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Abstract

NX is a type A trichothecene produced by Fusarium graminearum with limited information on its toxicity. NX is structurally
similar to deoxynivalenol (DON), only di ering by the lacking keto group at C8. Because of the structural similarity of the
two toxins as well as their potential co-occurrence in food and feed, it is of interest to determine the toxicity of this new com-
pound. In this study, we compared the protein composition of the extracellular media of pig intestinal explants (secretome)
exposed to 10 uM of DON or NX for 4 h compared with controls. The combination of two complementary quantitative
proteomic approaches (a gel-based and a gel-free approach) identified 18 and 23 di erentially abundant proteins (DAPs) for
DON and NX, respectively, compared to controls. Functional analysis suggested that, whereas DON toxicity was associated
with decreased cell viability and cell destruction, NX toxicity was associated with an enrichment of mitochondrial proteins in
the secretome. The presence of these proteins may be associated with the already known ability of NX to induce an intestinal
inflammation. Overall, our results indicated that DON- and NX-induced changes in the extracellular proteome of intestinal
explants are di erent. The increased leakage/secretion of mitochondrial proteins by NX may be a feature of NX toxicity.

Keywords Deoxynivalenol - NX - Gut - Fusarium graminearum - Explant - Proteome

Introduction

Various filamentous fungi, mainly from the genera Aspergil-
lus, Penicillium, and Fusarium produce secondary metabo-
lites in food and feed known as mycotoxins that are toxic to
both humans and animals (Payros et al. 2021a).

In temperate climates, infections of wheat and corn by the
pathogen F. graminearum and related species are a chronic
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problem. The resulting food and feed is contaminated with
the mycotoxin deoxynivalenol (DON; Miller 2016). In
Europe and Asia, exposure to DON can approach or exceed
the tolerable daily intake, especially in children (JEFCA
2011; Knutsen et al. 2017; Vin et al. 2020).

A decade ago, a genetic population of F. graminearum
was discovered that produced the novel trichothecene NX,
an analogue of DON lacking the carbonyl moiety at the
C8-position (Fig. 1) (Varga et al. 2015; Aitken et al. 2019;
Chen et al. 2022). NX is biosynthesized by new chemotypes
of F. graminearum populations first identified in the Mid-
west United States (Gale et al. 2010; Crippin et al. 2019).
DON and NX have been demonstrated to co-occur. Analyses
of corn samples that contained high amounts of DON have
found NX at 1-7% of the DON concentration (Crippin et al.
2020).

Because it is a high human exposure toxin, much e ort
has been spent to understand the mechanisms of toxicity of
DON. At a cellular level, DON interacts with the peptidyl
transferase region of the 60S ribosomal subunit (Garreau
de Loubresse et al. 2014). It induces ribotoxic stress, trig-
gering an inflammatory cascade mediated by the activation
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Fig.1 Structural formulas of
the two mycotoxins in this
study, DON (deoxynivalenol)
and NX

DON

of mitogen-activated protein kinases (MAPKSs) and oxida-
tive stress that leads to apoptosis (Pestka 2010; Lucioli et al.
2013; Payros et al. 2016). The toxic e ects associated with
DON exposure include alterations on protein synthesis,
immune system function, and intestinal functions (Pestka
2010; Pinton and Oswald 2014). DON also interacts with
several appetite suppression systems (Terciolo et al. 2018).

The toxicological characterization of NX, however, is far
from complete. The few available data show that NX and
DON share similar mechanisms of toxicity, including a simi-
lar inhibition of protein biosynthesis, as well as cytotoxicity,
oxidative stress-related, and pro-inflammatory e ects (Varga
et al. 2015, 2018; Woelflingseder et al. 2018, 2020).

Recently, the comparative intestinal toxicity of DON and
NX was assessed with human intestinal epithelial cells and
porcine jejunal explants (Pierron et al. 2022). Both toxins
had a similar impact on the viability of human intestinal epi-
thelial cells in vitro. However, NX displayed a greater toxic-
ity to pig intestinal explants as evidenced by the observed
histopathological lesions and the results of genome-wide
analysis. Gene expression data suggested that the two toxins
targeted the same molecular processes namely inflammation,
immune response, cell proliferation, di erentiation, apop-
tosis, and growth. Di erences between the two toxins were
limited to a higher number of genes regulated per pathway
as well as a higher magnitude of the gene expression changes
in tissues exposed to NX (Pierron et al. 2022).

Both to assess structure-activity relationships in this
class of trichothecene and the potential for DON and NX
to co-occur, it is important to understand the risk associated
with these toxins. Indeed, the investigation of the interaction
between these molecules requires a clear understanding of
the toxic impacts of each. One of the preferred approaches
in clinical systems biology used to identify relevant mecha-
nistic di erences and their associated potential biomarkers
is the study of tissue-specific leakage and secreted proteins
(commonly referred to as the secretome) using proteomics
(Hathout 2007). These are proteins that normally function
inside cells, but can be released into plasma due to spe-
cific tra cking, signaling, or cell damage. The secretome
includes many of the most important diagnostic markers in
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clinical investigations. This would include for example car-
diac troponins for myocardial infarction, and liver enzymes
for hepatocellular damage (Lai et al. 2010).

The objective of this study was to combine two com-
plementary quantitative proteomic approaches (a gel-based
and a gel-free method) to characterize and compare the
secretomes of pig intestinal explants exposed to DON and
NX with the aim of identifying specific toxic e ects of each
mycotoxin.

Materials and methods
Experimental design and statistical rationale

An ex vivo model based on pig jejunal explants was used
in the present study. This model is convenient to study the
molecular events that depend on interaction between the dif-
ferent intestinal cellular types as well as signaling gradients
present along the crypt-villus axis. The model also allows for
the analysis of control-treated paired explants, thus account-
ing individual variability. Pig intestinal explants were used
as surrogates of human tissues. Pig is a good model for
extrapolation to humans, as their digestive physiology is
very similar to that of humans (Swindle 2012). Moreover,
the intestinal explant model using post-weaning animals as
tissue donors is suitable for analysis of the intestinal toxicity
of trichothecenes (Kolf-Clauw et al. 2013; Alassane-Kpembi
et al. 2017a, b; Graziani et al. 2019). Because the exposure
time is limited to 4 h when intestinal explants are used due
to the greater possibility of tissue degradation with longer
incubation times, the concentrations of both toxins were set
at 10 pM. This strategy is recommended in proteomic studies
in toxicology (Rabilloud and Lescuyer 2015), because this
concentration is high enough to give useful insights into
the specific molecular mechanisms involved in toxic injury.
Moreover, examination at an early time point ensures that
cell mortality is low enough to avoid pollution of proteomic
analysis by events that are strictly related to cell death.
Two-dimensional fluorescence di erence gel electro-
phoresis (2D-DIGE) confirmed by immunoblotting was
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performed in six-paired control and treated samples. Paired t
tests (GraphPad Software, San Diego, CA, USA) and paired
ratios were used to analyze di erences in protein abundance
in all cases. Selection criteria for spots defined as di eren-
tially regulated between control and DON- or NX-treated
samples from the same animal were a fold-change of =1.5
or<0.67, presence in at least eight out of 12 gel images per
group and appropriate spot quality. Di erentially abundant
proteins (DAPs) detected in at least one animal were listed
and used for functional analysis. Label-free liquid chroma-
tography—mass spectrometry (LC-MS/MS) was performed
with three biological replicates in each group (control, NX,
and DON). T tests in a nested design were performed in
Proteome Discoverer 2.4 with a pairwise comparison. The
significance level was set to an adjusted p value<0.05 and
fold-change ratios of =2 or<0.5. Because fewer animals
were included using this approach, only DAPs detected in
all animals were listed and used for functional analysis.

Sample preparation

DON was purchased from Sigma-Aldrich (St. Quentin Fal-
lavier, France). NX (deacetylated product 7a-hydroxy, 3,
15-dideacetylcalonectrin), a kind gift from Dr JD Miller,
was obtained as described elsewhere (Aitken et al. 2019).
Toxins were dissolved in purified water and were stored
aliquoted at a stock concentration of 5 mM at—20 °C. A
total of six 4-week-old crossbred female piglets were used.
The experiment was conducted following the guidelines
of the French ministry of agriculture for animal research.
All animal experimentation procedures were approved
by the Ethics Committee of pharmacology-toxicology of
Toulouse-Midi-Pyrénées in animal experimentation (Tox-
cométhique) (No. TOXCOM/0163/PP) in accordance with
the European Directive on the protection of animals used
for scientific purposes (Directive, 2010/63/EU). Jejunal
explants were obtained as previously described (Lahjouji
et al. 2020) and rinsed for 30 min in complete cell con-
trol medium. Medium free of bovine fetal serum was used
to avoid polluting secretomes with foreign proteins, and
included William’s Medium E (Sigma-Aldrich), glucose
4.5 g/L (Sigma-Aldrich), ITS (insulin transferrin sodium
selenite) 1x (Sigma-Aldrich), alanyl-glutamine 30 mM
(Sigma-Aldrich), 1% penicillin—streptomycin, and 0.5%
gentamycin (Eurobio). Explants were exposed to 10 yM
of DON, NX or vehicle (water) at 39 °C for 4 h under
conditions described elsewhere (Alassane-Kpembi et al.
2017b; Garcia et al. 2018). After incubation, the medium
was recovered (3 mL), and debris was discarded by cen-
trifugation at 50009 for 15 min. Concentrated secretomes
were obtained using ultrafiltration centrifugal filter
units until volumes were reduced approximately tenfold
(Amicon Ultra-2 mL Centrifugal Filters 3 kDa MWCO,

Merck-Millipore, Darmstadt, Germany). Total protein
concentration was determined using the Bradford method
(Bradford 1976) and samples were kept at =80 °C until
analysis.

2D-DIGE analysis (gel-based approach)

Two-dimensional electrophoresis with CyDye-labeled
samples (2D-DIGE) was performed as previously
described (Miller 2012; Gebhard et al. 2018). Appropriate
amounts of concentrated secretomes (25 pg protein per 2D
gel and sample) were freeze-dried, re-dissolved in DIGE
labelling buffer, and minimally labelled with CyDyes
(Cytiva, Vienna, Austria). A Cy2-labelled pool of all sam-
ples was used as internal standard, Cy3 and Cy5 were used
for single samples in a reverse labelling setup. The whole
set contained six biological replicates per group. Per gel,
a pool of two labelled samples (Cy3, Cy5) and the internal
standard (Cy2) underwent isoelectric focusing in 10 cm
IPG pH 4-10 NL homemade strips prior to SDS-PAGE in
140 x 140 x 1.5 mm gradient gels (T =10-15%, C =2.7%).
Images were captured on a Typhoon RGB and evaluated
with DeCyder V5.02 software (both Cytiva).

For protein identification, 2D-DIGE gels were silver
stained under MS-compatible conditions (Miller 2012).
Selected spots of su cient intensity and quality (for regu-
lation criteria see above) were excised manually. Samples
were prepared and mass spectrometric analysis was per-
formed according to Gutiérrez et al. (2019). Briefly, silver
stained spots were de-stained using potassium hexacyano-
ferrate (I11) and sodium thiosulfate. After several wash-
ing steps with ammonium bicarbonate supported by ultra-
sonication, proteins were reduced with dithiothreitol and
alkylated with iodoacetamide. Digestion was performed
with trypsin overnight. Extracted and dried peptides were
dissolved in 0.1% TFA (trifluoroacetic acid) for LC-MS/
MS analysis applying a 390 min LC gradient. Detailed
parameters for the nano-LC Orbitrap MS/MS are provided
in Gutiérrez et al. (2019).

A database search was performed using the Proteome
Discoverer software 2.4.0.305 (Thermo Fisher Scientific,
USA) in the UniProt database of Sus Scrofa (TX: 9823)
as well as the cRAP database (https://www.thegpm.org/
crap/). Full tryptic cleavage was allowed with a maximum
of two missed cleavage sites, a precursor mass tolerance of
10 ppm and a fragment mass tolerance of 0.02 Da. For the
search, carbamidomethylation (+57.021 Da) of cysteine
as a static modification was used, whereas oxidation of
methionine (+15.995 Da) and N-terminal acetylation
(+42.011 Da) were set as variable modifications.
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Label-free LC-MS/MS (gel-free analysis)

For the label-free LC-MS/MS, 30 ug of each sample were
digested using the FASP protocol on 10 kDa filters (Pall,
New York, NY, USA) with slight modifications. The filter
units were washed twice with 500 uL 8 M urea in 50 mM
tris (pH 8.0) and centrifuged for 20 min at 10,0009, and once
with 300 pL and centrifuged for 15 min at 10,000g. The
proteins in the samples were reduced (200 mM dithiothrei-
tol, 37 °C, 30 min) and alkylated (500 mM iodoacetamide,
37 °C, 30 min) on the filter on a thermomixer (Eppendorf,
Germany). Next, the samples were centrifuged for 15 min at
10,0009 and washed twice with 100 uL. 50 mM tris (pH 8.0),
and then centrifuged for 15 min at 10,000g. Digestion was
carried out using Trypsin/LysC Mix (Thermo Fisher Sci-
entific, Waltham, MA, USA) in a ratio of 1:25 (Protease:
protein) overnight at 37 °C. Digested peptides were recov-
ered by centrifugation for 15 min (10,000g) and with three
times 50 pL of 50 mM tris and 15 min centrifugation each
time. The resulting peptide solution was acidified with 1 uL
concentrated TFA for subsequent desalting and clean-up
using C18 spin columns (Pierce, Thermo Fisher Scientific)
according to the manufacturer’s protocol. The dried peptides
were re-dissolved in 300 pL 0.1% TFA of which 3 pL were
injected to the nano-LC-MS system (Ultimate 3000 RSLC,
QExactive HF, Thermo, Waltham, MA, USA).

The LC-MS/MS analysis was done as described above
with just a longer gradient used. The step from 4 to 31%
B was prolonged to 60 min. The MS database search was
also performed as given in “2D-DIGE analysis (gel-based
approach).

Functional analysis

To assess which cell compartments/functions/pathways were
mainly represented by the peptides/proteins analyzed, a sys-
tem biology analysis was performed using combined lists
of DAPs from the two proteomic approaches. In brief, the
UniProtKB accession numbers from all DAPs were recov-
ered and listed. From these numbers, the o cial human
gene symbols (HuGO Gene Nomenclature Committee)
were retrieved from Sus scrofa annotated proteins, whereas
uncharacterized proteins were mapped to the correspond-
ing Homo sapiens orthologs by identifying the reciprocal
best BLAST hits. The list of proteins showing di erential
abundance was uploaded in DAVID Bioinformatic database
v6.8 software (Huang et al. 2009) to obtain an overview of
Gene Ontology (GO) terms for the cellular compartment,
molecular function, and biological processes in which DAPs
are involved. The list of proteins showing di erential abun-
dance was also uploaded onto Ingenuity Pathway Analy-
sis (IPA) (Qiagen Bioinformatics, Hilden, Germany) and
mapped to the respective databases of each tool. IPA uses
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networks, diseases, and molecular and cellular functions
generated from previous publications and public protein
interaction databases using the Ingenuity Knowledge Base
as a reference.

Immunoblotting analysis

Proteomic results were checked by immunoblotting using a
cross-reacting antibody for the human protein ATP synthase
F1 subunit beta (ATP5F1B; ABclonal, Woburn, MA, USA),
a protein that shows di erential abundance according to both
2D-DIGE and label-free LC-MS/MS analysis.

The procedure was performed as previously described
(Miller et al. 2006), with modifications. Appropriate
amounts of (unlabeled) samples were separated on SDS-
PAGE on 10-15% T gradient gels over a separation distance
of 8 cm and semi-dry blotted onto nitrocellulose (Cytiva).
After fluorescence staining of the protein patterns with
RuBPS (ruthenium (11) tris bathophenanthroline disufonate)
and scanning on the Typhoon RGB, membranes were incu-
bated in primary and secondary antibodies (cross-absorbed
anti-rabbit 1gG-HRPO, Novex, Life Technologies, Grand
Island, NY, USA). Immunoreactive bands were detected by
ECL (Clarity Western ECL substrate, Bio-Rad, Hercules,
CA, USA) on a Vilber Lourmat FX system (Vilber-Lourmat,
Eberhardzell, Germany). The overall protein staining pattern
was used as a loading control and for normalization during
band intensity quantification using Fiji software (ImageJ).

Results and discussion

2D-DIGE analyses revealed di erences in spot intensity
between controls and DON samples in 27 matched spots,
whereas 56 matched spots in NX samples di ered signifi-
cantly (a change of at least 50%) from controls. Of these,
respectively, 15 and eight spots were positively identified
by MS (Fig. 2; Supplementary Tables S1, S2). One animal
was excluded from the analysis, because it showed an abnor-
mal pattern of NX-treated samples, suggesting a technical
problem. The list of di erentially abundant proteins was
completed with those detected by label-free LC-MS analy-
sis, namely three proteins in DON samples and 16 in NX
samples (P <0.05; fold-change=2 or<0.5) (Supplemen-
tary Table S3). Five proteins (APOA4, ATP5F1B, CCTS,
HSPAS5, and MMP1) were di erentially accumulated in
response to both toxins, and one of them, ATP5F1B, was
found to be a DAP in both proteomic analyses (2D-DIGE
and LC-MS/MS). This last protein was used to check pro-
teomics data, and immunoblotting analysis confirmed the
results (Fig. 3).

The secretomes of intestinal explants exposed to DON
showed a majority of DAPs involved in structural functions
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Fig.2 2D separation of secretome, DIGE-gel after silver staining.
Shown sample: mix of secretomes (equal amounts of CyDye-labeled
control, NX-treated secretome and internal standard). Red circles
indicate spots found di erentially abundant in comparison to control
sample and were subjected to LC-MS/MS analysis for protein iden-
tification. Labels according to gene names of the respective proteins
(UniProt database); for full names, see Tables 1 and 5; for regulation
and identification data, see supplemental tables S1 and S2 (color fig-
ure online)

Fig. 3 SDS-PAGE of
secretomes (from tissue with/
without exposure to the
respective mycotoxins) and
with immunoblot against

anti-ATP5F1B (ATP synthase 0.07

F1 subunit beta). A ATP5F1B

band intensities in controls, NX 0.06

and DON-treated supernatants
(n=5 per group), all normalized
onto the overall protein stain

of the respective lane (in AU
arbitrary units); significant dif-
ferences were calculated relative
to untreated control (Student’s

t test, paired, two sided; *,
p<0.05). B Blot example of one

ATP5F1B/protein (AU)

animal in immunostaining (top) 0.02

and overall protein stain which
was used for normalization (bot-
tom; same lanes as shown for
specific stain). C is for control,

DON for deoxynivalenol 0

0.08

0.05

0.04

0.03

0.01

(8 DAPs), together with proteins with roles in metabolism
(5 DAPs) and other functions (5 DAPs, Table 1).

Functional analysis indicated that these proteins were
either located in extracellular vesicles or were cytosolic or
cytoskeletal/junctional proteins (Table 2).

The most a ected molecular and biological processes
were linked with cell adhesion as well as cell tra cking
and shape (Tables 2 and 3). These results show that the
secretomes of jejunal explants exposed to DON are markers
of cell damage, loss of cell adhesion, and altered metab-
olism. Likewise, the top canonical pathways regulated
by DON evidenced changes in glucose metabolism and
enhanced detoxification (Table 4).

Our results are in agreement with the known toxicity
of DON that causes lesions in the intestine and the loss of
the intestinal barrier (Pinton et al. 2009, 2012; Payros et al.
2021b). Indeed, the enrichment of structural proteins as well
as of proteins involved in metabolism known to be present in
mature enterocytes in the DON intestinal secretomes reflects
increased destruction of the intestinal epithelium, and the
release of cytosolic proteins into the medium. Although the
pro-inflammatory role of DON is well known (Pestka 2010;
Alassane-Kpembi et al. 2018; Payros et al. 2020), the intes-
tinal secretomes contained no inflammatory proteins, prob-
ably due to the short exposure time to the toxin. Indeed, the
production and release of inflammatory proteins may take
more than 4 h. However, the changes observed in glucose
metabolism and detoxification processes as well as changes
in cellular chaperones such as HSPAS reflect a high cellular
stress, which may indeed be linked with the development of
an inflammation.

ATP5F1B-Regulason

C NX DON C NX DON
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Table 2 Functional analysis of the di erentially abundant proteins (listed in Tables 1 and 5, depending on the toxin)

Gene ontology term category DON NX
Term Benjamini Term Benjamini
Cellular compartment Extracellular exosome 6.4E-5 Mitochondrial nucleoid 1.1E-2
Cytosol 1.4E-2 Myelin sheath 7.1E-2
Cell—cell adherens junction 5.3E-2 Mitochondrial inner membrane 7.1E-2
Muscle thin filament tropomyosin 6.1E—2 Mitochondrial outer membrane 29E-1
Molecular function Cadherin binding involved in cell-  1.3E-1 Antioxidant activity 2.7E-1
cell adhesion
Actin binding 8.1E—-1 Lipid binding 7.4E-1
Structural constituent of muscle 8.1E—-1 Poly(A) RNA binding 7.4E-1
Glycoprotein binding 9.3E-1 Transporter activity 7.4E-1
Biological process Cell—cell adhesion 1.0EO Hydrogen peroxide catabolic process 5.1E-1
Toxin transport 1.0EO Response to oxygen-containing compound  9.3E—1
Muscle filament sliding 1.0E0 Response to reactive oxygen species 9.3E-1
Gluconeogenesis 1.0EO Macromolecular complex assembly 9.6E-1

Enrichment of Gene Ontology terms as a function of the cellular compartment, molecular function, and biological processes according to the

DAVID bioinformatics database v6.8

Table 3 Top canonical pathways enriched in di erentially abundant
proteins for each toxin according to Ingenuity Pathway Analysis
(based on the protein lists in Tables 1 and 5)

Toxin Name Pvalue  Overlap

DON Gluconeogenesis |
Glutathione-mediated detoxifica-
tion
Galactose degradation | (Leloir
pathway)
NX  Mitochondrial dysfunction
Sirtuin signaling pathway
Oxidative phosphorylation

6.39E-09 3.5% (6/171)
2.39E-04 6.2% (2/32)

3.60E-03 20.0% (1/5)

6.39E-09 3.5% (6/171)
1.54E-07 2.1% (6/292)
2.56E—06 3.6% (4/11)

The overlap details the relative percentage (number) of di erentially
regulated proteins for each pathway, depending on the toxin

The secretomes of intestinal explants exposed to NX were
highly enriched in DAPs belonging to the mitochondria (14

DAPs). The list of DAPs was completed with structural pro-
teins (4 DAPs) and proteins with other functions (6 DAPs;
Table 5).

Based on the functional analysis, most of the DAPs were
contained in mitochondria (Table 2) and enriched pathways
were linked with mitochondrial functions (Table 5). Cellular
and molecular functions connected with NX-related DAPs
indicated responses to oxidative stress as well as binding
of lipids and small molecules such as RNAs (Tables 2 and
3). In the present study, we observed that the changes in
the secretomes of jejunal explants exposed to NX reflected
alteration in cell shape and adhesion, as well as alteration in
the regulation of inflammatory response. This is in accord-
ance with previous results, showing that NX regulates genes
involved in cell proliferation, di erentiation, apoptosis, and
growth, and particularly in immune and pro-inflammatory
responses (Pierron et al. 2022). In contrast to DON, most
DAPs in NX-treated samples were mitochondrial proteins.
The enrichment in mitochondrial proteins of the jejunal
secretomes in response to NX is likely associated with

Table 4 Molecular and
cellular functions enriched in

di erentially abundant proteins DON
for each toxin according to

Ingenuity Pathway Analysis

(based on the protein lists in

Tables 1 and 5) NX

Toxin Name P value range # Molecules
Cellular assembly and organization 1.36E—02 to 1.46E—06 8
Cellular function and maintenance 1.32E-02 to 1.46E—06 13
Cell death and survival 1.38E-02 to 5.78E—06 12
Energy production 1.76E—02 to 5.74E—09 14
Nucleic acid metabolism 1.67E—-02 to 5.74E—09 12
Small molecule biochemistry 2.28E—-02 to 5.74E—-09 18

# Molecules gives the number of di erentially regulated proteins with the respective functions, depending

on the toxin
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Table5 (continued)

Function

Subcellular location

O cial gene symbol Protein name

Technique

Modulator of the MAP kinase, NF-kappa B, and

Plasma membrane, cytosol

Phosphatidylethanolamine binding protein 1

PEBP1

2D-DIGE

glycogen synthase kinase-3 signaling pathways

Detoxification of electrophilic compounds

Vesicles, cytosol

Glutathione S-transferase mu
Fatty Acid binding protein 1

GSTM
FABP1

2D-DIGE
2D-DIGE

Lipid binding protein involved in lipid uptake and

Nucleoplasm, cytosol

transport within the hepatocyte
Typical HSP70 chaperone involved in the folding

Cytosol

Heat shock protein family A (Hsp70) member 5

HSPA5

2D-DIGE

and assembly of proteins in the endoplasmic reticu-

lum; master regulator of its homeostasis
Secreted protease involved in the degradation of

Vesicles, extracellular

Matrix metallopeptidase 1

LC-MS/MS MMP1

interstitial collagens

The table lists the proteomic methods used for protein detection, the o cial gene symbol, name, subcellular location, and function (according to Gene ontology). Proteins found regulated also in

DON exposure are in bold

the increased inflammation caused by this toxin compared
to DON. Indeed, inflammation promotes the secretion of
mitochondrial content (Todkar et al. 2021). The presence of
mitochondrial content in the extracellular space can medi-
ate cell-to-cell communication and repair and function as
an activator of the immune response (Miliotis et al. 2019).
When contained in mitochondrial-derived vesicles, extracel-
lular mitochondrial proteins reflect an enhanced oxidative
stress and mitochondrial toxicity (\Vasam et al. 2021). In our
conditions, it was not possible to distinguish if the identified
DAPs are free in the surrounding medium or contained in
vesicles or whole mitochondria. Further analyses are needed
to investigate if NX is especially toxic to cell mitochon-
dria, and if the secretion of mitochondrial-derived vesicles
is important for the increased inflammation induced by NX
compared to DON.

In terms of risk analysis, the present results contribute
with new information concerning the di erence between
DON and NX toxicity. Indeed, NX toxicity is associated
with the release of extracellular mitochondrial proteins in
exposed cells. Quantification of this phenomenon, in com-
parison with common e ects such as inflammation, would
be useful to characterize the combined toxicity of DON and
NX and their possible interactions.

Conclusion

Our results show that the secretomes of jejunal explants
exposed to DON and NX reflect the known histological
lesions as well as the metabolic changes associated with
cellular stress induced by the inflammation promoted
by both mycotoxins. Our results also show that NX but
not DON toxicity promotes the release of mitochondrial
proteins, a phenomenon possibly linked with the pro-
inflammatory e ects of NX. Our results further suggest
that NX may be toxic to mitochondria, and call for further
research on the role of mitochondria and the production of
mitochondrial-derived vesicles in NX toxicity. The present
results provide new evidence that DON and NX toxicity
may not simply be a matter of di erent potencies of the
same e ects, contrary to what was previously thought. The
comparative assessment of mitochondrial toxicity could be
useful to investigate the di erential toxicity of DON and
NX as well as their combined e ects.
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