

Beyond controversy, putting a livestock footprint on the map of the Senegal River delta

Jeremy Bourgoin, Djibril Diop, Labaly Touré, Quentin Grislain, Roberto Interdonato, Mohamadou Dieye, Christian Corniaux, Julien Meunier, Djiby Dia, Sidy Seck

▶ To cite this version:

Jeremy Bourgoin, Djibril Diop, Labaly Touré, Quentin Grislain, Roberto Interdonato, et al.. Beyond controversy, putting a livestock footprint on the map of the Senegal River delta. Land Use Policy, 2022, 120, pp.106232. 10.1016/j.landusepol.2022.106232 . hal-03705610

HAL Id: hal-03705610 https://hal.inrae.fr/hal-03705610

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Beyond controversy, putting a livestock footprint on the map of the Senegal River delta

Jeremy Bourgoin^{1,2*}, Djibril Diop³, Labaly Touré^{4,5}, Quentin Grislain^{1,2}, Roberto Interdonato^{1,2}, Mohamadou Dieye³, Christian Corniaux^{6,7}, Julien Meunier⁸, Djiby Dia³, Sidy M. Seck⁵

- 1 CIRAD, UMR TETIS, F-34398 Montpellier, France
- 2 TETIS, Université Montpellier, AgroParisTech, CIRAD, CNRS, IRSTEA, Montpellier, France; (quentin.grislain@cirad.fr; roberto.interdonato@cirad.fr)
- Institut Sénégalais de Recherches Agricoles, Bureau d'Analyses Macro-Economiques, BP 3120, Dakar, Sénégal;
 (djibrildiopsn@gmail.com; dieyemohamadou@gmail.com; djiby.dia@isra.sn)
- 4 Université du Sine Saloum. Elhadj Ibrahima Niass, Sénégal. (labaly.toure@ussein.edu.sn)
- 5 Université Gaston Berger, Saint-Louis, Sénégal. (sidysecksn@yahoo.fr)
- 6 ISRA, Laboratoire National Elevage et Recherche Vétérinaire (LNERV), Dakar, Sénégal (chrsitian.corniaux@cirad.fr)
- 7 UMR SELMET Univ. Montpellier, CIRAD, INRA, SupAgro, Montpellier, France
- 8 LADYSS, UMR 7533 CNRS Université de Paris, Paris, France (julien_meunier@live.fr)
- * Corresponding author: jeremy.bourgoin@cirad.fr; Tel.: +33467558618.

Present address: Maison de la Télédétection, 500 rue Jean François Breton, 34090, Montpellier, France.

Abstract

The Senegalese delta, like many other agricultural territories in the Global South, is experiencing changes in agricultural trajectory. These changes are related to the promotion of competitive and performance-based forms of agriculture. In a context of tense relations between farmers and herders, the quest for equitable access to land, which is a guarantee of peace, stability, and balanced economic and social development, is being called into question by the arrival of capital investors and new actors that are highly supported by the State. This situation raises questions about two important issues: (i) the challenge of the sustainable management of natural resources, especially land; and (ii) the socio-political stakes related to the fact that land is a sensitive resource, both politically and socially. The situation is exacerbated by the fact that dominant discourses are being built around representation of

unused and available lands. The aim of this article is to address this controversy by questioning landuse planning processes and tools and underlining the reality depicted. We demonstrate that discourses around land availability are built upon sectoral visions that tend to overshadow the realities of land use. Indeed, livestock farming and particularly its mobile form (i.e., pastoralism) is rendered invisible by not being considered in the majority of land-use and agricultural policies. Through a participatory survey of campsites, we show that gathering basic information on livestock farming should not to be reduced to technical issues. Beyond that, we acknowledge that these land-use issues are rooted in sector-based and neoliberal visions of development. We conclude by discussing the importance of effective decentralization in financial and technical means and the development of systemic proficiency that goes beyond normative sectoral views to acknowledge and act on territorial development.

Acknowledgments

This project received multiple support: from Acting for Life and DFID thought the extension of the BRACED project in Senegal; from AFD through their support of the scientific program of SAED-UGB, that associated ISRA and CIRAD; from ISRA BAME that contributed to technical and financial means to conduct the surveys; from the Land Matrix Initiative and the Senegal Land Governance Observatory to access Large-Scale Land Allocation-related data in Senegal.

Declaration of Competing Interest

Authors declare no conflict of interest. All authors have read and agreed to the published version of the manuscript.

Keywords: Pastoralism; Senegal; Land-use planning; Territorial development; Participatory
 assessment

3 **1. Introduction**

Hunger and other forms of malnutrition continue to be society's great challenge (Godfray et al., 2010),
while the increasing climate variability jeopardizes global food systems and agricultural development,
notably in the most vulnerable areas such as Sub-Saharan Africa (SSA) (Thornton et al., 2011).

7 Certain policy efforts seek to eradicate food insecurity by 2030 (FAO, 2015). In order to align these 8 goals with the looming prospect of feeding 9.7 billion people by 2050, transformative changes in the 9 agricultural sector seem indispensable (Cole et al., 2018). Notwithstanding fervent and continuous 10 support in favor of agricultural intensification, a large corpus of literature has underlined certain limits 11 in terms of ethics, diminishing returns, and increasing externalities (Matson and Vitousek, 2006). Land 12 conversion is seen as a complementary pathway, promoting the dedication of even greater amounts 13 of arable lands for agricultural purposes (Cole et al., 2018). This paradigm follows the rationale that investing in land considered underutilized will compensate for production shortfalls (Byerlee et al., 14 15 2013). In practice, land investments in the agricultural sector are increasingly targeting SSA 16 (Interdonato et al., 2020), portrayed a decade ago as underutilizing land. "Of the 183 million hectares 17 (ha) of cultivated land in SSA, 95 percent is rain-fed and less than 5 percent benefits from some type of Agricultural Water Management (AWM)—by far the lowest irrigation development rate of any 18 region in the world" (World Bank, 2013:30). 19

Along with underutilized land, marginal lands are also targeted to expand production schemes. Considered as uncultivated, these lands may harbor other types of value but are nevertheless seen as "suitable for commercial agriculture" (Exner et al., 2015:652). In the last decade, researchers have shown the costs associated with converting land from other uses to agricultural. For instance, Smith (2013) showed that out of the 3 billion ha suitable for crop production at the global scale, one-half was cultivated. Converting the other half, covered by forested areas, would entail high environmental and 26 operating costs. Others have shown concerns regarding increasingly scarce land (Lambin et al., 2013), 27 and the multiple and often conflicting demands for land that engender that scarcity (Smith et al., 2010). 28 This apparent scientific consensus is challenged by studies identifying potential for land conversion at 29 regional levels, often under the term of Potentially Available Cropland. Studies by Bruinsma (2003) 30 highlighted that land conversion will still be on the agenda in Sub-Saharan Africa until 2030, when it is 31 expected to contribute 27% of the region's crop production. In 2011, the World Bank reported that 32 445 million hectares of potentially available uncultivated lands (globally), almost half of which is 33 located in SSA, could benefit from agricultural investment (Deininger and Byerlee, 2011).

34 This rationalization is generally combined with the promotion of land investments led by agro-35 industries with the assumption that they will better address the challenge of reducing yield gaps 36 (Deininger and Byerlee, 2011). Additionally, the emphasis on business in agriculture is justified by its 37 contribution to alleviating global food insecurity and poverty (World Bank, 2019), and the expected 38 trickle-down benefits to localized food security (Stiglitz, 2015). These narratives have taken root in 39 rural areas of developing countries, propelled by government and Foreign Donor Funded Projects, 40 where economic development and food security agendas are intertwined and bound by neoliberal 41 ideologies (Mediavilla and Garcia-Arias, 2019). In line with Rostow's stages of development (1990), 42 narratives are built upon indicators of productive efficiency with horizons of modernity and economic 43 growth (Weis, 2010). This dominant conceptualization of agricultural productivity for development has 44 fostered the global emulation of industrial capitalist agriculture (Ross, 2013), manifesting in the rise of large-scale land acquisitions (Johansson et al., 2016; Nolte et al., 2016) and the worldwide proliferation 45 46 of land grabbing (Zoomers et al., 2016; Edelman et al., 2018).

In this international context of pressure on agrarian land and the commodification of agricultural space, the Senegalese government has undertaken policy and institutional reforms that sustain a vision of rural development directed towards highly productive sectors and the promotion of private agricultural initiatives (Bourgoin et al., 2019). The meta-analysis on agribusiness investments proposed 51 by Bourgoin et al. (2019) showed hotspots for land investments, and in particular the delta of the Senegal River valley (commonly called "delta" throughout the article). Here, "modern forms of 52 53 agriculture" (Ancey and Monas, 2005) are propelled by government-led projects. One example is the 54 Project for Inclusive and Sustainable Agribusiness Development (PDIDAS), which has been operating 55 since 2014 with a 43 billion XOF loan from the World Bank. The project's rationale was justified by the 56 fact that land is available for private investors to further develop horticultural production (PDIDAS, 57 2015, Mbaye Diop et al., 2017). This vision of modernity seems to be in contradiction with historical depictions of the area, portrayed as rich in pastoral activities (Michel and Sall, 1984; Tourrand, 1993; 58 59 Corniaux et al., 1998). In practice, the discourses on land availability have met resistance within civil 60 society, fostering the federation of a network of NGOs against the dynamics of land grabbing under a 61 common umbrella organization called CRAFS (Faye et al., 2011; Kanoute et al., 2011; GRAIN, 2012; 62 Bagnoli et al., 2015; Fall and Ngaido, 2016). At another scale, the Delta experienced several, more 63 quantifiable local uprisings that opposed land acquisitions by agribusiness projects in the 2010s 64 (d'Aquino et al., 2017).

65 The aim of this article is to address the controversy around unused and available lands by questioning 66 land-use planning processes and tools. How inclusive are these tools and which reality do they depict? 67 Current representations of land use seem inconsistent. Either pastoral activities, often portrayed as 68 anachronistic (Magrin et al., 2011), have naturally declined in number and been replaced by what the government defines as "modern forms of agriculture" (Ancey and Monas, 2005), or, as we hypothesize, 69 70 discourses on land availability have obscured the existence of practices that do not fit the values of a 71 certain vision of agricultural development. Our specific intention here is to compare the representation 72 of agricultural practices by current information systems with the reality of actual practices found in the 73 field. We use simple but efficient methods to expose practices that have a limited spatial footprint in 74 a data scarce environment. We also discuss current and future risks related to overlooking these 75 practices.

76 2. Study area

77 78

2.1. The Delta, an agricultural hotspot

79 Since 2014, the current Government of Senegal has been conducting a development program, the Plan 80 Sénégal Emergent (PSE), which is based on various key sectors of the economy, mainly commercial 81 agriculture and the agri-food sector. The government also intends to modernize family farming 82 through the implementation of microprojects aimed at enhancing the value of existing farms by 83 intensifying production and diversifying sources of agricultural income through additional high value-84 added production. This vision is translated within the framework of a program to revive and accelerate 85 the pace of Senegalese agriculture (PRACAS), which is based on four main areas of focus: (i) achieving 86 self-sufficiency in rice, (ii) developing the groundnut sector, (iii) promoting horticulture, and (iv) 87 strengthening food security. These are all aggregation projects aimed at positioning Senegal as a major 88 exporter of high value-added fruit and vegetables and ensuring food sovereignty.

89 Since 2014, the government has also initiated a decentralization reform in order to revitalize territorial 90 development and territorialize the ambitions of the PSE and PRACAS. This third act of decentralization 91 proposes a redefinition of the territorial architecture by elevating the regions to the status of 92 development centers. Within this framework, the Senegal River Valley (SRV) has been identified as an 93 agro-industrial production area that can meet the challenges of agricultural production. To this end, 94 the government is supporting the implementation of several large-scale projects in the delta of the 95 SRV, including the Guiers Lake area (Bourgoin et al., 2019). The article will focus on this study area, 96 characterized by multiple challenges around the use of land and water resources. Recent depictions of 97 the study area by Bourgoin et al. (2016), describe the issues related to harboring different uses, namely 98 agriculture (irrigated, flood recession, rainfed), pastoral livestock, fishing, and tourism. The strong 99 intensification of agricultural activities described in literature is questioned from the angle of its 100 impacts in terms of transformations of spaces and practices. It also questions i) the impact of 101 decentralized land use planning processes and their role in articulating these dynamics; and ii) how 102 data is used to plan current and future agricultural development in the area.

103 **2.2.** *Implementation of land use policies and the role of SAED*

104 SAED (Société d'Aménagement des Terres du Delta) was created in 1965, five years after Senegal's 105 independence, with a threefold mission: "to develop 30,000 ha for rice cultivation in 10 years, to 106 organize the settlement and agricultural colonization of the Delta and finally, to train and supervise 107 the farmers" (Seck, 2009:23). Between 1965 and 1975, SAED developed nearly 30,000 ha of rice fields, 108 followed by the settlement of nearly 900 families from neighboring regions (Louga, Podor, Dagana, 109 Saint-Louis) and the creation of new villages (Boundoum Est and Boundoum Nord, Boundoum Barrage, 110 Kassack Nord and Kassack Sud, Savoigne) in the delta. This dynamic of hydro-agricultural development 111 was accompanied by immigration movements organized and supervised by the central authorities 112 (forced migration during the colonial period and voluntary migration after independence) to provide 113 the necessary manpower for the exploitation of newly irrigated areas.

114 The Delta experienced a socio-economic recomposition in the national political and economic context 115 of the 1980s and 1990s. The disengagement of the State and the liberalization of economic sectors, 116 imposed by financial partners, reduced SAED's maneuverability and resulted in the establishment of 117 favorable conditions for peasant empowerment. The concurrent transfer of responsibilities to producers meant a transfer of financial expenses to producers as well (Lavigne Delville, 1991). The 118 119 management of irrigation was thus transferred to the farmers, stimulating private initiatives and 120 triggering the multiplication of privately irrigated areas. Beyond this euphoria, many of these private irrigation systems rapidly declined due to difficulties such as a lack of financial means, insufficient 121 122 development, a credit crunch, or the devaluation of the CFA franc (D'Aquino et al., 2000; Bélières et 123 al., 2002).

Piloted in the SRV in the late 1990s, Land Use and Allocation Plans (LUPs) were designed to provide a guiding framework for local managers to analyze and plan land uses. The idea of developing POAS was first formulated by the Senegalese government as part of the Integrated Development Master Plan for the Left Bank of the Senegal River (1994), which recommended that rural communities adopt this toolin order to "control" their land.

129 The POAS pilot operation was launched in the rural community of Ross Béthio in 1997, at the request 130 of its Rural Council, and led by a research team from the Institut Sénégalais de Recherche Agricole 131 (ISRA), SAED, and the Centre français de recherche agronomique pour le développement international 132 (CIRAD). The objective was to provide local communities with an institutional and technical tool to 133 support land management (SAED, 2002). The POAS was created with the following objectives: (i) to 134 clarify the land tenure situation, for better control and management of rural land by local elected 135 officials and local communities, (ii) to strengthen complementarity between agriculture and other 136 productive activities for integrated and sustainable rural development, and (iii) to promote the 137 involvement of populations in development actions.

138 After the completion of this experiment in the rural community of Ross Béthio, the tool was transferred 139 to SAED for large-scale implementation. The POAS is a model for the participatory development of 140 rules for the management of space and natural resources, which can have a large number of positive 141 impacts. It is also a tool for dialogue between populations and institutions, which can thus enrich or 142 influence the conduct of any planning and development operation with regard to land use constraints 143 or their repercussions on land (d'Aquino et al., 2001). At the local level, the modalities for the allocation 144 and management of customary land are diverse and adaptable to the particular conditions of territorial development. This flexibility is generally opposed to fixed territorial management that encourages land 145 146 speculation. The POAS was supposed to provide an answer to this problem, by allowing the integration 147 of various local information systems at the territorial level, a dissemination of information and thus 148 the establishment of a basis for land governance.

Since the beginning of the 2000s, agricultural policy can be analyzed through the agricultural programs
and policies defined in the Accelerated Growth Strategy (ACS) and the Poverty Reduction Strategy
Paper (PRSP). As the framework for the development of the government's objectives in all areas, the

152 SCA and the PRSP defined objectives for the agricultural sector and led to the development of several 153 measures: the Loi d'Orientation Agro-sylvo-Pastorale (LOASP), the Programme de Développement des 154 Marchés Agricoles du Sénégal (PDMAS), the REVA Plan (Retour vers l'agriculture), and other special 155 programs. Here the common denominator is the intention of the State to regain control of the 156 agricultural sector by reorganizing seed collection and distribution systems and promoting 157 diversification of food crops to farmers through special programs (maize, sesame, cassava, bissap). 158 Over the last two decades, SAED has been supported financially and technically by international 159 projects. It has been involved in, or initiated, multiple technical and institutional innovations, especially 160 in the field of land and territorial management, the policy of transferring the management and 161 maintenance of hydro-agricultural developments to the users, and the promotion of a public-private 162 partnership in the development of irrigation. In 1990, SAED generated its first geographic information 163 system (GIS). The project, which was developed with The French Agricultural Research Centre for 164 International Development and funded by the French Ministry of Cooperation, was designed to 165 evaluate development in the Senegal River Valley through the monitoring of irrigated lands (Faye et 166 al., 1995). That project was followed by the survey and cartography of irrigated plots for the Delta area 167 (Passouant 1997). Between 1992 and 2000, SAED was also involved in a research process that intended 168 to empower local authorities to develop their own land use plans. An initial pilot phase successfully 169 demonstrated how SAED could accompany local authorities, in the context of decentralization, to 170 collectively identify and map zones dedicated to specific activities (e.g., agriculture, pastoralism), and 171 more importantly, plan endogenous investments (d'Aquino, Seck, et Camara, s. d.). This pilot phase 172 was upscaled to all municipalities in the Delta area (and most of the municipalities in the Senegal River 173 Valley), and SAED became the leading institution for geographic information on land tenure. Notably, 174 SAED received funding from the French Development Agency (AFD), for the "Projet d'Appui aux Communautés Rurales de la Vallée du Fleuve Sénégal-PACR/VFS" (2007-2013). The objective there was 175 to strengthen land information systems to (i) promote a better knowledge of space and land 176 177 management rules, (ii) enable a good knowledge of land resources in the rural communities, (iii)

modernize and facilitate land monitoring and management by rural communities, and (iv) supportdecision-making.

180 **3. Methods**

181 **3.1.** *Building a cartographic diagnosis*

182 Using geographic information systems and cartographic tools, we mapped the current extent of official 183 knowledge on land use. The cartographic diagnosis of the study area, was built during a scientific and 184 technical partnership, funded by AFD in 2017-2018, and involving SAED, the University of Gaston 185 Berger, CIRAD, and ISRA. In this context, partners pooled geospatial information which included a geo-186 database from SAED that referenced all hydro-agricultural developments. The database included 187 irrigation scheme and georeferenced plots. Within this database, we extracted areas officially listed as registered irrigated lands (under SIF for "Système d'Information Foncier"). If POAS served to clarify the 188 189 rules of access and sharing of natural resources, and thus ease the climate of social tensions and 190 conflicts between users, they did not constitute a real tool for planning, securing land tenure and 191 supporting decision-making in land use planning. The SIF intends to provide a rural cadaster, indicating 192 land allocation status.

193 SAED also gave access to georeferenced POAS, including cattle tracks. The geodata used for the 194 identification of current and future agro-industrial schemes in the study area comes from a partnership 195 between CIRAD, the Land Matrix Initiative (https://landmatrix.org) and the Senegalese Observatory on 196 Land Governance. To complete land-use datasets, we used BaseGéo Sénégal (www.basegeo.gouv.sn), 197 which is an online and free geospatial database that gave access to broad classes of land use. Under 198 the "Agence Nationale de l'Aménagement du Territoire "(National Land Use Planning Agency), those 199 classes give us an account of the extent of irrigated and rain-fed agriculture. It also includes other base 200 geographic layers, such as the location of roads, localities, hydrography, and protected areas.

Historical pastoral activities were identified through bibliographic work. We used digitalization tools
to overlay historical cattle displacements depicted by Bonnet-Dupeyron (1950). Complementary

sources of information regarding current displacements were gathered using Google Earth Pro.
Satellite imagery was used to digitizing all visible tracks. Although all of them are not used by cattle,
they show that human-led activities do exist in these areas. All of these sources of information were
used to build a Geographic Information System (GIS), within which thematic layers were combined,
intersected and overlayed to highlight territorial dynamics. The GIS and subsequent maps were
designed with ArcGIS software.

209 **3.2.** Fieldwork and rapid appraisal of campsites

210 The study area, commonly called delta throughout this article, is composed of 11 communes and 211 includes 8,484 square kilometers. Initial field work included gathering information on pastoral 212 activities in each commune in appointments with local government councilors. Decentralization was 213 initiated in 1972 and reinforced in 1996 with increased autonomy regarding land management. 214 Decentralization policies incrementally provided enhanced responsibilities to rural councils, but 215 unfortunately, they were not backed up by institutional frameworks that could ensure sustainable and 216 equitable, human and financial capital for the communities (Piveteau, 2005; Sané, 2016; Wilfahrt, 217 2018). These initial interviews revealed that no data on pastoral activities were available at the local 218 level, and there was no recent census. The last national survey of agricultural was published in 2000 219 (RNA, 2000) and has not been updated since. To gather data on pastoralism at this meso-scale, we 220 designed a protocol in partnership with the different rural councils to co-produce information on 221 campsites and pastoral activities. The research team designed a succinct digital questionnaire 222 administered by trained interviewers from ISRA. Surveys were conducted by a team of 11 trained 223 interviewers, alongside 11 knowledgeable focal points appointed by the municipalities. Over a 2-224 month period, the questionnaire was administrated in all municipalities and at each campsite 225 encountered, identified by the focal point and by snowballing sampling. The rapid appraisal of 226 campsites was done through a light questionnaire recording the location of camps, number of animals 227 (cattle, sheep, goats), the human population (men, women, children), annual and seasonal 228 displacements, as well as any conflicts encountered. The subsequent database would serve as a

reference to measure the dynamics of pastoral livestock in the area. The survey was operationalized by using Kobotoolbox on affordable electronic tablets, gathering qualitative and quantitative data, and recording campsites coordinates. Based on ODK standards, Kobotoolbox is an open source survey tool that has proven efficient in crisis environments (Sapkota and Siddiqi, 2019).

233 3.3. Data analysis

234 To further analyze the data, we also modeled the information about displacements in a spatialized 235 network. In the database, displacements originate from a specific (geolocalized) camp to a path 236 including one or more Senegalese departments. In the model, we aggregated the information about 237 camps according to their corresponding municipalities to reduce the noise in the network and provide 238 a clearer representation of displacement paths and flow hubs across the entire country. This defined 239 a network where each node represents either a department or a municipality, and each directed edge 240 (a,b) between two nodes represents the presence of one or more displacements from location a to 241 location b. Each edge is weighted according to the number of displacements between the two 242 locations. In order to visualize and analyze the obtained network, we utilized networkx 243 (https://networkx.github.io) and matplotlib basemap toolkit (https://matplotlib.org/basmap/) Python 244 libraries.

245 **4. Results**

246 4.1. Historical representations of livestock footprint

The Senegal River delta was originally a region devoted almost exclusively to extensive pastoral livestock farming. In the dry season, livestock farmers exploited the paths left by the receding waters of the Senegal River, and during the winter, the dune pastures of the non-floodable lands in a river valley (called Dieri) provided quality grass cover (Corniaux et al., 1998). Depending on the amplitude of the season's last rains, herders could begin a long transhumance at the end of the dry season. As mapped by Bonnet-Dupeyron in 1950 (Figure 1-A), the herds were led to camps in the drylands in the rainy season, where agriculture was also practiced. In the dry season, the herdsmen went to Lake

Guiers, the wet lands or the Ferlo Valley, to exploit the flood-recession routes and water points (Figure 254 255 1-A). Authors have highlighted that, throughout the Delta, the low population density and limited 256 extent of agricultural activities meant there was little competition between agriculture and livestock 257 farming (Hervouët, 1971). The activities of the pastoralists and those of the farmers were 258 complementary in a system that functioned smoothly and guaranteed ample food production. 259 Beginning in the 1970s, repeated droughts and generally low rainfall forced herders to reduce their 260 mobility (the main characteristic of the livestock system in the Sahelian zone) and move closer to water 261 points (Jamin and Tourrand, 1986; Santoir, 1994).

Figure 1. Comparison between the evolution in cartographic representation of livestock farming (from 1950 (A)
 to 2009-2012 (B)) and the existing extent of agricultural development (2015)

As shown in Figure 1, agriculture (rain-fed and irrigated, represented in grey) has acquired an important spatial footprint. The significant potential for irrigation has resulted in considerable allocations of public land for private agricultural use in a context characterized by the momentum of various private investors (national and international agribusiness, local populations, religious leaders, 269 etc.) benefiting from easy access to agricultural credit. The Farmers' Organizations (FOs) of the Delta 270 have not been outdone in this race for land. They have adopted a collective approach, based on the 271 creation of large federated farmers' organizations, to increase their capacity to put pressure on the 272 rural councils and play an intermediary role with the Caisse Nationale de Crédit Agricole du Sénégal 273 (CNCAS). As a result of these transactions, private irrigated areas of 5 to 100 ha have proliferated in 274 the Delta, rapidly exceeding the expansion of agriculture in areas funded by the State. The surface area 275 of private developments has thus increased from about 10,000 ha in 1989 to 38,750 ha in 2005, and 276 now represent 63% of the developed surface area in the Delta (SAED, 2012). Some donors did not 277 hesitate, at the time, to praise the benefits of privatization, arguing that the private sector had 278 developed more agriculture activity in the Delta in 15 years than the State had in 40 years. Since the 279 early 2000s, this rush has accelerated in the Delta with the arrival of agribusinesses seeking access to 280 large tracts of land.

281 Beyond the implementation of hydro-agricultural developments with complete control of water, 282 innovations to support and encourage agricultural intensification aimed at improving production have 283 focused on certain aspects: (i) agricultural mechanization, (ii) provision of equipment for production, 284 (iii) improvement of soil fertilization, (iv) use of fertilizers and phytosanitary products, and (v) 285 introduction and use of skimmed, improved, and certified seeds. Agricultural supervision and advice 286 were provided by dedicated institutions such as the State's regional development entity, SAED. In addition to these technical aspects, economic innovations have been introduced, notably the 287 288 facilitation of access to agricultural credit (campaign and equipment credit) through the creation of 289 the CNCAS.

The combined decrease in sizes and accessibility of rangelands and flood recession fields—about 70% according to Tourrand (1989)—significantly increased conflicts between farmers and herders because of animal crop-raiding in the new agricultural areas. This dynamic of agricultural expansion occurred in conjunction with changes in land laws and episodes of severe drought. In concrete terms, the chronic drought that has affected the region since the 1970s has significantly reduced the quantity of fodder on the wintering dune ranges (Tourrand, 2000). Some annual herbaceous species have disappeared and overgrazing in some areas has led to a qualitative and quantitative reduction in the pastoral resources in the drylands (Faye et al., 2016).

298 The changes in the agricultural context have led to precarious living conditions for livestock farmers. The mobility of herds, the basis of this farming system, is threatened. The land zones identified through 299 300 POAS are presented in Figure 1-B. In practice, municipalities were divided into different areas, certain 301 of which gave priority to livestock farming. In addition to zoning, livestock footprint was highlighted by 302 the definition of cattle tracks that were meant to ensure secure and sustainable mobility to fodder and 303 water resources. However, beyond providing information on the distribution of uses, POAS did not 304 constitute a real tool for planning, securing land tenure and supporting decision-making, as these tools 305 lack appropriation by local councils (Diop et al. 2016). Cattle track disregard can be acknowledged by 306 intersecting agricultural extent in 2015 and POAS cattle tracks identified in the different municipalities 307 (Figure 1-B). This blur surrounding livestock practices may have favored discourses of land availability 308 and the development of agribusiness. Figure 2 displays the location of current and future agro-309 industrial schemes that settle in the remaining open spaces of irrigated lands, and make an incursion 310 in non-irrigated agro-pastoral lands (Figure 2).

311

312 Figure 2. Identification of current and future agro-industrial schemes in the study area

313 4.2. Acknowledging current livestock footprint

314 The Delta's land information system, developed by SAED and its technical partners, is unique source 315 of information on land allocation and a knowledge base for monitoring the dynamic of irrigated 316 agriculture. Figure 3 maps the three different inputs gathered through data collection. It overlays data 317 from the SAED's information system and from the digitized tracks using Google Earth, as well as the 318 location of campsites obtained through fieldwork. One initial observation concerns the spatial extent 319 of SAED's geodata as seen in Figure 3. This valuable information was assembled in the era of funding 320 from PACR/VFS and then the Millennium Challenge Account (MCA) and covers more than 56,000 ha of agricultural plots. However, it remains limited by SAED's decades of control with its mandate to 321 322 manage irrigated agriculture. As presented by table 1, this dynamic has been supported by successive 323 agricultural development projects.

Project name	Timeframe	Technical and Financial Sectoral objectives		Total	Budget
		partner		area	(million
				(ha)	USD)
Millennium Challenge Account (MCA)	2011-2015	The Millennium Challenge Corporation (MCC), United States of America	Hydraulic and hydro- agricultural facilities for rice and horticulture	43500	540
Project for the Promotion of Rice Partnership in the Senegal River Delta (3PRD)	2011-2015 (+4 years extension)	French Development Agency (AFD), the West African Development Bank (BOAD), the Senegalese government and private operators.	Rice cultivation	2500	36,8
Senegal's agricultural and agri-food market development program (PDMAS)	2007 - 2014	World Bank and other financial partners (Canadian International Development Agency, French Development Agency, European Union)	Horticulture and Hydraulic Infrastructures	2500	35
Inclusive and Sustainable Agribusiness Development Project in Senegal (PDIDAS)	2014-2020	World Bank and Global Environment Facility (GEF)	Horticulture	67467	86
Local Economic Development and Agro- ecological Transition Project in the Senegal River Delta (DELTA)	2021 - 2026	French Development Agency	Rice, Horticulture, fodder towards agroecology	6000	55,3

Table 1. Identification of past, current, and future flagship agricultural development projects in the study area

327 (not exhaustive)

328 The information gathered from satellite imagery (Google Earth) and through fieldwork enables the 329 recognition of practices outside of these irrigated areas. For instance, Figure 3 shows 6,462 kilometers 330 of digitized tracks and 1,187 campsites located and surveyed. The map illustrates the extensive 331 footprint of livestock farming, structured as a network of camps connected by paths. We acknowledge 332 that campsites are present in all communes, but even if irrigation schemes still allow campsites in their 333 vicinity, it seems that most of the campsites are located in Dieri areas, away from irrigated zones. Figure 3 also distinguishes sedentary and mobile cattle. It seems that proximity to irrigated zones or to 334 335 the road, are both parameters that influence the mobility of livestock farming. For instance, the 336 markets of Mpal and Keur Momar Sarr have many campsites in their vicinity, mostly with sedentary 337 livestock. Among almost 78% of people surveyed in campsites, the access to pastures is key to the 338 choice of settlement. The presence of open spaces remains central to 45% of people interviewed, but 339 seasonal transhumance does not concern all herders, and 45.6% of those interviewed indicated that 340 the vicinity of agricultural areas offers jobs and crop residues. The presence of agribusinesses also 341 offers job opportunities in farm work (Girard, 2020) and/or access to crop residues for cattle. The 342 extensification of agricultural irrigation schemes has also offered the opportunity for sedentary 343 herders to diversify their activity, by facilitating access to already existing water infrastructure. This is 344 the case for canals in the vicinity of agribusinesses and other irrigated schemes, but also deep wells 345 that have been developed extensively in Northern Senegal (Rasmussen et al., 2018). Other 346 opportunities have been offered locally as niche markets have developed. For instance, Richard Toll a 347 dairy company collects milk from pastoralists in the area to supply markets in the cities (Bourgoin et 348 al., 2018). In addition to providing economic opportunities to herders, this strategy of sedentarization 349 also reflects an urgent issue of livestock feed security. With the reduction of grazing areas, agreements 350 are increasing between herders and agribusinesses for access to crop residues, and negotiations for 351 agribusiness implementation often entail the creation of artificial ponds.

353

Figure 3. Spatial distribution of campsites in the Delta and the current state of land-related geographicalinformation

356

4.3. Weight of current livestock farming practices in the Delta

357 Examples in literature have identified a trajectory for pastoralism suggesting that the encroachment of intensified agriculture may drive herders to lead sedentary lives (Benjaminsen et al., 2012; 358 359 Benjaminsen and Ba., 2018). The landscape has evolved since the 1950s (Figure 1-A), but livestock 360 mobility does not seem to be marginal in the area. Figure 3 shows that 63% of campsites rely on 361 transhumance for their cattle. Table 2 summarizes the main figures regarding human and animal 362 demographics. These numbers are declarative and originate from a rapid assessment method that will 363 need to be complemented with in-depth surveys and interviews in order to understand more complex 364 elements of diagnosis and strategies. Notwithstanding, trends can be observed through these

365 estimates. For instance, a larger number of animals are related to pastoral activities. The same trend

366 can be observed with human population.

	#camps	#cows	#sheep	#goats	#men	#women	#children
Sodontary	/28	20 227	25 19/	22 560	5 799	8 012	10 1 20
Sedentary	430	30,387	23,104	23,309	5,700	8,012	10,129
Mobile	749	142,663	179,661	122,428	15,449	20,321	21,308

367 **Table 2.** Demographic figures related to sedentary or mobile herding practices

368

Figure 4 displays the spatial distribution of the main types of livestock in the Delta. This demographic distribution gives an idea of the economic weight represented by herders (sedentary and mobile). In terms of location, smaller animals seem to be concentrated in the Southern and South-Western area of the study map. Both of these areas harbor the principal livestock markets. The Eastern area also shows large numbers. This can explained by their proximity to the Ferlo region which is mainly 375 dedicated to livestock farming. On the contrary, cattle seem quite evenly distributed across the study 376 map, although there is a significant concentration around Richard Toll (see Figure 3). This town harbors 377 two important businesses that have developed a strong partnership: since the 1990s, the cane 378 plantation of the CSS sugar company has grown to 15,000 ha. Despite a high level of mechanization, 379 the company has opted to keep cane cutters who constitute the bulk of its seasonal workforce. This 380 makes it one of the largest private employers in Senegal with nearly 2,000 permanent employees and 381 4,700 seasonal workers (company numbers in 2015). The second company is LDB, which collects milk 382 from 1,000 herder families. Both companies are members of a consortium of agribusinesses (Vallagri 383 group). They signed a partnership agreement in 2015 which gives LDB access to some CSS fields for 384 baling sugarcane straw which can then be used in the dry season by farmers delivering milk to the 385 dairy. Through this agreement, the agribusinesses are supporting further development of the dairy 386 farmers.

387

4.4. Visualizing and assessing mobility

Among all campsites, 63% declare that their livestock is mobile. The analysis indicates more precisely that 15.8% of the displacement occurs within the same municipality, while another 22.6% stays within departmental boundaries. Thus, approximately 60% of the displacement from mobility affirming campsites extends to a regional scale, and for 92% of those herders, livestock is moved into other regions. Network analysis allows us to dwell further into the analysis of displacements.

393

Number of Edges	176
Number of Nodes	41
Transitivity	0.31
Average Clustering Coefficient	0.59
Assortativity	-0.2

Average Degree	8.58
Average Path Length	1.57
Reciprocity	0.16

Table 3. Structural characteristics of the displacement network.

395 Table 3 reports the main structural characteristics of the displacement network. The statistics indicate 396 that the network is quite dense. In fact, it shows a relatively high average clustering coefficient of 0.59 397 (i.e., probability for each node, that its neighbors are connected between them) and transitivity of 0.3 398 (i.e., fraction of all possible triangles present in the network, where a triangle is composed of two edges 399 with a shared vertex). Moreover, the average path length is relatively low (1.57), indicating that each 400 location is separate from each other by less than two edges on average. By contrast, we can also note 401 that the network is relatively disassortative (assortativity of -0.2) and shows low reciprocation (16% of 402 reciprocal edges). These are expected values, derived from the way the network was modeled. Since 403 the nodes can represent either departments or municipalities, it is reasonable to have a low 404 assortativity (i.e., tendency of the nodes to be connected to structurally similar ones) because the 405 departments will likely serve as flow hubs and be structurally different from the nodes connected to 406 them, which may often represent municipalities. For the same reason, reciprocal edges may happen 407 between nodes representing departments, but not between municipalities or between a municipality 408 and a department.

409

Figure 5. Spatial representation of the mobility network. The color, proportional to the size of the arrows, is
correlated to the importance of the flows (see legend) and the size of the nodes (in red) is related to the sum of
the passages recorded in the department

413 The surveyed campsites identify important movements from the Saint-Louis region towards the 414 departments of Louga and Linguere, which are at the heart of the pastoral area, or Ferlo (Figure 5). 415 These areas, iconic for pastoralists, harbor important grazing areas and institutional mechanisms to 416 facilitate mobility (Wane et al., 2006). Other important movements are directed towards the Peanut 417 Basin and from the department of Thiès to the department of Koungheul, where historical 418 relationships exist between herders and farmers (Ancey and Monas, 2005). Most of these 419 displacements outside the department of residence are scheduled between December and January 420 when herders in the Delta face decreasing pasture and the loss of temporary watering pools (Figure 421 6). They reach larger grazing areas in the Ferlo (e.g., departments of Linguere, Ranerou), or large 422 livestock markets (e.g., departments of Louga, Diourbel), or large agricultural plots with crop residues 423 (e.g., Thies, Kaolack, Kaffrine, Koungheul). Seasonal displacements still define livestock mobility. Figure 424 6 shows the opposite displacements starting in June for herders outside the region and up to 425 September for cattle within department and regional boundaries. This dynamic is initiated by the

426 beginning of the rainy season in "hosting" areas, where farmers start preparing the fields for rain-fed

427 agriculture.

Figure 6. Displacement calendar within municipality, departments, other departments within the same region,
or outside region (right-side leaving residencial base; left-side returning to residencial base in the delta)

431 **5. Discussion**

432 **5.1.** Acknowledging current trajectories at a territorial scale

433 For more than 50 years, the Senegal River delta and Guiers Lake areas have seen constant growth in 434 hydro-agricultural developments. Propelled by the incentives of various mechanisms facilitating investments, around 25,500 ha of land have been irrigated between 2000 and 2015, almost 11,000 ha 435 436 of which were developed by foreign agro-industries (Bourgoin et al., 2016). In 2019, eleven agro-437 industries were operating farms that averaged 600 hectares. One of these agribusiness, present since 438 early 1970, accounts for more than 14 000 hectares on its own (Bourgoin et al., 2019). This trajectory 439 for rural development is the result of the territorialization of agricultural programs promoting the 440 development of intensive agriculture in Senegal (e.g. LOASP, 2004; PRACAS, 2014), and expected 441 spillover effects from agribusinesses adherence to the rationale of mainstream economics (Pimbert, 442 2018). Despite its invisibility, our results show that livestock farming remains an important economic 443 activity for a substantial, yet underestimated, part of the population. Influenced by these driving 444 forces, land use and agricultural practices are evolving. For instance, sedentary livestock farming seems 445 to expand in close proximity to infrastructure, services, and communication axes, as well as in the 446 vicinity of roads, markets, and water schemes (Bourgoin et al., 2018). The construction of roads to 447 access irrigable areas of the delta and the periphery of Lake Guiers, are also indirectly favoring the 448 livestock sector by increasing market opportunities for animals and their by-products. This is 449 particularly the case for dairy products (Bourgoin et al., 2018).

450 It seems that livestock farming has been able to adapt either by evolving towards a more sedentary 451 and intensive model or diversifying their activities (Tourrand, 2000:63). Many authors have mentioned 452 this adaptation in the Senegal River Valley, suggesting that herders grow rice, consider the partial abandonment of transhumance (Pouillon, 1990; Tourrand, 1993) and produce milk for dairies 453 454 (Corniaux, 2005; Bourgoin et al., 2019). At the same time, farmers have developed hut farming. 455 Agricultural by-products (rice straw and bran, various leaves) and agro-industrial by-products (tomato 456 dregs, sugar cane molasses, peanut cake) have been increasingly used to support this gradual but 457 radical transformation. However, this practice is not systematic despite the relative abundance of 458 these new feed resources related to the increase in irrigated agriculture.

Behnke and Kerven (2011) showed that for the past 30 years, research has contributed to an effort to dispel the illusion of pastoralism as unproductive in comparison to highly efficient irrigated areas (Horowitz, 1995). Our results in this Senegalese case study have added to the momentum of this evolving perspective. Indeed, with 63% of the surveyed campsites still practicing pastoralism, this article proves that mobility is not a myth related to a romantic perspective, but remains a modern strategy to cope with scarce and uncertain resources in inhabited areas (Darre, 1996; Hodgson, 2000).

465 Beyond acknowledging the presence of livestock farming in this area, more questions arise regarding 466 its management: Is recognizing livestock farming in the heart of the rice paddies sufficient to lead 467 authorities to reconsider their point of view on the merits of this activity? Does pastoralism have a 468 future in the delta that is likely to attract the funds needed to secure the activity? Is pastoralism 469 destined to evolve into more sedentary forms in the face of pressure exerted by the expansion of 470 intensified agriculture? History has showed that pressuring communities through social and spatial 471 exclusion hardly guarantees social peace (Bukari and Keuusaana, 2018; Nwankwo, 2020). In fact, 472 Benjaminsen and Ba (2018), demonstrated that the expansion of armed insurgency in Mali has a direct correlation with the loss of pastures and blocked livestock corridors that resulted from national and 473 474 international development policies and programs. The subsequent marginalization fueled a movement 475 of pastoral resistance that took the presence of jihadist groups as an opportunity to leverage power 476 relationships and led to insurgency.

477 In our study area, analysis of territorial dynamics by Bourgoin et al. (2019), showed that, for the time 478 being, agro-industrial development will continue to impose its footprint on the territory through areas 479 already designated as "available for investment" (Figure 2). The map in this figure shows that future 480 investments are mainly forecasted in dry agro-pastoral areas, which may further impact the 481 displacement of cattle to pastoral resources (e.g. water, fodder). The progress of irrigated agriculture 482 in pastoral areas will continue to impose its footprint on livestock farming, driving its conversion to more sedentary forms. As described by Shettima and Tar (2008:163), "farmer-pastoralist conflict ... is 483 484 deeply rooted in the history, ecology, and political economy of the region." The combination of a lack of consideration for livestock farming and the development of capitalist agriculture can only 485 486 exacerbate farmer-pastoralist conflicts in the Delta area (Benegiamo, 2020).

487

5.2. The construction of a narrative

488 Perspectives regarding the future of the territory are even more uncertain because development
489 narratives and tools continue to be associated with reductive visions of agricultural practices.

490 Like other sub-Saharan countries, Senegal underwent a decentralization and deconcentration process
491 as a means of improving governance (Erk, 2015). In 1972 (law 75-25), rural municipalities were

492 designated and in 1996, a decentralization policy concretely transferred shared competences to local 493 authorities. These competences include land-use planning, thus giving local authorities control over 494 the management and organization of territorial and development planning. In practice, human and 495 financial resources remain limited. For instance, our study reveals important gaps at the municipal 496 level between intentions to monitor and map land uses and the authorities' technical capabilities (i.e., 497 knowledge, training, and tools required). For Wilfahrt (2018), decentralization in Senegal has led to an elite monopolization of rural development projects and local decision-making. Piveteau (2005) 498 499 previously underlined that this weak decentralization was bound by asymmetrical power relationships 500 and related to an increasing influence of external parties, such as development aid and projects that 501 follow sectoral agendas under national guidelines. This process in Senegal was characterized by 502 Platteau (2004) as "decentralized development." Outside of shallow discourses associating 503 development issues with technical concerns due to imperfect decentralized processes, we agree with 504 Piveteau (2005) in the assertion that choices of development are greatly influenced by governments 505 and their technical and financial partners. In recent decades, for example, the largest agricultural 506 development projects propelled by the Senegalese government and its financial and technical partners 507 have mainly focused on developing irrigated schemes for rice or horticultural sectors (Table 1). Some 508 of these projects included a land-use planning component, which delineated cattle tracks (Bourgoin et 509 al., 2018). Unfortunately, these tools lacked enforcement and most of the tracks, delineated in the 510 early 2000s under the PACR project (AFD funding), were obstructed by rain-fed or irrigated agriculture 511 (See Figure 1-B). Due to the lack of dedicated funding (from projects or communal budgets) these cattle 512 tracks never physically materialized as lines on a planning map. As a result, recent assessments of land-513 use planning tools, designed and enforced by SAED and its financial and technical partners, have shown 514 extremely low, almost nonexistent, levels of dissemination and appropriation by local stakeholders 515 (i.e., farmers, village leaders, and local governments).

This situation may suffer from concrete technical and financial reasons. Nevertheless, we hypothesize
that the natural complexity of the situation is made more so by design and as a consequence of choices.

518 These orientations are bound by a vision of agricultural progress, which promotes enhanced 519 productivity and land conversion, essentially converting territories into what Exner et al. (2015) called 520 a "land of value." In Senegal, land-use planning tools proved useful for confirming the spatial footprint 521 of certain farms and crops. For instance, SAED has been assisted by successive projects in assembling 522 geographic information systems (GIS) that specifically monitor the development of rice paddies. This 523 rather narrow focus, in terms of territorial development, has led to a skewed understanding of the 524 complete agricultural system and to information systems that materialize and legitimize a particular 525 vision of agricultural development (Nalepa and Bauer, 2012). Gautreau (2018), has recently showed 526 how GIS can become normative tools despite their initial focus on specific sectors. In many cases 527 reported by the author, this has led to the overestimation of "available land," resulting in land 528 dispossession of stakeholders with the lowest visible footprint (e.g. pastoralists). Authors like Scott 529 (2009) also question the transparency of the underlying rationale for development. The eclipsing of 530 certain practices and extensive support received by others may exceed the "purported efficiency, 531 productivity, or contribution to the national economy" and be more related to potential government 532 tax revenues (Behnke and Kerven, 2011:25). According to the World Bank, the modernization of rural 533 land sectors will follow cadastral imperatives (Byamugisha, 2013; World Bank, 2019). In Senegal, the 534 land tenure reform initiated in 2012 has been supported by development institutions, and recently the 535 land sector has been driven by the Senegal Cadastre and Land Tenure Improvement Project.

If the recognition of existing rights, individual and collective is on the agenda, it will be interesting to analyze how uncertainty, particularly with regard to the availability of pastoral resources, is taken into account. Many authors have underlined the urgency of addressing climate issues, the Sahel being particularly vulnerable (Mirzabaev et al., 2019), and identified mobility as a crucial strategy to deal with the annual variability in temperature and rainfall, which in return conditions the availability in pastoral resources (i.e., water and fodder). Defining definite boundaries for specific land uses might impede mobility and force the transition towards fixed settlements (Retaillé, 2003).

543 **5.3.** *Putting livestock farming on the map*

544 In this paper, we have shown that putting livestock farming on the map should not suffer from 545 technical issues. Combining a partnership with local authorities and a rapid appraisal of campsites 546 allowed us to paint a clearer picture of the livestock footprint. In addition to the location and spatial 547 extent of this activity, we identified that mobility is still a reality for a majority of livestock farmers, despite an increasingly unfavorable context (Brottem and McDonnell, 2020). In terms of land 548 549 governance, we underlined that local authorities were without such basic information, and it has not 550 been integrated into development projects. Identifying this gap in the representation of pastoral 551 mobility is important and calls for a paradigm shift.

552 In a context of neoliberal processes, where governments decentralize land-use planning, while 553 delegating the financial means for development to foreign aid or private investors, it seems that the 554 autonomy and empowerment of local authorities remains limited (Kohl, 2002). Projects and 555 development agencies seem to have followed agendas that are inherently sector-based without 556 considering a wider vantage point. This bias does not favor a systemic understanding of the dynamics 557 and needs at territorial level (Pimbert, 2018). As a result, certain activities or sectors, like pastoralism 558 in this case, are considered secondary or simply overlooked by design. This is a significant drawback to 559 developing land-use planning that take account of pluralism. Beyond a critical post-development 560 posture toward those development practices and discourses (Ziai, 2017) and the pitfalls of 561 romanticizing grassroots dynamics (Ziai, 2017), we believe that there are other paths to take. In 562 practice, this implies overcoming issues of the participation that is needed to legitimize the 563 "modalities, agency, and procedures" of development (Ziai 2017:2552) and foster positive social 564 change which includes pluralism without depoliticizing society.

565 In more concrete terms, we advocate for the implementation of approaches evolving from traditional 566 sector-based initiatives, technical innovations (such as improved numeric technologies for land-use 567 assessment), as well as projects willing to acknowledge the diversity of people and resources (Suttie and Hussein, 2016). Beyond rhetoric and good principles, many development approaches lack
inclusive, participatory processes of negotiation and planning that explicitly include the construction
of trade-offs between development objectives (Sayer et al., 2013).

Instead of focusing on outcomes, we advocate for initiatives that favor processes in which actions are based on facilitating dialogue in a context of pluralism. The first, basic step would be to associate the discourses with an explicit assessment of the existing socio-ecological systems and governance mechanisms (Nassauer and Opdam, 2008). A second step would be to explicitly challenge current mechanisms of inequality and address the asymmetries in power and influence (Reed et al., 2017).

Pragmatic technical and organizational changes should be implemented to secure livestock mobility. The capacity to plan future activities and investments could be increased by providing communal land managers with access to reliable and dynamic geo-spatial information on land dynamics. In contrast to historical and current land management projects, this would improve transparency in land transactions and strengthen the accountability of land investors to the community. Our proposal is in line with the initial POAS rationale. However, lack of ownership of such tools at local level (Diop et al. 2016) calls for different approaches.

583 Aside from technical solutions and promises (Briday, 2019; Joly, 2015), innovative proposals regarding 584 data and cartography should be accompanied by structural organizational changes. This would entail 585 cooperation between local authorities, decentralized state services, and new external services that do 586 not yet exist but would provide important support outside of the partisan and political logics that are 587 not always focused on the common good. Initial steps have been taken in this direction with PDIDAS 588 project and the support of locally based "land agents" in the study area. Future research should focus 589 on analyzing their role in supporting cross-sectoral, land-use planning. We propose that such "land 590 agents" would be integrated into official deconcentrated land administration, beyond current 591 precarious project-based status. If POAS lacked legal-basis, we propose that dynamic land information 592 system manipulated by land agents become rooted in a strong legal basis. Here administrative

593 authorities would rely on such tools to exercise legal control over all land transactions, but also to 594 manage certain conflicts of use in agreement with the technical services. This reflection will have to be 595 carried out within the framework of the land reform process, which is still undergoing. If POAS were 596 designed at communal level, we propose that SAED play the role of facilitating inter-communal land 597 use planning and exchange in the network of communal-based "land agents". This change of scale 598 would allow SAED to promoting integrated territorial development, with a strategic view on the 599 interconnections between several land uses. We believe that SAED will play a great role in 600 strengthening the skills of communal agents with a view to (i) mastering the updating of a territorial 601 diagnosis, and (ii) having an wider understanding of land dynamics. Hence, we propose that the 602 production of reliable and shared assessment on territorial dynamics should accompany public 603 discussions on land governance and lead to more efficient and inclusive construction of development 604 policies at communal scale.

605 **6.** Conclusion

606 In recent years, pastoral mobility has become emblematic of resilience in the Sahel, as evidenced by 607 the Nouakchott and N'Djamena Declarations issued in 2013, affirming the contribution of pastoralism 608 to the Saharo-Sahelian areas. In practice, information related to pastoral activities at the municipal 609 level is still lacking and development projects supporting sustainable development through land-use 610 planning have not aimed at overcoming this issue and have difficulty freeing themselves from sectoral 611 logic and constraints. In Senegal, the delta is experiencing strong pressure on natural and land 612 resources. This area is characterized by the historical variety of activities and inhabitants (physically 613 present, such as farmers and pastoralists, or absentee farmers like those living in Dakar). Over the past 614 decades, the area has experienced significant agricultural expansion, particularly hydro-agricultural 615 facilities, reducing spaces for extensive practices, while creating new opportunities and services. The 616 trajectory of agricultural intensification continues to be supported by political viewpoints. Our 617 research shows that this trend is strongly related to neoliberal and productivist visions of agricultural development and the lack consideration for practices that have been rendered invisible by normative land-use planning tools and processes. Livestock farming is evolving towards more sedentary practices, attracted by better access to schools, jobs, markets, but also forced by conflicts and reduced access to pastoral resources (i.e., water and grazing areas). Notwithstanding, we highlight that livestock mobility is still present in great numbers, and we advocate for its consideration in land governance mechanisms, the sake of equality, social justice, and peace.

624 References

- Ancey, V. and G. Monas (2005). Le pastoralisme au Sénégal, entre politique « moderne » et gestion des risques
 par les pasteurs. Tiers-Monde 4 (184): 761-783.
- Bagnoli, L., M. Benegiamo, D. Cirillo, and G. Franchi (2015). Sénégal. Comment on accapare la terre. La saga
 Senhuile-Senethanol continue, Recommon: 37.
- 629 Behnke, R. and C. Kerven (2011). Replacing Pastoralism with Irrigated Agriculture in the Awash Valley, North-
- 630 Eastern Ethiopia: Counting the Costs. Future of Pastoralism. Addis Ababa, Future Agricultures
- 631 Consortium at the Institute of Development Studies, University of Sussex and the Feinstein
- 632 International Center of Tufts University.
- Bélières, J.-F., P.-M. Bosc, G. Faure, S. Fournier and B. Losch (2002). What Future for West Africa's Family Farms
 in a World Market Economy? Issue paper no. 113. London: IIED.
- Benegiamo, M. (2020). Extractivism, exclusion and conflictsin Senegal's agro-industrial transformation. Review
 of African Political Economy.
- Benjaminsen, T. and B. Ba (2018). Why do pastoralists in Mali join jihadist groups? A political ecological
 explanation. The Journal of Peasant Studies 46(1): 1-20.
- Benjaminsen, T. A., K. Alinon, H. Buhaug, and J. T. Buseth (2012). Does Climate Change Drive Land-use Conflicts
 in the Sahel? Journal of Peace Research 49 (1): 97–111.
- 641 Bonnet-Dupeyron, F. (1950). Déplacements saisonniers des éléveurs au Sénégal et en Basse et Moyenne

642 Mauritanie. Paris, Ministère de la France d'Outre-Mer, Office de la Recherche Scientifique Outre-Mer,

643 1950.

- 644 Bourgoin J., E. Valette, D. Diop, A. Adamczewski, D. Dia, L. Touré (2016). The agricultural development model 645 for the Senegal river delta. In : Pesche Denis (ed.), Losch Bruno (ed.), Imbernon Jacques (ed.). A new

646 emerging rural world - an overview of rural change in Africa. Montpellier : Cirad, Nepad, p. 52-53.

- Bourgoin J., C. Corniaux, L. Touré, J-D. Cesaro (2018). Atlas des dynamiques observées dans le bassin de collecte
 de la Laiterie du Berger. Dakar: CIRAD, 48 p.
- 649 Bourgoin, J., E. Valette, S. Guillouet, D. Diop, and D. Dia (2019). Improving Transparency and Reliability of
- Tenure Information for Improved Land Governance in Senegal. Land 8(42): 17.
- Briday, R. (2019). Le discours de la promesse chez les promoteurs de l'ingénierie climatique. Socio 12 :133–157.
 https://doi.org/10.4000/socio.4657
- Brottem, L., and A. McDonnell (2020). Pastoralism and Conflict in the Sudano-Sahel: A Review of the Literature,
 1st ed. Washington DC: Search for Common Ground.
- Bruinsma, J., ed. (2003). World agriculture: towards 2015/2030 An FAO perspective. Earthscan, London and
 FAO, Rome.
- Bukari, K. N. and E. D. Keuusaana (2018). Impacts of large-scale land holdings on Fulani pastoralists' in the
 AgogoTraditional Area of Ghana. Land Use Policy 79: 748-758.
- Byamugisha, F.F.K. (2013). Securing Africa's Land for Shared Prosperity. A Program to Scale Up Reforms and
 Investments. AFD, World Bank.
- Byerlee, D., A. F. Garcia, A. Giertz, V. Palmade (2013). Growing Africa. Unlocking the Potential of Agribusiness,
 World bank/AFTFP.
- Cole, M. B., M. A. Augustin, M.J. Robertson, J.M., Manners (2018). The science of food security. Science of Food
 2(14): 8.
- 665 Corniaux C. (2005). Gestion technique et gestion sociale de la production laitière : les champs du possible pour
- 666 une commercialisation durable du lait Cas des systèmes d'élevage actuels du delta du fleuve
 667 Sénégal. Thèse de doctorat INA-PG, Paris, France. 250 p.
- 668 Corniaux, C., A. Cissokho, P. d'Aquino, and C. Sall (1998). Caractérisation des systèmes d'élevage dans le delta
- 669 du fleuve Sénégal : typologie des élevages et cartographies des mouvements des troupeaux ». Dakar:
 670 ISRA, 41p.
- 671 d'Aquino, P., S.M. Seck, and S. Camara (2002). Un SIG conçu pour les acteurs : l'opération pilote POAS au
- 672 Sénégal. L'Espace Géographique 31(1): 23-37.

- d'Aquino, P., A. Ba, J. Bourgoin, D. Cefaï, C. Richebourg, S. Hopsort, T. Pascutto (2017). Du savoir local au
 pouvoir central : un processus participatif sur la réforme foncière au Sénégal. Natures Sciences
 Sociétés 25(4): 360-369.
- 676 Darre, J.-P. (1996). L'invention des pratiques dans l'agriculture. Vulgarisation et production locale de
 677 connaissance. Paris, Karthala.
- Deininger, K. and D. Byerlee (2011). Rising Global Interest in Farmland: Can It Yield Sustainable and Equitable
- 679 Benefits? Washington, D.C., World Bank-International Bank for Reconstruction and Development.
- Diop D., Bourgoin J., Dia D (2016). Accès et usage de l'information foncière. Cas des Plans d'Occupation et
 d'Aménagement des Sols (POAS). Les Notes Politiques de l'ISRA-BAME, n°5. Novembre 2016
- Edelman, M., R. Hall, S.M. Borras Jr, I. Scoones, B. White, W. Wolford (2018). Global land grabbing and political
 reactions 'from below', Routledge.
- 684 Erk, J. (2015). Iron houses in the tropical heat: Decentralization reforms in Africa and their consequences.

685 Regional & Federal Studies 25(5): 409-420.

Exner, A., L.E. Bartels, M. Windhaber, S. Fritz, L. See, E. Politti, S. Hochleithner (2015). Constructing landscapes
 of value: capitalist investment for the acquisition of marginal or unused land—the case of Tanzania.

688 Land Use Policy, 42: 652-663.

689 Fall, M. and M. Ngaido (2016). Investissements fonciers, redevabilité et cadre légal : Leçons du Sénégal.

690 Londres, IIED: 20.

- FAO, IFAD, and WFP (2015). The state of food Insecurity in the world 2015. Meeting the 2015 international
 hunger targets: taking stock of uneven progress. FAO publication. Rome.
- 693 Faye M., Fofana M.B., Bélières J.F. (1995). Présentation de la banque de données de la SAED pour le suivi des
- 694 aménagements hydro-agricoles et des organisations paysannes. In : Boivin Pascal (ed.), Dia I. (ed.),
- 695 Lericollais André (ed.), Poussin Jean-Christophe (ed.), Santoir Christian (ed.), Seck S.M. (ed.) Nianga,
- 696 laboratoire de l'agriculture irriguée en moyenne vallée du Sénégal. Paris : ORSTOM, 513-533.
- 697 (Colloques et Séminaires). Nianga, Laboratoire de la Culture Irriguée : Atelier ORSTOM-ISRA, Saint-
- 698 Louis (SEN), 1993/10/19-21. ISBN 2-7099-1272-4
- Faye, I. M., A. Benkahla, O. Touré, S.M. Seck, C.O. Ba (2011). Les acquisitions de terres à grande échelle au

700 Sénégal : description d'un nouveau phénomène Dakar, Sénégal, IPAR.

- Faye, V.M., C. Mbow, A. Thiam (2016). Évolution de l'occupation et de l'utilisation du sol entre 1973 et 2010
 das la zone agropastorale du lac de Guiers (Sénégal). VertigO 16.
- Gautreau, P. (2018). Information environnementale et pouvoir. Une géographie politique (Habilitation à diriger
 des recherches). Université Sorbonne Nouvelle Paris 3.
- 705 Girard, P. (2020). L'insertion socio-économique des jeunes ruraux comme révélateur du changement structurel
- 706 en Afrique subsaharienne : la trajectoire rurale revisitée. Economies et finances. Université de
 707 Montpellier.
- Godfray, H., J. Charles, J.R. Beddington, I.R Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M.
 Thomas, C. Toulmin (2010). Food Security: The Challenge of Feeding 9 Billion People. Science 327
- 710 (5967): 812-18.
- GRAIN (2012). Accaparement des terres et souveraineté alimentaire en Afrique de l'Ouest et du Centre. A
 contre courant.
- Hodgson, D. (2000). Rethinking Pastoralism in Africa: Gender, Culture and the Myth of the Patriarchal
 Pastoralist. Athens, Ohio University Press.
- Horowitz, M. (1995). Dams, cows, and vulnerable people: anthropological contributions of sustainable
 development. The Pakistan Development Review 34(4): 481-508.
- 717 Interdonato, R., J. Bourgoin, Q. Grislain, M. Zignani, S. Gaito, and M. Giger. 2020. The parable of arable land:
- 718 Characterizing large scale land acquisitions through network analysis. PloS One 15 (10): 31.
- Jamin, P. Y. and J. F. Tourrand (1986). Evolution de l'agriculture et de l'élevage dans une zone de grands

720 aménagements : Le delta du fleuve Sénégal. Montpellier, DSA-CIRAD.

- Johansson, E. L., M. Fader, J.W. Seaquist, K.A. Nicholas (2016). Green and blue water demand from large-scale
 land acquisitions in Africa. PNAS 113(41): 11471-11476.
- 723 Joly, P.-B. (2015). Le régime des promesses technoscientifiques, in: Sciences et Technologies Émergentes :
- 724 Pourquoi Tant de Promesses ?, L'Harmattan. Hermann, Paris, pp. 31–48.
- 725 Kanoute, A. C., N. M. Diop, C.H. Diallo (2011). Accaparement des terres en Afrique de l'Ouest. Exporter ou
- 726 nourrir les populations. Impact sur les consommateurs ruraux. Dakar, Sénégal, CICODEV.
- 727 Kohl, B. (2002). Stabilizing neoliberalism in Bolivia: popular participation and privatization. Political Geography
- 728 21: 449-472.

- T29 Lambin, E. F., H. K. Gibbs, L. Ferreira, R. Grau, P. Mayaux, P. Meyfroidt, D.C. Morton, T.K. Rudel, I. Gasparri, J.
- 730 Munger (2013). Estimating the world's potentially available cropland using a bottom-up approach.

731 Global Environmental Change 23: 892-901.

- 732 Lavigne-Delville P. (1991). La Rizière et la Valise. Irrigation, Migration et Stratégies Paysannes dans la Vallée du
 733 Fleuve Sénégal. Syros Alternatives: Paris.
- Magrin, G., O. Ninot, J-D. Cesaro (2011). L'élevage pastoral au Sénégal entre pression spatiale et mutation
 commerciale. M@ppemonde 103: 12.
- Matson, P. A. and P. M. Vitousek (2006). Agricultural intensification: will land spared from farming be land
 spared for nature? Conservation Biology 20: 709-710.
- Mbaye Diop, N. C., A. Diouf, P.S. Ndiaye, A. Bassoum, A. Teyssier (2017). Large scale land leases: a rural
 communities' business. Land and Poverty. W. Bank. Washington D.C.
- 740 Mediavilla, J. and J. Garcia-Arias (2019). Philanthrocapitalism as a Neoliberal (Development Agenda) artefact:
- philanthropic discourse and hegemony in (financing for) international development. Globalizations
 16(6): 857-875.
- 743 Michel, P. and M. Sall (1984). Dynamique des paysages et améngament de la vallée alluviale du Sénégal. Le
- 744 développement rural en questions. Paysages, espaces ruraux, systèmes agraires. C. Blanc-Pamard, J.
- 745 Bonnemaison, J. Boutrais, V. Lassailly-Jacob and A. Lericollais. Paris, Editions de L'Orstom, IRD: 88-109.

746 Mirzabaev, A., J. Wu, J. Evans, F. García-Oliva, I.A.G. Hussein, M.H. Iqbal, J. Kimutai, T. Knowles, F. Meza, D.

- 747 Nedjraoui, F. Tena, M. Türkeş, R.J. Vázquez, M. Weltz, 2019: Desertification. In: Climate Change and
- Land: an IPCC special report on climate change, desertification, land degradation, sustainable land
 management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
- Nalepa, R. A. and D. M. Bauer (2012). Marginal lands: the role of remote sensing in constructing landscapes for
 agrofuel development. The Journal of Peasant Studies 39(2): 403-422.
- Nassauer, J.I., P. Opdam (2008). Design in science: extending the landscape ecology paradigm. Landscape
 Ecology 23: 633–644.
- Nolte, K., W. Chamberlain, et al. (2016). International Land Deals for Agriculture. Fresh insights from the Land
 Matrix: Analytical Report II. M. Bern, Hamburg, Pretoria: Centre for Development and Environment,
 University of Bern; Centre de coopération internationale en recherche agronomique pour le

- 757 développement; German Institute of Global and Area Studies; University of Pretoria; Bern Open
 758 Publishing.
- Nwankwo, C. F. (2020). Essentialising critical geopolitics of the farmers–pastoralistsconflicts in West Africa.
 GeoJournal 85: 1291-1308.
- 761 Passouant, M. (1997). SIG. Delta du Sénégal. Book_section. Quelle géographie au CIRAD? Séminaire de

762 géographie 1995-1996. CIRAD-SAR. Sénégal. 1997.

763 PDIDAS (2015). Projet de Développement Inclusif et Durable de l'Agribusiness au Sénégal. Rapport Annuel

764 2015. Dakar, Ministère de l'Agriculture et de l'Equipement Rural: 119.

- Pimbert, M. P. (2018). Democratizing knowledge and ways of knowing for food sovereignty, agroecology and
- biocultural diversity. Food sovereignty, agroecology and biocultural diversity. Constructing and
 contesting knowledge. M. P. Pimbert. London, Routledge.
- 768 Piveteau, A. (2005). Décentralisation et développement local au Sénégal. Chronique d'un couple hypothétique.

769 Revue Tiers Monde 181(1): 71-93.

770 Platteau, J. (2004). Le développement décentralisé, stratégie de réduction de la pauvreté. Afrique

771 contemporaine. 211: 159-214.

Pouillon, F. (1990). Sur la "stagnation" technique chez les pasteurs nomades: Les Peul du Nord-Sénégal entre

773 l'économie politique et l'histoire contemporaine. Cah. Sci. Hum. 26(1): 173-192.

774 Reed, J., J. van Vianen, J. Barlow, T. Sunderland (2017) Have integrated landscape approaches reconciled

societal and environmental issues in the tropics? Land Use Policy 63: 481–492.

Rasmussen, K., M. Brandt, X. Tong, P. Hiernaux, A.A. Diouf, M.H. Assouma, C.J. Tucker, R. Fensholt (2018). Does

grazing cause land degradation? Evidence from the sandy Ferlo in Northern Senegal. Land Degradation
& Development 29(12): 4337–4347.

- 779 Retaillé, D. (2003). "Le destin du pastoralisme en Afrique." L'information Géographique 67(1): 88-102.
- 780 RNA (2000). Recensement National de l'Agriculture, Republique du Sénégal, Ministere de L'Agriculture,
- 781 Organisation des Nations Unies pour L'Alimentation et L'Agriculture (FAO).
- Ross, E. B. (2013). Malthusianism, Capitalist Agriculture, and the Fate of Peasants in the Making of the Modern
 World Food System. Review of Radical Political Economics 35(4): 437-461.
- 784 Rostow, W. W. (1990). The Stages of Economic Growth. Cambridge, Cambridge University Press.

- 785 SAED (2002). Autoévaluation et suivi de la démarche d'accompagnement POAS. Compte rendu de la mission de
- 786 lancement des activités du programme, Saint-Louis.
- 787 SAED (2012). Zones aménagées et aménageables pour l'agriculture irriguée dans la vallée du Fleuve Sénégal,

788 Direction du Développement et de l'Aménagement Rural.

- 789 Sané, Y. (2016). Decentralization in Senegal: how to reform while further maintaining the status quo? Cybergeo
- 790 : European Journal of Geography.
- 791 Santoir, C. (1994). Décadence et résistance du pastoralisme. Les Peuls de la vallée du fleuve Sénégal. Cahiers
 792 d'études africaines 34(133): 231-263.
- 793 Sapkota, P. P. and K. Siddiqi (2019). Is Ubiquitous Technology for Needs Data Management a Game Changer in
- Humanitarian Arena? International Journal of Information Systems for Crisis Response and
 Management 11(1): 15.
- 796 Sayer J., T. Sunderland, J. Ghazoul, J-L. Pfund, D. Sheil, E. Meijaard, M. Venter, A.K. Boedhihartono, M. Day, C.
- 797 Garcia, C. van Oosten, L.E. Buck (2013). Ten principles for a landscape approach to reconciling
 798 agriculture, conservation, and other competing land uses. PNAS 110: 8349-8356.
- Scott, J. C. (2009). The Art of Not Being Governed: An Anarchist History of Upland Southeast Asia. New Haven
 and London, Yale University Press.
- 801 Seck, S.M., A. Lericollais, G. Magrin (2009) L'aménagement de la vallée du Sénégal. Logiques nationales, crises
- 802 et coopération entre les États riverains, Jean-Pierre Raison éd., Des fleuves entre conflits et

803 compromis. Essais d'hydropolitique africaine. Karthala, pp. 31-76.

- Shettima, A. G. and U. A. Tar (2008). Farmer-Pastoralist Conflict in West Africa: Exploring the Causes and
 Consequences. Information, Society and Justice 1(2): 163-184.
- 806 Smith, P. (2013). Delivering food security without increasing pressure on land. Global Food Security 2(1): 18-23.
- 807 Smith, P., P. J. Gregory, et al. (2010). "Competition for land." Philosophical Transactions of the Royal Society
- 808 365: 2941-2957.
- 809 Stiglitz, J. E. (2015). Inequality and Economic Growth. The Political Quarterly 86: 134-155.
- 810 Suttie, D. and Hussein, K. (2016). Territorial approaches, rural-urban linkages and inclusive rural
- 811 transformation: Ensuring that rural people have a voice in national development in the context of the
- 812 SDGs. Rome: International Fund for Agricultural Development.

- Thornton, P.K., P.G. Jones, P.J. Ericksen, and A.J. Challinor (2011). Agriculture and food systems in sub-Saharan
 Africa in a 4°C+ world. Philosophical Transactions of the Royal Society 369: 117-136.
- 815 Tourrand J.F. (1993). Un pasteur devient un agropasteur. Une étude de cas dans le delta du fleuve Sénégal.
 816 ISRA Séminaire RESPAO. Dakar, Sénégal.
- 817 Tourrand J.F. (1993). L'élevage dans la révolution agricole du Waalo, delta du fleuve Sénégal. Réédité en 2000,
- 818 Ed CIRAD, Paris, France. 165 p.United Nations (2015). Transforming Our World: The 2030 Agenda for
 819 Sustainable Development A/RES/70/1.
- 820 Tourrand, J., 2000. L'élevage dans la révolution agricole au Waalo, delta du fleuve Sénégal, CIRAD. ed.
- 821 Wane, A., Ancey, V., Grosdidier, B. (2006). Les unités pastorales du Sahel sénégalais, outils de gestion de
- 822 l'élevage et des espaces pastoraux. Projet durable ou projet de développement durable ?
- 823 Développement durable & territoires. Dossier 8. ttps://doi.org/10.4000/developpementdurable.3292
- 824 Weis, T. (2010). The Accelerating Biophysical Contradictions of Industrial Capitalist Agriculture. Journal of
- 825 Agrarian Change 10(3): 315-341.
- Wilfahrt, M. (2018). The politics of local government performance: Elite cohesion and cross-village constraints
 in decentralized Senegal. World Development 103: 149-161.
- 828 World Bank (2013). Growing Africa: Unlocking the potential of agribusiness. Africa region sustainable
- 829 development series. Washington, DC, The World Bank.
- 830 World Bank (2019). Enabling the Business of Agriculture 2019. Washington, DC, World Bank.
- Ziai, A. (2017) Post-development 25 years after The Development Dictionary, Third World Quarterly, 38 (12):
- 832 2547-2558
- Zoomers, A., A. Gekker, M.T. Schäfer (2016). Between two hypes: Will "big data" help unravel blind spots in
 understanding the "global land rush? Geoforum 69: 147-159.