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Abbreviations: AD, anaerobic digestion; NIR, Near infrared; PLSR, partial least squares 21 

regression; OM, organic matter; DM, dry matter;  TOC, total organic carbon; N, nitrogen; 22 

Norg, organic nitrogen;  P,  phosphorus; K, potassium; TKN, total Kjeldahl nitrogen; SNV, 23 

standard normal variate; RPD, ratio of performance to deviation; RMSE, Root Mean Square 24 

Error; SEL, Standard Error of Laboratory; 25 

 26 

Abstract: 27 

Anaerobic digestion is an increasingly widespread process for organic waste treatment and 28 

renewable energy production due to the methane content of the biogas. This biological 29 

process also produces a digestate (i.e., the remaining content of the waste after treatment) 30 

with a high fertilizing potential. The digestate composition is highly variable due to the 31 

various organic wastes used as feedstock, the different plant configurations, and the post-32 

treatment processes used. In order to optimize digestate spreading on agricultural soils by 33 

optimizing the fertilizer dose and, thus, reducing environmental impacts associated to 34 

digestate application, the agronomic characterization of digestate is essential. 35 

This study investigates the use of near infrared spectroscopy for predicting the most 36 

important agronomic parameters from freeze-dried digestates. A data set of 193 digestates 37 

was created to calibrate partial least squares regression models predicting organic matter, 38 

total organic carbon, organic nitrogen, phosphorus, and potassium contents. The calibration 39 

range of the models were between 249.8 and 878.6 gOM.kgDM-1, 171.9 and 499.5 gC.kgDM-40 

1, 5.3 and 74.1 gN.kgDM-1, 2.7 and 44.9 gP.kgDM-1 and between 0.5 and 171.8 gK.kgDM-1, 41 

respectively. The calibrated models reliably predicted organic matter, total organic carbon, 42 

and phosphorus contents for the whole diversity of digestates with root mean square errors 43 
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of prediction of 70.51 gOM.kgDM-1, 34.84 gC.kgDM-1 and 4.08 gP.kgDM-1
, respectively. On 44 

the other hand, the model prediction of the organic nitrogen content had a root mean 45 

square error of 7.55 gN.kgDM-1 and was considered as acceptable. Lastly, the results did not 46 

demonstrate the feasibility of predicting the potassium content in digestates with near 47 

infrared spectroscopy.  48 

These results show that near infrared spectroscopy is a very promising analytical method for 49 

the characterization of the fertilizing value of digestates, which could provide large benefits 50 

in terms of analysis time and cost.  51 

 52 

1. Introduction 53 

Anaerobic digestion (AD) is recognized as an efficient technology in terms of renewable 54 

energy production and environmental protection according to the EU 2020 Renewable 55 

Energy Directive (Commission of the European Communities, 2009). AD is a microbial 56 

process that transforms organic matter into biogas, mainly composed of CH4 and CO2. The 57 

biogas produced is either converted into electricity and heat by cogeneration, or directly 58 

injected into the gas grid after purification. AD is very often considered as a process for 59 

organic waste treatment and biogas production, but it also produces a digestion residue 60 

called digestate, which can be used as an organic fertilizer on agricultural soils (Houot et al., 61 

2016). It is essential for the biogas plants to make the best use of their digestate so that it is 62 

not a cost, but a gain for the plant operators and the environmental impact is minimized 63 

when the digestate returns to the soil (Nkoa, 2014). 64 

The agronomic and environmental interests of digestate application to agricultural land have 65 

been evaluated in several studies (Walsh et al., 2012; Alburquerque et al., 2012; Nkoa, 2014 ; 66 
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Guilayn et al., 2020 ; Jimenez et al., 2020). It has been demonstrated that digestates are 67 

good organic fertilizers and amendments, allowing reducing the use of chemical fertilizers 68 

and striving for a circular economy at farm scale.  69 

The chemical composition of the digestates is directly linked to the feedstocks used and the 70 

AD plant operating conditions (Guilayn et al., 2019). Consequently, digestate compositions 71 

show a great variability, and significant characterization needs have been highlighted 72 

(Alburquerque et al., 2012; Kataki et al., 2017). The composition of a chemical fertilizer is 73 

detailed by the supplier, and the dose to be applied to the field can be adjusted according to 74 

the soil and the crops needs. The same information should be available for organic fertilizers 75 

and soil improvers coming from digestates. This should lead to a better management of the 76 

nitrogen inputs and ammonia volatilization risk. In addition, Guilayn et al. (2019) have 77 

highlighted the almost systematic obligation to post-treat digestates (phase separation, 78 

composting, stripping etc.) prior to their sale and use as organic fertilizers in order to comply 79 

with European standards (European Parliament and Council of the European Union, 2016; 80 

European Commission, 2003). Despite continuous improvement in post-treatment 81 

technologies and the development of new recovery methods (Monlau et al., 2015; Guilayn 82 

et al., 2020), the cost of digestate treatment remains high. Some studies have shown that it 83 

is difficult to make a profit by valuing the digestate (KTBL, 2008) and that direct spreading of 84 

the digestate remains very often the most profitable option (Fuchs and Drosg, 2013). Regular 85 

characterization of the digestates, with at least a determination of the C, N, P, and K 86 

contents, for monitoring and optimizing the post-treatment processes is, therefore, essential 87 

(Teglia et al., 2011).  88 
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The physical and chemical laboratory analyses for characterizing the digestates are time and 89 

cost expensive. Near infrared (NIR) spectroscopy could be an alternative technology for 90 

rapid characterization of digestates. This non-destructive analytical method makes it 91 

possible to analyze a sample by observing the harmonic oscillations of the various bonds of 92 

the molecules during excitation of these by a source emitting in the wavelengths interval of 93 

700 and 2500 nm (Burns and Ciurczak, 2007). From the spectra acquired in near infrared, it is 94 

then possible to calibrate a model allowing a spectrum to be linked to one or more reference 95 

values, qualitative or quantitative. Partial least squares regression (PLSR) is a model 96 

calibration method very commonly used in NIR spectroscopy. 97 

NIR spectroscopy has long been used in the chemical and food industry for reaction 98 

monitoring or process control. However, many studies have also shown the interest of NIR 99 

spectroscopy for the prediction of organic matter (OM) (Hummel et al., 2011), total organic 100 

carbon (TOC) (Dalal & Henry, 1986; Barthès et al., 2019), nitrogen (N), phosphorus (P), and 101 

potassium (K) from soils (Nduwamungu et al., 2009; He et al., 2007). The OM and the N 102 

contents are predicted with good accuracy, while the models for P and K are much less 103 

efficient. For the prediction of N, P, and K contents of different plants, NIR spectroscopy is 104 

also used with very good results for the prediction of N (Gislum et al., 2004; Petisco et al., 105 

2005; Ward et al ., 2011), but often bad results for P and K (Tremblay et al., 2009; Ward et 106 

al., 2011; Petisco et al., 2005). The difficulty in predicting the K content comes from the fact 107 

that potassium is only present in ionic form and is, therefore, not directly visible with NIR 108 

spectroscopy. Regarding the P content, the chemical bonds involving phosphorus are not 109 

active in the range of near infrared wavelength (Mouazen et al., 2016). The models for 110 

predicting the K and P contents are models based on indirect correlations with other 111 

properties that have a direct spectral response. For the determination of the P content in 112 
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soils (Mouazen et al., 2016) or in plants (Menesatti et al., 2010), several studies have 113 

demonstrated good performances of models based on spectra acquired at the same time in 114 

the visible and in the near infrared. 115 

NIR spectroscopy is already used in the field of anaerobic digestion for characterizing the 116 

substrates to be treated with regard to their biological methane potential (Lesteur et al., 117 

2011), their sugar content, their chemical oxygen demand, their lipid content, and their 118 

nitrogen content (Charnier et al., 2017). It is important to note that the complexity of the 119 

anaerobic digestion substrates studied has not yet made it possible to calibrate these 120 

models on fresh samples, but on freeze-dried and finely ground samples. On the other hand, 121 

it has been shown that NIR spectroscopy could be used as a tool for characterizing raw 122 

materials and digestates to assess the performance of sewage sludge digesters by only 123 

determining volatile fatty acids, alkalinity, and solid and volatile matter (Reed et al., 2011; 124 

Jacobi et al., 2011; Awhangbo et al., 2020). 125 

Considering the great variability in the composition of the digestates, their chemical 126 

characterization for monitoring and optimizing the AD process, the post-treatment of the 127 

digestate and their return to the soil appears to be essential. Based on the potential of NIR 128 

spectroscopy already demonstrated for the characterization of soils, plants, and biowastes, 129 

this study aims to assess, for the first time, the potential of NIR spectroscopy for predicting 130 

the most important agronomic characteristics of digestates. This new method could allow a 131 

fast and more regular characterization of digestates, thus improving their management. 132 

 133 

2. Materials and Methods 134 

2.1. Samples 135 
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For this study, 193 partially characterized digestates were combined in one sample data base 136 

in order to represent the great diversity of digestates, which can be produced. These 137 

digestates came from farm, centralized, and urban anaerobic digesters plants, except for 138 

twelve digestates generated by laboratory pilots (Table 1). Some of the digestates collected 139 

had been treated by phase separation or composted directly on the production site. The 140 

sample base consisted of 46 solid phase digestates, 28 liquid phase digestates, 43 141 

composted solid phase digestates, and 76 raw digestates . Apart from four dry anaerobic 142 

digestion plants (three piston flow systems and one batch system), units used for collecting 143 

digestate samples were wet anaerobic digestion plants (Total Solids content < 20%).  144 

Table 1: Description of the anaerobic digestion plant types used in the digestates data base and 145 

their respective percentages 146 

Type Feedstock Number Percentage 

Farm plant 

Animal manures 110 57% 
Energy crops 5 3% 
Animal manures  and agro-industrial wastes 3 2% 
Crop residues 2 1% 
Animal manures and biowastes 2 1% 

    

Centralized plant 
Agro-industrial wastes, sewage sludges, 
animal manures, green wastes, biowastes  
etc. 

23 12% 

    

Urban plant 

Sewage sludges 23 12% 
Biowastes 14 7% 
Municipal wastes 11 6% 

 147 

2.2. Analytical methods for reference data 148 

The analytical methods for the determination of the dry and organic matter, total organic 149 

carbon, organic nitrogen, phosphorus, and potassium are presented below. The analyses 150 

were carried out in triplicate. 151 

2.2.1 Dry matter and organic matter 152 



8 
 

 

The dry matter (DM) of a sample was determined by weight difference after 24 hours at 105 153 

°C and the organic matter (OM), after at least two hours at 550 °C. The OM was obtained by 154 

subtraction of the residual mineral matter obtained after passing at 550 °C from the dry 155 

matter. 156 

2.2.2 Total organic carbon 157 

TOC was measured on the freeze-dried and grinded samples by catalytic combustion at 900 158 

°C with a Shimadzu TOC-V-SSM-500A. Pure glucose samples were used as references. 159 

2.2.3 Organic nitrogen 160 

Organic nitrogen was calculated by subtracting the ammonium from the total Kjeldahl 161 

nitrogen (TKN). The TKN was determined on the raw samples to measure both mineral and 162 

organic nitrogen. 1.0 g of sample is added to 5 mL of distilled water. Then, 10 mL of sulfuric 163 

acid (98% in mass) containing 0.366 g.L-1 of catalyst (copper selenite) are added. The sample 164 

is then heated to 420 °C for approximately three hours until complete hydrolysis. The TKN is 165 

then measured with a BUCHI 370-K distiller-titrator. Ammonium was measured with a BUCHI 166 

370-K distiller-titrator using the liquid fraction of the digestates collected after 20 minutes of 167 

centrifugation at 18 600 g and then filtered at 0.45 µm.  168 

2.2.4 Total phosphorus 169 

The total phosphorus content of the substrate samples was analysed using the freeze-dried 170 

and 1 mm grinded sample. The sample is first mineralized with a BUCHI digestion unit K-438. 171 

Then 0.05 g of sample is added to a flask containing 5 mL of distilled water and 10 mL of 172 

sulfuric acid (98% in mass). The flask is then put into the mineralizer for six hours at 420 °C. 173 

The organic phosphate is then transformed into ortho-phosphate. The acidity of the sample 174 
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is neutralized by addition of 20-25 mL sodium hydroxide (32% in mass). The phosphorus 175 

assay is carried out with Hack LCK350 kits (2.0 - 20.0 mg.L-1 [PO4--P]) according to the 176 

standard EN ISO 6878, and a Hack DR3900 spectrophotometer. The method used in these 177 

kits is a colorimetric method known as molybdenum blue described by Murphy and Riley 178 

(1962). 179 

2.2.5 Total potassium 180 

The total potassium was measured in the digestate supernatant recovered after 181 

centrifugation (17700 g during 20 minutes at 4 °C). After filtration at 0.45 µm, 1 mL of 182 

supernatant is introduced into a Hack LCK328 assay kit (8.0 - 50.0 mg.L-1 [K+]) and the 183 

potassium is measured with a Hack DR3900 spectrophotometer. 184 

2.3 Near infrared analyses 185 

The digestate samples were freeze-dried and then grinded to 200 µm with a ball mill to 186 

remove as much as possible the spectral signal of water  and to homogenize the samples 187 

(Lesteur et al., 2011;  Charnier et al., 2017). The samples were then scanned in reflectance 188 

from 4000 to 10000 cm-1 with a resolution of 4 cm-1 on a BUCHI NIR-Flex N-500 189 

spectrophotometer. The samples were scanned (96 scans) in vials supplied by the 190 

manufacturer and adapted to homogeneous solids. Each sample was analysed three times 191 

with a shaking step between each measurement to consider its heterogeneity. For each 192 

sample, an average spectrum was calculated from the three scans and used for model 193 

calibration.  194 

Table 2: Dataset features for models’ calibration and validation 195 

 OM TOC Norg P K 

 (g OM.kg DM-1) (g C.kg DM-1) (g N.kg DM-1) (g P.kg DM-1) (g K.kg DM-1) 

Calibration      
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Samples 118 99 75 65 62 

Mean 599.5 326.5 26.7 14.8 41.9 

SD 156.5 79.9 16.0 8.4 36.2 

Max 878.6 499.5 74.1 44.9 171.8 

Min 249.8 171.9 5.3 2.7 0.5 

      

Validation      

Samples 49 39 31 22 17 

Mean 638.0 343.3 30.5 14.3 42.9 

SD 120.9 80.3 12.3 7.4 38.5 

Max 880.0 450.3 62.3 39.8 154.4 

Min 291.6 162.8 13.2 2.2 1.9 

 196 

Before calibration, the sample base was randomly separated into a calibration set and an 197 

external validation set, for each of the different models (Dardenne, 2010). The calibration 198 

and validation set features are presented in Table 2. 199 

2.4 Partial Least Squares regression model 200 

The Partial Least Squares regression method was used for the calibration of the models 201 

based on NIR spectra. As presented in the introduction, many studies have proven that this 202 

method allows obtaining precise and robust models. The best spectral pre-treatment was 203 

selected during the calibration and was based on cross-validation. The spectra were first 204 

converted to pseudo-absorbance (log (1 / Reflectance)). The spectral range was then 205 

reduced to 1300 to 2500 nm. A first derivative was obtained using a Savitzky-Golay filter 206 

(derivative: 1, window: 15, polynomial: 2) with the savgol_filter function of scipy.signal in 207 

Python 3.7. Finally, the spectra were standardized with a standard normal variate (SNV). 208 

The different models were calibrated with a PLSR1 using the Python 3.7 PLSRegression 209 

function (sklearn.cross_decomposition) with the NIPALS algorithm implemented from 210 

Wegelin (2000) and Tenenhaus (1998). A RepeatedKFold Cross validation was performed for 211 

each model with 10 blocks and 30 repetitions.  212 
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2.5 Statistical parameters for model evaluation 213 

Different parameters describing the quality of the models were calculated with the 214 

equations defined by Dardenne (2010) and Bellon-Maurel et al. (2010). 215 

2.5.1 Ratio of Performance to Deviation 216 

The Ratio of Performance to Deviation (RPD) is used in many studies as a quality criterion for 217 

a model (Williams et al., 1987; Malley et al., 2004; Saeys et al., 2005). This parameter is only 218 

linked to the R2 coefficient of determination of the model and can therefore be calculated 219 

for calibration, cross-validation, and validation. The RPD most often put forward to 220 

demonstrate the quality and usefulness of a model is the validation RPD (RPDval). However, it 221 

is essential to note that the RPDval is very dependent on the validation set chosen. The 222 

chosen limit values of RPD, defining an accurate model, are very different from one field of 223 

study to another (Bellon-Maurel and al., 2010). 224 

This parameter was, thus, calculated for calibration (RPDcal), cross-validation (RPDcv), and for 225 

validation (RPDval), respectively, with the corresponding coefficients of determination R2 226 

calculated according to Eq. 1 for calibration (R2
cal), cross-validation (R2

cv), and for external 227 

validation (R2
val). 228 

��� = 1√1 − ��   
�. 1 229 

2.5.2 Root Mean Square Error 230 

The Root Mean Square Error (RMSE) was calculated respectively for calibration (RMSEC), 231 

cross-validation (RMSECV), and validation (RMSEP) according to Eq. 2. 232 



12 
 

 

��
 = �� ���̂ − �����
���   
�. 2 233 

With ��̂ being the model value predicted from the spectrum of the sample, �� being the 234 

reference value of the sample, and � being the number of samples considered.  235 

2.5.3 Bias 236 

This parameter was calculated for the external validation set following Eq. 3. With ��̂ being 237 

the model value predicted from the spectrum of the sample, �� being the reference value of 238 

the sample, and � being the number of samples in the external validation set. 239 

���� = � ��̂�!
��� − � ���!

���   
�. 3 240 

2.5.4 Standard Error of Laboratory 241 

The Standard Error of Laboratory (SEL) was calculated for the Norg, TOC, OM, P and K 242 

reference values with � being the number of samples, and # being the number of 243 

replications (Eq. 4).  244 

�
$ = �� %�&'(��#���
�   
�. 4 245 

The 95% confidence interval of the different analytical methods was calculated following Eq. 246 

5.  247 

*+ 95% = ±1.96 ∗ �
$  
�. 5 248 

2.5.5 Standard deviation of repeatability 249 
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The standard deviation of repeatability (SDr) of the PLSR model was evaluated by measuring 250 

the variance of the spectral triplicates (Eq. 6). 251 

��& = 112 �  %�&���34�5&�67�3�54�   
�. 6 252 

 253 

3. Results and discussion  254 

3.1 Model calibration 255 

The data treatment, which has been applied to the spectra, was the same for the different 256 

models calibrated (1300-2500nm selected, pseudo-absorbance, Savitzky-Golay (derivative: 1, 257 

window: 15, polynomial: 2) and SNV), because it gave the best results in terms of RMSECV 258 

and RPDcv. The aim of this treatment was to remove as much as possible additive and 259 

multiplicative effects on the spectra caused by photon scattering and measurement noise .  260 

The different PLSR models were calibrated with four to ten latent variables. The b-261 

coefficients of the regression were not noisy, which suggests a low risk of over-fitting. The 262 

number of latent variables selected for each model was chosen to minimize the RMSECV and 263 

to maximise the RPDcv. The results are presented in Table 3. 264 

The SDr of the models predicting OM, P, and Norg were lower than the SEL of the reference 265 

method. For the TOC and K models, SDr and SEL were very close. Overall, the prediction of 266 

these chemical parameters by NIR spectroscopy and PLSR modelling resulted in better or 267 

similar repeatability compared to the reference laboratory analyses. 268 

The model predicting the OM of the digestates was calibrated with 10 latent variables and a 269 

presented good quality of calibration with a R2 of 0.88. In addition, RPDcal and RPDcv were 270 
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very similar, which showed that the calibration base of the model was wide enough. The 271 

RPDcal and RPDcv values equal to 2.86 and 2.04 were interpreted as indicators of a satisfying 272 

calibration. The RMSEC and RMSECV were also similar (54.68 and 78.09 gOM.kgDM-1) and 273 

close to the SEL of the reference laboratory analysis equal to 26.30 gOM.kgDM-1. 274 

The TOC model provided satisfying calibration results with eight latent variables, a R2 equal 275 

to 0.85, and a RPDcal of 2.58. The RMSEC and RMSECV of the model were similar but three 276 

and four times higher than the SEL of the reference laboratory analysis equal to 10.61 277 

gC.kgDM-1. This result highlighted that the accuracy of the model could be theoretically 278 

improved, but the predictions were already satisfactory. 279 

Table 3: Models’ performances including calibration and validation with an independent data set 280 

 OM TOC Norg P K 

 (g OM.kg DM-1) (g C.kg DM-1) (g N.kg DM-1) (g P.kg DM-1) (g K.kg DM-1) 

Latent Variables 10 8 4 5 5 

R2cal 0.88 0.85 0.69 0.71 0.57 

RMSEC 54.68 30.92 8.92 4.53 23.80 

RPDcal 2.86 2.58 1.79 1.86 1.52 

RMSECV 78.09 45.84 11.01 6.21 32.25 

RPDCV 2.04 1.78 1.45 1.33 1.11 

      

R2val 0.69 0.82 0.67 0.71 0.41 

RMSEP 70.51 34.84 7.55 4.08 29.72 

Bias 13.47 -8.55 2.03 0.64 -1.06 

RPDval 1.72 2.31 1.63 1.81 1.29 

      

SDr 10.01 10.61 1.57 0.89 6.17 

SEL 26.30 10.30 2.66 2.86 6.58 

R2cal  and R2val, R2 of calibration and validation dataset ; RPD, ratio of performance to deviation; 281 
RMSEP, RMSEC and RMSECV, roots mean square error of prediction, calibration and cross-validation; 282 

SDr, standard deviation of repeatability ; SEL, standard error of laboratory 283 
 284 
 285 

For the Norg model, four latent variables were selected, and the calibration gave a R2 of 0.69, 286 

a RPDcal of 1.79, and a RPDcv of 1.45. The RMSEC and RMSECV were similar (8.92 and 11.01 287 

gN.kgDM-1) but four to five times higher than the SEL of the reference laboratory analyse 288 
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equal to 2.66 gN.kgDM-1. The model was less accurate for high values of Norg. The samples 289 

with high concentrations of Norg were mostly liquid phases of centrifuged digestates.  290 

The P model presented was calibrated with five latent variables selected and provided a R2 291 

of 0.71, a RPDcal of 1.86, and a RPDcv of 1.33. The RMSEC and RMSECV are close to the SEL 292 

equal to 2.86 gP.kgDM-1. Two predictions of the calibration set were negative values, but 293 

they corresponded to digestates with very low P concentrations and predictions remained in 294 

the 95% confidence interval of the reference analyse. 295 

Five latent variables were selected for the model predicting the K content in digestates 296 

resulting in a RPDcv of 1.11 and a RMSECV of 32.25 gK.kgDM-1
, almost eight times the SEL 297 

(6.58 gK.kgDM-1). The model gave also negative values for low concentrations of K and was 298 

less accurate for high concentrations of K. 299 

3.2 Model validation with independent datasets 300 

The calibrated models were then tested on independent data sets made up of samples 301 

randomly chosen among the whole data set in order to evaluate the models’ robustness. 302 

Between 41% and 27% of the total data set were used for validation depending on the total 303 

number of samples available for each model with the aim of keeping enough samples for the 304 

calibration. This selection method for the validation set enabled us to cover the whole range 305 

of values for the different models as can be seen in Table 2. It can also be considered that 306 

the validation sets contained representative samples of the diversity of digestates.  307 

The validation results are presented in Table 3. All the RMSEP of the models were lower than 308 

the RMSECV, which means that the models were robust, because the calibration results 309 

could be extended over an independent sample set. Furthermore, there was no significant 310 

bias to underline. It can be seen in Figure 1 that 95% and 70% of the validation predictions of 311 
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the P and the OM model, respectively, were inside the 95% confidence interval of the 312 

analytical methods. Validation results were excellent for these two models. With reference 313 

to the Norg and TOC model validation, 55% and 47% of the predictions were within the 95% 314 

confidence interval. This result is certainly less satisfactory compared to the P and OM 315 

models, but it is important to point out that the analytical methods for measuring Norg and 316 

TOC were very repeatable and that, consequently, their SEL were extremely low. Lastly, only 317 

24% of the validation predictions of the K model were inside the 95% confidence interval of 318 

the analytical methods.  319 

 320 
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 321 

 322 

 323 

 324 

 325 
 326 
Figure 1: Prediction performances of OM, TOC, Norg, P and K contents, respectively on the top left, 327 
top right, middle left, middle right and bottom. The red stars represent the prediction of the 328 
independent validation set whereas the green circles represent the estimation of the calibration 329 
set. The green line and the red line represent the regression between reference and predicted 330 
values for the calibration set and validation set respectively. The dashed yellow lines represent the 331 
IC 95% of the analytical method.  332 

3.3 Discussion   333 

The whole data set of digestates used in this study gathered samples from different AD 334 

feedstocks and processes, which had created a large variety of digestate compositions. The 335 

dry matter content of the digestates data set ranged from 1% (liquid phase of centrifuged 336 

digestates) to 80% (composted solid phase of centrifuged digestates). As a result, the 337 

distribution ranges of the chemical parameters predicted by the models presented were 338 

very wide for most of them. The OM content of calibration samples varied between 250 and 339 

879 gOM.kgDM-1 and between 292 and 880 gOM.kgDM-1 for the validation samples. The 340 

residual organic matter in the dry matter of a digestate depends on substrates 341 

(biodegradability, composition, etc.), the process removal efficiency, and the post-processing 342 

used. It was difficult to find a strong correlation between the type of digestate and its OM 343 

concentration, but it was possible to notice a trend.  The samples with the lowest OM 344 

contents have been reported to be mostly raw digestates and the liquid phase of centrifuged 345 

digestates. In contrast, the samples with the highest OM contents were the solid phase of 346 

centrifuged digestates and raw digestates. Except for OM contents between 0 and 250 g 347 
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OM.kgDM-1
, which did not correspond to any AD digestates, the OM model range covered 348 

the OM contents observed in AD digestates with a homogeneous distribution of the 349 

reference values and with a high density of samples. The TOC content represented also a 350 

wide range of values with a balanced repartition between 163 and 500 gC.kgDM-1. Because 351 

OM and TOC contents are correlated, the same digestates were reported for the lowest and 352 

the highest values of both TOC and OM content. Just like the OM content range, no 353 

digestate with a TOC content lower than 163 gC.kgDM-1 was reported. Even though the SEL 354 

of the OM and TOC measurements were low, the RMSEP of the predictions were for both 355 

models acceptable. Therefore, the calibrated PLS models predicting OM content and TOC 356 

contents can be expected to produce satisfying predictions over the whole diversity of AD 357 

digestates.  358 

The models predicting Norg, P, and K were calibrated with only 75, 65, and 62 samples, 359 

respectively (Table 2). The Norg content of the calibration samples varied between 5 and 74 360 

gN.kgDM-1 and between 13 and 62 gN.kgDM-1 for the validation samples. The distribution of 361 

the Norg reference values was homogeneous and with an adequate density between 5 to 40 362 

gN.kgDM-1 (Figure 2). However, there was a lack of digestates with high Norg content 363 

(between 40 and 80 gN.kgDM-1) like digestates produced by AD plants fed with mainly food 364 

wastes or slurry. This was the major reason for the lower prediction accuracy for digestates 365 

with high Norg contents compared to digestates with lower Norg contents. Another reason 366 

could be the residual ammonium present in the freeze-dried samples used for NIR 367 

measurements, which could lead to disturbances for the Norg predictions. Indeed, digestates 368 

with high Norg contents were mainly digestates also containing the most ammonium, and the 369 

absorption areas caused by ammonium molecules (1500-1550 nm and 1950-2050 nm, 370 

respectively) are similar to those produced by organic nitrogen compounds (Charnier et al., 371 
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2018). Despite the need of digestates with higher Norg content to improve the prediction 372 

accuracy, the RMSEP of the model was less than three times higher than the SEL, which 373 

means that NIR predictions were less precise than the laboratory analyses, but could give a 374 

usable estimation for routine analyses. 375 

The P content of the digestates used in this study varied between 2 and 45 gP.kgDM-1. The 376 

repartition was balanced between 2 and 25 gP.kgDM-1, but only seven calibration samples 377 

had a P content between 25 and 45 gP.kgDM-1 (Figure 2). Digestates with a high P content 378 

came from AD units mostly fed with sewage sludge or agri-food industry waste. These kinds 379 

of samples are under-represented in the calibration base and including them would certainly 380 

improve the model calibration. Nonetheless, the model gave predictions as accurate as the 381 

laboratory analyses; these results are, therefore, very satisfactory. 382 

The distribution of the K reference values was homogeneous between 0.5 and 75 gK.kgDM-1, 383 

but there was an important lack of K contents between 75 and 172 gK.kgDM-1 (Figure 2). 384 

Both, calibration and validation, gave poor results with a RMSEP five times higher than the 385 

SEL. The NIR model predicting the K content will not give results accurate enough for further 386 

use in practice. 387 

NIR models predicting P and K contents in digestates were both based on indirect 388 

correlations due to the lack of absorption zones in NIR wavelengths for these two elements 389 

(Mouazen et al., 2016). However, these two models showed very different results. This 390 

difference could be explained by the fact that P is partly integrated into organic matter, 391 

while K is an element contained only in ionic form in the different organic matrices.   392 

The different models were calibrated using NIR-spectra measured on freeze-dried samples 393 

to avoid water-related disturbances, which implied that predicted parameters must not be 394 
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altered by the freeze-drying process. The OM and TOC laboratory analyses were performed 395 

on freeze-dried samples, because there was no risk of organic matter and carbon loss during 396 

the drying process. Indeed, most of volatile organic compounds like volatile fatty acids are 397 

consumed during AD. However, it would have been difficult to predict total nitrogen or 398 

ammonium contents from freeze-dried samples because part of the nitrogen can be lost 399 

during the freeze-drying process due to ammonia volatilization (Morris et al., 2019) and 400 

would no longer be visible on the NIR spectra. For that reason, only Norg was predicted in this 401 

study. Nevertheless, the determination of ammonium is essential for the assessment of the 402 

agronomic potential of digestates and could be determined with a laboratory method in 403 

addition to the NIR analysis. 404 

Comparing the results of the models calibrated on digestates with those obtained with 405 

models calibrated on other matrices with a similar methodology, several observations can be 406 

made. Charnier et al. (2017) proposed a model predicting total nitrogen from anaerobic 407 

digestion feedstocks with an R2
val (0.77) and RMSEP (8.6 gN.kgDM-1) similar to those 408 

proposed in this study. Gislum et al. (2004) found superior results for the prediction of the 409 

total nitrogen content in two grasses species with specific models for each. In contrast, Ward 410 

et al. (2011) proposed a common model for several meadow grasses and obtained much 411 

poorer results. Due to the low mineral nitrogen content of the matrices used in these three 412 

studies, the authors were able to predict the total nitrogen content instead of the organic 413 

nitrogen content predicted in our study. Concerning the prediction of P and K contents, 414 

Ward et al. (2011) also found lower performances than for the total nitrogen model. 415 

Contrary to our study, the authors obtained more accurate predictions for the K model than 416 

for the P model, which could be explained by stronger indirect correlations with NIR spectra 417 

for the K content than for the P content according to the authors. 418 
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In full-scale AD plants with variable feedstocks (depending on the seasons, the feed-in 419 

contracts established etc.), it is difficult to anticipate the digestates that will be produced. 420 

The results obtained in this study demonstrate the feasibility of using NIR spectroscopy for 421 

the determination of OM, TOC, Norg, and P contents in digestates. The calibration bases still 422 

need to be complemented with other samples to achieve the performance required at 423 

industrial level, but the NIR-PLS method could allow for fast and inexpensive agronomic 424 

characterization of the digestates in line with the needs and opportunities of the AD sector. 425 

It could thus enable more efficient management of digestate spreading in order to fit into a 426 

chemical fertilizer reducing approach and to achieve an agricultural and industrial symbiosis. 427 

This new method would also allow for a more frequent or even systematic characterization 428 

of digestates, making their use in agriculture much more precise and limiting the 429 

environmental impacts that can be caused by an uncontrolled return to the soil. 430 

3.4 Perspectives 431 

The NIR-PLS model prediction method provides many benefits in terms of analysis time and 432 

cost. Indeed, a single NIR spectroscopy analysis can determine several parameters 433 

simultaneously. The most time consuming step is to freeze-dry the samples. This 434 

characterization method can still be optimized by finding a way to remove water-related 435 

disturbances and, thus, performing the NIR measurements directly on fresh samples. This 436 

improvement path is a current research subject and requires first identifying the effects of 437 

water (Mallet et al., 2021) on the NIR signal in order to subtract them afterwards from the 438 

NIR signal. This could also allow the calibration of an ammonium prediction model in 439 

addition to organic nitrogen, as ammonium is at the very heart of spreading strategies 440 

reducing the risk of acidification and eutrophication of natural environments. For instance, 441 
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previous studies, such as Saeys et al. (2005) and Maleki et al. (2006), have demonstrated 442 

that accurate models could be obtained using both NIR and visible spectroscopy for 443 

predicting OM, nitrogen, NH4, and P on fresh samples. As NIR spectroscopy is becoming a 444 

more and more financially accessible technology (Mouazen et al., 2016), a NIR 445 

characterization method on fresh samples could allow the development of on-line and on-446 

site sensors. 447 

 448 

4. Conclusion 449 

In this study, a data set containing OM, TOC, Norg, P, and K contents of 193 digestates has 450 

been created. The freeze-dried digestates were analyzed with NIR spectroscopy with the aim 451 

of calibrating NIR-PLS models. Cross-validation and validation with an independent data set 452 

were used to evaluate these models. The predictive models showed good prediction 453 

accuracy for the estimation of OM, TOC, and P contents in digestates. The predictions of Norg 454 

were less accurate than laboratory analyses, but usable for some applications. The P and Norg 455 

models should be improved in future developments by adding more samples to the 456 

calibration data set. Finally, calibration of the model predicting the K content was considered 457 

unsuccessful, as it did not produce satisfactory results as it has also been shown in other 458 

studies. This paper proposes the first steps towards an analytical method for the 459 

characterization of the fertilizing value of digestates using NIR spectroscopy. 460 

 461 

Acknowledgments 462 



23 
 

 

This study is part of the MAPPED project (2017-2019) N°1782C0076, which is supported by 463 

the French Environment & Energy Management Agency (ADEME).  464 

The authors would like to thank Dr. Doris Brockmann for revising the manuscript with regard to 465 

proper English. 466 

 467 

References 468 

Alburquerque, J. A., de la Fuente, C., Ferrer-Costa, A., Carrasco, L., Cegarra, J., Abad, M., & 469 

Bernal, M. P. (2012). Assessment of the fertiliser potential of digestates from farm and 470 

agroindustrial residues. Biomass and bioenergy, 40, 181-189. 471 

https://doi.org/10.1016/j.biombioe.2012.02.018 472 

Awhangbo, L., Bendoula, R., Roger, J. M., & Béline, F. (2020). Multi-block SO-PLS approach 473 

based on infrared spectroscopy for anaerobic digestion process monitoring. Chemometrics 474 

and Intelligent Laboratory Systems, 196, 103905. 475 

https://doi.org/10.1016/j.chemolab.2019.103905 476 

Barthès, B. G., Kouakoua, E., Clairotte, M., Lallemand, J., Chapuis-Lardy, L., Rabenarivo, M., & 477 

Roussel, S. (2019). Performance comparison between a miniaturized and a conventional 478 

near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen. 479 

Geoderma, 338, 422-429. https://doi.org/10.1016/j.geoderma.2018.12.031 480 

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J. M., & McBratney, A. (2010). 481 

Critical review of chemometric indicators commonly used for assessing the quality of the 482 

prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry, 29(9), 483 

1073-1081. https://doi.org/10.1016/j.trac.2010.05.006 484 



24 
 

 

Charnier, C., Latrille, E., Jimenez, J., Lemoine, M., Boulet, J. C., Miroux, J., & Steyer, J. P. 485 

(2017). Fast characterization of solid organic waste content with near infrared spectroscopy 486 

in anaerobic digestion. Waste management, 59, 140-148. 487 

https://doi.org/10.1016/j.wasman.2016.10.029 488 

Charnier, C., Latrille, E., Roger, J. M., Miroux, J., & Steyer, J. P. (2018). Near-Infrared 489 

Spectrum Analysis to Determine Relationships between Biochemical Composition and 490 

Anaerobic Digestion Performances. Chemical Engineering & Technology, 41(4), 727-738. 491 

https://doi.org/10.1002/ceat.201700581 492 

Ciurczak, E. W., & Burns, D. A. (2007). Handbook of near-infrared analysis. CRC Press.Dalal, R. 493 

C., & Henry, R. J. (1986). Simultaneous Determination of Moisture, Organic Carbon, and Total 494 

Nitrogen by Near Infrared Reflectance Spectrophotometry 1. Soil Science Society of America 495 

Journal, 50(1), 120-123. https://doi.org/10.2136/sssaj1986.03615995005000010023x 496 

Cozzolino, D., & Moron, A. (2004). Exploring the use of near infrared reflectance 497 

spectroscopy (NIRS) to predict trace minerals in legumes. Animal Feed Science and 498 

Technology, 111(1-4), 161-173. https://doi.org/10.1016/j.anifeedsci.2003.08.001 499 

Dardenne, P. (2010). Some considerations about NIR spectroscopy: Closing speech at NIR-500 

2009. NIR news, 21(1), 8-14. https://doi.org/10.1255/nirn.1165 501 

European Parliament, Council of the European Union, 2016. Procedure 2016/0084/ COD. 502 

COM (2016) 157: Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE 503 

COUNCIL laying down rules on the making available on the market of CE marked fertilising 504 

products and amending Regulations (EC) No 1069/2009 and (EC). 505 



25 
 

 

European Commission, 2003. Regulation (EC) No 2003/2003 of the European Parliament and 506 

of the Council of 13 October 2003 relating to fertilizers, Off J Eur Commun. 507 

Fuchs, W., & Drosg, B. (2013). Assessment of the state of the art of technologies for the 508 

processing of digestate residue from anaerobic digesters. Water Science and Technology, 509 

67(9), 1984–1993. https://doi.org/10.2166/wst.2013.075 510 

Gislum, R., Micklander, E., & Nielsen, J. P. (2004). Quantification of nitrogen concentration in 511 

perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and 512 

chemometrics. Field Crops Research, 88(2-3), 269-277. 513 

https://doi.org/10.1016/j.fcr.2004.01.021 514 

González-Martín, I., Hernández-Hierro, J. M., & González-Cabrera, J. M. (2007). Use of NIRS 515 

technology with a remote reflectance fibre-optic probe for predicting mineral composition 516 

(Ca, K, P, Fe, Mn, Na, Zn), protein and moisture in alfalfa. Analytical and bioanalytical 517 

chemistry, 387(6), 2199-2205. https://doi.org/10.1007/s00216-006-1039-4 518 

Guilayn, F., Jimenez, J., Martel, J. L., Rouez, M., Crest, M., & Patureau, D. (2019). First 519 

fertilizing-value typology of digestates: A decision-making tool for regulation. Waste 520 

Management, 86, 67-79. https://doi.org/10.1016/j.wasman.2019.01.032 521 

Guilayn, F., Rouez, M., Crest, M., Patureau, D., & Jimenez, J. (2020). Valorization of 522 

digestates from urban or centralized biogas plants: a critical review. Reviews in 523 

Environmental Science and Bio/technology. https://doi.org/10.1007/s11157-020-09531-3 524 

He, Y., Huang, M., García, A., Hernández, A., & Song, H. (2007). Prediction of soil 525 

macronutrients content using near-infrared spectroscopy. Computers and Electronics in 526 

Agriculture, 58(2), 144-153. https://doi.org/10.1016/j.compag.2007.03.011 527 



26 
 

 

Houot, S., Pons, M. N., Pradel, M., & Tibi, A. (2016). Recyclage de déchets organiques en 528 

agriculture: Effets agronomiques et environnementaux de leur épandage. Editions Quae. 529 

Hummel, J. W., Sudduth, K. A., & Hollinger, S. E. (2001). Soil moisture and organic matter 530 

prediction of surface and subsurface soils using an NIR soil sensor. Computers and 531 

electronics in agriculture, 32(2), 149-165. https://doi.org/10.1016/S0168-1699(01)00163-6 532 

Jacobi, H. F., Moschner, C. R., & Hartung, E. (2011). Use of near infrared spectroscopy in 533 

online-monitoring of feeding substrate quality in anaerobic digestion. Bioresource 534 

technology, 102(7), 4688-4696. https://doi.org/10.1016/j.biortech.2011.01.035 535 

Jimenez, J., Grigatti, M., Boanini, E., Patureau, D., & Bernet, N. (2020). The impact of biogas 536 

digestate typology on nutrient recovery for plant growth: Accessibility indicators for first 537 

fertilization prediction. Waste Management, 117, 18-31. 538 

https://doi.org/10.1016/j.wasman.2020.07.052 539 

Kataki, S., Hazarika, S., & Baruah, D. C. (2017). Investigation on by-products of bioenergy 540 

systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, 541 

SEM analysis and phyto-toxicity test. Journal of Environmental Management, 196, 201-216. 542 

https://doi.org/10.1016/j.jenvman.2017.02.058 543 

KTBL, (2008). Umweltgerechte, innovative Verfahren zur Abtrennung von Nährstoffen aus 544 

Gülle und Gärrückständen - Technologischer Stand, Perspektiven und 545 

Entwicklungsmöglichkeiten. Studie im Auftrag der Deutschen Bundesstiftung Umwelt, 546 

erstellt durch das Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), 547 

Darmstadt, D, in Zusammenarbeit mit dem Institut für Technologie und Biosystemtechnik 548 

der Bundesforschungsanstalt für Landwirtschaft (FAL), Braunschweig, D (only in German). 549 



27 
 

 

Lesteur, M., Latrille, E., Maurel, V. B., Roger, J. M., Gonzalez, C., Junqua, G., & Steyer, J. P. 550 

(2011). First step towards a fast analytical method for the determination of biochemical 551 

methane potential of solid wastes by near infrared spectroscopy. Bioresource 552 

technology, 102(3), 2280-2288. https://doi.org/10.1016/j.biortech.2010.10.044 553 

Maleki, M. R., Van Holm, L., Ramon, H., Merckx, R., De Baerdemaeker, J., & Mouazen, A. M. 554 

(2006). Phosphorus sensing for fresh soils using visible and near infrared spectroscopy. 555 

Biosystems Engineering, 95(3), 425-556 

436.https://doi.org/10.1016/j.biosystemseng.2006.07.015 557 

Mallet, A., Charnier, C., Latrille, E., Bendoula, R., Steyer, J. P., Roger J.M. (2021). Unveiling 558 

non-linear water effects in near infrared spectroscopy: A study on organic wastes during 559 

drying using chemometrics. Waste Management, 122, 36-48. 560 

https://doi.org/10.1016/j.wasman.2020.12.019. 561 

Menesatti, P., Antonucci, F., Pallottino, F., Roccuzzo, G., Allegra, M., Stagno, F., & Intrigliolo, 562 

F. (2010). Estimation of plant nutritional status by Vis–NIR spectrophotometric analysis on 563 

orange leaves [Citrus sinensis (L) Osbeck cv Tarocco]. biosystems engineering, 105(4), 448-564 

454. https://doi.org/10.1016/j.biosystemseng.2010.01.003 565 

Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., & Carrere, H. (2015). New 566 

opportunities for agricultural digestate valorization: current situation and 567 

perspectives. Energy & Environmental Science, 8(9), 2600-2621. 568 

https://doi.org/10.1039/C5EE01633A 569 

Morris, D. L., Tebbe, A. W., Weiss, W. P., & Lee, C. (2019). Short communication: Effects of 570 

drying and analytical methods on nitrogen concentrations of feeds, feces, milk, and urine of 571 

dairy cows. Journal of Dairy Science. https://doi.org/10.3168/jds.2019-16256 572 



28 
 

 

Mouazen, A. M., & Kuang, B. (2016). On-line visible and near infrared spectroscopy for in-573 

field phosphorous management. Soil and Tillage Research, 155, 471-477. 574 

https://doi.org/10.1016/j.still.2015.04.003 575 

Murphy, J., Riley, J.P. 1962. A modified single solution method for the determination of 576 

phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. 577 

https://doi.org/10.1016/S0003-2670(00)88444-5 578 

Nduwamungu, C., Ziadi, N., Parent, L. É., & Tremblay, G. F. (2009). Mehlich 3 extractable 579 

nutrients as determined by near-infrared reflectance spectroscopy. Canadian journal of soil 580 

science, 89(5), 579-587. https://doi.org/10.4141/CJSS09018 581 

Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with 582 

anaerobic digestates: a review. Agronomy for Sustainable Development, 34(2), 473-492. 583 

https://doi.org/10.1007/s13593-013-0196-z 584 

Petisco, C., García-Criado, B., De Aldana, B. V., Zabalgogeazcoa, I., & Mediavilla, S. (2005). 585 

Use of near-infrared reflectance spectroscopy in predicting nitrogen, phosphorus and 586 

calcium contents in heterogeneous woody plant species. Analytical and bioanalytical 587 

chemistry, 382(2), 458-465. https://doi.org/10.1007/s00216-004-3046-7 588 

Reed, J. P., Devlin, D., Esteves, S. R. R., Dinsdale, R., & Guwy, A. J. (2011). Performance 589 

parameter prediction for sewage sludge digesters using reflectance FT-NIR 590 

spectroscopy. Water research, 45(8), 2463-2472. 591 

https://doi.org/10.1016/j.watres.2011.01.027 592 



29 
 

 

Saeys, W., Xing, J., De Baerdemaeker, J., Ramon, H., 2005. Comparison of transflectance and 593 

reflectance to analyse hog manures. Journal of Near Infrared Spectroscopy 13, 99e107. 594 

https://doi.org/10.1255/jnirs.462 595 

Teglia, C., Tremier, A., & Martel, J. L. (2011). Characterization of solid digestates: part 1, 596 

review of existing indicators to assess solid digestates agricultural use. Waste and Biomass 597 

Valorization, 2(1), 43-58. https://doi.org/10.1007/s12649-010-9051-5 598 

Tenenhaus, M. (1998). La régression PLS: théorie et pratique. Editions technip. 599 

The Commission of the European Communities, 2009. Directive 2009/28/EC of 23 April 2009. 600 

Off. J. Eur. Union 140, 47. 601 

Tremblay, G. F., Nie, Z., Belanger, G., Pelletier, S., & Allard, G. (2009). Predicting timothy 602 

mineral concentrations, dietary cation-anion difference, and grass tetany index by near-603 

infrared reflectance spectroscopy. Journal of dairy science, 92(9), 4499-4506. 604 

https://doi.org/10.3168/jds.2008-1973 605 

Walsh, J. J., Jones, D. L., Edwards-Jones, G., & Williams, A. P. (2012). Replacing inorganic 606 

fertilizer with anaerobic digestate may maintain agricultural productivity at less 607 

environmental cost. Journal of Plant Nutrition and Soil Science, 175(6), 840–845. 608 

https://doi.org/10.1002/jpln.201200214  609 

WANG, K. (2009). Application and prospect of near infrared reflectance spectroscopy in 610 

forage analysis. Spectroscopy and Spectral Analysis, 29(3), 635-640. 611 

https://doi.org/10.3964/j.issn.1000-0593 612 



30 
 

 

Ward, A., Nielsen, A. L., & Møller, H. (2011). Rapid assessment of mineral concentration in 613 

meadow grasses by near infrared reflectance spectroscopy. Sensors, 11(5), 4830-4839. 614 

https://doi.org/10.3390/s110504830 615 

Wegelin, J. A. (2000). A survey of Partial Least Squares (PLS) methods, with emphasis on the 616 

two-block case. University of Washington, Tech. Rep. 617 

Williams, P., & Norris, K. (1987). Near-infrared technology in the agricultural and food 618 

industries. American Association of Cereal Chemists, Inc..Malley, D. F., Martin, P. D., & Ben-619 

Dor, E. (2004). Application in analysis of soils. Near-infrared spectroscopy in agriculture, 620 

(nearinfraredspe), 729-784. 621 

 622 







 





 




