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Abstract. The role of aquifers in the seasonal and multi-
year dynamics of streamflow is undisputed: in many tem-
perate catchments, aquifers store water during the wet pe-
riods and release it all year long, making a major contribu-
tion to low flows. The complexity of groundwater modelling
has long prevented surface hydrological modellers from in-
cluding groundwater level data, especially in lumped con-
ceptual rainfall–runoff models. In this article, we investi-
gate whether using groundwater level data in the daily GR6J
model, through a composite calibration framework, can im-
prove the performance of streamflow simulation. We tested
the new calibration process on 107 French catchments. Our
results show that these additional data are superfluous if
we look only at model performance for streamflow simu-
lation. However, parameter stability is improved, and the
model shows a surprising ability to simulate groundwater
levels with a satisfying level of performance in a wide va-
riety of hydrogeological and hydroclimatic contexts. Finally,
we make several recommendations regarding the model cal-
ibration process to be used according to the hydrogeological
context of the modelled catchment.

1 Introduction

1.1 Why use piezometry in low-flow modelling?

“Geology is the fundamental base of hydrology” (Castany,
1963): what happens under the surface is an essential part of
the behaviour of many hydrological systems. At the catch-
ment scale, aquifers have the ability to store water for a
long period and to release it afterwards, thereby contribut-

ing to streamflow. The hydrological processes that take place
underground, which are complex and therefore difficult to
faithfully and simply picture, are often aggregated in surface
hydrology models, and are represented by a simple reser-
voir that fills during each rainfall event and slowly emp-
ties during rainless periods. This conceptualisation is called
into question by the ability of underground water to con-
tribute heavily to flood events – see e.g. Habets et al. (2010),
Roche et al. (2012) or Guérin et al. (2019), but it remains an
acceptable representation of aquifer–river exchanges during
droughts. Indeed, the fundamental role of aquifers in sup-
porting river flows during the dry season is well known: the
trailblazer hydrologist Maillet (1905) observed it for several
springs in the Paris basin. More recently, Carlier et al. (2018)
and Wirth et al. (2020) linked low-flow statistics to hydro-
geological descriptors in Swiss catchments and reported that
their low-flow behaviour was heavily dependent on the hy-
drogeological context, with a particular role played by sand-
stone and Quaternary aquifers in inter-seasonal water stor-
age; Tague and Grant (2009) and Hayashi (2020) showed the
buffering role of small aquifers in mountainous catchments
and underlined their ability to support low flows and to sup-
plement a snow reservoir that is being dried up by climate
change. Tobin and Schwartz (2020) and Käser and Hunkeler
(2016) highlighted that even aquifers with a small spatial
extent at the catchment scale can significantly support low
flows, even during long dry periods. Tracer studies (see e.g.
Soulsby et al., 2006; Tobin and Schwartz, 2020) confirmed
that groundwater contributes significantly to streamflow dur-
ing the dry season and that the extent of this contribution de-
pends on the hydrogeological configuration, i.e. the geolog-
ical nature of the catchment’s subsoil. The buffering or stor-
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age role of aquifers contributes to the phenomenon known as
catchment memory, i.e. the smoothing of the input climatic
signal by the catchment response (Tomasella et al., 2008; Lo
and Famiglietti, 2010; Creutzfeldt et al., 2012). Using other
words, Roche et al. (2012) highlight that, at least in temperate
regions, severe droughts are often the result of several drier-
than-normal years that cause aquifers to reach exceptionally
low levels.

Despite the level of evidence of the role of aquifers in low-
flow dynamics, many hydrological modelling tools that are
commonly – and quite successfully – used to simulate and
forecast droughts have no explicit representation of ground-
water dynamics. The cultural differences between hydroge-
ologists and surface hydrologists, highlighted e.g. by Barthel
(2014), contribute to this situation: different systems with
different characteristics and different problems to be solved
lead to different models, whose coupling is not straightfor-
ward. In particular, the main goal of surface hydrology mod-
elling – streamflow – is almost directly and dynamically ac-
cessible, which makes the elementary calibration of all kinds
of models possible, while measuring the state of an aquifer
is only possible using a limited number of piezometers that
measure the hydraulic head at a point. Satellite remote sens-
ing is now able to monitor groundwater changes (Swenson
et al., 2006; Syed et al., 2008), but the temporal availability
and the spatial resolution of such products limit their use in
hydrological modelling at local to regional scales.

The difficulty in using piezometric data is one of the
reasons why hydrologists often prefer to retrieve the river–
groundwater flux by solving the inverse problem, i.e. by us-
ing the surface data to infer the state of the aquifer. The most
common approach is hydrograph separation, which consists
of splitting streamflow into two components: a slow one
named baseflow and a quick one named quickflow. Baseflow
is then regarded as the result of the slowest hydrological pro-
cesses operating in the catchment – generally underground
processes. This approach can be useful for analysing the hy-
drological behaviour of large sets of catchments, and a high
proportion of baseflow in the total streamflow is often corre-
lated with a geological context favourable to a high contribu-
tion of aquifers (Pelletier and Andréassian, 2020). However,
assimilating the conceptual baseflow into the aquifer contri-
bution is generally an unsuitable approach (Beven, 1991),
since it results from confusion between the catchment time
response and the water molecule transit time (McDonnell and
Beven, 2014). To provide a hydrological model with new in-
formation about the catchment state (here, its underground
state), it is necessary to provide new data such as piezometry
(when it is available).

1.2 What are the existing modelling approaches?

Hydrological models are often classified according to their
level of spatial discretisation – lumped versus distributed
models – and their ambition to represent more or less ex-

plicitly the physical processes taking place in the catchment
– empirical and conceptual versus physically based mod-
els (Roche et al., 2012). Lumped models have no spatial
discretisation at the catchment scale, i.e. the catchment is
treated as a single unit with spatially averaged descriptors,
whereas distributed models discretise the catchment into grid
units, each of them described by several variables (Beven,
2012). Semi-distributed models constitute an intermediate
option in which the catchment under study is divided into
sub-catchments, each of them becoming the object of lumped
computations (see e.g. de Lavenne et al., 2016). Physically
based or process-based models strive to reproduce the phys-
ical processes taking place in the catchment by solving a
version of the fluid mechanics equations, while conceptual
models use their own empirical equations to reproduce the
total water balance without any reductionist ambition. Be-
cause every grid element of a distributed model needs to be
parametrised, it usually carries a large number of parame-
ters that cannot all be calibrated on observations and need
to be set a priori; lumped models, on the other hand, often
have a smaller number of parameters that are easier to cal-
ibrate automatically from observations. Since physical laws
need to be solved at the local scale and lumped models are
generally designed for their operational simplicity, there is a
general correspondence between distributed and physically
based models on the one hand and lumped and conceptual
models on the other (Beven, 2012).

Hydrogeological models dedicated to groundwater sim-
ulation are generally classified as physically based – see
Mackay et al. (2014) for a rare example of a concep-
tual model. Therefore, the surface/groundwater interaction
is more naturally represented in physically based distributed
hydrological models (Dassargues et al., 1999). At the local
scale, this can be achieved by using fluid mechanics equa-
tions (Bartlett and Porporato, 2018), but at the catchment
scale, distributed models generally use simplified versions
of these equations. Barthel and Banzhaf (2015) performed
an extensive review of models that take into account the sur-
face/groundwater interaction at the regional scale. We will
not summarise the review here, but a salient point is the
distinction between fully coupled schemes, where equations
are solved simultaneously for surface and groundwater flows
(see e.g. HydroGeoSphere by Brunner and Simmons, 2011),
and loosely coupled schemes, where several models are cou-
pled only via the exchange of results (see e.g. Isba-Modcou
in Habets et al., 2010). All these approaches are difficult to
implement on large sets of catchments because of parametri-
sation requirements.

Using conceptual lumped rainfall–runoff models to sim-
ulate the surface/groundwater interaction is less straightfor-
ward, since fluid mechanics equations cannot be used; a con-
ceptual representation of the aquifer, often using a reser-
voir, is therefore necessary. Water exchange with an aquifer
can be computed by solving the inverse problem, i.e. in-
ferring the fluxes from the amount of water needed by the
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model to close the water budget – see e.g. Perrin et al.
(2003), Le Moine (2008); Le Moine et al. (2008), and Her-
ron and Croke (2009), but it is far from sufficient for simu-
lating the actual level of an aquifer. Bergström and Sandberg
(1983) added a groundwater simulation module to the HBV
model (Bergström and Forsman, 1973) and implemented it
for three aquifers; they obtained satisfactory performance in
reproducing past piezometric time series, despite parametri-
sation issues caused by the computational cost, which are
no longer mentioned in recent studies (Széles et al., 2020)
due to advances in computer science. Thiéry (1988) used the
ground reservoir of the GARDÉNIA model (Thiéry, 2014)
to simulate and forecast the piezometry of the Paris basin
chalk aquifer using a linear regression between the reservoir
levels and the aquifer levels. Borzì et al. (2019) designed
a modified version of the IHACRES model (Jakeman and
Hornberger, 1993) with an explicit representation of a vol-
canic deep aquifer in Sicily, which used an additional con-
ceptual reservoir. In order to represent the specific role of
groundwater in intermittent streams, Moore and Bell (2002)
added a piezometry simulation module to the PDM rainfall–
runoff model (Moore, 1999), which was then able to rep-
resent pumped abstractions. The path followed by Hughes
(2004) and Efstratiadis et al. (2008) is intermediate, with a
semi-distributed conceptual hydrological model connected to
a semi-distributed conceptual aquifer representation with a
different spatial discretisation; this model is easier to imple-
ment and needs fewer data than a fully distributed one, al-
lowing for many experiments simulating the anthropogenic
influence, but it is far from straightforward to implement for
any catchment with few data.

These modelling schemes have shown noteworthy simu-
lation abilities for both aquifers and streamflow. However,
they have not been tested on large sets of catchments in vari-
ous contexts to determine their robustness and generalisation
capacity. Moreover, in most hydrological modelling studies,
groundwater simulation is a side product of rainfall–runoff
modelling. There is little evidence on how the addition of
groundwater data can actually help obtain a better stream-
flow simulation.

1.3 How are measured data used in hydrological
modelling?

Most hydrological models are parametric, and their param-
eters are calibrated using measured streamflow data (Roche
et al., 2012). To find the best set of parameters with which
to reproduce the streamflow time series, a calibration cri-
terion, which is a function of measured and simulated –
or forecasted – streamflow, is optimised, the most com-
mon one being the Nash–Sutcliffe efficiency or NSE (Nash
and Sutcliffe, 1970). Gupta et al. (2009) and Kling et al.
(2012), investigating the drawbacks of NSE, proposed an-
other criterion, henceforth known as the Kling–Gupta effi-
ciency (KGE), which is a Euclidean combination of three cri-

teria that all compare measured and simulated streamflows.
Computed with untransformed time series, these criteria are
focused on the peaks of the hydrograph; to get a better cali-
bration of the lower part of the latter, i.e. low flows, stream-
flow time series can be transformed using concave functions
(Pushpalatha et al., 2012), such as the square root or loga-
rithm.

Traditional calibration approaches are generally single ob-
jective, i.e. only one objective function is used. However, all
criteria can be regarded as flawed, since they focus on only
one aspect of the hydrograph representation. Linear or Eu-
clidean combinations of criteria can be used (Nicolle et al.,
2014) – for instance, the mean of the NSE and KGE – which
is called composite calibration. Multi-objective calibration
(Madsen, 2003) tries to optimise several criteria at the same
time. It is generally impossible to get a unique optimal set of
parameters as a result of a multi-objective calibration prob-
lem: a Pareto front, i.e. an ensemble of parameter sets, is
formed, each one representing a different compromise be-
tween objective functions. For operational purposes, it is nec-
essary to choose a parameter set in this Pareto front, generally
by using a determined weighting between objective functions
(either a linear combination or a Euclidean distance to a ref-
erence point), which is similar to composite calibration.

Complex distributed hydrological models, especially
when they claim to be physically based, often explicitly sim-
ulate physical variables. Therefore, measured data can be di-
rectly associated with these variables without having to build
an observation operator between model variables and mea-
sured data, and designing a calibration process for such mod-
els is more straightforward. Even if they are rarely available
for large sets of catchments, in-field measurements are of-
ten used in models for specific instrumented catchments. For
instance, the isoWATFLOOD model (Stadnyk et al., 2013;
Stadnyk and Holmes, 2020) is calibrated using both stream-
flow and isotopic – δ18O – data, but a visual – and thus
rather subjective – evaluation of calibration by the mod-
eller is necessary; Jian et al. (2017) used, in a catchment
where only a few streamflow measurements were available,
river level data, and added three new parameters to a hy-
drological model to simulate the rating curve. Whereas in-
field measurements are not always common, satellite data
are broadly available around the world, and numerous stud-
ies have used them in hydrological models: Immerzeel and
Droogers (2008) used satellite evaporation to calibrate the
SWAT distributed model through a composite criterion and
got a better representation of the actual evaporation and
less equifinality in parameter determination; Mostafaie et al.
(2018) performed a multi-objective calibration using NSE
for streamflow and total water storage from GRACE satellite
data; Milzow et al. (2011) combined several satellite datasets
– surface soil moisture, radar altimetry and total water stor-
age – to calibrate a semi-distributed model in a catchment
with few streamflow measurements through a composite of
nine criteria; Demirel et al. (2019) explored the use of dif-
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ferent combinations of objective functions, computed based
on several satellite products measuring soil moisture and wa-
ter storage, to calibrate a conceptual model, and achieved
little gain in streamflow simulation performance; and Dem-
bélé et al. (2020) performed a composite calibration of a dis-
tributed model with four datasets – measured streamflow and
satellite evaporation, soil moisture and water storage – and
improved the model’s representation of processes at the ex-
pense of a small degradation of the streamflow simulation
performance.

Using data other than streamflow data is less straightfor-
ward in empirical or conceptual models that do not explic-
itly simulate physical fluxes or states. A particular state of
the model is generally linked to the available physical vari-
able. In catchments affected by snow and/or glaciers, related
data – i.e. snow depth or glacier thickness – can be used in
model calibration (Riboust et al., 2018; Tiel et al., 2020).
Beyond calibration, extra data can be assimilated into the
model to correct its trajectory during runtime; several studies
have shown an improved performance by hydrological mod-
els with assimilation of soil moisture (Aubert et al., 2003a, b;
Oudin et al., 2003) or snowpack (Thirel et al., 2013).

As far as piezometry is concerned, distributed hydrologi-
cal models are rarely calibrated using piezometry time series.
Most gridded models have a physical parametrisation: pa-
rameter values are, directly or indirectly, inferred from local
properties measured in situ (Moreda et al., 2006) – for in-
stance, topography, soil types, vegetation or geological prop-
erties. At a pinch, the parameter set can be adjusted with a
limited-variation margin adapted to the physicalness of pa-
rameters to better represent streamflow; but, given the often
large number of parameters to be adjusted, distributed mod-
els cannot be fully calibrated without suffering from equi-
finality (Beven, 1993). In these conditions, several studies
have underlined the possibility of calibrating a distributed hy-
drological model using both piezometry and streamflow with
semi-automatic (Feyen et al., 2000; El-Nasr et al., 2005; Li
et al., 2017) or automatic multi-objective calibration proce-
dures (Khu et al., 2008). Lumped conceptual models, with a
reduced number of parameters, are easier to calibrate directly
without prior determination of the parameters. When a par-
ticular state of the model – in general, a groundwater reser-
voir – can be coerced to a measured piezometry time series,
calibration using both piezometry and streamflow is possible,
generally through a linear composite objective function com-
bining criteria based on streamflow and piezometry (Thiéry,
1988; Moore and Bell, 2002; Széles et al., 2020). Despite sig-
nificant improvements in piezometry simulation, these stud-
ies found that adding piezometric information to the calibra-
tion process did not significantly impact streamflow simula-
tion.

1.4 Scope of the paper

In view of the undisputed role of aquifers in low-flow dy-
namics in many catchments, it seems reasonable to try to
improve the performance of a hydrological model by adding
piezometric data to the calibration process. However, most of
the approaches reviewed in the previous section are difficult
to implement due to a relatively large number of parameters
and because the performance gain offered by the new data
has not been assessed on a large set of catchments, which is
necessary for model evaluation (Barthel and Banzhaf, 2015).

In this study, we aim to develop a new modelling approach
based on a simple structure with an easy parametrisation,
which is assessed on a large sample of catchments to en-
sure the generality of conclusions. We propose an adapta-
tion of the structure of the conceptual daily rainfall–runoff
model GR6J (Pushpalatha et al., 2011) to make it simu-
late groundwater table levels. Since no element of the ex-
isting model structure was designed to explicitly simulate
the groundwater level, and because of the huge scale gap
between point piezometric measurements and aquifer-scale
storage volumes, we could not propose a physically explicit
solution; thus, we investigated an empirical adaptation of the
model structure. Section 2 recounts the process that led to
designing this adaptation and the calibration and evaluation
schemes of the new model. Section 3 presents the hydrocli-
matic dataset of 107 catchments across mainland France that
was used to evaluate the new calibration with respect to the
original one performed only on streamflow. Section 4 sum-
marises the results and proposes recommendations for model
calibration in various contexts.

2 Hydroclimatic dataset

2.1 Context

The French mainland territory hosts a large diversity of cli-
matic, topographic and geological contexts, with catchments
representing various hydrological and hydrogeological con-
figurations. Several major aquifers are known to have a sig-
nificant influence on surface waters, especially on low flows.
The Paris basin, with its pile of secondary and tertiary sedi-
mentary formations, hosts several major aquifers for surface
hydrology: the Late Cretaceous chalk aquifer is known to
govern the multiyear dynamics of the Somme and part of the
Seine and Loire basins, with a noteworthy long flood event
after the exceptionally wet years of 1999 and 2000 (Pinault
et al., 2005; Habets et al., 2010); the Beauce Tertiary lime-
stone aquifer controls the hydrology of a key agricultural re-
gion astride the Loire and the Seine basin, providing a major
groundwater contribution to low flows (Lalot et al., 2015);
the Cenomanian sand aquifer in the Perche region, which is
directly connected to the Eure and Huisne basins, is regarded
as an essential groundwater reserve for the region, and its
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declining trend is a major threat to Perche rivers (Lenhardt
et al., 2009). The second largest French sedimentary basin,
the Aquitaine basin, has a more complex configuration, with
thick multi-layer aquifers covered by poorly permeable for-
mations such as Pyrenean molasses. The outcropping areas
of these formations are visible in Fig. 1.

The large sedimentary basins are not the only geological
areas in France that host aquifers of interest for surface hy-
drology modelling. Aquifers located in alluvial plains, such
as the international Rhineland aquifer – and its French part in
the Alsace plain Quaternary alluvium – or the Bresse graben
gravels, play a major role in the streamflow dynamics of
the Saone and the Rhine basins. As highlighted in the “In-
troduction”, even small alluvial aquifers outside plains can
have an influence on rivers: for example, several small left-
bank tributaries of the Rhone are mostly fed by the Bièvre
moraine aquifer, with visible consequences for water quality
(Bel et al., 1999). Regions in which geological formations are
composed of metamorphic or igneous rocks, such as Brittany
or the Ardennes, can host fractured bedrock aquifers linked
to surface rivers. The wide monitoring network of rivers and
groundwater in France, described below, allowed us to se-
lect a test dataset of catchments that is representative of this
diversity.

2.2 Data sources

Climatic data – daily cumulative precipitation, average tem-
perature and fraction of solid precipitation – were taken
from the SAFRAN (Système d’Analyse Fournissant des
Renseignements Adaptés à la Nivologie) re-analysis (Vidal
et al., 2009) by Météo France; they are available for daily
time steps for the 1958–2018 period. Daily potential evap-
oration was computed using the formula of Oudin et al.
(2005). Streamflow data were retrieved from the French na-
tional database, Banque Hydro (Leleu et al., 2014; SCHAPI,
2021). These hydroclimatic data are aggregated at the catch-
ment scale and for daily time steps for mainland France in
the HydroSafran database (Delaigue et al., 2021) maintained
by INRAE (Institut national de recherche pour l’agriculture,
l’alimentation et l’environnement).

Groundwater level data are from the French national
database ADES, (BRGM, 2021) (Accès aux données sur
les eaux souterraines), which gathers piezometric data from
many providers in the French territory. Selected piezometers
were taken from two reference networks to ensure the qual-
ity of data: RNESOUPMOBRGM (the national quantitative
monitoring network managed by BRGM, the French national
geological survey) and RNESP (the heritage national net-
work for groundwater monitoring).

2.3 Dataset selection

Catchments were selected on the basis of data availability cri-
teria, shown below, and an analysis of the hydrogeological

context through the French national reference cartography
of hydrogeological formations, BDLISA (Brugeron et al.,
2018) (Base de données des limites des systèmes aquifères).
For each catchment, one or several piezometers were chosen
to assess the connections of the monitored aquifers with sur-
face water bodies. First, using the provided metadata, each
piezometer extracted from the ADES database was associ-
ated with a hydrogeological entity in BDLISA representing
an aquifer. Catchments in which anthropogenic activities –
dams, major direct withdrawals or inflows – are known to
have a significant influence on streamflow and catchments in
which more than 10 % of the precipitation falls as snow were
discarded. Then, for each catchment, piezometers associated
with aquifers emerging inside the catchment boundaries were
listed, and maps – see an example in Fig. 2 – were produced
to assess the importance of each hydrogeological formation
for the catchment. Piezometers associated with formations
with outcropping or sub-outcropping areas representing less
than 5 % of the catchment area were discarded, along with
those located on the wrong sides of underground watersheds
– i.e. where groundwater does not flow to the catchment out-
let but to another catchment – as identified by BDLISA.

After this spatial selection, the available groundwater level
and streamflow data were examined. An initial visual inspec-
tion of the time series was performed to eliminate data for
which the quality was too low, relying on the expertise of
the database maintainers. Then, catchments and piezometers
were selected according to the following criteria:

– at least 20 years of continuously available streamflow
data with less than 10 % of the data missing

– at least 20 years of continuously available groundwater
level data with less than 10 % of the data missing

– at least 10 years of continuous contemporaneity be-
tween streamflow and groundwater level.

Figure 2 shows two situations encountered at this stage:
on the left, the Sensée river is connected to one monitored
aquifer, but three piezometers are available. In this case, the
piezometer with the longest time series with respect to con-
temporaneity with the streamflow data was selected to repre-
sent the aquifer. On the right, the Seudre river is connected to
two monitored aquifers, with one piezometer for each; in this
case, the two piezometers are kept. The choice of keeping
only one piezometer per aquifer in the catchment was made
for the sake of simplicity; in most catchments, when visually
comparing the dynamics of the groundwater level time se-
ries, no major difference was encountered between piezome-
ters monitoring the same aquifer within the same catchment.
A correlation study between groundwater level time series
led to the same conclusions.

Finally, this selection process yielded a set of 107 catch-
ments and 160 piezometer/catchment pairs. The majority of
the catchments – 73 – are associated with only 1 piezometer;
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Figure 1. Outcropping areas of several major aquifers in mainland France, and the locations of the example catchments shown in Fig. 2.

Figure 2. Two examples of hydrogeological maps of catchments used for dataset selection. Their locations in the French mainland territory
are shown in Fig. 1.
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Figure 3. Map of the catchments and the piezometer dataset. The example catchments of Fig. 2 are shown.

22 of them with 2; 8 of them with 3; 1 of them with 4; and 3
of them with 5 piezometers. Tables 1 and 2 show geographi-
cal and hydrogeological characteristics of the set. The neces-
sity to choose catchments that are not anthropogenically reg-
ulated led to a selection mainly composed of small headwater
catchments that are representative of the climatic diversity of
the French territory. Dismissing the mountainous catchments
to avoid the influence of snow favoured the selection of low-
land catchments, although several Vosges catchments whose
downstream parts are linked to the Alsace plain aquifer reach
maximum altitudes above 1000 m. However, the average al-
titude remains low enough for the solid precipitation fraction
not to overtake 10 % of the total precipitation at the catch-
ment scale. The variability of the mean annual potential evap-
oration is low, since the dataset does not contain high-altitude
catchments – in which low yearly PET values are observed
– or catchments located in the south-east of France – where
the highest PET values are reached (Brigode et al., 2021).

Figure 3 shows a map of the selected catchments and
piezometers. The northern part of mainland France, espe-
cially the Paris basin, is over-represented because of data
availability; in particular, the chalk and Tertiary limestone

Table 1. Geographical characteristics of the 107-catchment dataset.

Catchment Outlet Mean Maximum
area altitude altitude altitude

(km2) (m) (m) (m)

Minimum 27.0 0 39 65
First quarter 168.2 27 113 169
Median 326.0 62 136 236
Mean 617.0 81 175 236
Third quarter 685.7 114 202 330
Maximum 7907 367 667 1421

aquifers in this basin are the hydrogeological formations that
have been monitored for the longest time in the territory.
However, attention was paid to ensuring that the diversity
of hydrogeological contexts was represented through smaller
local aquifers or fractured bedrock aquifers, in order to as-
sess the proposed modelling approach in the widest possible
range of configurations.
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Table 2. Hydrological characteristics of the catchment dataset. The
aridity index is defined as the quotient of annual rainfall and an-
nual potential evaporation (PET). Catchment yield is the quotient
of annual streamflow and annual rainfall.

Mean Mean Mean Catchment Aridity
annual annual annual yield index

streamflow rainfall potential (%)
(mm) (mm) evaporation

(mm)

Minimum 29 626 600 4.6 0.90
First quarter 146 723 638 21 1.09
Median 210 808 658 27 1.18
Mean 238 828 667 28 1.25
Third quarter 316 921 693 34 1.40
Maximum 795 1,413 792 56 2.35

3 Methodology

3.1 Presentation of the original GR6J model

3.1.1 General presentation

GR6J – which stands for “modèle du Génie Rural à
6 paramètres Journalier” – is a daily six-parameter rainfall–
runoff model. It was developed by Pushpalatha et al. (2011)
as an evolution of previous GR4J (Perrin et al., 2003) and
GR5J (Le Moine, 2008) versions, using a conceptual descrip-
tion of the hydrological processes taking place in the catch-
ment: the model structure, visible in black in Fig. 4, is com-
posed of stores, unit hydrographs and empirical equations
that link them. The model is lumped and operates at daily
time steps, taking as inputs the precipitation P and potential
evaporation E averaged across the time step and the spatial
extent of the catchment. GR6J is also parametric, i.e. for each
catchment, six independent parameters have to be identified.
All variables and parameters are expressed either as the water
depth in millimetres or are unitless.

The aim of this section is not to report the modelling tests
that have led to the development of the GR6J structure since
the original paper by Michel (1983) – such discussions can
be found in Perrin et al. (2003), Le Moine (2008) or Push-
palatha et al. (2011). A summary description of the model
computations is available in Appendix A; a table of variables
is available in Appendix C. Computing codes can be found in
the open-source airGR package (Coron et al., 2017, 2021)
available in R (Slater et al., 2019; R Core Team, 2021).

3.1.2 Parametrisation strategy

For each catchment, the model is calibrated to fit the mea-
sured streamflow: the six parameters are determined through
an optimisation process where an error criterion between the
measured and simulated streamflows in a reference period
is minimized. In this study, the Nash–Sutcliffe efficiency or
NSE (Nash and Sutcliffe, 1970) was used for streamflow.

Figure 4. Structure of the original GR6J model – in black – and
the built-in piezometry simulation module – in red. See Table C1 in
Appendix C for the definitions of the parameters and variables.

Since the six parameters have very different dimensions
and variation ranges, each of them is transformed with a bi-
jective function to fit into the [−9.99; 9.99] interval. Thereby,
the optimisation space for optimal parameter research be-
comes [−9.99; 9.99]6, which helps most optimisation algo-
rithms find the global optimum. Detailed transformations and
ranges are available in Appendix B. Several optimisation al-
gorithms are used to calibrate the GR6J model; examples can
be found in Coron et al. (2021).

3.2 Study of the correlation of the model with
piezometry

To adapt the existing model structure for groundwater level
simulation, we followed an approach similar to other lumped
conceptual models, i.e. a store was used as a representation of
the aquifer, and the water content in the store was regarded as
a proxy for groundwater level. With this aim in mind, a corre-
lation study was performed on the dataset presented in Sect. 2
in order to identify which of the three conceptual reservoirs
of the model structure was the most correlated with piezom-
etry. The production store is part of the production function,
which computes the balance between rainfall and evapora-
tion to determine the amount of water available for stream-
flow. The routing and the exponential stores are part of the
routing function, which models the time repartition of this
available water to simulate streamflow.

Hydrol. Earth Syst. Sci., 26, 2733–2758, 2022 https://doi.org/10.5194/hess-26-2733-2022



A. Pelletier and V. Andréassian: On constraining a lumped hydrological model with piezometry 2741

Figure 5. Distributions of the correlations between piezometry and
several states of the model.

GR6J was calibrated for the 107 catchments of the dataset
using the Nash–Sutcliffe efficiency criterion computed on the
square root of streamflow. The algorithm of Michel (1991),
as implemented in the R package airGR (Coron et al.,
2021; R Core Team, 2021), was used for the whole period
of available climatic data (1958–2018). Then, the time se-
ries of model states obtained – the levels of the three con-
ceptual stores and the simulated streamflow used as control
data – and the groundwater level time series were aggre-
gated at monthly time steps to avoid problems caused by
missing piezometry measurements. Afterwards, for each of
the 160 catchment/piezometer pairs, Spearman’s correlation
(Spearman, 1907) between piezometry and each state series
was computed; the results are summarised as boxplots in
Fig. 5. The exponential store (Michel et al., 2003) – see Fig. 4
for a description of the model – is the most strongly corre-
lated with piezometry, and, moreover, it is the only store to
be more correlated with groundwater level than with stream-
flow. The median correlation obtained is 0.762, and 80 % of
pairs reach a value higher than 0.5.

A high Spearman correlation may highlight a non-linear
relationship, since it is a rank correlation. However, this does
not seem to be the case here: other investigations not detailed
here show that the relationship between the exponential store
content and the groundwater level can be regarded as linear
– all the more so as the correlation is high. Therefore, it was
decided to use the exponential store to simulate piezometry
with an adapted scheme presented in the following section.

3.3 Adaptation of the model scheme

A built-in module is added to the existing model structure
to simulate groundwater level. The streamflow simulation

chain is not modified, but a new output is added to the model
through a linear transformation of the exponential store level.

Absolute groundwater level values strongly depend on the
piezometer location – its altitude, but also its position with re-
spect to the catchment topography. Indeed, two piezometers
monitoring the same aquifer and therefore representing the
same dynamics can have different mean levels, and their fluc-
tuations can have different ranges – for instance, if the first
one is located on a plateau while the second one is on a slope.
To avoid having to take into account these problems, it was
decided to work with the normalised groundwater level δz:

δz=
z− z

σz
, (1)

where z is the absolute groundwater level, z is its mean and
σz is its standard deviation. To represent the relationship be-
tween the exponential store level “Exp” – in mm – and the
simulated normalised groundwater level δz,sim, several poly-
nomial relationships were investigated. It appeared that using
a function of degree 2 or more was not useful for improving
performance. Therefore, an affine relationship that includes
two additional parameters,X7 andX8, is added to the model,
using the following equation:

δz,sim =
1
X7

(
Exp
X6
+X8

)
. (2)

The simulated piezometry zsim can be computed by reversing
Eq. (1):

zsim = σzδz,sim+ z. (3)

X7 is the groundwater linear coefficient; trials have shown
that it generally takes values between 0 and 1, but can
reach 4. X8 is called the groundwater linear offset and takes
non-negative values, with an upper bound at 20. The new
built-in module is shown in red in Fig. 4.

3.4 Composite calibration strategy

Now that two additional parameters have been added to the
model structure to simulate piezometry, it is necessary to
determine their values through an adapted parametrisation
strategy. A composite objective function is chosen for cali-
bration, using a linear combination of a criterion based on
streamflow – the Nash–Sutcliffe efficiency computed on the
square root of streamflow – and a criterion based on piezom-
etry called ZError and defined as

ZError = 1−
∑
t

(
δz,sim(t)− δz,obs(t)

)2
. (4)

Computations detailed in Appendix D show that this crite-
rion is in fact the Nash–Sutcliffe efficiency expressed for the
groundwater level instead of streamflow. Since the two crite-
ria based on streamflow and piezometry have the same varia-
tion ranges, i.e. ]−∞; 1], and the same properties, the objec-
tive function C for composite calibration can be taken to be
a linear combination of the two criteria with a weight α:
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C(α)= αZError+ (1−α)NSE. (5)

α can take any value between 0 and 1: α = 0 means that
the calibration is performed only on streamflow and α = 1
only on piezometry. In order to find a compromise between
these two objectives, 51 values are explored from 0 to 1 in
steps of 0.02. For each value of α, C(α) is maximised as
a function of eight parameters. The parameter space trans-
formations described in Appendix B are used to convert the
optimisation space into the hypercube [−9.99; 9.99]8. The
differential evolution global optimisation algorithm – imple-
mented in the R package RcppDE (Price et al., 2006; Mullen
et al., 2011; Ardia et al., 2011a, b; Eddelbuettel, 2018; Slater
et al., 2019; Ardia et al., 2020; R Core Team, 2021) – is then
executed to find the global optimal point for the eight param-
eters.

3.5 Split-sample test evaluation scheme

To assess the effect of the new calibration scheme described
above on the streamflow simulation performance, a split-
sample test (Klemeš, 1986) is conducted for each catch-
ment/piezometer pair in the assessment dataset described in
Sect. 2. For each pair, the available data are divided into two
time periods P1 and P2 of equal length, defined so as to
encompass the same number of data points for which both
groundwater level and streamflow are available. Thereby,
both periods contain the same amount of information and can
be equally used for calibration and validation. The exact du-
ration of the periods depends on the pair, since the time peri-
ods with available data have diverse durations, ranging from
5.6 to 28.5 years by period. Before each period, a warm-up
timespan of 5 years is set: the model is run on this period,
but the resulting simulated values are not used to compute
criteria.

After determining these periods, the adapted model struc-
ture is calibrated on P1 using C(α) for each value of α; the
parameter set obtained is then used to run the model on P2
and compute several validation criteria. Then, the periods are
switched and the same procedure is executed. The following
validation criteria are used:

– NSE(
√
Q), to evaluate the model performance for the

whole streamflow spectrum

– NSE( 3
√
Q), to evaluate the model performance for low

flows; this was preferred rather than zero-diverging
transformations such as 1

Q
or log(Q) to avoid numer-

ical problems with very low streamflow values

– ZError, to assess the model performance in groundwater
level simulation.

Since the evaluation is performed for validation, the results
presented in Sect. 4 are, unless otherwise specified, valida-
tion results.

Table 3. Groups of catchment/piezometer pairs gathered by geolog-
ical context.

Number Number Description
of pairs

1 26 Quaternary alluvia
2 11 Bedrock and Triassic sandstones
3 72 Chalk and Cretaceous limestones
4 20 Paleogene and Neogene limestones
5 19 Jurassic limestones
6 12 Cretaceous sands

To assess the benefit of using groundwater level data in
the calibration process, the distributions of evaluation crite-
ria values need to be compared to reference ones. For stream-
flow, the value α = 0 corresponds to the original calibration
framework performed only on observed streamflow data. Pa-
rametersX7 andX8 are only used to simulate the normalised
groundwater level and therefore, when α = 0, the sensitiv-
ity of the calibration criterion to their values is zero. Thus,
they are randomly determined by the stochastic optimisation
algorithm, and no relevant normalised groundwater level is
simulated except a random affine transformation of the ex-
ponential store level, which cannot be compared to observed
data. Therefore, a reference distribution other than the one
obtained for α = 0 is needed to evaluate groundwater level
simulation. The value α = 1 is used, since it is the case in
which the model is calibrated only with observed groundwa-
ter level data and no streamflow; we thus expect the best theo-
retically possible groundwater level simulation performance
for this value of α.

The differences between the evaluation criteria distribu-
tions are evaluated visually and then, in order to objec-
tify them, a Wilcoxon–Mann–Whitney test (Wilcoxon, 1945;
Mann and Whitney, 1947; Bauer, 1972) is conducted. The
distributions obtained for the values of α are compared with
the reference ones: α = 0 for NSE; α = 1 for ZError. There-
fore, for each value of α, two tests are conducted: one to
assess whether the streamflow simulation performance has
significantly deteriorated, and one to evaluate whether the
performance in groundwater level simulation is significantly
lower than the one obtained for α = 1.

To assess the influence of the geological context, the test
dataset of 160 catchment/piezometer pairs was divided into
six groups, as detailed in Table 3. The groups were estab-
lished in accordance with the hydrogeological formation at-
tributed to each piezometer in the BDLISA reference inven-
tory of Brugeron et al. (2018). This classification may look
arbitrary or inaccurate, since each piezometer corresponds
to an idiosyncratic local situation; however, such a subgroup
analysis of the test dataset highlights the influence of geology
on model performance.
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Figure 6. Distributions of the NSE criterion values obtained in validation by the modified model on the 107 catchments for the 51 values
of α, the criterion weight. The dashed red line indicates the median NSE value for the original calibration strategy α = 0. Values below 0 are
cut off for readability.

4 Results and discussion

4.1 Is low-flow simulation improved?

The model performance for streamflow simulation in vali-
dation is not improved by the proposed calibration scheme.
Figure 6 shows that the distribution of Nash–Sutcliffe effi-
ciency computed on the square root of streamflow does not
appear to change significantly for values of α under 0.34; for
higher values, the performances deteriorate, but it is surpris-
ing to note that they slowly decrease with increasing α, and
they remain acceptable until α = 0.84 – even though the loss
of about 0.2 is significant. Beyond these values, the perfor-
mances have considerably deteriorated: the calibration can-
not be suitably performed on groundwater level time series
only; this is an expected result, since the dynamics of the
groundwater level and streamflow signal are different. The
same trend is observed with the performances for low flows,
as assessed through the Nash–Sutcliffe efficiency computed
on the cube root of the streamflow.

4.2 Is the model able to simulate groundwater levels?

The model appears to be able to simulate groundwater levels
with a satisfactory performance. Figure 7 shows the distribu-

tions of the ZError criterion for the 51 values of α compared
to the theoretical maximum possible performance, which is
obtained with α = 1, i.e. a calibration performed only on
groundwater level with no streamflow information. The dis-
tribution of ZError values appears to be similar for all α val-
ues above 0.34, with a median ZError of around 0.70. For α
between 0.12 and 0.34, the performance decreases slightly
but remains close to the best possible performance, with a
median ZError of around 0.66. Finally, when α is under 0.1,
with very little groundwater level information added to the
calibration process, the performance is much lower, but it
is acceptable even for α = 0.02, with a median ZError of
around 0.5.

4.3 Recommended calibration framework and
examples

Results of the statistical evaluation of differences between
performance criteria distributions are presented as p-values
in Fig. 8, with a significance threshold of 5 %.

It appears that for values of α greater than 0.22, streamflow
simulation performance has significantly deteriorated; for α
lower than 0.12, groundwater level simulation performance
is significantly below that obtained for higher values of α.
A narrow interval, α between 0.14 and 0.2, corresponds to
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Figure 7. Distributions of the ZError criterion values obtained for 50 values of α, the criterion weight. α = 0 was discarded since no ground-
water level simulation is performed for that case. The dashed red line indicates the median ZError value obtained with α = 1. Values be-
low −0.5 are cut off for readability.

Figure 8. p-values of the Wilcoxon–Mann–Whitney (WMW) tests
comparing the criteria value distributions obtained for the 51 values
of α with reference ones.

values for which the model performance for both outputs is
comparable to reference distributions: the model is as good at
streamflow simulation as the original model, and it cannot be
better at groundwater level simulation. Therefore, it was de-
cided to choose the value α = 0.16 as the recommended cal-
ibration framework, even though any value in the described
interval could be chosen without significantly changing the
results.

Figures 9 and 10 present an example of the application of
the new calibration framework to the Sensée catchment in
Étaing, in the north of mainland France. The Sensée River
is a tributary of the Scheldt (Escaut), which is influenced by
the Seno-Turonian chalk aquifer – see Fig. 2. This catchment
is an outlier with respect to the model performance distribu-
tion, since the Nash–Sutcliffe efficiency is improved by 0.14
for the period shown in the figures. However, this large dif-
ference is difficult to visualise, since the two simulated hy-

drographs are close. The ZError obtained is average (0.630),
and multi-year groundwater dynamics are reproduced, but
the model struggles to simulate the peaks of the observed
piezometry time series.

Another example catchment is presented in Figs. 11–13:
the Seudre River in Saint-André-de-Lidon. This is a small
coastal river located in Saintonge that is linked to two re-
gional aquifers of the Aquitaine basin – see Fig. 2: the
Cenomanian sands and limestones and the Late Cretaceous
multi-layer limestones, each being monitored by one se-
lected piezometer. Figure 11 shows the results for stream-
flow: adding piezometry to the calibration process did not
significantly improve the performance, and the simulated hy-
drographs are not distinguishable. However, the results for
groundwater simulation shown in Figs. 12 and 13 are satis-
factory, with ZError values of 0.734 for Cenomanian sands
and limestones and 0.787 for Late Cretaceous limestone. In
addition, the main failure period for groundwater level simu-
lation – between 2010 and 2012, during which piezometry is
underestimated – is also unsatisfactory for streamflow simu-
lation, since the model is unable to reproduce the whole vari-
ability of the hydrograph during this period.

4.4 Is the new parametrisation stable?

The parametrisation stability between periods is another
measure of the robustness of the model: if the parameter val-
ues depend on the calibration period, it will cast doubt on
the model’s capacity to extrapolate streamflow values outside
this period and thus to be used, for instance, as a forecasting
tool. The split-sample test allows us to assess this stability
by comparing the parameter values between the two calibra-
tion periods P1 and P2. Figure 14 shows the results of this
comparison for the six parameters of GR6J and the original
calibration framework obtained with α = 0; Fig. 15 does so
for the modified calibration with the two added parameters.
For each parameter, the Pearson correlation between the val-
ues obtained for the two periods was computed.
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Figure 9. Observed and simulated streamflows of the Sensée River in Étaing, where the simulated streamflow was obtained with the original
and the new calibration frameworks. A log scale is used to focus on low flows.

Figure 10. Observed and simulated groundwater levels in the Sensée catchment, where the simulated groundwater level was obtained with
the new calibration frameworks.

Figure 11. Observed and simulated streamflows of the Seudre River in Saint-André-de-Lidon, where the simulated streamflow was obtained
with the original and the new calibration frameworks. A log scale is used to focus on low flows.

The original calibration framework leads to a rather stable
parametrisation, except for the exchange thresholdX5, which
presents a non-significant correlation between the two peri-
ods. The modified calibration using groundwater level data
yields more stable parameter values with increased correla-
tions between the two periods, except for the two parameters
ruling the inter-catchment exchange function,X2 andX5, for
which the correlations have slightly deteriorated. The two

added parameters, X7 and X8, are also very stable between
periods, with a correlation of 0.73. Since the modified cali-
bration framework is a new constraint on the routing func-
tion, it is not surprising to note that the three routing pa-
rameters X3, X4 and X6 become significantly more stable
between periods, which is a sign of an improved model ro-
bustness.
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Figure 12. Observed and simulated groundwater levels in the Seudre catchment, where the simulated groundwater level was obtained with
the new calibration frameworks: first piezometer.

Figure 13. Observed and simulated groundwater levels in the Seudre catchment, where the simulated groundwater level was obtained with
the new calibration frameworks: second piezometer.

The difficult transferability of the exchange function pa-
rameter values, i.e. the relevance of using them although they
were calibrated on another period of time, was highlighted
by de Lavenne et al. (2016). This function is sometimes re-
garded as the flux between catchments, as they are defined
by the surface topography, which may not correspond to un-
derground watersheds. Such a situation is common in karstic
contexts, see e.g. Le Moine et al. (2008). It can also be con-
sidered as a representation of the flux between the catchment
and an external aquifer; but in any way, it is merely used by
the model as a way to correct the global water budget. Pon-
celet (2016) underlined the relatively marginal role of the
exchange threshold X5, introduced by Le Moine (2008), in
the general performance of the model. The stability issues
exposed by the present study highlight the need for further
development of this exchange function to take into account
the henceforth explicit representation of groundwater level
through the exponential reservoir.

4.5 Is performance dependent on the regional and
(hydro)geological context?

There is no clear spatial pattern in the results shown in
Fig. 16. Since the streamflow simulation performance dif-

ferences between the original and the composite calibration
frameworks are small (and non-significant), the geographi-
cal distributions of their performance are similar. High val-
ues of performance criteria are noted for the Aquitaine basin,
for Brittany, for Upper Champagne and for the downstream
tributaries of the Loire River – the Maine and Indre basins.
Lower values of NSE are found in the Beauce plain, in the
Somme basin, in the inland part of the North region – mostly
in the Scheldt (Escaut) basin, and in the Saone and Rhone
basin, with the particular case of the Bièvre morainic plain,
in which the minimum performance is reached. Other parts
of the Paris basin, the North Sea coastal rivers and the Al-
sace plain have a mixed situation but generally do not reach
the extreme points of the NSE distributions.

Catchments in which the performance gain between the
two calibration frameworks is significant, i.e. beyond 0.05,
are all located either on the Picardy and Normandy chalk or
in the Beauce plain. It is interesting to note that this signif-
icant improvement is observed in catchments in which the
initial model performance was low. However, these areas also
host catchments for which the composite calibration frame-
work produces a significant deterioration of streamflow sim-
ulation performance.
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Figure 14. Comparison of the values obtained for the six model parameters through calibration on the two periods of the split-sample test
using the original calibration framework with α = 0. Log scales are used for visual readability in some plots. The Pearson correlation between
periods is indicated.

Figure 15. Comparison of the values obtained for the eight model parameters through calibration on the two periods of the split-sample test
using the composite calibration framework with α = 0.16. Log scales are used for visual readability in some plots. The Pearson correlation
between periods is indicated.
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Figure 16. Maps of the results. From (a) to (d): the value of the Nash–Sutcliffe efficiency at each gauge station, computed on the square root
of the streamflow, for the original calibration, i.e. α = 0; the value of the Nash–Sutcliffe efficiency at each gauge station, computed on the
square root of the streamflow, for the composite calibration with α = 0.16; the value of the ZError criterion at each piezometer for α = 0.16;
the difference between the NSEs obtained with the composite and the original calibration frameworks. For each point, the maximum value
among the catchment/piezometer pairs was chosen.

As for the groundwater level simulation, the performance
does not follow the same spatial distribution as the stream-
flow. High ZError values are observed in Brittany and in the
western part of the Paris basin, along a crescent running from
Artois to Touraine. Lower scores are reached in the Bièvre
plain, in Upper Champagne and in the extreme south of Paris
basin on the Massif Central piedmont. Other regions have
mixed results with no clear spatial pattern.

The sub-group analysis yields clearer results, which are
visible in Fig. 17. For the absolute streamflow simulation per-
formance, the original calibration framework yields high val-
ues of NSE for groups 2, 4 and 6, medium ones for group 1,
and lower scores for groups 3 and 5. These patterns are
found again for the composite calibration framework, even
though the distribution of performances for group 5 is nar-
rower. Regarding the difference between the two calibration
frameworks, a significant improvement for a small part of
the dataset is observed in groups 3 and 5 too, with no dete-
rioration of the median performance in the group, while in

groups 1, 2, 4 and 6, the median performance is reduced. A
significant decrease in performance is observed for a quarter
of group 2 and more than a decile of group 4. As for ground-
water level simulation, groups 3, 4 and 6 have narrow distri-
butions centred around a high median score of around 0.7,
while other groups have much wider distributions, including
simultaneously high, medium and low scores.

The analysis of the results for groups of catchments
with similar hydrogeological contexts allows the formula-
tion of general recommendations to model users, as shown
in Sect. 5.2. However, the differences between sub-groups
have not been successfully linked to hydrogeological charac-
teristics of aquifers, such as permeability or transmissivity.
In fact, these data are difficult to obtain for the French terri-
tory, except in experimental, extensively instrumented catch-
ments.
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Figure 17. Distributions of the results for groups detailed in Table 3. From (a) to (d): value of the Nash–Sutcliffe efficiency for each pair,
computed on the square root of the streamflow, for the original calibration, i.e. α = 0; value of the Nash–Sutcliffe efficiency for each pair,
computed on the square root of the streamflow, for the composite calibration with α = 0.16; value of the ZError criterion for each pair for
α = 0.16; difference in the NSEs obtained with the composite and the original calibration frameworks.

4.6 Are these results model specific? Or dataset
specific?

The results presented in the previous sections can be seen
as disappointing with reference to the objective of the study.
Bringing new information – observed groundwater level data
– to the GR6J model yielded no improvement in stream-
flow simulation performance. Of course, a question arises
that we do not wish to avoid in this paper: is this disap-
pointing conclusion model specific, i.e. is it due to the con-
ceptual nature of the GR6J model? Would a less concep-
tual and more descriptive model have yielded more satisfac-
tory results? Would a more heavily parametrised model have
yielded more satisfactory results? Let us first answer this sec-
ond question: equifinality is a plague in all modelling efforts,

and we would not claim as a success an operation that con-
sists of marginally improving the situation of a model that
was previously impossible to calibrate. Thus, we reject the
critique of model complexity as being unworthy of a mod-
eller. Concerning the physical realism of the model, no a pri-
ori conclusion can be drawn about the performance of more
physically based models without any empirical evaluation of
a large set of catchments. However, the fact that the exponen-
tial reservoir – introduced in the GR6J structure to represent
slow aquifer transfers – represents the dynamics of piezome-
ters on a large catchment set either well or very well cannot
be the consequence of sheer luck. If the piezometric mea-
surements are well represented in both the calibration and
the validation period, this means that our mathematical rep-
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resentation is adequate to describe the underlying physical
processes, even without it having been designed to do so.

Similar studies performed on other conceptual models did
not result in different conclusions: Thiéry (1988) does not
mention an improvement in streamflow simulation when cal-
ibrating GARDÉNIA with groundwater level data; the study
by Moore and Bell (2002) on the PDM model is not con-
clusive since the new model structure is not compared to a
reference one; finally, the calibration framework proposed
by Széles et al. (2020) for the HBV model gives a similar
conclusion to the one of this study: using groundwater level
data for calibration helped to represent aquifer storage in the
model but did not improve streamflow simulation.

Regarding the catchment dataset, we tried to use the
largest possible set of catchments with respect to our data
sources and the selection criteria discussed in Sect. 2.3. A
selection bias is possible in the present study, mainly be-
cause the aquifers regarded as important for surface wa-
ter resources are the ones that have been monitored for the
longest time at the largest number of measurement points:
the chalk aquifer in Picardy and the Alsace plain alluvium
of the Beauce Tertiary limestones. However, the catchment
dataset used in this study is diverse enough to draw general
conclusions, at least for climatic and hydrogeological condi-
tions similar to the ones observed in mainland France. Fur-
ther evaluation for different contexts in other countries would
help to put our results into perspective.

5 Conclusions

5.1 Synthesis

The study presented here concerns the implementation of a
new calibration procedure for an existing streamflow sim-
ulation model, GR6J; it is not about the development of
a completely new model. For each catchment, among all
the parameter sets that yield equivalent streamflow simula-
tions, we identified a particular parameter set that is able
to additionally simulate groundwater level. This new mod-
elling capacity does not induce a significant deterioration in
the streamflow simulation performance; neither does it im-
prove it, except in a few particular cases. However, an advan-
tage of the composite calibration framework was highlighted:
since we identified a particular parameter set among equiv-
alent sets for streamflow, we probably reduced equifinality
in the model calibration, which is suggested by the parame-
ter stability improvement. We may thus expect a more robust
model, even if a specific equifinality study would help en-
force this conclusion.

The results presented in this paper can be seen as truly
encouraging – a realistic representation of the piezometric
variability was obtained as one of the states of the model, but
scientific honesty requires us to mention that, to us, they were
– at least initially – truly disappointing, because we aimed at

improving the overall representation of streamflow through
the inclusion of piezometric information, and not the other
way around.

5.2 Recommendations to users: which calibration
should be used in which context?

The analyses performed in this study lead to the following
recommendations for GR6J model calibration:

– In most catchments, no improvement in streamflow sim-
ulation would be expected when using a composite cal-
ibration framework with groundwater level data.

– In catchments in which the original model already per-
forms well, adding groundwater level data to the cali-
bration is probably useless as a method of improving
streamflow simulation performance.

– In catchments in which the model reaches lower valida-
tion scores, a performance improvement is possible but
not probable, and is most likely to happen in a chalk or
Tertiary limestone context.

– The model with composite calibration is able to sim-
ulate the groundwater level with satisfactory perfor-
mance for chalk, Tertiary limestones and Cretaceous
sand aquifers.

– Groundwater level simulation is more uncertain for
other geological contexts (Quaternary formations,
bedrock, Triassic sandstones or Jurassic limestones).
Good results have been observed for the bedrock con-
text of Brittany.

5.3 Perspectives

Beyond streamflow simulation, being able to simulate the
groundwater level using such a lumped conceptual model –
which is much simpler and lighter to implement than usual
groundwater models – is likely to lead to new uses of GR6J.
Thereby, since GR6J is part of the operational low-flow fore-
casting platform Premhyce (Nicolle et al., 2020; Tilmant
et al., 2020), it is conceivable to use it as a groundwater
level sub-seasonal forecasting tool for some chosen points in
France, which is crucial for the anticipative management of
groundwater resources. Further studies are needed to eval-
uate the framework in forecasting mode; a data assimila-
tion process may be necessary to improve the forecast lia-
bility and smoothness. Although this study does not include
any modification of the streamflow simulation scheme, it of-
fers an overview of possible modifications: the division co-
efficient between the routing and the exponential stores re-
mained fixed in the present study and may become a new
model parameter that controls the size of the aquifer–river
flux; the role of the exchange function needs to be clarified
and its formulation has to become more stable and readable.
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Appendix A: Detailed operation of the GR6J model

A1 Production function

The production function is mainly composed of a production
store, whose capacity X1 is the first parameter of the model.
Inputs are P , the daily rainfall depth, and E, the daily po-
tential evaporation. Rainfall is neutralised by evaporation to
compute the net rainfall Pn and net evaporation En through a
case disjunction:

– If P > E, then Pn = P −E and En = 0.

– Otherwise, Pn = 0 and En = E−P .

If Pn is positive, a part of it, Ps, feeds the production store,
which has a level S and a parameter X1:

Ps =

X1

(
1−

(
S
X1

)2
)

tanh
(
Pn
X1

)
1+ S

X1
tanh

(
Pn
X1

) ; Es = 0. (A1)

Otherwise, a part (Es) of En is taken from the production
store:

Es =
S
(

2− S
X1

)
tanh

(
En
X1

)
1+

(
1− S

X1

)
tanh

(
En
X1

) ; Ps = 0. (A2)

The content of the production store is then updated by S =
S−Es+Ps. Part (“Perc”) of the water content of the produc-
tion store percolates to the routing function:

Perc= S

1−

(
1+

(
4S

9X1

)4
)− 1

4
 . (A3)

The content of the production store is updated again by S =
S−Perc. Finally, the quantity of water Pr that reaches the
routing part of the model is Pr = Perc+Pn−Ps.

A2 Unit hydrographs

Pr is divided into two components: 90 % is routed through
the one-sided unit hydrograph UH1 and the remaining 10 %
is routed through a two-sided unit hydrograph UH2. The cu-
mulated ordinates of the unit hydrographs SH1(t) and SH2(t)

are determined by the basetime X4 for t ∈ N:

SH1(t)=


0 if t = 0(
t
X4

) 5
2 if 0< t < X4

1 if t ≥X4

(A4)

SH2(t)=



0 if t = 0

1
2

(
t
X4

) 5
2 if 0< t < X4

1− 1
2

(
2− t

X4

) 5
2 if X4 ≤ t < 2X4

1 if t ≥ 2X4 .

(A5)

Ordinates UH1(t) and UH2(t) are then computed by differ-
entiating the cumulated ordinates:

UH1(t)= SH1(t)−SH1(t − 1); UH2(t)

= SH2(t)−SH2(t − 1). (A6)

Finally, the respective outputs of the first unit hydro-
graph (Q9) and the second one (Q1) are computed through a
convolution of Pr:

Q9(t)= 0.9
bX4c+1∑
k=1

UH1(k)Pr(t − k+ 1) (A7)

Q1(t)= 0.1
b2X4c+1∑
k=1

UH2(k)Pr(t − k+ 1). (A8)

A3 Routing stores

This part of the model structure is composed of two branches,
that of the stores – fed by Q9 from the first unit hydrograph
– and the direct branch – fed by Q1 from the second unit
hydrograph. In the stores branch, Q9 is partitioned between
the two stores, with 60 % for the routing store and 40 % for
the exponential store. A potential exchange “Exch” is com-
puted from the water content of the routing store “Rout”, its
capacity X3, and the exchange parameters X2 and X5:

Exch=X2

(
Rout
X3
−X5

)
. (A9)

This flux can be negative, zero or positive. Since the routing
store cannot have a water content (“Rout”) of below zero,
the actual exchange flux from the routing store AExch1 is
limited by the content of the latter, which gives the following
equation:

AExch1 ={
Exch if Rout+ 0.6Q9+Exch≥ 0
−Rout− 0.6Q9 otherwise. (A10)

The routing reservoir is then filled with

Rout= Rout+Q9+AExch1 , (A11)

and the output QR of the routing reservoir is computed as

QR = Rout

1−

(
1+

(
Rout
X3

)4
)− 1

4
 . (A12)
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The water content of the reservoir is finally updated as
Rout= Rout−QR.

As for the exponential store, it is a bottomless reservoir
whose water content “Exp” can be negative. Therefore, no
case disjunction is necessary, and the store can be filled with

Exp= Exp+ 0.4Q9+Exch. (A13)

Its output is computed as follows, using its capacity X6:

QRexp =X6 log
(

1+ exp
(

Exp
X6

))
. (A14)

The exponential store can now be updated using Exp=
Exp−QRexp.

The second branch, fed by Q1, is also subject to an ex-
change AExch2 with a case disjunction:

AExch2 =

{
Exch if Q1+Exch≥ 0
−Q1 otherwise. (A15)

The output of the second branch Qd can now be computed
using Qd =Q1−AExch2. The simulated streamflow Qsim
is finally computed by adding the components from the three
branches:

Qsim =QR+QRexp+Qd. (A16)

Appendix B: Parameter ranges and transformations
used for original and modified GR6J calibrations

Table B1. Parameter ranges and transformation functions for GR6J model calibration. To make calibration easier, the original parameter
search ranges presented below are transformed to [−9.99, 9.99] by each transformation function. The values found are then re-transformed
into parameter values using reciprocal transformation. Details can be found in Sect. 3.1.2.

Parameter Unit Description Search range Transformation function Reciprocal transformation

X1 mm Production store capacity R∗
+

x 7−→ log(x) x 7−→ exp(x)
X2 mm d−1 Inter-catchment exchange coefficient [−9.99; 9.99] id∗ id∗

X3 mm Routing store capacity R∗
+

x 7−→ log(x) x 7−→ exp(x)

X4 d Unit hydrograph time base [0.5; 20] x 7−→ 9.99+ 19.98
(
x−20
19.5

)
x 7−→ 20+ 19.5

(
x−9.99
19.98

)
X5 Unitless Inter-catchment exchange threshold [−2; 2] x 7−→ 5.0x x 7−→ x/5.0
X6 mm Exponential store capacity R∗

+
x 7−→ log(x) x 7−→ exp(x)

X7 Unitless Groundwater linear coefficient ]0; 4] x 7−→ 20
√

tanhx− 10 x 7−→ argtanh
((

x+10.0
20.0

)2
)

X8 Unitless Groundwater linear offset ]0; 20[ x 7−→ x− 10 x 7−→ x+ 10

∗ id stands for identity function.
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Appendix C: Table of variables

Table C1. Table of variables used in the document.

Variable Unit Description

α Unitless Composite calibration weight
AExch1 mm d−1 Actual exchange of the routing store
AExch2 mm d−1 Actual exchange of the direct branch
C(α) Unitless Composite calibration objective function
δz Unitless Normalised groundwater level
δz,obs Unitless Observed normalised groundwater level
δz,sim Unitless Simulated normalised groundwater level
E mm d−1 Daily potential evaporation used as model input
En mm d−1 Net evaporation
Es mm d−1 Part of the evaporation withdrawn from the production store
Exch mm d−1 Potential exchange flux
Exp mm Exponential store level
NSE Unitless Nash–Sutcliffe efficiency
P mm d−1 Daily rainfall used as model input
Pn mm d−1 Net rainfall
Pr mm d−1 Flux reaching the routing part of the model
Ps mm d−1 Part of the rainfall that fills the production store
Perc mm d−1 Percolation flux
Q1 mm d−1 Output of the two-sided unit hydrograph
Q9 mm d−1 Output of the one-sided unit hydrograph
Qd mm d−1 Output of the direct branch
QR mm d−1 Output of the routing store
QRexp mm d−1 Output of the exponential store
Qsim mm d−1 Daily simulated streamflow
Rout mm Routing store level
S mm Production store level
SH1(t) Unitless Cumulative ordinates of the one-sided unit hydrograph
SH2(t) Unitless Cumulative ordinates of the two-sided unit hydrograph
UH1(t) Unitless Ordinates of the one-sided unit hydrograph
UH2(t) Unitless Ordinates of the two-sided unit hydrograph
X1 mm Production store capacity
X2 mm d−1 Inter-catchment exchange coefficient
X3 mm Routing store capacity
X4 d Unit hydrograph time base
X5 Unitless Inter-catchment exchange threshold
X6 mm Exponential store capacity
X7 Unitless Groundwater linear coefficient
X8 Unitless Groundwater linear offset
z m NGF Absolute groundwater level
z m NGF Mean absolute groundwater level
ZError Unitless Error criterion on groundwater level
zobs m NGF Absolute observed groundwater level
zsim m NGF Absolute simulated groundwater level
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Appendix D: Equivalence between ZError and the
Nash–Sutcliffe efficiency

The model structure proposed here does not simulate the ab-
solute groundwater level, only its normalised version. Then,
by reversing the normalisation equation (Eq. 1), Eq. (3) al-
lows us to get the absolute groundwater level. By combining
Eqs. (1), (3) and (4), the following expression for ZError is
found:

ZError = 1−
∑
t

(
zsim− z

σz
−
zobs− z

σz

)2

, (D1)

which gives

ZError = 1−

∑
t
(zsim− zobs)

2

σ 2
z

. (D2)

Based on the definition of the standard deviation, we have:

σ 2
z =

∑
t

(zobs− z)
2. (D3)

By combining the two previous equations, we get:

ZError = 1−

∑
t
(zsim− zobs)

2∑
t
(zobs− z)

2 , (D4)

which is exactly the definition of the Nash–Sutcliffe effi-
ciency or NSE (Nash and Sutcliffe, 1970) expressed for
groundwater level instead of streamflow. This shows the cor-
respondence between ZError and NSE.

Code and data availability. Streamflow data are available on
the Banque HYDRO website, http://www.hydro.eaufrance.fr/
(SCHAPI, 2021). Their use is limited to particular conditions de-
scribed on the website. Climatic data are available upon request
from Météo France for research use. Groundwater level data are
available on the ADES website, https://ades.eaufrance.fr/ (BRGM,
2021); they can be used in accord with the Etalab open licence.
The original version of GR6J is available in the open-source
R package airGR (https://doi.org/10.15454/EX11NA; Coron et al.,
2021). The national hydrogeological reference map is available on
the BD LISA website, https://bdlisa.eaufrance.fr (Brugeron et al.,
2018).
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