of hydrological-hydraulic models with satellite flood maps using 1058 

techniques such as data assimilation is also a promising alternative at the basin scale (Wongchuig 1059 

et al., 2020).  1060 

There is a need for the development of more large-scale 2D hydrological model applications, 1061 

especially for large wetland complexes such as the Llanos de Moxos and Pacaya-Samiria, to better 1062 

represent inundation dynamics (Fleischmann et al., 2020). 2D models have been applied mainly 1063 

to some local-scale areas in the Amazon mainstem floodplain (Pinel et al., 2019; Rudorff et al., 1064 

2014; Trigg et al., 2009; Wilson et al., 2007). Furthermore, inundation anomalies are still poorly 1065 

understood owing to the lack of ground-based inundation observations during extreme floods and 1066 

droughts. Therefore, validation of estimates for extreme years has usually been performed with 1067 

river water level data (in situ or from satellite altimetry) (Silva et al., 2018; Wongchuig et al., 1068 
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2019). Future works should address which datasets and methodologies are the most suitable for 1069 

mapping extreme events. Furthermore, besides inundation extent, flood storage (Frappart et al., 1070 

2005; Papa et al., 2008; Schumann et al., 2016; Papa and Frappart, 2021) and water velocity (Pinel 1071 

et al., 2019) are necessary hydraulic variables to properly address multiple environmental studies 1072 

(e.g., flood monitoring, flood attenuation by floodplains, fish floodplain habitats), but to date have 1073 

not been well studied in the Amazon.  1074 

Finally, there is a need for better-informed usage of the currently available inundation datasets by 1075 

multiple local and regional stakeholders (e.g., local water authorities, national water agencies), as 1076 

well as research communities not close to remote sensing groups. This will only be achieved 1077 

through a two-way interaction with these actors and development of easy-to-access visualization 1078 

platforms (i.e., investment in hydroinformatics), as well as training of regional/local user 1079 

communities. To this end, we have developed a WebGIS platform (https://amazon-1080 

inundation.herokuapp.com/) to display and provide data acquisition links for the inundation 1081 

datasets assessed here, which will be continuously updated once new datasets are made available. 1082 

The interaction with local users would bring important feedback on the large-scale datasets as well, 1083 

for instance through citizen science initiatives that are ongoing in the Amazon 1084 

(https://www.amazoniacienciaciudadana.org/).  1085 
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 1743 

Table S1. List of additional studies that mapped inundation in the Amazon, which were not 1744 

included in the article analysis because of redundancy with the used datasets, or data unavailability. 1745 

  Reference Dataset name / Type Spatial. 

resolutio

n 

Temporal 

resolutio

n 

Time 

period 

Region Type of 

inundation 

captured 

1 Aires et al. 

(2013) 

GIEMS + downscaling 

with SAR 

500 m Monthly 1993-

2007 

Central Amazon All 

2 Belger et al.  

(2011) 

Radarsat-1 / C-band SAR 25 m Irregular 2004-

2005 

Cuini and Itu (Negro 

basin) 

All 

3 Bonnet et 

al. (2008) 

Hydrological model  Daily 1997-

2003 

Curuai All 

4 Canisius et 

al., 2019) 

Radarsat-2 / C-band SAR  2.5-2.6 m Irregular 2014-

2016 

Lower Amazon river All 

5 Fleischman

n et al. 

(2020) 

MGB / Hydrological-

hydraulic model 

4 km Daily 1999-

2015 

Negro River basin All 

6 Frappart et 

al. (2005) 

JERS-1 / L-band SAR 90 m Static 

(high and 

low 

water) 

1995-

1996 

Negro River basin All 
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7 Getirana et 

al. (2012) 

HYMAP / Hydrological 

model 

 Daily 1986–

2006 

Negro River basin All 

8 Guimbertea

u et al. 

(2012) 

ORCHIDEE / 

Hydrological model 

0.5 

degrees 

Daily 1980–

2000 

Basin All 

9 Hawes et al. 

(2012) 

ALOS-PALSAR / L-

band SAR 

100 m Irregular 2006-

2009 

Juruá floodplain All 

10 Hoch et al. 

(2017) 

PCR-GLOBWB / 

Hydraulic model 

30 arcmin Daily 1985-

1990 

Central Amazon All 

11 Langerwisc

h et al. 

(2013) 

LPJmL / Hydrological 

model 

0.5 

degrees 

Monthly 1961-

1990 

Basin All 

12 Lauerwald 

et al. (2017) 

ORCHIDEE-

ORCHILEAK / Land 

surface model 

0.5 

degrees 

Daily 1980–

2000 

Basin All 

13 Lesack and 

Melack 

(1995) 

In situ data - - - Lake Calado All 

14 Li et al. 

(2020) 

Landsat (Mapbiomas) 30 m Annual 1985-

2019 

Madeira river close to 

Santo Antônio and 

Jirau dams 

All 

15 Luo et al. 

(2017) 

MOSART / Hydraulic 

model 

- - - Basin All 

16 Martinez 

and Le 

Toan 

(2007) 

JERS-1 / SAR 25 m Irregular 

(21 

images) 

1993-

1997 

Curuai All 

17 Miguez-

Macho and 

Fan (2012) 

LEAF-Hydro-Flood / 

Hydrological-hydraulic 

model 

~2 km Daily 2000–

2010 

Basin All 
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18 Meyer 

Oliveira et 

al. (2020) 

ALOS-PALSAR / L-

band SAR 

100 m Irregular 2006-

2010 

Purus River basin All 

19 Nardi et al. 

(2019) 

GFPLAIN250m / 

geomorphic approach 

250 m Static 2002 

(SRTM 

mission) 

Basin Floodplain

s 

20 Paiva et al. 

(2013) 

MGB / Hydrological-

hydraulic model 

500 m Daily 1998-

2010 

Basin All 

21 Ringeval et 

al. (2012) 

TOPMODEL - LSM / 

Hydrological model 

1 degree Monthly 1993–

2004 

Basin All 

22 Ringeval et 

al. (2014) 

PCR-GLOBWB / 

Hydrological model 

0.5 

degrees 

Daily 1979 - 

2009 

Basin All 

23 Rodriguez-

Alvarez et 

al. (2019) 

CYGNSS / GNSS-R 500 m - 7 

km 

Daily-14 

days 

2017 Pacaya-Samiria All 

24 Rosenqvist 

et al. (2002) 

JERS-1 / L-band SAR 100 m Irregular 1996-

1997 

Jaú river basin All 

25 Silva et al. 

(2013) 

Radarsat-1 / C-band SAR 25 m Irregular 2003 - 

2005 

Amazon river (Juruti 

- Monte alegre) 

All 

26 Sippel et al. 

(1992) 

RADAMBRASIL / Side-

looking Airborne Radar 

0.25 

degrees 

Monthly 1979-

1987 

Amazon river in 

Brazil 

All 

27 Souza et al. 

(2019) 

 

Landsat 30 m Annual 1985-

2017 

Brazilian Amazon Open water 

28 Trigg et al. 

(2009) 

LISFLOOD-FP and 

HEC-RAS / Hydraulic 

models 

180 m / 

irregular 

Daily 1995-

1997 

Solimões River 

(Itapeua - Manaus) 

All 

29 Wilson et 

al. (2007) 

LISFLOOD-FP / 

Hydraulic model 

270 m Daily 1995-

1997 

Solimões River 

(Itapeua - Manaus) 

All 

30 Fassoni-

Andrade et 

al., 2019 

MODIS 250 m 8-Days 2003-

2017 

Central Amazon Open water 

 1746 
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Table S2. Main characteristics of the assessed wetlands. 1747 

 Name Location Characteristics 

1 Curuai floodplain Lower Amazon River 

Shallow lakes with high 

suspended sediment 

concentrations 

2 Janauacá floodplain Middle Amazon River 

Ria lake and “várzea” 

environments (white-water 

floodplains) 

3 Uatumã floodplain 

300-km reach between Balbina dam and the 

confluence with the Amazon River 

Black-water floodplain 

4 Mamirauá Reserve Confluence between Solimões and Japurá rivers 

Mosaic of chavascal, herbaceous, 

and low and high várzea 

vegetation 

5 Purus floodplain Purus River 

Large floodplain to river width 

ratio 

6 

Pacaya-Samiria 

wetlands 

Upper Solimões River 

Flooded forests, palm swamps and 

peatlands 

7 

Llanos de Moxos 

floodable savannas 

Upper Madeira River basin 

Interfluvial areas among Beni, 

Mamoré and Madre de Dios rivers 

8 Negro savannas Negro-Branco interfluvial area Regional neotectonic depressions  

9 Roraima savannas 

Smaller river floodplains interspersed with areas 

subject to flooding by local rainfall in the upper 

Branco River basin 

Poorly drained interfluvial 

savannas 

 1748 

Table S3. Comparison metrics - Pearson correlation (R) and normalized root mean square error (nRMSD) for time 1749 

series, and Fit metric for the spatial analysis of maximum observed inundation area for all datasets against the 1750 



 

97 
 

subregional estimates for individual wetland complexes: Curuai (Arnesen et al., 2013), Uatumã (Resende et al., 2019), 1751 

Janauacá (Pinel et al., 2019), Mamirauá (Ferreira-Ferreira et al., 2015), Pacaya-Samiria (Jensen et al., 2020), Llanos 1752 

de Moxos (Ovando et al., 2016) and Lower Amazon (Park et al., 2019). Four additional subregional datasets were 1753 

compared to the local ones mentioned above: Curuai LISFLOOD-FP model (Rudorff et al., 2014), Janauacá 1754 

hydrological model (Bonnet et al., 2017), Janauacá TELEMAC-2D model (Pinel et al., 2019), and Llanos de Moxos 1755 

ALOS-PALSAR (Ovando et al., 2016). The Fit metric was applied by converting all maps to 1 km, considering a pixel 1756 

with inundation fraction higher than 50% as inundated. 1757 

 Dataset - Curuai 

Uatu

mã Janauacá 

Mamira

uá Pacaya-Samiria Llanos de Moxos 

Lower 

Amaz

on 

 - Period 2006-2010 

2006-

2011 2007-2011 

2007-

2010 2014-2018 2001-2014 

2000-

2020 

   R nRM

SD 

Fit Fit R nR

M

SD 

Fit Fit R nRM

SD 

Fit R nRM

SD 

Fit Fit 

Other 

subregio

nal 

datasets 

Curuai-

Model 

1994-

2015 

0.8

2 

12% 0.8

6 

- - - - - - - - - - - - 

Janauacá

-Bonnet  

2006-

2019 

- - - - 0.7

5 

25

% 

0.49 - - - - - - - - 

Janauacá

-Pinel  

2006-

2015 

- - - - 0.5

7 

17

% 

0.82 - - - - - - - - 

Llanos 

de 

Moxos - 

ALOS 

2006-

2010 

- - - - - - - - - - - 0.5

2 

99% 0.3

3 

- 

Multiple 

datasets 

at coarse 

resolutio

n 

GIEMS-

2 

1992-

2015 

0.9

6 

21% - - 0.7

8 

15

7% 

- - 0.8

8 

68% - 0.9

1 

85% - - 

SWAMP

S 

2000-

2020 

0.9

1 

2% - - 0.8 38

% 

- - 0.5

2 

74% - 0.9

2 

171% - - 

WAD2

M 

2000-

2018 

0.9 82% - - 0.7

9 

63

% 

- - 0.4

6 

2% - 0.9 123% - - 

Multiple 

datasets 

at high 

GIEMS-

D3 

1993-

2007 

- - 0.9

2 

0.61 - - 0.80 0.81 - - 0.1

4 

- - 0.4

4 

0.45 

CIFOR 2011 - - 0.9

1 

0.39 - - 0.24 0.33 - - 0.5

5 

- - 0.3

0 

0.69 
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resolutio

n 

ESA-

CCI 

1992-

2015 

- - 0.7

6 

0.40 - - 0.40 0.70 - - 0.3

6 

- - 0.1

4 

0.69 

GIEMS-

D15 

1993-

2004 

- - 0.9

2 

0.58 - - 0.68 0.59 - - 0.5

1 

- - 0.3

8 

0.46 

GLWD 1992-

2004 

- - 0.8

8 

0.45 - - 0.79 0.93 - - 0.6

3 

- - 0.0

8 

0.51 

SWAF-

HR 

2010-

2019 

- - 0.9

5 

0.64 - - 0.63 0.71 0.6

6 

73% 0.2

2 

0.7

5 

213% 0.3

9 

0.57 

Hydro-

logical 

models 

THMB 1961-

2013 

0.7

2 

62% - - 0.7

3 

73

% 

- - - - - 0.5

4 

7% - - 

CaMa-

Flood 

1980-

2014 

0.8

0 

11% 0.9

7 

0.73 0.6

8 

11

1% 

0.88 0.83 - - 0.4

9 

0.8

2 

218% 0.2

8 

0.58 

MGB 1980-

2014 

0.8

3 

7% 0.9

6 

0.58 0.6

4 

29

3% 

0.82 0.93 - - 0.5

2 

0.9

1 

26% 0.1

9 

0.52 

Optical 

sensors 

G3WB

M 

1990-

2010 

- - 0.6

4 

0.29 - - 0.19 0.14 - - 0.0

3 

- - 0.0

4 

0.59 

GLAD 1999-

2018 

- - 0.8

4 

0.39 - - 0.30 0.20 - - 0.0

4 

- - 0.1

6 

0.78 

GSWO 1984-

2019 

- - 0.7

5 

0.31 - - 0.21 0.17 - - 0.0

4 

- - 0.0

9 

0.68 

SAR Hess 1995-

1996 

- - 0.9

6 

0.47 - - 0.28 0.98 - - 0.4

8 

- - 0.4

7 

0.69 

Chapma

n 

2006-

2011 

- - 0.6

5 

0.27 - - 0.22 0.68 - - 0.2

8 

- - 0.2

4 

0.50 

Rosenqv

ist 

2014-

2018 

- - 0.5

9 

0.34 - - 0.59 0.98 - - 0.6

4 

- - 0.1

9 

0.48 

  1758 

Table S4. Long-term minimum inundation areas (km²) for 11 wetland complexes (up to three datasets per complex) 1759 

and the 18 basin-scale datasets. The local-scale values refer to the following datasets, in this order (comma-separated 1760 

values relate to areas with more than one dataset available) : Curuai - ALOS (Arnesen et al., 2013) and LISFLOOD-1761 

FP model (Rudorff et al., 2014); Uatumã - ALOS (Resende et al., 2019); Janauacá - ALOS (Pinel et al., 2019), 1762 

hydrologic model (Bonnet et al., 2017) and TELEMAC-2D model (Pinel et al., 2019); Mamirauá - ALOS (Ferreira-1763 

Ferreira et al., 2015); Pacaya-Samiria - ALOS-2 PALSAR-2 (Jensen et al., 2020); Llanos de Moxos - MODIS (Ovando 1764 

et al., 2016) and ALOS (Ovando et al., 2016); and lower Amazon - MODIS (Park et al., 2019). Average, standard 1765 

deviation (S.D.) and coefficient of variation (CV) are presented for each area in the last row. 1766 
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Datas

et Curuai Uatumã Janauacá Mamirauá 

Pacaya-

Samiria 

Llanos 

de 

Moxos 

Lower 

Amazon 

Amazon 

mainstem Purus 

Roraima 

savannas 

Negro 

savannas 

 Local 1690, 

1278 

- 108, 38, 

18 

715 3824 1014, 

3962 

17797     

Multiple 

datasets 

at coarse 

resolution 

GIEM

S-2 

995 263 183 1117 1578 500 19717 26807 349 0 0 

SWA

MPS 

2840 479 197 790 4433 24622 38345 53256 3492 309 6375 

WAD

2M 

403 97 97 633 20421 31713 14728 29932 4240 258 10443 

Multiple 

datasets 

at high 

resolution 

GIEM

S-D3 

2712 861 151 1115 2731 8375 33253 44853 2696 383 146 

CIFO

R 

- - - - - - - - - - - 

ESA-

CCI 

- - - - - - - - - - - 

GIEM

S-D15 

3942 1265 116 1077 3409 15074 44277 59066 3401 2966 2622 

GLW

D 

- - - - - - - - - - - 

SWA

F-HR 

1502 544 69 469 215 8304 20944 30242 784 0 3 

Hydrolog

ical 

model 

THM

B 

487 38 1 266 5349 7172 6708 18099 5596 383 195 

CaMa

-

Flood 

2741 861 184 1135 8269 17776 31569 45848 4128 1001 672 

MGB 3005 212 0 587 6101 4508 21333 32073 1769 226 35 

Optical 

sensors 

G3W

BM 

- - - - - - - - - - - 

GLA

D 

474 77 8 288 514 1513 6243 9857 335 13 20 

GSW

O 

736 345 10 314 401 2934 11908 16428 735 117 2 

Synthetic 

Aperture 

Radar 

Hess 2770 584 106 1756 32107 56337 28981 54493 7061 1217 6084 

Chap

man 

1894 385 68 866 6775 10090 18413 28539 2951 1025 2843 

Rosen

qvist 

1514 313 49 422 1077 4566 13413 19512 575 60 5 

 Avera

ge 

1858 452 89 774 6670 13820 22131 33500 2722 568 2103 

S.D. 1148 350 71 430 8978 15190 11637 15551 2094 801 3285 

CV 0.62 0.77 0.80 0.56 1.35 1.10 0.53 0.46 0.77 1.41 1.56 

 1767 
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1772 

 1773 

Figure S1. Sensitivity of the fraction used to define a flooded 1km pixel (25% and 50%).  1774 
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 1775 

 1776 

 1777 

Figure S2. Minimum inundation extent for the central Amazon River, as estimated by the 1778 

Rosenqvist (years 2015-2016) and Hess (1995) datasets. 1779 

 1780 
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 1781 

Figure S3. Comparison between the long-term maximum inundation for subregional validation 1782 

locations (Pinel and Arnesen datasets) as well as the Rosenqvist and Hess datasets for the (a) 1783 

Janauacá and (b) Curuai areas. The polygons refer to the area used to extract the values presented 1784 

in Tables 3, S3 and S4. The spatial resolution of each dataset is noted.  1785 
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 1786 

Figure S4. Estimation of wetland areas by Gumbricht et al. (2017) across the central Amazon River 1787 

basin. Green pixels relate to the  “swamps (incl. bogs)” category, which is defined as “Wet all year 1788 

around, but not necessarily inundated.” 1789 

 1790 
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 1791 

Fig S5. Roraima wetlands. Above: Google Earth imagery. Below: Hess SAR classification of 1792 

floodable areas (at large scale in the left, and detailed scale in the right), displayed as orange areas. 1793 

 1794 

 1795 
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Fig S6. Inundation time series for the four wetlands with available datasets, and for the eight basin-1796 

scale dynamic datasets (GIEMS-2, SWAMPS, THMB, MGB, WAD2M, CaMa-Flood, SWAF-HR 1797 

and GIEMS-D3). The subplots that are empty refer to areas where the basin-scale dataset time 1798 

spans did not overlap with the subregional dataset ones. The subregional dataset is displayed in 1799 

blue, and each of the basin-scale datasets in red. 1800 


