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Abstract—Forest ecosystems play a fundamental role in natural
balances and climate mechanisms through their contribution to
global carbon storage. Their sustainable management and con-
servation is crucial in the current context of global warming and
biodiversity conservation. To tackle such challenges, earth obser-
vation data have been identified as a valuable source of informa-
tion. While earth observation data constitute an unprecedented
opportunity to monitor forest ecosystems, its effective exploitation
still poses serious challenges since multimodal information needs
to be combined to describe complex natural phenomena. To deal
with this particular issue in the context of structure and biophys-
ical variables estimation for forest characterization, we propose a
new deep learning-based fusion strategy to combine together high
density three-dimensional (3-D) point clouds acquired by airborne
laser scanning with high-resolution optical imagery. In order to
manage and fully exploit the available multimodal information,
we implement a two-branch late fusion deep learning architecture
taking advantage of the specificity of each modality. On the one
hand, a 2-D CNN branch is devoted to the analysis of Sentinel-2 time
series data, and on the other hand, a multilayer perceptron branch
is dedicated to the processing of LiDAR-derived information. The
performance of our framework is evaluated on two forest variables
of interest: total volume and basal area at stand level. The obtained
results underline that the availability of multimodal remote sensing
data is not a direct synonym of performance improvements but,
the way in which they are combined together is of paramount
importance.

Index Terms—Convolutional neural networks (CNNs), forest
monitoring, multiscale remote sensing, multisensor data fusion,
structure and biophysical variables estimation.

I. INTRODUCTION

FOREST ecosystems play a fundamental role in natural
balances and climate mechanisms through their contribu-

tion to global carbon storage. More than 40% of the global

Manuscript received December 26, 2021; revised April 5, 2022 and May
9, 2022; accepted May 11, 2022. Date of publication May 19, 2022; date of
current version June 8, 2022. This work was supported in part by the French
Agency for Ecological Transition (ADEME) through the PROTEST project
under Grant 1703C0069, in part by GRAINE program, and in part by the French
Region of Occitanie with the funding of part of K. Dayal’s Ph.D. scholarship.
(Corresponding author: Dino Ienco.)

Kamel Lahssini, Florian Teste, Karun Reuel Dayal, Sylvie Durrieu, and Dino
Ienco are with the INRAE, UMR TETIS, University of Montpellier, 34000 Mont-
pellier, France (e-mail: kamel.lahssini@inrae.fr; fteste96@protonmail.com;
karun.dayal@inrae.fr; sylvie.durrieu@inrae.fr; dino.ienco@inrae.fr).

Jean-Matthieu Monnet is with the University Grenoble Alpes, INRAE,
LESSEM, 38400 Grenoble, France (e-mail: jean-matthieu.monnet@inrae.fr).

Digital Object Identifier 10.1109/JSTARS.2022.3175609

terrestrial carbon stock is contained in these natural carbon
sinks [1]. Moreover, they are home to a rich, but also very fragile,
animal and plant biodiversity [2]. Their sustainable management
and conservation is therefore a crucial challenge in the current
context of global warming.

To address these issues and provide stakeholders with valu-
able inputs to support the decision-making process, the effective
exploitation of available and up-to-date earth observation data
is a major challenge. Nowadays, ongoing space missions and
airborne acquisition campaigns allow to collect an increasing
amount of remote-sensing data [3] that provide complementary
information acquired via various modalities and at different
spatial and temporal resolutions [4].

These remote-sensing data supply valuable information to
monitor and characterize forest ecosystems [5]–[7].

For instance, light detection and ranging (LiDAR) technol-
ogy is well suited for the characterization of structure and
biophysical variables like the amount of wood resource and
biomass [8], [9], due to the fact that the laser signal can pen-
etrate through forest canopies. Airborne laser scanning (ALS)
systems are LiDAR-based systems which provide 3-D multiecho
point clouds describing the structure of the vegetation from the
top of the canopy to the ground. The 3-D spatial distribution
of the points resulting from the laser-environment interaction,
thus, can be directly linked with the 3-D spatial distribution of
the vegetation [10]. For regional-scale monitoring, the analysis
of ALS data mainly relies on area-based approaches (ABA)
involving statistical analysis of the spatial distribution of the
points at stand level, i.e., around 300 to 700 m2 [11]. The joint
use of ground truth (GT) information at plot level and metrics
derived from the ALS point clouds enables to develop empirical
models to estimate structure and biophysical forest variables.
Models are then applied to the whole area of study to produce
forest resource maps [12], [13]. ABA models have exhibited
robustness and effectiveness in predicting inventory variables
for a wide range of homogeneous forests [14]. However, they
exhibit limitations when implemented in more complex and
heterogeneous environments requiring specific calibration to
identify the most relevant variables that best describe a given
study area through ALS data [15].

When analyzing ALS point clouds, research studies [16] indi-
cate that topography, amongst other factors, greatly influences
ALS-based models’ performances. This is mainly due to the
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fact that ALS point clouds are usually normalized in height to
take into account ground elevation. The normalization process
induces a distortion of the tree structure and directly affects the
data distribution within each tree, influencing the metrics derived
from the point clouds [17].

Sentinel-2 optical images provide radiometric information
that can be useful for the characterization of stand compo-
sition [18], [19] and, thus, bring complementary information
to ALS geometric data. The authors of [20] investigated the
usability of Sentinel-2 2-D images in forest inventories against
other remote-sensing source-providing 2.5- or 3-D-data-like
ALS, elevation model induced by high-resolution optical satel-
lite WorldView-2 images, and syntheticaperture radar stereo data
from TerraSAR-X. The results confirmed that the higher spatial
resolution input data, in the case of 3-D products, correlate with
more accurate forest inventory parameter predictions, which
is in line with other results presented in literature. However,
the authors also highlight that, despite not having outstanding
performances, Sentinel-2 imagery has the advantage, compared
to other remote-sensing data sources, to being free of charge
and regularly updated. The authors of [21] evaluated a particular
machine learning algorithm Bayesian additive regression trees
(BART) to analyze Sentinel-2 images and topographic variables
to estimate the forest stand characteristics. The results indicate
that the combination of radiometric and topographic variables
(derived from PALSAR data) improved the estimation of the
forest attributes compared to the use of only Sentinel-2 infor-
mation.

Several studies demonstrated the value of combining LiDAR
data with radiometric information from high spatial resolution
multispectral satellite sensors regarding the characterization of
both complex forest environments [22], [23] and urban veg-
etation [24]. However, enriching ALS-derived metrics with
additional radiometric information from optical images and
topography descriptors is challenging in commonly used ABA
models based on linear regression. Indeed, such models do not
allow to fully exploit the complex interplay between all the
available input modalities since all the information is treated
equally.

In recent years, deep learning (DL) approaches [25] are
getting more and more attention in the field of remote sens-
ing [26], since they are demonstrating compelling performances
in the analysis of multimodal (i.e., multisource, multitempo-
ral,and multiscale) earth-observation data [27]. Neural net-
works, through the stacking of nonlinear functions, allow repre-
sentation and modeling of complex relationships between a set
of input and output variables in an end-to-end manner. In a mul-
tisource remote-sensing scenario, two main strategies, namely
1) early fusion and 2) late fusion, are mainly adopted in order
to combine heterogeneous and complementary information [27].
While the former strategy firstly combines data together and then
feeds a standard neural network architecture, the latter one firstly
analyzes each source by means of a dedicated branch (encoder)
and then, terminates the processing of the data, combining
the intermediate per-branch information via additional neural
network layers. In both strategies, the set of network param-
eters are optimized end-to-end. The majority of the proposed

approaches were introduced to cope with the issue of multimodal
remote-sensing analysis for classification purposes [28]–[30].
Regarding the specific combination of spectral optical and Li-
DAR remote-sensing data, several works exist that deal with the
general task of land cover mapping by employing both early-
and late-fusion strategy to combine hyperspectral and LiDAR
data [31]–[33], multispectral (three or four spectral bands) with
LiDAR information [34], or hyperspectral, multispectral, and
LiDAR data together [35].

However, there is a lack of methodological investigation to
leverage the potential of DL-based strategy for regression tasks
in the context of multimodal remote sensing analysis. Only
recently, the computer science and signal processing commu-
nities have started to rigorously investigate the potential of such
strategies for monosource regression tasks [36], while some
attempts related to the characterization of forest properties are
emerging in the remote-sensing community [37]. In [37], the
authors proposed a stacked sparse autoencoder network from
LiDAR metrics and optical indices (from Landsat 8 imagery)
with the aim to estimate forest aboveground biomass. In this ap-
proach, all the information (LiDAR metrics, optical indices, and
combined optical-LiDAR indices) are fed to a fully-connected
neural network model, following an early-fusion strategy, in
order to estimate the biomass quantity.

To cope with the estimation of structure and biophysical forest
variables from multimodal remote-sensing data, we propose a
DL-based model capable to fully exploit the interplay among
multimodal information coming from Sentinel-2 images and
derived from ALS point clouds. Conversely to previous attempts
in the literature, the proposed framework, named multimodal
forest variables estimation based on DL framework (MMFVE),
implements łate-fusion strategy deploying a two-branch DL
architecture to deal with multimodal remote-sensing data: In-
formation derived from ALS point clouds on one hand and
time series of Sentinel-2 optical imagery on the other hand.
We focus on the estimation of two forest variables, 1) total
volume and 2) basal area, in the study area of Massif des Bauges
Natural Regional Park (France). The total volume of a tree is
defined as the volume of all the wood contained in it (stem
and branches). When coupled with additional information, it
is useful for the computation of biomass. The basal area of a
tree is the cross-sectional area of the tree at breast height (usually
defined as 1.3 m above ground). When computed for all the trees
in a plot (m2/ha), it is the measure of the cross-sectional area
occupied by the trees and is a stand density indicator commonly
used by forest managers in silvicultural planning. The main
objective of our study is to assess the benefit of combining ALS
and optical satellite image time series (i.e., Sentinel-2) data for
the downstream task of forest structure and biophysical variables
estimation, in order to understand if multimodal information can
improve the estimation of these physical quantities in a complex
forest environment. While the former source of information,
ALS, is widely used for the characterization of forest properties,
the latter, Sentinel-2, brings knowledge about stand composi-
tion. Additionally, we also integrate in our analysis topographic
information, which impacts (as confirmed by recent studies [21]
and empirically observed in the present experimental evaluation)
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the quality of both ALS structure information and Sentinel-2
radiometric signal.

To summarize, the main contributions of our research study
are as follows:

1) the design of an end-to-end DL framework devoted to
forest variables estimation via a multisource late-fusion
approach;

2) a first study, to the best of our literature survey, that
assesses the combination of topographic information, Li-
DAR metrics, and Sentinel-2 multispectral and multitem-
poral data for total volume and basal area estimation in a
complex forest environment.

The rest of this article is organized as follows. Section II
introduces the data available on the study site. Section III
describes the proposed framework. The experimental settings
and the results are reported and discussed in Sections IV and V,
respectively. Finally, Section VI concludes this article.

II. DATA

A. Study Site

The study site is the Regional Natural Park of the “Massif
des Bauges,” located in France in the Alps mountains, between
the two administrative departments of Savoie and Haute-Savoie
(Fig. 1 and Fig. 2). The site is characterized by a steep and
irregular topography, and an elevation ranging from 256 to
2217 m. The forest covers an area of 51 136 ha, which accounts
for 60% of the total area of this inhabited park. The forest is, thus,
a major component of the park’s landscape and provides several
ecosystem services to local inhabitants and neighboring cities:
Wood production, outdoor activities, and biodiversity conserva-
tion. The forest stands consist of both deciduous and coniferous
species, with a dominance of silver fir (Abies alba), Norway
spruce (Picea abies), and common beech (Fagus sylvatica).
Managed forests are mostly in an uneven-aged system.

B. Remote-Sensing Data

Airborne LiDAR data used in this study were not acquired
under similar conditions over the whole area. Two surveys
were conducted, each one covering a specific area. 1) The first
acquisition (Acquisition 73) was conducted between June and
September 2016, by the French National Institute of Geographic
and Forest Information (IGN), and results from a collaboration
between IGN and the governance and management board of
Savoie Mont Blanc in order to provide the first LiDAR coverage
over a whole French department in a mountainous area. On our
study site, it covers an area of 53 600 ha in the southern part of
the park, located in the Savoie department. Mean LiDAR point
density is 4 points/m2. Raw data preprocessing, including geolo-
cation, point clouds alignment, and data tiling was performed by
a private contractor. 2) The second acquisition (Acquisition 74)
was conducted in September 2018, by a private data provider
in order to complete the coverage of the park area. It covers an
area of 37 350 ha in the northern part of the park, located in the
Haute-Savoie department. LiDAR point density is on average

Fig. 1. Location of the study area in France and RGB composite from
SENTINEL-2 imagery (top); Extent of the Massif des Bauges Natural Regional
Park and location of inventory plots (Bottom).

Fig. 2. Location of the study area in France and RGB composite from
SENTINEL-2 imagery (top); Extent of the Massif des Bauges Natural Regional
Park and location of inventory plots (Bottom).
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Fig. 3. S2 spectral bands used in this study are surrounded by a dashed green
line.

of 13 points/m2, with a strong spatial heterogeneity and local
densities ranging from 4 to 25 points/m2 over the whole area
of acquisition. A 1-m spatial resolution digital terrain model
(DTM) over the whole study site was derived from the LiDAR
data. The LiDAR data of both acquisitions were normalized
in height, using the DTM, to account for differences in terrain
elevation.

Satellite data consists of a Sentinel-2 (S2) time series of
five images, acquired between the years 2017 and 2018 at the
following dates: October 7, 2017, November 1, 2017, August 28,
2018, September 27, 2018, and October 17, 2018. The images
were chosen to ensure a cloud-free and snow-free coverage of
the study site. Moreover, they were also selected to match, as
much as possible, the dates of field and LiDAR surveys. The
S2 images were obtained from the THEIA data platform1 at
level-2A (top of canopy reflectance). Ten spectral bands were
considered in this study (Fig. 3) and all the bands were resampled
(with the nearest neighbor strategy) to a 10-m spatial resolution.
In addition, three topographic variables were computed at a
spatial resolution of 10 m. The 1-m DTM was down-scaled to
a 10-m raster of elevations, which was further used to compute
both the aspect and slope layers, leading to a total of 53 channels
describing the study site at a spatial resolution of 10 m.

C. Field Data

The GT data were obtained through a forest inventory cam-
paign conducted by the French National Forest Office and the
French National Research Institute for Agriculture, Food, and
Environment between June and September 2018. A total of 291
circular plots, regularly distributed over the study site, were
inventoried and georeferenced. Measurements were performed
within concentric plots of 10-m and 15-m radius. Within the
15-m radius, all the trees with a diameter at breast height (DBH)
above 17.5 cm had their DBH measured using a tape and the
species were recorded. Within the 10-m radius, the trees between
7.5 and 17.5 cm DBH were classified and counted according to
two criteria: 1) the diameter category (7.5 to 12.5 cm or 12.5 to
17.5 cm) and 2) the species category (coniferous or deciduous).
Because no heights and not all the diameters were measured, the

1[Online]. Available: https://www.theia-land.fr/en/homepage-en/

Fig. 4. Distribution of GT data for the two forest variables basal area and
total volume.

TABLE I
ALS METRICS

database from the French National Forest Inventory produced
by IGN was used to enrich the forest inventory with additional
information to allow the computation of the two forest variables
of interest in this study: Total volume and basal area. The
variables were computed at the scale of a 15-m radius plot
and successively converted to per hectare values. Fig. 4 shows
the data distribution for each of the forest variables over the
291 plots.

D. Remote-Sensing-Based Variables

Inventory plots are formed by 30-m diameter disks. For each
plot, the normalized LiDAR point cloud located within the extent
of the 15-m radius circle was extracted. A threshold was applied
to remove all the points below 5 m corresponding to lower
vegetation. As shown in Table I, 55 standard LiDAR metrics
were then computed at plot level using the R lidR package [38].
Three topographic values were also averaged at plot level using
the 1-m DTM, i.e., 1) elevation; 2) slope; and 3) aspect, leading
to a total of 58 descriptors characterizing each plot. Regarding

https://www.theia-land.fr/en/homepage-en/
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Fig. 5. Overview of MMFVE framework. The architecture has two branches, one devoted to the analysis of Sentinel-2 time-series data and one dedicated to the
analysis of metrics extracted from LiDAR measurements. Then, the per-source feature representations are aggregated, under late-fusion strategy, by the means of
the concatenation operation in order to perform the final forest-variable estimation.

optical imagery, because of the spatial resolution of the resam-
pled S2 images, the spectral information associated to each plot
is extracted on a 3 × 3 pixel window that corresponds to a 30-m
side square (referred to as a patch). The central pixel of a given
patch is selected in order to contain the centre of the associated
plot. The final 3 × 3 patch is then built around this central pixel.
In addition to the 58 descriptors previously mentioned, each plot
is also described by a 3 × 3 pixel patch of 53 channels at a 10-m
spatial resolution extracted from the S2 time series plus features
extracted from the 10-m DTM (see Subsection II-B).

To summarize, the labelled data used in this study consist
of 291 plots described by two forest variables (total volume
and basal area), 55 LiDAR-derived metrics, 3 topographic
values at plot level, and 50 Sentinel-2 spectral bands plus 3
topographic bands at a 10-m spatial resolution. The details of
all LiDAR-derived metrics and Sentinel-2 information are listed
in Table I.

III. METHOD

In this section we describe our framework, named MMFVE,
to cope with the fusion of multimodal data for the estimation of
structure and biophysical variables. Firstly, we supply a general
overview of our two-branch architecture and we detail the end-
to-end learning strategy we have adopted to learn the model
parameters. Secondly, we introduce the per-source encoders we

have designed to take into account the specificity of both LiDAR-
derived metrics and Sentinel-2 time-series data.

A. Multimodal DL Architecture

Fig. 5 depicts the proposed framework, MMFVE. In our
scenario, each geospatial location is described by means of two
different kinds of information: 1) metrics extracted from LiDAR
acquisition and 2) spatial patches extracted from Sentinel-2 time
series.

To manage and exploit the available multimodal informa-
tion, MMFVE has two input branches, one for each of the
sources to process. Each branch is associated to an encoder
network that extracts a source specific representation: RS2 and
RLIDAR. Subsequently, the different per-source representations
are aggregated together considering a late-fusion schema [27]
by concatenation of the per-source representations, with the
aim to obtain a multimodal representation (RMM), gathering
together the multifaceted information describing the specific
geospatial location, i.e., a 0.07 ha circular plot. Finally, the
multimodal representation is fed through a hidden layer and
a final output layer with only one neuron. The output neuron
has no activation function associated to it and it only performs
a linear combination of the input signals coming from the
previous connected layer as commonly done in regression-based
DL models [36]. The whole process is performed end-to-end.
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The detailed description of the different components on which
MMFVE is built on is reported in Fig. 5.

Regarding the general training process, since we are dealing
with a regression task, we employ the Huber loss (HL) [36] as
cost function. The HL is defined as follows:

HLoss(Y, Y ′) =

{
1
2 (Y − Y ′)2 if |Y − Y ′| < Δ

Δ|Y − Y ′| − 1
2Δ

2 otherwise

(1)
where Y and Y ′ are the true and the estimated values, respec-
tively. Basically, the HL behaves as the mean squared error
(MSE) loss when the error is lower than a threshold Δ, while
it mimics the mean absolute error (MAE) loss otherwise. In
addition, it is also differentiable at 0. The HL combines good
properties from both MAE and MSE and avoids their limitations.
Conversely to MAE, it bypasses large gradient backpropagation
when the estimated quantity is getting closer to the real value
and, differently from the MSE loss, it is more robust to outliers.
In our scenario we set Δ to 1 for the HL.

B. Sentinel-2 and LiDAR Encoders

Regarding the S2 time-series data, we exploit a 2-D convo-
lutional neural network (2-D-CNN) with the goal to take into
account the spatial context describing the geospatial location
associated to the forest variable to estimate. To this end, the
final raster cube with 53 bands (50 Sentinel-2 bands and 3
bands containing topographic characteristics, as explained in
Section II-D) is used as input. The encoder architecture has one
2-D convolutional layer with a kernel of size 3×3 and 256 filters,
followed by two fully connected dense layers with 128 neurons
each. The 2-D convolutional layer and the first fully-connected
layers are followed by a dropout layer with a drop rate equal to
0.3.

Concerning the LiDAR information, describing the geospatial
location of interest, we analyze the unstructured set of 55 metrics
together with the additional three topographic variables (as
described in Section II-D) by means of two fully-connected
dense layers with 256 and 64 neurons. The first fully-connected
layer is followed by a dropout layer with a drop rate equal to
0.3.

Once the encoder extracts per-source features (RS2 and
RLiDAR), they are concatenated (RMM) and successively pro-
cessed via a fully-connected dense layer with 256 neurons and
ReLU activation function that, finally, feeds the output layer
constituted by only one neuron.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental settings and the
results obtained on the study area introduced in Section II.

Regarding both forest variables (total volume and basal area),
we firstly validate the importance of considering topographic
information in addition to LiDAR-derived metrics for the esti-
mation tasks. Then, we assess the use of only S2 and S2 plus
topographic information. Successively, we evaluate the perfor-
mance of our multimodal framework, MMFVE, to leverage the
interplay between the different modalities we have as inputs

(LiDAR, topographic, and S2 data) with respect to both ma-
chine and DL competitors. Finally, we report some information
related to the training time associated to the different multimodal
approaches.

As additional evaluations, we also assess the sensitivity of our
framework to the loss function employed to optimize the internal
network parameters (by leveraging standard loss functions for
regression task [36]) and we supply a summary of the training
time required by each of the employed competing methods,
considering the full multisource setting (LiDAR metrics, topo-
graphic information, and S2 imagery).

A. Experimental Settings

Considering all the available input modalities in our multi-
modal setting, our first goal is to perform several preliminary
experiments in order to better understand the contribution of
each data source. We then evaluate the performances of our two-
branch DL framework, MMFVE, with respect to its competitors.

Regarding LiDAR-derived metrics, as reported in Section II,
each plot is described by 55 metrics plus three additional to-
pographic variables (aspect, slope, and elevation). Concerning
the S2 time series, enriched with the same three topographic
variables, we consider input patches of size 3× 3 (30 m× 30 m)
that approximately correspond to the extent of a plot.

As competing approaches, we use standard and recent ma-
chine and DL techniques commonly employed to estimate forest
variables at stand level from remote-sensing data [21], [37],
[39], [40]. More in detail, we adopt a K nearest neighbors
regressor (KNN ) based on Euclidean distance, a random for-
est (RF ) based regressor method that leverages ensemble of
trees via a bagging strategy to estimate the target variable, and
the BART model recently evaluated in [21]. In addition, we
include as competing strateg,y the sparse stacked autoencoder
(SSAE) model introduced in [37]. This model is based on an
early-fusion strategy to aggregate all the different information
sources before the analysis step. It also provides an implicit
comparison between early- and late-fusion strategies. According
to [37], the parameters of the SSAE model are learnt with MSE
as loss function.

When only LiDAR-based (and topographic) information are
considered, we include a multilayer perceptron (MLP ) with the
same architecture as the encoder branch of MMFVE devoted to
manage the LiDAR-derived metrics. Similarly, when only S2 im-
agery (and topographic) information are considered, we include
a 2-D-CNN with the same architecture as the encoder branch of
MMFVE devoted to manage the Sentinel-2 information.

The values of the different sources were normalized in the
interval [0, 1]. The dataset was split into training, validation, and
test set with 191, 50, and 50 plots, respectively. The evaluated
models were optimized via training/validation procedure [41].
For the KNN approach, the training/validation procedure
allows to choose the best value of K in the set {1, 3, 5, 7, 9},
while for the RF regressor the optimization procedure permits
to choose the best number of estimators (trees) in the set {200,
300, 400, 500, 600, 700, 800}, as well as the number of attributes
for each subset of samples in the bagging procedure in the range
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TABLE II
PERFORMANCES OF THE DIFFERENT COMPETING APPROACHES (KNN , RF ,
BART , AND MLP ) IN TERMS OF MAE, RMSE, AND R2 EVALUATION

METRICS WHEN LIDAR-BASED INFORMATION IS CONSIDERED ALONE OR

COUPLED WITH TOPOGRAPHIC INFORMATION TO ESTIMATE TOTAL VOLUME

[3, 10]. For the BART method, we adopt the parameter setting
employed in [21].

Concerning MMFVE and the SSAE competitor, the learning
stage was conducted over 400 epochs and the Adam opti-
mizer [42] was used to learn trainable parameters with a learning
rate of 10−5. Dropout rate was set to 0.3 and batch size was fixed
to 1.

The assessment of the models’ performances was done con-
sidering the test set and the following metrics: MAE, root
mean squared error (rmse), and R2 (R-squared, the coefficient
of determination). The performance metrics are defined as
follows:

MAE(Y, Y ′) =
1

|Y |
|Y |∑
i=1

|Yi − Y ′
i | (2)

rmse(Y, Y ′) =

√√√√ 1

|Y |
|Y |∑
i=1

(Yi − Y ′
i )

2 (3)

R2(Y, Y ′) = 1−
∑|Y |

i=1(Yi − Y ′
i )

2∑|Y |
i=1(Yi − Ȳ )2

(4)

where Y contains the original values of the forest variable to
estimate and Y ′ is the set of values estimated by a particular
approach.

Since model performances may vary depending on data split-
ting due to simpler or more complex samples involved in the
different partitions, all metrics were averaged over 30 random
splits of the dataset following the strategy mentioned above. The
different neural network architectures were implemented using
the Python Tensorflow library.

B. Results

Here, we provide the experimental evaluation according to
different combinations of the input sources as well as the
complete multimodal setting with LiDAR metrics, topographic
information, and S2 imagery.

1) Assessing LiDAR Metrics With and Without Topographic
Information: Tables II and III report the performances of the
different competing approaches when LiDAR-derived metrics
(L) and topographic information (T) are considered to estimate
total volume and basal area, respectively. Source information

TABLE III
PERFORMANCES OF THE DIFFERENT COMPETING APPROACHES (KNN , RF ,
BART , AND MLP ) IN TERMS OF MAE, RMSE, AND R2 EVALUATION

METRICS WHEN LIDAR-BASED INFORMATION IS CONSIDERED ALONE OR

COUPLED WITH TOPOGRAPHIC INFORMATION TO ESTIMATE BASAL AREA

is specified as input of the method. For instance, RF (L) indi-
cates an RF taking as input only LiDAR-derived metrics, while
RF (L, T ) indicates the same method with LiDAR-derived met-
rics and corresponding topographic variables as inputs.

Concerning the estimation of total volume (Table II), we can
observe that the use of topographic information (in addition to
LiDAR-derived metrics) generally ameliorates the results of the
estimation algorithms. The only method that does not seem
capable to exploit such additional information is the KNN
algorithm. This can be explained by the fact that this approach
relies on the computation of Euclidean distance and, to compute
such a measure, all the input variables have the same importance.
Since the number of topographic variables is much smaller than
the number of LiDAR-derived features (3 versus 55), the con-
tribution of the former is largely dominated by the contribution
of the latter.

Conversely, RF , MLP , and BART are capable to leverage
the useful information carried out by the topographic variables
providing better performances when topographic information is
considered (lower values of MAE and rmse and higher values
of R2). While RF and BART slightly improve their behavior,
MLP clearly supplies the best performances gain regarding
all the employed evaluation metrics. This latter method also
provides the best absolute results outperforming all the other
competing approaches when LiDAR-derived metrics alone and
both LiDAR-derived and topographic variables are involved.

Regarding the estimation of basal area (Table III), we can
observe a similar trend as the one depicted for the estimation
of total volume. Also in this case, the KNN algorithm is
unable of taking advantage of the extra information supplied
by topographic variables, while the MLP approach exhibits the
best performances with and without topographic variables (low
MAE and rmse and high R2), still demonstrating its ability to
fully leverage the interplay between LiDAR-derived metrics and
topographic information.

2) Assessing S2 Imagery With and Without Topographic
Information: In order to understand the contribution of S2
time series in the estimation task, we have also assessed the
performances of both forest variables (total volume and basal
area) estimation considering only Sentinel-2 data with and
without topographic information. The results are reported in
Tables IV and V for the total volume and basal area forest
variables, respectively. The achieved results are far inferior to
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TABLE IV
PERFORMANCES OF THE COMPETING APPROACHES IN TERMS OF MAE, RMSE,

AND R2 EVALUATION METRICS WHEN SENTINEL-2 DATA ARE CONSIDERED

ALONE OR COUPLED WITH TOPOGRAPHIC INFORMATION TO ESTIMATE TOTAL

VOLUME

TABLE V
PERFORMANCES OF THE COMPETING APPROACHES IN TERMS OF MAE, RMSE,

AND R2 EVALUATION METRICS WHEN SENTINEL-2 DATA ARE CONSIDERED

ALONE OR COUPLED WITH TOPOGRAPHIC INFORMATION TO ESTIMATE

BASAL AREA

TABLE VI
PERFORMANCES OF THE DIFFERENT COMPETING APPROACHES IN TERMS OF

MAE, RMSE, AND R2 EVALUATION METRICS WHEN LIDAR-BASED

INFORMATION IS JOINTLY EXPLOITED WITH SENTINEL-2 DATA AND

TOPOGRAPHIC INFORMATION TO ESTIMATE TOTAL VOLUME

The MLP (L,T ) method is also reported to assess the added value to also consider
Sentinel-2 data.

TABLE VII
PERFORMANCES OF THE DIFFERENT COMPETING APPROACHES IN TERMS OF

MAE, RMSE, AND R2 EVALUATION METRICS WHEN LIDAR-BASED

INFORMATION IS JOINTLY EXPLOITED WITH SENTINEL-2 DATA AND

TOPOGRAPHIC INFORMATION TO ESTIMATE BASAL AREA

The MLP (L,T ) method is also reported to assess the added value to also consider
Sentinel-2 data.

the results previously reported, with the best results achieved
when Sentinel-2 data are jointly exploited with topographic
information via the 2-D-CNN model.

3) Multimodal Setting: Tables VI and VII summarize the
performances of the different competing methods when all the
multimodal information, describing the study area, are employed

for the estimation of total volume and basal area, respectively. In
this case, given a method (i.e., RF ), we indicate with {L,T,S2}
the joint use of all the available information [i.e.,RF (L, T, S2)].
In this comparison, as baseline to evaluate the added value of
the Sentinel-2 time-series data, we consider the best performing
method when only LiDAR-derived metrics and topographic
information are used [MLP (L, T )].

For the case of total volume estimation (Table VI), we observe
that MMFVE achieves the best results for all the evaluation met-
rics and the SSAE approach achieves the second best estima-
tion. A direct comparison between our multimodal framework
and MLP (L, T ) (that can be considered as an ablation of MM-
FVE) underlines that the proposed neural network architecture
is well suited to leverage the complementarity of the different
input modalities. About the RF and the BART approaches,
we can note that also in this case the use of Sentinel-2 data
provides some improvement with respect to the results reported
in Table II. But, we can also note that, in spite of feeding all the
available data to the RF classifier, its performances are still lower
than the performances achieved by the MLP (L, T ). Unlike the
other methods, the use of all the available modalities negatively
influenced the behavior of the KNN regression, thus, resulting
in a systematic degradation of the evaluation metrics.

Concerning the estimation of the basal area variable, when
all the available modalities are used as input, we observe similar
behaviors as the ones exhibited for the estimation of total vol-
ume (Table VII). MMFVE outperforms all the other approaches
demonstrating its ability to combine together multiple input
modalities with SSAE, based on an early-fusion strategy, that
achieves performances that are comparable to our framework.
Both, the RF and the BART approaches, achieve marginal
improvements with respect to its counterpart when Sentinel-
2 input modality is missing. Table III highlights again their
limited ability to fully exploit the interplay between LiDAR-
derived metric, topographic information, and Sentinel-2 data.
Also in this case, the KNN regressor is negatively affected
by the large and heterogeneous amount of input information,
emphasizing the inadequacy of this approach in a multimodal
context.

Fig. 6 depicts the scatter plots of the estimated versus mea-
sured values for the two forest variables for two DL-based frame-
works we have evaluated (MMFVE and MLP). More in detail,
Fig. 6(a) and (b) represents the distributions related to total vol-
ume with only LiDAR and topographic information and with all
the available sources (LiDAR, topographic, and Sentinel-2 data),
respectively. We can observe that the latter configuration has
higher estimation performances, and approximates the diagonal
line, drawing the ideal scenario better than the former approach.
This is also confirmed by the reported values for all the three
evaluation metrics. Fig. 6(c) and (d) depicts the estimation of
basal area when only LiDAR and topographic information are
considered and when all the available sources (LiDAR, topo-
graphic, and Sentinel-2 data) are considered, respectively. Also
in this case, we can see that the latter configuration, MMFVE,
allows to achieve higher estimation performances. Similarly to
what happens for the other forest variable, the use of all the
available modalities permits to reach the best performances and
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Fig. 6. Estimated verus measured values for the total volume and basal area biophysical forest variables when only LiDAR and topographic information or all
the available sources (LiDAR, topographic, and Sentinel-2 data) are considered. (a) Estimated versus measured total volume using LiDAR and topographic data
by MLP (L,T ). (b) Estimated versus measured total volume using LiDAR, topographic, and S2 data by MMFVE. (c) Estimated versus measured basal area using
LiDAR and topographic data by MLP (L,T ). (d) Estimated versus measured basal area using LiDAR, topographic, and S2 data by MMFVE.

TABLE VIII
PERFORMANCES OF THE PROPOSED MMFVE FRAMEWORK IN TERMS OF MAE,
RMSE, AND R2 EVALUATION METRICS WHEN DIFFERENT LOSS FUNCTIONS

ARE USED IN THE TRAINING PROCESS TO ESTIMATE TOTAL VOLUME

TABLE IX
PERFORMANCES OF THE PROPOSED MMFVE FRAMEWORK IN TERMS OF MAE,
RMSE, AND R2 EVALUATION METRICS WHEN DIFFERENT LOSS FUNCTIONS

ARE USED IN THE TRAINING PROCESS TO ESTIMATE BASAL AREA

to make a step closer to the ideal scenario represented by the
diagonal line portrayed in the scatter plot.

4) Evaluating Different Loss Functions for MMFVE: In ad-
dition, we compare the performances of our framework, MM-
FVE, coupled with standard loss functions commonly employed
for regression tasks: MSE and MAE. We indicate with MM-
FVE(MSE), MMFVE(MAE), and MMFVE(HL) the MMFVE
framework coupled with MSE, MAE, and HL functions, re-
spectively. Tables VIII and IX depict the obtained results for
total volume and basal area variables, respectively. The obtained

TABLE X
RUNNING TIMES FOR THE TRAINING PHASE OF MMFVE FRAMEWORK AND ITS

COMPETITORS WHEN ALL THE AVAILABLE MULTIMODAL INFORMATION IS

USED TO ESTIMATE ONE OF THE CONSIDERED FOREST VARIABLE

results underline that the HL function allows some kind of
improvement compared to both MSE and MAE regression loss
functions. This is probably due to the fact that the HL combines
good properties from both MAE and MSE and avoids their
limitations: It bypasses large gradient backpropagation when
the estimated quantity is getting closer to the real value, and it
is more robust to outliers than MSE loss.

5) Time Performance Analysis for the Multimodal Setting:
Finally, Table X summarizes the performances, in terms of train-
ing time, of all the different competing approaches in the case of
multisource analysis (LiDAR metrics, topographic information,
and Sentinel-2 imagery). We remind that all the experiments
were performed on the Google Cloud Platform, Colab [43].
We can observe that the training times of all the methods are
quite reasonable and affordable (spanning from a few seconds to
10 min.), with the highest running time exhibited by the BART
approach, that takes around 9 min. to train a regression model.
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V. DISCUSSION

To summarize, our research study proposes a novel mul-
tisource DL framework that adopts late- instead of early-
fusion [37] strategy for the estimation of two forest variables
with the aim to assess the combination of LiDAR metric and
multispectral/multitemporal Sentinel-2 data. In addition, to the
best of our literature survey, this is the first attempt to com-
bine such sources of information via modern neural network
approaches for the estimation of total volume and basal area
variables in a complex forest environment. The proposed DL
framework exhibits convincing performances in an operational
scenario characterized by multimodal information as well as a
realistic amount of available training samples.

Firstly, we have noted that the joint use of topographic in-
formation, LiDAR-derived metrics, and Sentinel-2 time series
improved the estimation of both total volume and basal area
with respect to the case in which only LiDAR metrics or only
Sentinel-2 data are employed. For LiDAR-based total volume
models, MAE, and rmse were reduced by –3.8% and –10.1%,
for the RF and MLP models, respectively, and R2 was increased
by 5.6% and 10.3% for the same models when topographic data
were introduced. Improvements were even slightly greater for
basal area models. This improvement might be due to the fact
that topographic information provides a kind of correction effect
that compensates for the distortion of tree architecture induced
by height normalization of the point cloud. This distortion
increases with slope and can be considered as a source of signal
artefacts. Trees growing in mountainous areas can also have
curved trunks due to snow and wind. The spatial distribution of
LiDAR 3-D point clouds and the derived metrics can thus change
according to both slope and aspect for the same kind of stand
type. Using topographic information is helpful to deal with such
differences in point clouds. In the same spirit, we noticed that,
despite the radiometric correction of topographic effects applied
to Sentinel-2 images, differences in reflectances due to changes
in exposition are still visible. Adding slope and aspect as input
data in the model gives an opportunity to the neural network to
better cope with these residual differences.

Secondly, Sentinel-2 data bring information mainly related to
stand composition. Sentinel-2 data alone are not the best source
of information to predict forest variables that are primarily
driven by tree and stand structure, as also underlined in [20].
For example, when comparing the best Sentinel-2 based models
to the best LiDAR-based models, including topographic data
in both cases, MAE and rmse increased by 38.7% and 31.7%,
respectively, and R2 decreased by 28.1% for total volume.

However, adding Sentinel-2 data to LiDAR information led
to a significant improvement in the prediction with the proposed
DL framework. R2 increased by 13.4% and by 17.7% for total
volume and basal area, respectively and both MAE and rmse
were reduced by more than 20% for the two variables. These
results underline the complementarity between this information,
as also underlined in the recent study proposed in [21], where
the combination of the Sentinel-2 and POLSAR-derived topo-
graphic information improved the estimation of forest variables
in temperate forests. At plot level, for a given volume or basal

area, the 3-D distribution of LiDAR points and the derived met-
rics depend on tree species that are present in the plot. Therefore,
the relationship between LiDAR-derived metrics and the tar-
geted forest variables is dependant on stand composition. Results
seem to demonstrate that this dependence can be addressed using
Sentinel-2 data within an appropriate modeling framework. As
a result, the quality of the predictions is unexpectedly high with
regards to the complexity of the forest in the study area.

Thirdly, from a methodological point of view, when com-
paring competing approaches, we have observed that the MLP
model exhibits the best behavior, in terms of evaluation metrics,
for the analysis of both LiDAR-derived metrics and topographic
information. We can explain this fact by the intrinsic ability
of this approach to manage the different input information
permitting to extract effective knowledge for the downstream
regression task.

Fourthly, we have demonstrated the quality of our DL-based
framework, based on late-fusion strategy, for the task of structure
and biophysical variables estimation from heterogeneous (mul-
timodal) remote-sensing data. The comparison with the strategy
proposed in [37], based on an early-fusion option, advocates
in favour of our framework, underlying the appropriateness of
a multibranch architecture for our multimodal task. This result
is completely in line with recent studies [27] that pinpoint the
benefit of late-fusion approaches over early-fusion ones for
multimodal remote-sensing analysis. More in detail, the ob-
tained findings highlight that the availability of complementary
remote-sensing data is not a direct synonym of performance
improvements, but the way in which the diverse remote-sensing
sources are combined together is crucial to fully exploit the
interplay among the different input sources. This point is un-
derlined by the empirical results we have reported in Section IV
that pinpoint the ability of MMFVE to get the most out of the
different information we can access.

Finally, we remind that our task is characterized by opera-
tional/realistic constraints, thus, resulting in a limited amount
of GT information from which the relationship between mul-
timodal remote-sensing data and the target forest variables is
learnt. Despite such a data paucity setting, our approach clearly
outperforms standard (i.e., KNN and RF regressor) and recent
(i.e., BART and SSAE) competing strategies, demonstrating the
quality of modern DL-based methods to provide competitive
results also in scenarios where the amount of labelled samples is
scarce. Dealing with data from multiple sources can also bring up
additional issues due to the specificity of each available modality.
Indeed, in this study, LiDAR and Sentinel-2 data were acquired
through airborne and spaceborne configurations, respectively,
which results in differences in terms of scale and resolution be-
tween these data sources. Moreover, the data georeferencing is of
paramount importance in remote-sensing applications that rely
on GT and reference data. In the context of multimodal data fu-
sion, the input data on which models are trained are derived from
multiple datasets, each acquired under specific conditions and
preprocessed independently, and thus, misregistration among all
the available modalities can negatively impact the final results. In
this scenario, our proposed framework dealt with each modality
independently through dedicated branches before performing a
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late-fusion step. This architecture allowed to take into account
the peculiarities of each input data source and to process them
in an adequate manner considering their differences in scale
and resolution, before leveraging the interplay between all the
sources in the internal-fusion step.

VI. CONCLUSION

In this work, we have evaluated the complementarity of Li-
DAR, topographic, and Sentinel-2 information for the estimation
of two forest variables (total volume and basal area) to char-
acterize temperate forest properties in a multimodal scenario.
To this end, we have designed and deployed a strategy named
MMFVE, based on a DL framework, to cope with the richness
and complexity of the available multimodal input data.

MMFVE is based on a two-branch architecture with dedi-
cated per-source encoders and a latefusion step based on the
concatenation of the per-source features. Thanks to an end-to-
end learning strategy, our framework is capable to effectively
manage the available multimodal information associated to a
particular spatial location.

The experimental evaluation with competing approaches, usu-
ally employed to cope with structural and biophysical variables
estimation, highlights that the use of multimodal information
alone does not guarantee an improvement of the final perfor-
mances, but an effective exploitation of multimodal information
tightly depends on the way the data-fusion process is conducted.
More in detail, the results we have obtained on the estimation of
total volume and basal area forest variables, in terms of all the
considered evaluation metrics, underline the adequateness and
the added value of our neural network based approach to fuse
together LiDAR, topographic, and Sentinel-2 data.

Possible future works related to our research study can be
devoted to a in-depth analysis of the interplay between LiDAR
metrics and Sentinel-2 imagery on one hand, and topographic
information on the other hand. For instance, the intensity channel
derived from the laser wavelength of the LiDAR acquisition can
be considered as an additional spectral band with respect to the
original Sentinel-2 spectral bands due to the fact that it registers
a different wavelength of the spectrum. Furthermore, evaluating
which is the more appropriate way to integrate topographic
information (at raster or metric level) as an additional and/or
independent source of information (i.e., considering a three-
branch architecture) can be another follow-up of the proposed
research work. Finally, another possible avenue of research
could be related to the analysis of the importance of the different
input information in order to establish which LiDAR metric or
spectral band the neural network retains most useful following
a similar approach to the one proposed in [44].
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