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Abstract
A wide diversity of plant protection products (PPP) is used for crop 
protection leading to the contamination of soil, water, and air, which 
can hâve ecotoxicological impacts on living organisms. It is incon- 
ceivable to study the effects of each compound on each species from 
each compartment, experimental studies being time consuming and 
cost prohibitive, and animal testing having to be avoided. Therefore, 
numerous models are developed to assess PPP ecotoxicological effects. 
Our objective was to provide an overview of the modelling approaches 
enabling the assessment of PPP effects (inc.luding biopesticides) on 
the biota. Six categories of models were inventoried: QSAR, DR and 
TKTD, population, multi-species, landscape, and mixture models. They 
were developed for various species (terrestrial and aquatic vertebrates 
and invertebrates, primary producers, micro-organisms) belonging to 
diverse environmental compartments, and address different goals (e.g., 
species sensitivity or PPP bioaccumulation assessment, ecosystem ser­
vices protection). Among them, mechanistic models are increasingly 
recognized by EFSA for PPP regulatory risk assessment but, to date, 
remain not considered in notified guidance documents. The strengths 
and limits of the reviewed models are discussed together with improve- 
ment avenues (multi-generational effects, multiple biotic and abiotic 
stressors. . . ) .  This review also underlines a lack of model testing by 
rneans of fleld data and of sensitivity and uncertainty analyses. Accu- 
rate and robust modelling of PPP effects and other stressors on living 
organisms, from their application in the ffeld to their functional consé­
quences on the ecosystems at different scales of time and space, would 
help going towards a more sustainable management of the environment.

K ey w o rd s: Ecotoxicological m odels, ecological m odels, risk assessm ent, 
environm ent, ecotoxicity, m ulti-stressors, E uropean  régulation

2 Review of models for ERA of plant protection products

Graphical abstract
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1 A bbreviations

E C X
H CP
LCX
LD 50
p2
Eadj
R 2
£95
AA-EQS
ABM
ACF
AD
ADI
AF
AFT
AMBIT
ANN
AOP
B CF
BMC
BMF
BN
BSAF
CA model
CADDIS
CCC
CD F
CI
DaLaM 
DEB 
DEBtox 
DR model 
DT
EA model
EFSA
ETO-RAC
EcoRR
EQS
ERA
ERO-RAC
ETR
f-SSD
GIS
GMDH
GUTS
GUTS-RED
IA model
IBC

x% Effective Concentration 
p% Hazard Concentration 
x% Léthal Concentration 
50% Léthal Dose 
Adjusted corrélation coefficient 
corrélation coefficient 
95% dépuration time 
Annual Average-EQS 
Agent Based Model 
Atom Centered Fragments 
Applicability Domain 
Applicability Domain Index 
Assessment Factor 
Accelerated Failure Time 
Chemical substance database 
Artificial Neural Networks 
Adverse Outcome Pathway 
Bio-Concentration Factor 
Bayesian Matbugs Calculator 
Bio-Magnification Factors 
Bayesian Networks
Biota-Sediment Accumulation Factors 
Concentration Addition model
Causal Analysis/Diagnosis Decision Information System
Concordance Corrélation Coefficient
Cumulative Distribution Function
Combination Index
Daphnia Lake Model
Dynamic Energy Budget
DEB applied to ecotoxicology
Dose-Response model
Decision Tree
Effect Addition model
European Food Safety Authority
Ecological Threshold Option - RAC
Ecological Risk Ratio
Environmental Quality Standard
Ecological Risk Assessment
Ecological Recovery Option - RAC
Exposure Toxicity Ratio
Field-SSD
Geographical Information System
Group Method of Data Handling
General Unified Thresholds model of Survival
GUTS reduced model
Independent Action model
Individual-Based plant Community
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IBM
ICE
k-NN
LM
LOEC
LOF
LOO
MCMC
MDR
MechoA
MIE
MLP
MLR
MoA
MOSAICs s d
MSM
msPAF
MTI
NOEC
ODE
OPP
PAF
PBPK
PBTK
PBTKTD
PEC
PLS
PNEC
PPDB
PPP
QAAR
QMRF
(Q)SAR
QSAAR
QSPR
QSTR
RA model
RAC
RF
RMSE
RQ
RS
S-SDM
SAM
SD
SFI
SI
SI model
SPC
SSD

Individual Based Model 
Inter-species Corrélation Estimation 
k-Neural Network 
Levenberg-Marquardt 
Lowest Effect Concentrations 
Lack Of Fit 
Leave-One-Out 
Monte-Carlo Markov Chain 
Model Déviation Ratio 
Mechanism of action 
Molecular Initiating Event 
Multi-Layer Perceptron 
Multiple Linear Régression 
Mode of action
MOdelling and Statistical Analyses for ecotoxICology
Multiplicative Survival Model
Multiple-Substance PAF
Mixture Toxicity Index
No Observed Effect Concentrations
Ordinary Differential Equation
Office of Pesticide Programs
Potentially Affected Fraction
Physiologically-Based pharmacokinetic
Physiologically-Based TK
Physiologically-Based TKTD
Predicted Exposure Concentration
Partial Least Squares
Predicted No Effect Concentration
Pesticide Properties DataBase
Plant Protection Product
Quantitative Activity - Activity Relationship
(Q)SAR Model Reporting Formats
(Quantitative) Structure - Activity Relationship
Quantitative Structure - Activity - Activity Relationship
Quantitative Structure - Property Relationship model
Quantitative Structure - Toxicity Relationship
Response Addition model
Regulatory Accepted Concentration
Random Forest
Root Mean Square Error
Risk Quotient
Reference Species
Stacked Species Distribution Modeling
Stress Addition Model
Stochastic Death
Safety Factor Index
Supplementary Information
Simple Interaction model
Spécifie Protection Goal
Species Sensitivity Distribution
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SVM Support-Vector Machine
TCM Time-Concentration-Mortality
TER Toxicity Exposure Ratio
TK ToxicoKinetics
TKTD ToxicoKinetics-ToxicoDynamics
TU Toxic Unit
UP Uniform Principles
WFD Water Framework Directive
WoS Web of Science

2 Introduction
The European Plant Protection Product (PPP) Régulation (EC) No 
1107/2009 (European Commission, 2009) requires the PPP ecotoxicological 
properties (among others) to be fully characterized before to be placed on the 
market. Active substances should only be included in PPP where it has been 
demonstrated that they are not expected to hâve any harmful effect on human 
or animal health or any unacceptable effects on the environment (European 
Commission, 2009). Breakdown products (from environmental dégradation or 
metabolic transformations) of substances hâve also to be identihed and eval- 
uated (Casalegno et al., 2006; European Commission, 2009). Considering the 
total number of PPP and the number of related breakdown products, such task 
is susceptible to lead to many ecotoxicological tests though animal testing has 
to be avoided. Thus, modelling approaches constitute an interesting support.

Models aim at delivering insights and possible solutions to real-world 
problems, but also at supporting regulators for risk assessment. Regarding 
PPP, they (i) allow the dérivation of critical effect concentrations and envi­
ronmental protective thresholds from animal and plant testing; (ii) could 
help to hll in data gap and thus save time, money, and reduce the number of 
animais used for experimental testing purposes (Basant et al. 2016; Casalegno 
et al. 2006); (iii) improve mechanistic understanding. For régulation, decision 
makers hâve to select the most appropriate models for the problem at hand 
(extrapolation from experimental data, extrapolation to other species, higher 
level of biological organization, other environmental conditions...), and to 
get evidence that a model works, having démonstration that it is realistic 
while based on reliable data inputs and key assumptions. Consequently, there 
is a crucial need for a clear communication of models and of their context 
(Grimm et al., 2020). To fulhll that need, EFS A has published several rec­
ommendations to support the development of models compatible with PPP 
régulation (EFSA PPR Panel, 2014).

In this context, the objective of this work was to review effect modelling 
approaches enabling ecological risk assessment of PPP (including biopesti­
cides) for organisms, biodiversity and ecosystem functions/services. The review
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starts with the présentation of the bibliometric methodology that led to the 
définition of the bibliographie corpus, and with the analysis of this corpus 
(Section 3). Then, the whole reviewed models, which belong to six main model 
categories (QSAR, DR and TKTD, population, multi-species, landscape, and 
mixture models) are presented (Section 4). In particular, sub-section 4.1 gives 
full details on each type of model including the main (standard or not) outputs 
they provide, while sub-section 4.2 further explains what are the main model 
usages. Section 5 points out the strengths and limits of the different model cat­
egories, including genericity and transversality, uncertainty quantification and 
reproducibility. In parallel with the corpus analysis, the Section 6 explores the 
recommendations in terms of usage of modelling approaches in the context of 
the European PPP régulation. Potential contributions and prospects of cur- 
rent and future modelling tools to Environmental Risk Assessment (ERA) are 
discussed (Section 7). ERA of PPP assesses the impact that the use of PPP 
has on non-target organisms, and on soil, water, and air (European Commis­
sion, 2009). ERA can be do ne as a prospective assessment for registration of 
substances before products enter the market, or as a rétrospective assessment 
for potentially harmful substances that are already in use (Forbes and Calow, 
2002). Finally, the review ends with some perspectives to be considered to 
improve ecological risk assessment (ERA) to preserve biodiversity.

3 B ibliographie corpus
Six main model categories were a priori dehned to structure the biblio­
graphie query: QSAR, DR and TKTD, population, multi-species, landscape, 
and mixture models (see Section 4):

• (Q )SAR category refers to the mathematical models to predict the ecotox- 
icity of compounds via statistical corrélation of molecular descriptors with 
the biological activity of interest.

• Dose-Response (DR) and ToxicoKinetics-ToxicoDynamic (TKTD)
category refers to static dose-response models (DR) and dynamic TK and 
TKTD models.

• Population category refers to the population dynamic models, including 
ail degree of detail and disaggregation (stock, matrix, life cycle, individual- 
based models...).

• M ulti-species category refers to the models considering several species, 
namely species sensitivity distribution (SSD) and food-chain models assum- 
ing they include both food-web models (with only trophic relationships) 
and community models (also considering other kinds of inter-species interac­
tions). In case, food-chain models account for the dynamics of abiotic factors 
they can also be classihed as “ecosystem models”.

• Landscape category refers to the models considering the landscape struc­
ture (e.g., spatial and temporal variability) to predict the exposure of 
organisms to a Chemical compound, the associated toxicity or the population 
effects in non-target species.
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• The category of m ixtures refers to the models used to analyse the interac­
tion of several Chemicals; these models can also be used to assess the effects 
of combined stressors (e.g. PPP and ecological factors).

3.1 M eth od ology
Scientihc articles and international proceedings screening was conducted with 
the Web of Science (WoS), the world’s leading scientihc citation search and 
analytical information platform (Clarivate Web of Science ©  Copyright Clar- 
ivate 2020). The final paper collection from WoS was achieved in December 
2020, then manually completed over time until April 2021 from complemen- 
tary bibliographie databases, such as PubMed (McEntyre and Ostell, 2002), 
Google Scholar (Lopez-Cozar et al., 2019), Scopus (Baas et al., 2020), publi­
cations within authors’ own databases, even grey literature (e.g., regulatory 
documents). This paper collection covers the period 2000-2020 chosen as 
contiguous with the existence of the WoS itself.

On a general point of view, the bibliographie query was performed 
according to the following steps:

• Définition of a hrst query over the limited period 2018-2020 (see Section 3.2).
• First analysis on the basis of titles and abstracts of papers to identify points 

of improvement of the query.
• Update of the query by adding and removing some terms.
• Running the final query over the period 2000-2017, over 2018-2020 again, 

and combination of both periods.
• Final analysis of the results with Orbit Intellixir bibliometric software 

(Copyright ©  Questel 2021, ail rights reserved).

Besides the query terms, we limited our paper collection to only include 
research and review papers written in English, as well as scientihc articles 
published in peer-reviewed journals. The paper collection, any reference being 
duplicated, was imported into Intellixir and analyzed to quantify, for example, 
the scientihc production per year, country, organization, and annual évolution 
of publication rates. Collaboration networks between countries, public insti­
tutions and/or private companies, as well as the main research concepts, were 
graphically represented using the most relevant formats available in Intellixir. 
In particular, papers were analyzed to point out the main trends in research 
related to the use of models in ERA for PPP, as well as to highlight their 
strengths and limitations, leading to the identiheation of future key topics for 
research.

Some papers were manually added or removed from the hnal collection 
before performing the analysis. The Supplementary Information (SI) is avail­
able at https://doi.org/10.5281/zenodo.5775038 (Larras et al., 2021), where 
the full list of keywords is provided, as well as both source hles with ail référ­
encés and their DOI in . csv format: the list of references in the initial corpus,

https://doi.org/10.5281/zenodo.5775038
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and the list of additional references. Reasons for which some papers were added 
are the following:

• Some scientific research areas were missing although corresponding keywords 
were in the final query, such as sensitivity analysis, uncertainty, calibration, 
validation and prédiction. So, some papers were added accordingly.

• Very recently published papers, not published yet (such as papers in bioRxiv 
for example), were also added by hand.

• Some general methodological references were clearly missing as they do not 
specihcally concerned PPP.

• Ail references focused on human health risk assessment were removed as we 
exclusively focused on ERA.

3.2 D eta ils  on th e  bib liographie query
The bibliographie query was composed of seven items, each of them encom- 
passed within three global items and associated with a sub-query (Table 2). 
List of keywords used in the different sub-queries were established a priori 
from the authors’ expertise (see SI at https://doi.org/10.5281/zenodo.5775038, 
Larras et al. 2021).

Item
nbr

Spécifie
item

Global
item

Nbr of 
references

1 (Q)SAR model 427
2 DR and TKTD Pesticides 143
3 Population General 392
4 Multi-species Modelling 79
5 Landscape Ecotoxicology 202
6 Mixture 398
7 Régulation 399

T able  2 C om bination  of th e  keyword lists com posing th e  first bibliographie query. 
C olum ns were joined together w ith th e  logical o p erato r AND. Ail keyword lists are 
available in Supplem entary  Inform ation a t h ttp s ://do i.o rg /10 .5281/zenodo .5775038
(Larras et al., 2021).

Running the first bibliographie query over the limited period 2018-2020 
led to 380 references. This short list was quickly analysed from titles and 
abstracts to improve the different items and their associated sub-queries. Of 
these 380 references, only 130 were kept (35%).

The updated sub-queries we obtained were run over the period 2000-2017, 
then again on the period 2018-2020. The combination of both hnally provided 
the final paper collection we in-depth analysed. This collection was composed 
of a total of 1259 papers. From this total, relevant papers for the review were 
checked one-by-one hnally leading to a paper collection of 376 references (~ 
30%) that were analysed by Intellixir.

https://doi.org/10.5281/zenodo.5775038
https://doi.org/10.5281/zenodo.5775038
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3.3 S im ple b ib liom etric  m easurem ents
As fîrst results, we provide here simple bibliometric measurements giving a 
factual description of the paper collection (n = 376).

The time course of the selected référencés (Figure 1) clearly shows an 
increase in work integrating modelling tools over the last twenty years, together 
with a strong inequality between contributing countries. The countries with the 
highest number of contributions in our bibliographie corpus could be explained 
by the nationality of the main producing and R&D companies (BASIC, 2021), 
which are in the main contributing institutions (see below), and/or by the 
leading countries in natural sciences research (Nature Index, 2020).
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F ig . 1 Cross-view of th e  origin coun try  of th e  first au th o r with th e  tim e course of th e  paper 
collection. N um bers correspond to  th e  num ber of papers.

Looking at the main research topics, that is words found in titles and 
abstracts, as automatically extracted by Intellixir, makes emerge the main 
keywords. The three main keywords are Model (in 98.5% of the papers), 
Pestic ide (69.0%), and Exposure(66.4%). Aquatic (31.3%) is the first liv- 
ing environment found (10tft position) and the first PPP usages found are 
Insectic ide  (24.8%) and Herbicide(19.6%).

Figure 2 below describes the main collaborations between host institutions 
of ail co-authors who contributed to each paper. These main collaborations 
are dehned as at least one reference authored by each institution plus at
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least four co-publications between institution pairs. The ten main contribut- 
ing institutions (accounting for multiple affiliations) represent 42% of the 
total contributing ones, among which the top-hve is composée! of SYNGENTA 
JEALOTTS GROUP (6.8%), UNIV WAGENINGEN IMARES (NL, 6.6%), BAYER (DE, 
3.9%) and CNRS (FR, 3.9%). Ail affiliations of the first authors hâve been taken 
into account, and for example, ALTERRA WAGENINGEN and UNIV WAGENINGEN 
IMARES are used for a same author in 90% of the articles.

CNRS FR

IV CLAUDE BERNA RI L
I» GUAHGZHOU Cl

CHINE SE ACAD SCI CN

UNIV LI5BOA PT

«SHINGTON US

Cl NCI NN ATI CHUS INTEGRAL COR SULTINGU!
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IFM RECM fiR  DE BATER DE
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UNIV YORK GD

CTR ECOL HYDROL GB

»:e oklahoma u :

UNIV QUEENSLAND AL

LJNIV W AGENINGEN IM ARFS N L

■SIIV CARLETON CA
IV SHEFFIELDGE

F ig . 2 Network between host in stitu tio n s of first au th o rs .T h e  in stitu tio n s represented hâve 
published a t  least th ree  papers and th ree  co-publications with o ther in stitu tions.

N tbHfl î> K A

3.4 A dvanced b ib liom etric m easurem ents
In order to refine the previous bibliometric description, we went further into 
the analysis of the main concepts appearing within the paper collection. Figure 
3 shows ail words appearing at least 35 finies within the référencés. We notice 
that some words form well identihed groups, four in total, distinguished by 
different colors and corresponding to the semantic proximity of words. The 
Model group is strongly related to the P estic ide group of words, while rela- 
tionships with more general ternis, such as Environment r is k  assessment 
(left side of Figure 3), are tinier. Nevertheless, single word Risk and pair Risk 
assessment are within the big P estic ide group, the Risk word appearing 
almost at the same frequency than the P estic ide word (267 versus 223 occur­
rences). It is particularly interesting to note that the Regulatory word belong 
to the Model group.
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F ig . 3 Main concepts appearing  a t  least 35 tim es w ith in  th e  paper collection; th e  different 
colors correspond to  th e  sem antic  proxim ity  of words.

Corning back to the time course of the référencés, and refhhng the anal­
ysis by model types, leads to Figure 4. To this aim, ail the models used in 
each paper was noted, and thus, a same article could be counted in different 
model categories. It is worth noting that models diversify over time, with an 
increase in the use of TKTD models, especially since 2018, the year at which 
the Scientihc Opinion on the state-of-the-art of TKTD models was published 
by EFSA (EFSA PPR Panel, 2018a). We also notice that mixture models are 
widely used ail along the period 2000-2020 with a regular increase for almost 
15 years. Regarding (Q)SAR models, if used a few in the past, there is an 
upsurge in PPP référencés involving these models since 2017. The bibliometric 
évolution of the use of population models within our corpus focused on PPP 
literature is interesting to analyse further, as it can be compared to the gen­
eral évolution of population modelling practices in applied ecology. We used 
as a référencé the review of Accolla et al. (2021), who gathered a corpus of 
450 population models used for risk assessment in ecology, including conser­
vation science studies. The rate of publication related to the use of population 
models for PPP ERA lias experienced a strong growth since 2010 (1.5 arti­
cles per year over the period 2000-2010, 4 per year over 2011-2015 and 9 per 
year over 2016-2020). This dynamic is spécifie to the held of PPP ERA, as 
we do not observe the same inflation in the corpus of Accolla et al. (2021): 
50% increase in the rate of publications in 2011-2014 compared to 2004-2010, 
while PPP studies exerted a 100% increase on the similar periods. We can 
also note a recent amplification of population modelling applications to PPP 
impacts in pollinators, 30% of the population studies since 2017, against 10% 
before this date in our corpus. The dynamics recorded from 2010 onwards cor­
rélâtes with the structuring of a community of European and North American
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researchers, both academie and industrial, on ecological modeling for regula- 
tory Chemical risk assessments (LEMTOX workshop 2007 Forbes et al. 2009, 
TJS-EPA Risk Assessment Forum Technical Workshop on Population-Level 
ERA 2008, Roskilde Workshop on Integrating Population Modeling into ERA 
2009, MODELINK workshop 2012-2013, 7th Framework European Program 
CREAM 2009-2013, SETAC interest group on Effect Modeling). For instance, 
the European CREAM project (https://cream-itn.eu/) was responsible for a 
strong increase in papers on TKTD and population models in PPP effect mod- 
elling in this period. The agrochemical industry has invested heavily in this 
dynamics, signing nearly 40% of the publications on PPP population models 
since 2011, whereas before this date it was practically absent from the author- 
ship (less than 10%). This rising interest of PPP ERA community in population 
models is explained by the fact that the protection goal in revised PPP regis­
tration procedures for most species is either the population or the community 
(Hanson and Stark, 2012; Dohmen et al., 2016; EFSA Scientihc Committee, 
2016). Moreover, the use of higher Tier risk assessment, which aims at inte­
grating fine ecological realism, allows overcoming the conservatism inhérent in 
risk assessment based on the application of safety factors to lower Tier assess­
ment outputs (Maund et al., 2001; Dalkvist et al., 2009; Brain et al., 2015). In 
this context, population and landscape models are mobilized particularly to 
assess (i) the relative importance of PPP toxic stress compared with natural 
stochastic fluctuations (Topping and Odderskær, 2004), (ii) the influence of 
biological and environmental factors conditioning population state and sensi- 
tivity to PPP (Dalkvist et al., 2009; Forbes et al., 2015; Thorbek et al., 2017; 
Schmolke et al., 2019; Abi-Akar et al., 2020), especially possible compensatory 
effects due to the interplay between PPP démographie effects and the natural 
density control of populations (Wang and Grimm, 2010; Mintram et al., 2018), 
(iii) the ability to recovery related to démographie resumption after short term 
exposure or recolonization processes from refuge areas that could make PPP 
impacts ecologically acceptable at larger time or spatial scales (Galic et al., 
2012; Hanson and Stark, 2012; Focks et al., 2014; Dohmen et al., 2016).

https://cream-itn.eu/
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■ (Q)SARs • DR and TKTD models Population models ■ Landscape models ■ Multi-species models ■ Mixture models i  Methods

F ig . 4  T im e course of référencés sub-divided by model categories. Model classes were 
dcfincd according to  th e  kcyword lists prcscntcd in Table 1. Methods rcfcrs to  general 
m ethodological papers no t necessarily re la ted  to  PP P .

We crossed the analysis of categories of biological group with the model 
types (Figure 5). Articles were classified following t.hese different groups 
of taxa: micro-organisms (e.g. single spccics bactcria from water or soil 
media), aquatic microbial connnunities (e.g. biofilm), aquatic primary pro- 
ducers (microalgae and macrophytes), aquatic invertebrates, various aquatic 
groups (studies gathering more tlian one aquatic biological group, such as 
food-web studies), teleost fish, airiphibians. reptiles, terrestrial invertebrates 
(including bees), terrestrial primary producers, marmiials and birds. A large 
majority of papers conccrncd aquatic invertebrates (29.5%), ail categories of 
models having been employed. At the second and third positions, with close 
number of occurrences, are terrestrial invertebrates (17.3%) and fish (13.3%).
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i?n

F ig . 5 D istribu tion  of modela by biological groupa, eacli category being sub-divided accord 
ing to  th e  m odel categories. T he Methods word refera to  general p ap ers and,/or those including 
several model categories. A bbreviation  HA m eans Not Available.

In addition to the previous cross-analysis on biological group categories, 
Figure 6 provides an overview of the level of biological organization at which 
the models were built, sub-divided by the type of living environment where the 
studied species in the papers referred to. As expected, almost half of the papers 
deal with the individual level (19.5%), followed by a quarter of the papers 
at the population level (25.8%). Community level models are less numerous 
(11.2%). A rather important part of the papers (10.9%)) do not refer to a 
spécifie level of biological organization. Several reasons may explain this fact: 
for example no model was employed; landscape or ecosystem was concerned 
as a whole (so that. several levels may be concerned); or several levels were 
concerned without one more important than the others (so that they could 
not be classified into one spécifie category). Combining this information with 
the living environment of the studied organisms provides information rather 
redundant with those extracted from Figure 5. Indeed, whatever the model 
category or almost, freshwater species hâve been the most studied, then the 
terrestrial ones. equivalently followed by t.he other types of species living envi­
ronment. Saltwater species arc less represented bccausc saltwater cœsystems 
are not considered in the European régulation.
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^■Freshw aler ^■Saltwater ^■Terrestria ■« NA Total number o f publications

F ig . 6 OverView of the  level of biological organi2a tion  accounted for in the m odels for each 
type of species living environm ent. A bbreviation  NA m eans Nol Available.

4 E R A  m odelling  for P P P  effect on organisons, 
p opu lations, com m unities and ecosystem s

4.1 D escrip tion  and classification  o f ex istin g  m odels
Based on our literature review, we identified six categories of models that fulfill 
ail or a part of the above requirements. They are described below.

4.1.1 (Q)SAR models
The knowledge about systematic relationships between the structure and 
activities of the Chemicals dates back to the prime infancy of the modem phar- 
macology and toxicology (Devillers, 2001). Since the pioneering work of Corwin 
Hansch in the 60’s, the development and utilisation of structure-activity rela­
tionships hâve become increasingly more important over the past years for 
industrial and regulatory applications (Mombelli and Ringeissen, 2009). In 
particular, a large number of models hâve been developed recently for the 
PPP: 38 papers from 2000 and 2020, including 28 on the last flve years, in our 
bibliographie corpus.

Currcnf structure - activity relationship usage in PPP safety assessment 
can be divided into rule based expert Systems ;SAR models) and statisti- 
cal Systems ('Q)SAR models). The notation (Q)SAR includes both types of 
models.

Expert Systems (SAR) use rule-based methods to qualitatively predict spé­
cifie endpoints by matching identified molecular (sub) structures or fragments 
of the compound to similar structures (known as structural alcrts) with known 
adverse effect s (e.ff., liver toxicity. skin irritation, mutagenicity) (Herrmann 
et al., 2020).

Statistical Systems ((Q)SAR Systems) use mathematical models to predict 
the toxicity of compounds via statistical corrélation of molecular descriptors 
with the biological activity of interest. (Q)SAR model is composed by t.hree
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éléments: (i) data on the biological properties to be predicted, (ii) data on 
molecular descriptors which translate Chemical structures into numbers, and 
(iii) a modelling algorithm that is able to identify the relationship between 
molecular descriptors and biological activity. The basic assumption of these 
models is that similar Chemicals (biological, Chemical, and/or physical prop­
erties) induce similar effects (from a qualitative and quantitative point of 
view) in living beings (Lo Piparo et al., 2006). Some authors had therefore 
proposed spécifie sub-names for (Q)SAR models to stress these différences, 
e.g., Quantitative Structure - Property Relationship (QSPR) models (Basant 
et al., 2016), Quantitative Structure - Toxicity Relationship (QSTR) models 
(Lo Piparo et al., 2006), Quantitative Activity - Activity Relationship (QAAR) 
models (Furuhama et al., 2019) or Quantitative Structure - Activity - Activity 
Relationship (QSAAR) models (Furuhama et al., 2019).

(Q)SAR models could also be classihed according to a trade-off between 
their accuracy and genericity. Depending on the intended purpose and on 
the underlying data set of the model, (Q)SAR models are used to predict 
the properties of con-generic compounds (local (Q)SAR) or of more diverse 
compounds (global (Q)SAR) (Furuhama et al., 2019; Herrmann et al., 2020; 
Jia et al., 2020). These authors proposed that depending on the respective 
requirements of sensitivity (correct positive) and specihcity (correct négative), 
appropriate models (global/local), accounting for the Chemical space of query 
structures, hâve to be selected.

Basant et al. (2015a) proposed a figure clearly describing the (Q)SAR mod­
elling procedure (Figure 7). This procedure follows the OECD principles for 
(Q)SAR models (OECD, 2014). These hve principles were proposed to facili- 
tate the considération of a (Q)SAR model for regulatory purposes (explained 
in Mombelli and Ringeissen 2009):

1. a dehned endpoint.
2. an unambiguous algorithm.
3. a dehned domain of applicability (AD).
4. appropriate measures of goodness-of-ht, robustness and predictivity.
5. a mechanistic interprétation, if possible.

The computation of internai and external validation metrics (on the species 
included in the training set or on other species) and the définition of the 
domain of applicability appear as important steps, as proposed by the OECD 
principles. The domain of applicability is dehned as “the physico-chemical, 
structural, or biological space, knowledge or information on which the training 
set of the model has been developed, and for which it is applicable to make 
prédictions for new compounds [...]. Ideally, the (Q)SAR should only be used 
to make prédictions within that domain by interpolation not extrapolation” 
(Carnesecchi et al., 2020; Eriksson et al., 2003). It is important to note that 
the Figure 7 does not explicitly include the “data curation” step (included 
in OECD principle 1, “a dehned endpoint”) described as essential by other
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authors: data curation contribut.es to define unambiguously an endpoint. {e.g., 
identical exposure t.ime for SCso)(Khan et al., 2019; Villaverde et al., 2020).

Chemical pesticide 
toxicity data in 

different species

Molecular
cescriptors

0.0 0.1 0.2 0.3 0.4 0.5

Levsrage

F ig . 7 Flow ch art adaptccl from B asan t e t al. (2015b) showing th e  (Q )SA R  m odcling pro­
cedure. pLD50 is effective concentra tion  d a ta  converted to  a  m olar basis and logarithm ically  
transformée!. exp and p red  are experim ental and  pred ic led  d a ta , respectively.

Indccd, the (Q)SAR modcls can only bc as rcliable as the experimental 
data that are used for their calibration, and therefore, the standardisation 
procedures to obtain each data and to curatc the data set of compounds 
should be considered with care (Villaverde et al., 2020).

As reported by Villaverde et al (2020), there are several easily accessible 
databases that can be used to develop (Q)SAR rnodels (e.g., ACToR, Bind- 
ingDB, CCRIS...). In the bibliographie corpus analysed, other databases were 
frequently used to develop (Q)SAR: EISA's Chemical hazards database “Open- 
FoodTox”, US-EPA ECOTOXicology knowledge-base (ECOTOX), Pesticide 
Properties DataBase (PPDB), OECD (Q)SAR toolbox, Office of Pesticide 
Programs (OPP), Pesticides Ecotoxicity Database (produced by the Interna­
tional Center for Pesticides and Health Risk Prévention), AMBI'I’ (developed 
by Cefic-LRI, current version 2.0 at https://apps.ideaconsult.net/data/ui), 
and BBA (Biologische Bundesanstalt, -  Fédéral Biological Research Center 
for Agriculture and Forestry).

Nevert.heless, ideallv, databases for model calibration should be developed 
in a single laboratory and by means of a single protocol to enhance the signal 
to noise ratio. However, these conditions are not met in most of the (Q)SAR 
models that are developed today, and much less in t.hose developed from

https://apps.ideaconsult.net/data/ui
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databases in which the information is deposited by numerous contributors 
(Khan et al., 2019; Villaverde et al., 2020). Consequently, (Q)SAR modellers 
should always subject to curation the systematic and random errors présent 
in ail databases by spécial and well-established protocols and tools (Khan 
et al., 2019; Villaverde et al., 2020).

A large diversity of Chemical descriptors (experimental measurements or 
theoretical molecular descriptors) is used to develop (Q)SAR models spécifie 
to the PPP. The most common descriptor is the octanol-water partition coef­
ficient K ow (Devillers, 2001). However, the rapidly falling price of computing 
power has stimulated the use of more sophisticated statistical methods for 
increasing the domain of application of the (Q)SAR models (Devillers, 2001). 
Hence, the spatial dimension of the Chemical descriptors (one, two, three or 
four dimensions) hâve been used to distinguish different (Q)SAR models on 
the descriptor basis. In the literature, over 6000 descriptors hâve been pro- 
posed and the number is still growing (Hamadache et al., 2018). Considering 
the large number of calculated descriptors, it was necessary to use approaches 
of variable réduction, which consists in the sélection of a subset of variables 
able to preserve the essential information contained in the whole data set but 
eliminating redundancy (Carnesecchi et al., 2020; Hamadache et al., 2018). 
Hence, severe sélection steps using a range of methods were applied to reduce 
the number of descriptors. Classically, ail highly correlated descriptors (pair- 
wise corrélation coefficient above 0.9) and those with low variance (s2 < 0.3) 
or the semi-constant descriptors (more than 80% of the data with the same 
value) were excluded (Venko et al., 2018; Yang et al., 2020). To this goal, after 
centring and scaling the descriptors, Carnesecchi et al. (2020) used the fol- 
lowing methods: Decision Trees (DT), k-nearest neighbours (k-NN), Multiple 
Linear Régression (MLR), Partial Least Squares (PLS) régression (based on 
Genetic algorithm), and Random Forest (RF). Additionally, the Norm index 
concept was proposed by Jia et al. (2020), and a sériés of normed descriptors 
based on molecular structure were dehned and used to develop (Q)SAR mod­
els with satisfactory prédiction results for the aquatic acute toxicity of various 
PPP (Jia et al., 2018, 2020). (Q)SAR models for PPP could also be based 
on descriptors computed by other in silico methods, using a combination of 
hngerprint, structure-based pharmacophore approaches, homology modelling, 
molecular-docking and molecular dynamics simulation (Chaudhuri et al., 2020; 
Marimuthu et al., 2019).

Globally, and in the PPP bibliographie corpus, the most common 
techniques for establishing (Q)SAR models are based on regression-based 
approaches, and the methods of MLR (Furuhama et al., 2019; Yang et al., 
2020; Yang et al., 2020) and PLS (Jackson et al., 2009; Khan et al., 2019; 
Marimuthu et al., 2019) are classical approaches to régression problems in 
(Q)SAR models. In PPP (Q)SAR, genetic algorithms are often used to ht MLR 
(Furuhama et al., 2019; Yang et al., 2020; Yang et al., 2020) or PLS models 
(Jackson et al., 2009; Khan et al., 2019). For these techniques, a postulate is
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made that only linear relationships exist between the variables involved in the 
modelling process while it is generally not true (Devillers and Flatin, 2000). 
The Artificial Neural Networks (ANN) hâve shown their usefulness for deriv- 
ing complex structure-activity relationships possibly non-linear (Devillers and 
Flatin, 2000; Hamadache et al., 2018). Several different neural networks were 
used to develop (Q)SAR models for PPP: Multilayer perceptron (MLP) (Dev­
illers and Flatin, 2000; Hamadache et al., 2018), Counter-propagation ANN 
(Drgan et al., 2016; Venko et al., 2018), and GMDH neural networks (Lo Piparo 
et al., 2006). Diverse methods of linear classifications were also used in the 
field of PPP ecotoxicity. Mazzatorta et al. (2004) provided an overview of the 
classification techniques and conclude that no general rule exists to define the 
best approach to a spécifie classification problem. Recent research in Machine 
Learning and Statistics resulted in several efficient approaches to perform a 
linear or a non-linear classification: Support-Vector Machines (SVM) (Maz­
zatorta et al., 2006), quantile support vector machine régression (QSVMR) 
(Villain et al., 2014), DT and RF (Basant et al., 2015b, 2016; Carnesecchi 
et al., 2020)

In our literature analysis on (Q)SAR for PPP, a large majority of the 
(Q)SAR models were developed to predict the acute toxicity on aquatic 
animais: mainly fish and crustaceans (55% of the (Q)SAR models reviewed; 
Table 3). Insects (i.e., 100% of the terrestrial invertebrates) represent the 
third group of non-target species for which (Q)SAR models hâve been devel­
oped (half of them concerns honeybees). Despite the extent of the harmful 
effects of PPP on bees, studies specifically devoted to (Q)SAR models for the 
prédiction of PPP toxicity on this pollinator (six articles from 2000 to 2020) 
remain rather limited (Hamadache et al., 2018).

Taxa % of reviewed (Q)SAR papers (n = 39)
Fish 33%
Aquatic invertebrates 22%
Terrestrial invertebrates 16%
Birds 10%
Algae 10%
Mammals 6%
Plants 4%

T able  3 Percentage of (Q)SAR m odels by tax a  (39 papers were analysed; one 
paper can be counted for different biological m odels).

Although the majority of the (Q)SAR models were developed for aquatic 
species, these models are available for a broad range of Chemicals but predict 
toxicity to only a few standard test organisms and do not address the broader 
range of taxa within aquatic communities (Raimondo and Barron, 2020). Bas­
ant et al. (2016) hâve proposed that, for a comprehensive safety évaluation of 
Chemicals by means of (Q)SAR models development, toxicity data in multiple 
test species of different trophic levels and complexities are needed. Therefore, if 
new ecotoxicological data are produced, (Q)SAR models with a single species
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toxicity analysis could replace and/or be enhanced by multi-species models 
(Basant et al., 2016; Furuhama et al., 2019).

As noted by other authors on (Q)SAR non-specific of the PPP toxicity 
and confirmed by our analysis of (Q)SAR for PPP, there are few applicable 
(Q)SAR models for algal toxicity due to the lack of a consistent data set with 
experimental algal test results and because of the variability of the results 
(Villain et al., 2014; Douziech et al., 2020).

4.1.2 DR and TKTD models
In total, 58 papers were selected to embrace various types of dose-response 
(DR) and toxicokinetic-toxicodynamic (TKTD) models. DR models are less 
represented (18.9%) compared to TKTD models (72.4%, see Table 4 for 
details). DR and TKTD models make the link between Chemical concentra­
tions to which living organisms are exposed to and the potential effects on 
their life-history traits (survival, growth rates, reproduction features). The 
main différence between DR and TKTD approaches is that time is taken into 
account or not. On an ERA point of view, only DR models are used today 
at Tier-1 assessment in support of the daily work of regulators (see Section 
6). Nevertheless, in order to better address risks of time-variable exposures, a 
situation that often occurs with PPP, the Tier-2 assessment may be rehned 
by the use of TKTD models (EFSA PPR Panel, 2013) (namely to conduct 
a Tier-2C assessment). In addition, based on a recent Scientihc Opinion on 
the state of the art of TKTD effect models for regulatory risk assessment of 
PPP for aquatic organisms (EFSA PPR Panel, 2018a), EFSA emphasized the 
added-value of TKTD models for the Tier-2C assessment, even considering the 
General Unihed Threshold models of Survival (namely, GUTS models, Jager 
et al. (2011); Jager and Ashauer (2018)) as ready-to-use for ERA in their two 
reduced versions (GUTS-RED models), when analysing standard toxicity test 
data for survival (see Section 6). A full application case study of GUTS models 
for ERA at Tier-2C has been published by Brock et al. (2021).

In addition to GUTS models already recommended as they are to handle 
survival data, others TKTD models allow considering sublethal effects such 
as growth for plants, or both reproduction and growth for ectotherms with 
DEBtox models. Note that DEB stands for Dynamic Energy Budget with ’tox’ 
extension referring to additional stress functions that can be applied on some 
DEB parameters to account for different modes of action of potentially toxic 
Chemical substances (Jager, 2020). Among plant models, the Lemna model is 
also considered ready to be used in ERA (Schmitt et al., 2013; EFSA Scien­
tihc Committee, 2018). Regarding DEBtox models, EFSA only considers their 
current state limited to research applications, mainly because they still lack 
enough documented and evaluated case studies (EFSA Scientihc Committee, 
2018). An explanation may corne from the diversity of DEB models them- 
selves for which a unifying framework seems dihicult to establish regarding the 
diversity of biological species htness they are able to describe (Add-my Pet, 
2021) .
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It is worth to note that TKTD models, even if recommended today at 
Tier-2C assessment (EFSA PPR Panel, 2013), could also be used at Tier-1 
assessment (Charles et al., 2021). Indeed, TKTD models translate the Chemi­
cal exposure (even if time-variable) into expected effects on the life-history 
traits of living organisms. TKTD models explicitly describe the Chemical 
dynamic within organisms and the related damages (namely the TK part) 
together with the dynamic of the effects (namely the TD part). In doing so, 
TKTD models allow to connect the external exposure concentration dynamics 
to the prédiction of effects over time. Consequently, TKTD models allow to 
calculate any x% effect at any time t, thus providing ECXyt or LCXyt (Bau- 
drot and Charles, 2019), in particular ECso or LC^o values at final time as 
requested for ERA at Tier-1.

Focusing only on the toxicokinetics, we face with a wide diversity of mod­
els that are ail compartment hrst-order kinetic models. These so-called TK 
models either consider an organism as a whole, thus written with only one 
compartment (Charles et al., 2021; Ratier et al., 2021; Rubach et al., 2010), 
or consider several compartments that may represent internai entities such 
as the digestive System or a set of organs, or even dehning compartments 
as organs or physiological fluids to hnely decipher Chemical fluxes between 
compartments (see Grech et al. (2017) for a review). These latest category of 
rehned TK models are called Physiologically-Based TK (PBTK) models. They 
are équivalent to physiologically-based pharmaco-kinetic (PBPK) models in 
their writing, the way they are rather called when vertebrate or mammal 
species are concerned (Berntssen et al., 2020; Li et al., 2018; Maclachlan, 
2009, 2010; Mavroudis et al., 2018). Except work by Weijs et al. (2013) who 
implemented a Bayesian approach to infer their model parameters, PBPK 
models are mainly used to perform simulations, parameters being valued 
from the scientihc literature. These simulations typically serve to extrapolate 
between species or from mammals species towards humans. It is worth noting 
that Berntssen et al. (2020) proposed to account for the seasonal fluctua­
tions in their PBTK model. Today, only few PBTK models are developed 
for ecotoxicological purpose (42 models published until 2019 as reviewed in 
Grech et al. 2017; Gestin et al. 2021), and, to our knowledge, very few PBTK 
models exist for PPP (Abbas and Hayton, 1997; Pery et al., 2014; Mit et al., 
2021; Grech et al., 2019).



24 CONTENTS

Model type % of reviewed DR and TKTD papers (n = 58)
DR models 18.9% (n=  11)
DEBtox 6.9% (n = 4)
GUTS 20.7% (n = 12)
PBPK 8.6% (n = 5)
TK models (bioaccumulation) 27.6% (n = 16)
TKTD 8.6% (n = 5)
Others^ 8.6% (n =  5)

O th e rs  re fe r to  tw o  o rd in a ry  d iffe ren tia l é q u a t io n  (O D E ) m ode ls  (B o o to n  e t  a l., 2018; P isa n i e t al., 
2008) a n d  on e  m odel b a sed  on  s tepw ise  b e h av io u ra l re sp o n se s  co m b in ed  w ith  a  S e lf-O rg an iz in g  M ap  
(R en  e t  a l., 2013).
T able  4 Q u an tita tiv e  overview of dose-response (DR) and  toxicokinetic-toxicodynam ic 
(T K T D ) m odels (n  =  58).

4.1.3 Population models
Aiming at an ecologically-relevant assessment of PPP hazard for ecosystems, 
the scaling-up of toxicological effects usually assessed at the organisai level now 
benefits from the development of population models. Mechanistic population 
models can also be employed to analyse démographie responses in experimental 
model ecosystems or in the held. They hâve long been developed in species 
conservation science as tools for projecting the viability of populations and the 
long-term outcomes of management actions or biological resource exploitation 
(Forbes et al., 2016). These models are increasingly recognized as important 
tools in PPP risk assessment (Forbes et al., 2009; Stark, 2012; Forbes et al., 
2015, 2016; Schmolke et al., 2017, 2018). We identihed 87 papers related to 
population models and PPP (2000-2021). This includes 55 case studies spécifie 
to the impacts of PPP on non-target species: 25% in aquatic invertebrates 
- with only 2 marine studies (Lindsay et al., 2010; Thursby et al., 2018) -,
25% in terrestrial invertebrates (two thirds of which on pollinators), 30% in 
vertebrates (half in mammals and one third in birds), and 20% of the studies 
in primary producers (algae and plants equally).

Using the classification established in previous reviews of population model 
implémentation in ERA (Forbes et al., 2016; Accolla et al., 2021), three main 
categories of models can be identihed regarding the way in which they describe 
populations: unstructured, structured and Agent-Based Models (ABMs). In 
unstructured population models (e.g., scalar models, ordinary differential 
équation... ), a unique state variable (population size or total biomass) is 
considered. The population is viewed as a random mixture of individuals, par- 
ticularly with respect to their exposure and sensitivity to the contaminant. 
Unstructured models represent only 15% of PPP population modeling case 
studies in our corpus, with a strong bias towards taxonomie groups: they 
concern the totality of the studies on unicellular algae and half of the plant 
population studies (e.g., Weber et al. 2012; Schmitt et al. 2013; Hommen 
et al. 2016) against less than 5% of the animal studies (only one study in 
rodents, Wang et al. 2001, and one in birds, Millot et al. 2015). Structured
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models (matrix models, Leslie, Lefkovitch, metapopulation models, differen- 
tial équation Systems, compartment models...) take into account a structure 
within populations (e.g., âge classes, sex, developmental stages, spatial distri­
bution) to model their response to toxic stress based on the alterations of life 
history traits under PPP exposure. A very underdeveloped option in this cat- 
egory is compartment models relative to the healthy, contaminated or affected 
status of individuals (very used in epidemiology) with only one example of a 
bee colony model exposed to a neonicotinoid insecticide (Bryden et al., 2013). 
Structured models represent one third of the case studies identihed in our cor­
pus, covering a large taxonomie spectrum: aquatic invertebrates, terrestrial 
invertebrates, birds, hsh and plants. ABMs (50% of the 55 case studies), often 
also called Individual Based Models (IBMs) in the case of population models, 
cover ail taxa as well. ABMs hâve been proposed for a wide variety of ecosys- 
tem organization scales, ranging from social relationships within pollinator 
hives (Crall et al., 2019), or population dynamics of earthworms in contam­
inated soil columns (Johnston et al., 2014; Forbes et al., 2021), up to the 
occupancy of river networks by aquatic invertebrate populations at the water- 
shed scale (Focks et al., 2014). This demonstrates the high generic value of the 
population modeling framework to studying the unintended effects of PPP in 
ecosystems. In ABMs, each individual is represented and can differ from ail 
other individuals, depending on biological or state attributes or location. This 
formalism explains that the sub-individual effects of PPP (behavior modifi­
cation, food limitation... ) or other abiotic influences and biotic interactions 
(compétition, prédation...) are directly integrated in ABMs (e.g., Topping 
and Odderskær 2004). For structured and unstructured models, sub-individual 
effects and environmental influences are treated by means of external “sub- 
models” (e.g., Lopes et al. 2005; Topping et al. 2005) that link them to the 
modification of life history traits (e.g., survival, growth, fecundity) or directly 
to population criteria (e.g., carrying capacity) (see Accolla et al. 2021, for the 
review of methodological aspects).

The population endpoints supplied by these models can be of different 
natures. Under certain stability assumptions of environmental condition régime 
during population exposure scénarios (constancy, periodicity, even stochastic- 
ity), the unstructured and structured models can be analytically studied to 
provide démographie indicators (population growth rate, equilibrium densi- 
ties, stable structure, perturbation analysis... ), which guarantee robustness 
and genericity of the results obtained by these so-called projection methods 
(Caswell, 2001). ABMs proceed by simulation to provide population outcomes 
with respect to different tested scénarios (e.g., évolution of population size). 
Nevertheless, we observe that a large proportion of structured population 
models dedicated to PPP abandons the analytical approach and proceeds by 
numerical simulations as well, in particular when describing transient dynam­
ics of response to puise exposure to PPP (see below recovery aspects) or to 
formalize population viability analysis via the empirical calculation of popu­
lation extinction probabilities. Furthermore, the vision that opposes generic
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structured models with low environmental realism versus complex hyper- 
parameterized ABMs spécifie to each case study seems to be vanished by the 
literature, as both types of formalism can implement ail key determinisms and 
processes of population dynamics (density-dependence, spatialization, influ­
ences of environmental conditions, phenology) (Topping et al., 2005; Wang 
and Grimm, 2010; Forbes et al., 2016; Accolla et al., 2021). On the other 
hand, several publications propose decision guides for the development of pop­
ulation models in PPP ERA (Schmolke et al., 2017; Awkerman et al., 2020; 
Raimondo et al., 2021), stressing on the importance of selecting the processes 
encompassed in the population model consistently with the question that the 
modelling approach must answer. This point should always drive the trade- 
offs to be made between ERA genericity, realism, and précision in each case, 
rather than the type of adopted formalism.

There is an unbalanced tendency to use ABMs in the assessment of the 
unintended population effects of PPP: ABMs represent half of the 56 pop­
ulation models in our corpus compared with only 15% in the 450 studies 
implementing population models in applied ecology reviewed by Accolla et al. 
(2021). At the same time, structured models are less represented (33% of PPP 
studies compared to 75% of the studies in ERA in general). The habits and 
background of the modeler communities -with a strong contribution of the 
European CREAM project (https://cream-itn.eu/) to this development-, but 
above ail the choice of questions specihcally addressed in the majority of these 
studies (recovery, spatialization...) and the suitability of ABMs to treat these 
aspects, seem to explain this bias. However, we will see further (Section 5.2.3), 
how some authors propose to mobilize the different types of population models 
to broaden the scope of questions to be addressed when evaluating the effects 
of PPP on non-target species (Raimondo and McKenney Jr, 2005; Topping 
et al., 2005; Forbes et al., 2015; Rico et al., 2016; Hayashi et al., 2016; Thursby 
et al., 2018; Rueda-Cediel et al., 2019).

4.1.4 M ulti-species models
In this section, we will présent both static descriptive statistical approaches like 
species sensitivity distributions (SSD, first sub-section), together with dynamic 
models inspired from population models (second sub-section).

Species Sensitivity Distributions (SSD)
Within the original corpus, 29 papers mentioned the use of Species Sen­

sitivity Distributions (SSD), or related ones, to study PPP effects on sets of 
several species under various environment types. If works by Van Straalen and 
Denneman (1989), Aldenberg and Jaworska (2000), Solomon et al. (2001) and 
Sanchez-Bayo et al. (2002) can be seen as precursors of the SSD as known 
today, Van Straalen and Denneman (1989) already used the idea of the p% 
Hazard Concentration (HCP), the book from Posthuma et al. (2002) posing 
ail the bases of this concept. SSD is assumed to reduce the uncertainty related 
to différences in sensitivity of standard test species and those expected to be

https://cream-itn.eu/
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exposed in field from the inter-specific variability in sensitivities to contami­
nants in order to predict effects at the community level (Maltby et al., 2005; 
Van Den Brink et al., 2006). More broadly, SSD may allow quantifying relation- 
ships between species richness and single environmental factors, thus helping 
in better understanding and predicting biodiversity patterns, identifying envi­
ronmental management options and setting Environmental Quality Standards 
(EQS) (Schipper et al., 2014).

On a theoretical point of view, the SSD approach is dehned as a Cumulative 
Distribution Function (CDF) of the toxicity of a single compound or mixture 
to a set of species that is considered as an assemblage or a community. A 
small cut-off value in the left tail of the distribution is used to estimate a 
concentration below which a certain fraction of species exposed above their 
toxicity threshold level is considered acceptable. Usually a cut-off value of 5 
or 10% is chosen and their corresponding concentrations are named HC$ and 
HC io (Hazardous Concentration to 5 or 10% of the species). The use of the 
SSD concept in ERA relies on several hypothèses, among the following ones:

1. The species sample on which the SSD is htted is a random and représenta­
tive sélection of the community of interest.

2. Interactions among species do not influence the sensitivity probability 
distribution.

3. Because functional endpoints are usually not incorporated in the SSD, the 
community diversity is the target of concern.

4. The laboratory sensitivity of a species approximates its field sensitivity.
5. The protection of the prescribed percentile of species ensures a sufficient 

protection of field ecosystems.

Note that HCP estimâtes based on laboratory toxicity tests do not provide 
information neither on the recovery potential of sensitive endpoints nor on 
indirect effects, which may be important for regulatory decision-making (Brock 
et al., 2004).

Within a community, some species are very intolérant while others are more 
tolérant. Consequently, the CDF is expected to exhibit a sigmoidal increas- 
ing shape, and a low exposure concentration is expected to affect only a small 
proportion of the species. The dérivation of this trigger value (namely the 
HCP as mentioned above) thus requires to ht a presupposed probability distri­
bution (usually a log-normal or a log-logistic probability distribution) to the 
toxicity values of ail the sampled species. Even if some authors are still using 
No Observed Effect Concentrations (NOEC) or Lowest Effect Concentrations 
(LOEC) entries for SSD analyses (Brock et al., 2004; De Zwart, 2005; Iwasaki 
et al., 2015; Cederlund, 2017), the toxicity values used as SSD inputs usually 
corne today from DR models (thus being LCX or ECX values, with usually 
x = 50%), more rarely from TKTD model (e.g., the No Effect Concentration, 
Kon Kam King et al. 2015). Then, the SSD is performed in two steps:

1. The choice of a probability distribution, suited to the data set to be 
analysed: parametric distributions or non-parametric methods are possible
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choices. Parametric distributions are more reasonable with small data sets,
while log-normal and log-logistic distributions are the customary choices
among parametric ones.

2. Using a parametric distribution, ail the parameters need to be estimated.
In this perspective, several methods exist (Belanger and Carr, 2019):

• Moment matching as in the ETX free software (current version is 2.3), an 
Excel spreadsheet with embedded Visual Basic macro-driven calculation 
tools to calculate HCP and Potentially Affected Factions (PAF) from 
normally distributed toxicity data (Van Vlaardingen et al., 2004); ETX 
is one of the most used software (Brock et al., 2004; Van Den Brink et al., 
2006; Daam et al., 2010; Silva et al., 2015; Van Den Brink et al., 2019).

• Least-square régression on the empirical CDF as in the Excel spreadsheet 
with the built-in macro SSD generator (current version VI) developed 
from the Causal Analysis/Diagnosis Decision Information System (CAD- 
DIS) of the US Environmental Protection Agency based on the US EPA’s 
2000 Stressor Identification Guidance document (US EPA, 2000, 2018). 
Mensah et al. (2013) used the US EPA SSD generator to deal with indige- 
nous aquatic biota in South Africa, while Giddings et al. (2019) used it to 
dérivé a combined SSD for acute toxicity of nine pyrethroids to aquatic 
animais.

• Maximizing the likelihood, i.e., selecting parameters for which the proba- 
bility of observing the data is the highest, as e.g., in the software Burrlioz 
(current version 2.0) used as the standard software to dérivé water qual- 
ity guideline values for toxic compounds in Australia and New Zealand 
(Campbell et al., 2000; Barry and Henderson, 2014): Burrlioz uses a log- 
logistic distribution for data sets that comprise less than eight toxicity 
values and a Burr Type III distribution for data sets of eight or more 
toxicity values (Anzecc, 2000). Regarding PPP, Burrlioz has been used 
by Chen et al. (2015); Li and You (2015).

• Maximizing the likelihood, accounting for interval-censored values and 
providing 95% bootstrap confidence intervals on HCp estimâtes (particu- 
larly robust with small-size samples) in the MOSAICssd web tool (Kon 
Kam King et al., 2014) used for PPP by Kon Kam King et al. (2015); 
Brock et al. (2018); Gabsi et al. (2018); Charles et al. (2021).

• An amalgam of the above algorithms (maximum likelihood, moment 
estimators, linearization and the Metropolis-Hastings algorithm), also 
handling censored data to support htting and visualization of simple SSD 
according to the choice of a distribution among six possibilities, in the 
SSD Toolbox from the US EPA (Etterson, 2020).

Ail above software are based on a frequenstist inference method, while other 
authors attempted to use Bayesian approaches: Jesenska et al. (2013) htted 
SSD in the R software (R Core Team, 2021) with the winBUGS language; 
He et al. (2014) developed a novel platform, named the Bayesian Matbugs 
Calculator (BMC), in order to select the best SSD ht to assess ecological risk
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at high-, mid- and low-levels of the 95% crédible interval and to set the priority 
of toxic substances.

Food web and Community models
The food web and community models represented 21 papers within the 

final bibliometric corpus. They encompass a wide diversity of models, from 
simple ones involving only two species in compétition (Damgaard et al., 2008; 
Joncour and Nelson, 2021), to the most complex ones considering as many 
as possible species for held studies, the one of Galic et al. (2019), further 
developed by Bartell et al. (2020), the CASM model, being maybe the most 
complété, addressing even ecosystem services within a lake. Most of the models 
are spécifie to particular situations which makes it difficult to présent a short 
overview and to identify common denominator as there are so many different 
mathematical formalisms that hâve been used, as well as species-contaminant 
combinations that hâve been studied.

Nevertheless, we can distinguish food-web models from those accounting 
for other types of ecological interactions such as compétition for example. The 
simplest food-web model we identified is the one of De Hoop et al. (2013) 
only involving two species whose dynamics is described by the Rosenzweig- 
MacArthur équation (namely a two-dimensional ODE System). Pioneer works 
with food-web models were done by Rose et al. (1988), calibrating a multi- 
species phytoplankton-zooplankton simulation model from laboratory data, 
Hommen et al. (1993), predicting pollutant effects on freshwater plankton com- 
munities, or Hanratty and Liber (1996), modelling the effects of diflubenzuron 
within a littoral ecosystem. Some years later, Traas et al. (2004) proposed a 
food-web model to analyse a microcosm experiment studying the combined 
effects of nutrients and insecticides for their impact on recovery of a model 
freshwater ecosystem; the final aim was to link eutrophisation and contamina­
tion. De Laender et al. (2011) also focused on microcosms to study the effect 
of linuron, a PPP also studied by Viaene et al. (2013) with the use of diver­
sity indices; while Nfon et al. (2011) developed a dynamical combined fate- 
and food-web model to estimate the food-web transfers of Chemicals in small 
aquatic ecosystems. Their innovation lies in the fact that aquatic macrophytes 
were included in the fate model and also as a food item in the food-web model. 
Based on simulation, Nfon et al. (2011) were able to détermine the influence of 
macrophytes on fate and bioaccumulation of several hypothetical PPP show- 
ing in particular that macrophytes hâve a significant effect on the fate and 
food-web transfer of highly hydrophobie compounds. More recently, Bartell 
et al. (2018) proposed two integrated bio-energetics-based and habitat quality 
models to describe the daily biomass values of selected producer and consumer 
populations both in ponds and wetlands within farms.

The bee biological species has been used in two models to deal with the com­
munity level of biological organization. Becher et al. (2018) capitalized on the 
already existing BEEHAVE model (Becher et al., 2014) to simulate the colony, 
population and community dynamics of up to six UK bumblebee species living 
in any mapped landscape, based on an agent-based spatially-explicit model.
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This kind of modelling approach has also been used for example by Reeg et al. 
(2017), Reeg et al. (2018) and Reeg et al. (2018) to extrapolate individual-level 
effects to the population and community level of non-target plant commu- 
nities (the individual-based plant community or IBC-grass model). It has 
also been used to extrapolate from laboratory to held information in order 
to highlight herbicide effects with direct and indirect effects on population 
level. The herbicide effect extent dépends not only on the distance to the 
held, but also on the spécifie plant community, its disturbance régime and 
the resource level. Strauss et al. (2017) successfully merged an individual- 
based population model for Daphnia magna with a dynamic ecosystem lake 
model, utilising the accuracy of the former and the dynamic environment of 
the latter to simulate realistic held populations. They thus created the DaLaM 
model (Daphnia Lake Model) to simultaneously predict population dynamics 
of D. magna and phytoplankton within a simplihed daphnid-dominated food 
web under relevant variable held environmental conditions, such as underwa- 
ter light climate, water température, turbulence and nutrient availability. As a 
main resuit, their hybrid modelling approach is capable of extrapolating single- 
species data from the laboratory to the held level as well as of decreasing the 
model uncertainty by including an appropriate level of complexity. Regard- 
ing lake ecosystems, two other types of models hâve been proposed: (1) Ren 
et al. (2017) applied a fugacity-based dynamic bioaccumulation model (namely 
mass-balanced équations) to study short food chains in high-altitude alpine 
lakes, that was specihcally adapted to the hsh species living in the Central 
Tibetan Plateau; (2) Galic et al. (2019) used the existing AQUATOX frame­
work (Park et al., 2008) to quantify insecticide-induced impacts on ecosystem 
services provided by a lake from toxicity data for organism-level endpoints. 
The AQUATOX framework allows to integrate environmental fate of Chemicals 
and their impacts on food webs in aquatic environments. Galic et al. (2019) 
highlighted that complex response of hshing services are mainly due to non- 
linear feed-backs in the lake food web, and that the water clarity increased with 
reduced insecticide use being mostly driven by changes in food web dynam­
ics. The AQUATOX framework was also used by Scholz-Starke et al. (2018) 
to simulate the dynamics of trophic guilds of aquatic organisms, hydrodynam- 
ics and nutrients including the dynamics of the exposure substance and its 
métabolites. They found that there were several interconnected trophic levels 
and a signiheant biomagniheation of métabolites.

As Strauss et al. (2017) with their DaLaM (Daphnia Lake) model, Kat- 
twinkel et al. (2016) took advantage of ecotoxicological mesocosm data to 
develop a mechanistic food-web model that they specihcally called Streambugs, 
in order to investigate the dynamics of the macro-invertebrate community 
exposed to puises of the insecticide thiacloprid. They used Bayesian infer- 
ence to estimate parameters (in particular their uncertainty) then investigated 
vital rates (such as the emergence process and sub-lethal effects) and limiting 
environmental factors in the model. They thus yielded insights into recovery
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dynamics and supported the use of more accurate modeling approaches in gen­
eral. A statistical model based on multiple linear régressions was specifically 
used for biofilms (Bhowmick et al., 2021) to better understand the influ­
ence of diuron, chlorophyll a concentrations and photosynthetic efficiency on 
changes in the river biohlm community structure and growth pattern of lotie 
ecosystems.

Even if of strong interest (Crocker, 2005), birds and mammals are probably 
the less studied category of animais. Let’s cite the recent proposai by Dittrich 
et al. (2019) who assessed the potential effects of chlorpyrifos on bird communi- 
ties based on a multi-year and multi-site monitoring program that was carried 
out in treated cider orchards (in the UK) and in treated citrus orchards (in 
Spain). The authors used N-mixture models htted to the number of trapped 
birds (capture data) using the p-count function of Royle (2004). They corne 
to the conclusion that the abundance of most bird species was strongly and 
signihcantly affected by seasonality, while no species showed any tendency of 
réduction in their population size over the years.

4.1.5 Landscape models
At the frontier with population models, our literature searches identihed a 
corpus of 24 studies that introduce a spatial représentation to implement inte- 
grated modeling approaches at the scale of agricultural landscapes assessing 
unintended ecological impacts of PPP. Seventy-hve percent of them concern 
terrestrial species (more than half in mammals or birds). Population endpoints 
related to the maintenance of non-target species inhabiting the landscape con- 
stitute the outputs of the model in two thirds of the studies. The other ones 
predict contamination levels in non-target species (e.g., in hare Kleinmann 
and Wang 2017; Mayer et al. 2020) or the exceeding of toxicity thresholds at 
the individual level (e.g., in a warbler, Moore et al. 2018, or an owl, Engelman 
et al. 2012) as a function of habitat occupancy, spatial or dietary behaviors, or 
landscape structure. Two thirds of the 24 landscape studies consider a spatially 
explicit représentation of the transfer and fate of PPP, 85% the spatialization 
of species life cycle (in particular for the use of trophic resources or habitats). 
Surprisingly, only less than 50% of them consider the contamination history 
of individuals with regard to the realization of the whole life cycle in hetero- 
geneous landscape conditions. ABMs are again very much used (90% of the 
studies) for the intégration of spatial and temporal dynamics of life cycles, and 
they are recommended for tracing the complex historiés of individual exposures 
in landscape contexts (EFSA PPR Panel, 2018b). Contrary to our expecta­
tions, the spatialization of population dynamics (metapopulation, sink-source 
relationships, migration, colonization... ) is of interest to only two-thirds of the 
PPP landscape-scale studies. Landscape models thus gather a set of rather het- 
erogeneous objects with different objectives, where landscape spatio-temporal 
dynamics can be taken into account either in the environmental fate of the 
PPP, or/and in the realization of the life cycle of the individuals, or/and in the 
démographie response of the populations, depending on the objectives of each
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study or risk évaluation to be carried out. The spatio-temporal dimension of 
the chain “PPP application - transport and fate - exposure -toxicological effect - 
ecological impact" is a major aspect of the understanding and the management 
of untargeted effects of PPP on biodiversity in agricultural ecosystems. For this 
reason, we chose to gather in a spécifie category ail the mechanistic modeling 
studies, when any element of which falls within a landscape framework. Our 
literature searches also revealed the existence of a few PPP studies at the land­
scape level that are based on spatial statistical approaches (species distribution 
models, Szabo et al. 2009; Richardson et al. 2019, pressure-impact relation- 
ships, Kattwinkel et al. 2011). These studies, while not based on dynamic 
mechanistic models, do incorporate various éléments of spatially explicit mod­
eling related to PPP uses and environmental fate, or ecological determinisms 
of non-target population exposure.

4.1.6 M ixture models
More and more studies are reporting the occurrence of various PPP in a vari- 
ety of environmental compartments such as water, soil, or air, meaning that 
aquatic, terrestrial and aerial biodiversity is often exposed to cocktails of PPP 
and contaminants from different sources (e.g., Pelosi et al. 2021). In the early 
20th century, several mathematical models hâve been developed to assess and 
support the prédiction of joint effects caused by mixtures of Chemicals (Jonker 
et al., 2005; Schell et al., 2018) (Figure 8 ).
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F ig . 8 T icr-2 approach to  analyzc th c  m ixtures of con tam inants, te s ted  for in teractions 
(régressions). T he in teractions are th en  characterized  by a qualita tive  cornparison of tire 
m ixing d a ta  w ith concentra tion  add ition  (CA) and independent action (IA) m odels (from 
Hoffmann et al. 2016).

1. The Concentration Addition (CA) model assumes tliât ail eomponents of 
a mixture sliarc a conimon Mode of Action (MoA) (Claudio Cacciatorc 
et al., 2018). The CA niodel is also known as “toxio unit summation" 
since onc Chemical can bc rcplaced by an cqual fraction of an cqui-effcctivc 
concentration of another, without changing the overall effect (Qiu et al., 
2017).

2. The Independent Action (IA) niodel, also ealled RA (Response Addition) 
or Multiplicative Survival Model (MSM), addresses mixtures of Chemicals 
with dissimilar MoA (Garcia-Gomez et al., 2019; Englert et al., 2017) as it 
considers that the probability of the effect of one Chemical is independent 
of the probability of the effect of the other Chemicals in the sample.

3. The Simple Interaction (SI) model assumes that one substance in the 
mixture, at a non-toxic concentration, is able to influence the toxicity of 
other substance through an indirect mechanism. These interactions between 
Chemicals can be due to Chemical and physico-chemical interactions with 
the constituents of the matrix (e.g., soil), toxicokinetic interactions affect- 
ing uptake and élimination (e.g., Roesch et al. (2017) or toxicodynamic 
interactions affecting compound metabolism or associations at the target 
site (Gomez-Evles et al., 2009).
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Both CA and IA models assume no interaction among mixture components 
(Schell et al., 2018) while, in some mixtures, interactions between Chemicals 
can resuit in stronger (synergistic) or weaker (antagonistic) effects than those 
expected of the toxicity of single components. CA and IA models thus fail 
to predict cases where interactions occur (e.g., Olmstead and Leblanc 2003). 
Moreover, there are some limitations in the application of CA and IA models 
to predict the impacts of more complex multi-chemical (e.g., ternary or more) 
mixtures (Jonker et al., 2005), and the exact modes of action are often unknown 
for the majority of compounds (Ginebreda et al., 2014; Wilkinson et al., 2015). 
Considering the broad range of PPP applied on agricultural helds, it is likely 
that PPP mixtures in streams are composed of compounds with both similar 
and dissimilar MoA. Moreover, there is a growing awareness that the MoA of 
a PPP may vary among organisms. In addition, if the MoA of PPP is known 
for the target organisms, it remains largely unknown for the non-target species 
(Verro et al., 2009).

Although interactions of Chemicals cannot be tested directly from the CA 
and IA models, they can be detected from the déviations between predicted 
and actually observed values (Qiu et al., 2017; Filimonova et al., 2018; Tao 
et al., 2020). Déviations from the CA and IA models are referred to as antag- 
onism (when the toxicity of the mixture is less than that predicted by each 
model) and synergism (when the toxicity of the mixture is greater than that 
predicted by each model, Phyu et al. 2011). The reported inability of the CA 
and IA models to consistently model mixture toxicity led Jonker et al. (2005) 
to propose three additional functions that may be added to the basic CA and 
IA models to describe the three types of biologically relevant déviations from 
additivity: antagonistic déviation, dose level-dependent déviation, and dose 
ratio-dependent déviation.

To explore the joint action of Chemical mixtures, the isobologram model 
(Combination Index (Cl)-isobologram équation) is a commonly used and pow- 
erful graphical approach (Tagun and Boxall, 2018). By comparing the isoboles 
based on the CA and IA prédictions and experimental mixture data, con­
clusions can be drawn on the type(s) of interaction occurring (Cedergreen, 
2014). Moreover, Dupraz et al. (2019) described the Hewlett and Vplund mod­
els that are extensions of the CA model. Other methods relying on the same 
approaches (CA/IA models) hâve been proposed such as the Computational 
Approach to the Toxicity Assessment of Mixtures (Schmidt et al., 2017), the 
Accelerated Failure Time (AFT) model (Qiu et al., 2017), the CI method (Yang 
et al., 2017), the calculation of Mixture Toxicity Index (MTI) or Safety Factor 
Index (SFI) (Toumi et al., 2018). Another commonly used tool is the MIX- 
TOX model (e.g., Maloney et al. 2017; Mansano et al. 2017; Robinson et al. 
2017; Raby et al. 2019; Rocha et al. 2018), a regression-based, dose-response 
mixture analysis modeling framework. This tool hts ecotoxicity data to the 
conceptual models (CA or IA) and then évaluâtes if there are any déviations 
for synergism/antagonism or dose level or ratio dependencies (i.e., depending 
on low or high doses, or dépendent on the ratio of the Chemicals in the mixture,
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respectively). In the same way, the Model Déviation Ratio (MDR) technique 
is used to détermine the biological signihcance and reproducibility of observed 
mixture effects (e.g., Belden et al. 2007; Lopez Aca et al. 2018; De Perre et al. 
2017; Belden and Brain 2018; Lanteigne et al. 2015) by comparing predicted 
and observed results of mixture toxicity. If the MDR values are < 5, then the 
CA model applies since the additive MoA can be assumed. If the MDR val­
ues are > 5, there is a potential that synergistic MoA dominâtes (Chen et al., 
2020). When the MDR value is > 2.5, high levels of uncertainty exist, and 
this decreases the applicability of the model to risk assessments (Belden and 
Lydy, 2006). In addition, an MDR value > 2 could resuit from test variabil- 
ity or could be a resuit of the analytical quantification techniques (Lanteigne 
et al., 2015).

In risk assessment of mixtures, the mathematical model used should be 
protective for complex, environmentally relevant mixtures which do not show 
synergistic interactions (Cedergreen, 2014). Based on its more conservative 
approach, CA is often suggested as a default model for risk assessment of Chem­
ical mixtures (Schell et al., 2018). Another advantage of CA is that frequently 
reported ECX are sufficient for the calculation, whereas IA requires informa­
tion about the whole concentration response function, which is rarely reported 
or available (Verro et al., 2009). Finally, the assumptions on the MoA in the 
IA model are unlikely to be met in environmental mixtures (Svendsen et al., 
2010) .

Some authors reported the IA model to underestimate the mixture effects, 
as Hasenbein et al. (2017) who studied the combined effect of diuron and 
hexazinone on the growth of the green algae Pseudokirchneriella subcapitata 
and on Daphnia magna. In order to be adequately protective of sensitive 
aquatic insect species, these authors proposed to consider a prédiction win- 
dow that incorporâtes both reference models when interpreting cumulative 
effects, accounting for any potential greater-than-additive effects that may 
occur resulting from mixture exposure. Ginebreda et al. (2014) reported that 
CA tended to overestimate toxicity in controlled experiments as compared to 
IA, and some other authors found that the CA model slightly underestimated 
mixture effects, indicating potential synergistic interactions (Knezevic et al., 
2016; Liess et al., 2016). Belden and Brain (2018) explained that if the empir- 
ical data deviates from the CA model by a factor of greater than 5, then 
synergy is considered likely and the ERA is based on the empirical data. Oth- 
erwise, the ERA may use CA to calculate Risk Quotients (RQ) or be based 
on the most toxic active ingrédient. Another approach proposed by Ginebreda 
et al. (2014) can be used to describe how a compound ecotoxicity is statis- 
tically distributed rather than to predict the exact ecotoxicity value of the 
mixture (where a major part is unknown). They dehne a procedure whereby 
the compounds identihed in a sample are ranked in descending order accord- 
ing to their toxic load expressed in terms of toxic units, and then the shape of 
the distribution is characterized. This compound prioritization, depending on 
the sampling site, is important from a management point of view.
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4.2 W h at are th e  m od el usages?
4.2.1 Prédiction of P P P  ecotoxicological properties based on 

their Chemical characteristics using (Q)SAR models
Our literature analysis, spécifie to the PPP, identified some (Q)SAR models 
predicting toxicokinetic parameters (mainly bioconcentration factor, BCF) 
and numéro us articles describing (Q)SAR models predicting acute toxicody- 
namic parameters. In addition, some (Q)SAR models were developed to deal 
with substance classification.

Toxicokinetic outputs
For the toxicokinetic parameters, the most commonly used (Q)SAR models 

are based on the established corrélation between BCF and the hydrophobic- 
ity (log1 0 (A'OUI)) of organic Chemicals (Pavan et al., 2008). There is general 
agreement that these linear corrélations give a fair approximation of the BCF 
for non-ionic, non-metabolised substances with log 10(KOW) in the range of 
1 to 6  (Pavan et al., 2008). Numerous (Q)SAR studies hâve attempted to 
predict the BCF accurately for more hydrophobie substances as well as for 
the substances that are metabolised to an appréciable extent in the exposed 
organism, for example by including additional descriptors in the équation and 
using more complex non-linear approaches (reviewed in Pavan et al. 2008 and 
Miller et al. 2019). During the last twenty years, a large number of global 
(Q)SAR models (diverse substances, Tables 1-5 in Pavan et al. 2008) were 
developed for predicting the BCF  but, to the best of our knowledge, few 
new (Q)SAR models were developed to predict specihcally the BCF of PPP 
(Jackson et al., 2009; Miller et al., 2019; Nendza and Herbst, 2011).

Toxicodynamic outputs
Most of the (Q)SAR models identified in our bibliographie analysis predict 

the dose that gives the toxic effect in 50% of the organisms, and therefore pre­
dict only acute toxicity of the substances. For instance, oral LD50 (the Léthal 
Dose for 50% of the tested organisms) is used for birds (Basant et al., 2015b; 
Mazzatorta et al., 2006), contact LD50 is reported in pg/bee for honeybees 
(Hamadache et al., 2018) and, for aquatic animais, the LC5 0 , the léthal water 
concentration likely to kill 50% of the organisms is used (Devillers, 2001; Khan 
et al., 2019). Finally, the ECso inhibiting the algae biomass growth rate (Vil- 
lain et al., 2014; Xiao et al., 2019), even if the endpoint is not at an organism 
level, can be assimilated to the acute toxic endpoints.

Another toxicodynamic endpoint well investigated by the (Q)SAR models 
is the mutagen properties of the substances, frequently based on the resuit of 
the bacterial reverse mutation test often referred to the Ames test or OECD 
test guideline No. 471.12 (Benigni et al., 2020; Herrmann et al., 2020). For the 
Ames test, ail (Q)SAR models generated statistically signiheant prédictions, 
comparable with the experimental variability of the test. The reliability of
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the models for other assays/endpoints appears to be still far from optimality 
(Benigni et al., 2020).

Very few (Q)SAR models were developed for ecologically relevant end- 
points able to predict potential chronic effects of substances, and at biological 
level convenient to manage the risk (population, community or ecosystem). 
Among the reviewed papers, only one really recent study addresses these sorts 
of endpoints. Finizio et al. (2020) developed successfully two simple (Q)SAR 
models to predict the effect of narcotic compounds on aquatic communities 
(HCs, concentration at which 5% of the species exhibit an effect). To hll this 
gap, Inter-species Corrélation Estimation (ICE) - (Q)SAR models could also 
be used to détermine HCP without the need for additional in vivo testing to 
help prioritise which Chemicals with no or few ecotoxicity data require more 
thorough assessment (Mombelli and Pery, 2011; Douziech et al., 2020).

Classification and modes/mechanisms of action
Even if, for ecotoxicity assessment, most of the (Q)SAR models are régres­

sions referring to the dose that gives the toxic effect in 50% of the organisms, 
some authors proposed to work with classification (Mazzatorta et al., 2004). 
Classification is the process of dividing a data set into mutually exclusive 
groups so that the members of each group are as “close” as possible to one 
another, and different groups are as “far” as possible from each other, where 
distance is measured with respect to spécifie variable (s) involved in the pré­
diction (Mazzatorta et al., 2004). For example, Venko et al. (2018) proposed 
to classihed compounds according to the thresholds as dehned in PPDB: lowly 
toxic (LD50 more than 1 0 0  /rg/bee), moderately toxic (LD^o between 1 and 
100 /rg/bee) and highly toxic (LD50 less than 1 /ag/bee). These authors argue 
that classification offers two main advantages in ecotoxicology: (i) the regu- 
latory values are indicated as toxicity classes and (ii) classification can allow 
better management of data which are often noisy (Mazzatorta et al., 2004).

Among the models developed to classify the substances, some were devel­
oped to détermine the mode of action (MoA) or mechanism of action (MechoA) 
of the substances including PPP (Bauer et al., 2018b,a; Kienzler et al., 2017; 
Martin et al., 2013). MechoA differs from MoA because it refers to the molec- 
ular interaction that a molécule will undergo, leading to a biological outcome, 
which can be the key starting point of the Adverse Outcome Pathway (AOP) 
for this substance, i.e., the Molecular Initiating Event (MIE) Boone and 
Di Toro (2019). MoA is not so clearly dehned, often referring to the pathologi- 
cal effects that can be seen at the whole organism level in terms of behaviour or 
death i.e., at the other end of the AOP (Russom et al., 1997). The idea behind 
these works is that a good understanding of MoA or MechoA, and appropriate 
methods to détermine them, is crucial for the efficient prédiction of toxicity 
using local (Q)SAR models and AOP framework (Boone and Di Toro, 2019; 
Carnesecchi et al., 2020). To this goal, various structure-based classification 
schemes hâve been developed to categorize Chemicals based on the MoA or
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MechoA (Bauer et al., 2018b; Kienzler et al., 2017). In addition, several prédic­
tive methods were developed with narrow applicability domains, and recently 
new methods were proposed to predict the MoA/MechoA only from the Chem­
ical structure to a wide range of organic Chemicals including PPP (Raimondo 
and Barron, 2020).

4.2.2 Quantification of biological tim e-dose responses to PP P  
exposure using DR and TKTD models

As recommended since décades in most of the OECD guidance documents 
to study the ecotoxicity of Chemical substances for a range of species under 
standard protocols, DR analyses are employed to directly link constant expo­
sure concentrations to endpoints of interest (such as survival, reproduction, 
growth... ) at the end of the experiment (see for example Felten et al. 2020). 
DR models are mainly used to calculate standard outputs such as ECX or LCX 
on which the Tier-1 assessment is based to make decisions regarding approval 
of active substance (Brock et al., 2018; Charles et al., 2021). Let us mention 
here the original work of Nian et al. (2015) who tried to take into account 
the temporal dimension of the effects in a classical DR model by an approach 
known as time concentration mortality (TCM) modelling. Note that TCM 
models originate from Complementary log-log (CLL) models describing the 
relationship between time, dose, and the cumulative probability of mortality 
(Preisler and Robertson, 1989; Nowierski et al., 1996).

In essence, DR models do not allow any considération of the time dimen­
sion of the effects. They also do not include exposure modelling, so that 
they are purely descriptive and unusable to perform prédictions under time- 
variable exposure scénarios, more environmentally realistic. However, recent 
work has attempted to include pulsed exposures (Copin et al., 2015; Copin 
and Chevre, 2015; Copin et al., 2016; Copin and Chevre, 2018). Other work 
has extended the use of DR models for example to take into account the 
seasonal and the gender variability on ECso values (Dalhoff et al., 2018), to 
account for hormesis (Jager et al., 2013; Tyne et al., 2015), or to make a link 
with biological traits (Rubach et al., 2012). More interestingly, Monti et al. 
(2015) addressed the thorny issue of systematically considering a normal dis­
tribution of toxicity data, while it is well-known that such an assumption may 
be wrong for binary or count data for example (Forfait-Dubuc et al., 2012; 
Delignette-Muller et al., 2014; OECD, 2016). Monti et al. (2015) proposed an 
alternative approach to deal with proportion data while the initial number 
of individuals remains unknown; their innovation lies in the use of the Beta 
probability distribution, without classical optimization techniques but the use 
of the log-ratio. Finally, cite work from Baillard et al. (2020) who proposed 
including ecological interactions in ERA, by studying how inter-specihc com­
pétition affects plant species response to herbicides and more specihcally how 
it may modify DR curves and the resulting toxicity indices.
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Regarding TK models, our literature review reveals two clusters of papers. 
The first cluster encompasses classical TK models. TK models are mainly 
used for calculating bioaccumulation metrics such as bioconcentration, biota- 
sediment accumulation or biomagnification factors. The type of factor dépends 
on whether the exposure is via water, sédiment or food, respectively, providing 
the so-called BCF, B S  AF  and B M F  values, respectively, as required by reg- 
ulators for ERA. The most used is clearly the BCF, originally developed to 
analyse bioaccumulation in hsh according to the OECD guideline 305 (OECD, 
2012). Regarding PPP, we hâve unearthed two old publications in which the 
bioaccumulation model is not formalised as it is today by ordinary differen- 
tial équations describing the dynamics of the different compartments that are 
considered (Elliott et al., 2005; Satyanarayan and Ramakant, 2004). The other 
papers on TK models applied to PPP divide in work providing BCF  (Brox 
et al., 2016; El-Amrani et al., 2012; Loureiro et al., 2002) or BM F  values 
(Carafa et al., 2009; Lazartigues et al., 2013; Fraser et al., 2002).

In the second cluster, with more elaborated TK models, three studies 
emphasize the importance of considering biotransformation, that is the possi­
ble dégradation of the parent compound into métabolites, that may be even 
more toxic (Firdaus et al., 2018; Gao et al., 2013; Wu and Zhu, 2019), the work 
by Wu and Zhu (2019) having the particularity to concern plants. One study 
has accounted for time-variable exposure (Rubach et al., 2010) going so far as 
to propose the 95% dépuration time (£9 5 ) as a complément to the BCF. The 
dépuration time is important as it dehnes the minimum length of the inter­
val between repeated exposure events required for the organisms to recover. 
Consequently, it could be particularly useful in ERA when evaluating effects 
due to pulsed exposure. Last but not least, Roesch et al. (2017) propose a TK 
model to deal with binary mixtures, focusing on the synergistic potential of 
azole fungicides from the CA hypothesis (see Section 4.1.6).

In essence, TKTD models are of course best able to quantify the dynamics 
of Chemical effects on life-history traits of exposed organisms, whatever the 
type of effects they account for (léthal or sub-lethal). See section 4.1.2 were 
they are presented.

4.2.3 Extrapolation of effects of a tested exposure pattern to  
others, untested, exposure patterns

At the individual level, only TKTD models really enable to extrapolate effects 
under a tested exposure pattern to other untested ones (EFSA PPR Panel, 
2018a). As already stated above, TKTD models hnely describe the internai 
dynamic of the damages due to a (time-variable) Chemical exposure, leading 
to effective or léthal changes on living organisms. TKTD models actually 
bring together several types of models depending on the biological traits that 
are observed (see Table 4 and Figure 1 in EFSA PPR Panel 2018a).

Regarding our literature review on PPP, GUTS models appear as the most 
used. As described in the founding article (Jager et al., 2011), and later in
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more details (Jager and Ashauer, 2018), GTJTS models specifically describe 
the survival probability as a function of time and exposure concentration, this 
latter may vary over time. Note that the GUTS name dates from 2011 (Jager 
et al., 2011); before that, a large number of very different TKTD approaches 
for survival existed in the literature with just as many different names. For 
clarity reasons, the GUTS name is used hereafter, whatever the TKTD model 
for survival is mentioned.

Mostly used for research purposes, initially at constant exposure concen­
trations (Jager and Kooijman, 2005; Hesketh et al., 2016; Kretschmann et al., 
2012), GUTS is today more and more employed to account for time-variable 
exposure (Ducrot et al., 2010; Focks et al., 2018; Nyman et al., 2012; Gabsi 
et al., 2018). GUTS models are also used for ERA, for example at Tier-2C 
assessment in combination with Tier-2B assessment based on SSD approaches 
(see Brock et al. 2021, and Figure 6 in EFSA PPR Panel 2018a). Extensions 
of GUTS models hâve recently been published to deal with Chemical mixtures 
(Arlos et al., 2020; Bart et al., 2021), in combination with a shortage of food 
resources (Nyman et al., 2013), while Dalhoff et al. (2020) hâve proposed to 
relate GUTS models with morphological and physiological traits.

For explaining effects on sub-lethal individual life-history traits (such as 
growth and reproduction endpoints), DEBtox models are today the leading 
TKTD models (Jager, 2020). EFSA even recognizes the great potential of 
DEBtox models for future use in prospective ERA for PPP, although the 
DEBtox modelling approach is currently limited to research applications 
(EFSA PPR Panel, 2018a). Regarding the use of DEBtox models for PPP, 
we only found few relevant papers. Pieters et al. (2006) exposed daphnids 
to PPP puises with either low or high food availability, leading them to 
conclude that effect of PPP application on field populations of daphnids will 
dépend not only on the trophic State of the receiving water body, but also on 
the reproductive state and size of the animais. Jager et al. (2007) exposed 
Folsomia to chlorpyriphos via food, simultaneously modelling survival (this 
part being similar to a GUTS model in its Stochastic Death (SD) version), 
growth and reproduction, then making the link to the population dynamics 
via the Euler-Lotka équation. Zimmer et al. (2018) proposed a model for the 
effects of time-variable exposure to the /3-cyfluthrin pyrethroid on rainbow 
trout early life stages. And very recently, Vignardi et al. (2020) proposed a 
DEBtox-like modelling approach to study how aquatic species respond to 
incidental exposure to Cu-based nano-engineered PPP, pointing out that 
future efforts should focus on toxicity studies and TKTD model development 
for nano-pesticides to make advance in ERA. Jager (2020) also proposed some 
directions that could improve ERA, like including a starvation module in 
DEBtox models to account for time-variable exposure profiles in particular, 
and performing more experiments under time-variable exposure in order to 
support the validation of DEBtox models for ERA.
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In terms of innovation with TK models, the combined TK-IBM framework 
proposed by Liu et al. (2014) revealed particularly interesting to better assess 
the PPP risk on wood mouse when the temporal pattern of feeding and time 
spent in exposed area by individuals is accounted for. Also, works of Chaumet 
et al. (2019)a and Chaumet et al. (2019)b on biofilms is worth mentioning, as 
well as work of Roeben et al. (2020) including both time and space explicitly 
as explanatory variables in addition to the exposure concentration. Those 
studies then employed an explicitly spatialized TKTD model combined with a 
trait-based approach and a population dynamic model in a modular approach 
that revealed particular efficient. Last but not least, Mit et al. (2021) are the 
first to illustrate how PBTKTD models (that is considering several compart- 
ments for the TK part) may be used to better characterize and understand 
the interactions of Chemical compounds within a binary mixture.

Coupled with TKTD models, population models - whether they are 
unstructured, structured or ABMs - allow understanding the ecological con­
séquences of complex exposure scénarios, especially time-varying patterns 
particularly relevant in the case of PPP, e.g., Galic et al. (2014); Thursby 
et al. (2018); Weber et al. (2019); Ashauer et al. (2020); Schmolke et al. 
(2021). These integrated mechanistic models are most often used to theoret- 
ically extrapolate the conséquences of PPP use scénarios to other exposure 
patterns, other ecosystems, or new climate conditions, e.g., Dohmen et al. 
(2016); Hommen et al. (2016). When coupled with fate models in the frame 
of landscape models, these models can act as a toolbox in which a range 
of PPP exposure scénarios can be simulated. This allows to better inform 
the possible effects of these substances in realistic landscapes and realistic 
agricultural application patterns (Dalkvist et al., 2009; Focks et al., 2014; 
EFSA PPR Panel, 2018b). Various studies in both terrestrial and aquatic 
environments illustrate how this approach makes it possible to identify the 
influence of agricultural practices on the ecological risk for non-target species 
(Topping et al., 2016), the effect of land use change, for example in an owl 
(Engelman et al., 2012) or the woodpigeon (Kulakowska et al., 2014), or the 
beneht of mitigation actions such as the establishment of buffer zones, e.g., in 
rodents (Dalkvist et al., 2013), carabid beetles (Topping et al., 2015), aquatic 
invertebrates (Dohmen et al., 2016), or hsh (Schmolke et al., 2021).

Natural and Chemical stressors occur simultaneously in the different com- 
partments of the environment (De Coninck et al., 2013). Population or 
community models can be used to assess effects of a PPP in different envi- 
ronmental settings including stressors ignored in the lab tests (e.g. increased 
température, reduced soil moisture, resource limitation, prédation pressure). 
Moreover, mathematical models used for joint effects caused by mixtures of 
Chemicals can be used to assess the effects of combined stressors, e.g., soil 
moisture in Morgado et al. (2016); ultraviolet-B radiation in Yu et al. (2015); 
food limitation in Shahid et al. (2019); bacterial parasite in De Coninck et al.
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(2013); prédation in Pestana et al. (2010); prédation threat, parasitism and 
carbaryl in Coors and De Meester (2008). Thus, current efforts aim at includ- 
ing the additional risk of PPP mixtures and environmental stressors into the 
environmental risk assessment of PPP. Generally, the IA model, used to study 
combined effects of dissimilarly acting stressors, is chosen to assess the effects 
of combined stressors (De Coninck et al., 2013). Liess et al. (2016) developed 
the Stress Addition Model (SAM) that assumes that each individual has a 
general stress capacity towards ail types of spécifie stress that should not be 
exhausted. This model relies on three principal assumptions that provide a 
mechanistic understanding of the combined impact of independent stressors, 
in this case a Chemical in combination with one environmental stressor: (i) 
each individual has a certain tolérance towards ail types of stress, its general 
stress capacity; (ii) every spécifie unit of a given stressor (e.g., gg/L  for Chemi­
cals, °C for température) can be transferred into a general stress level ranging 
from 0 to 1 as a “common currency” for ail stressors (the main challenge); 
(iii) general stress levels of independent stressors are additive, with the sum 
determining the total stress exerted on a population. This model was used by 
Shahid et al. (2019) who compared it to CA and Effect Addition (EA) in order 
to assess the combined effects of food limitation and of a pyrethroid insecti­
cide or an azole fungicide. The combined effects of PPP and food stress was 
best predicted with the SAM that showed the lowest mean déviation between 
effect observation and prédiction.

4.2.4 Assessment of the relevance of P P P  effects observed on 
individuals for the population level

Some works emphasize that linking TKTD models to population dynamic 
models would be a further step toward a more effective risk assessment (Horig 
et al., 2015; Kretschmann et al., 2012). More concretely, Vignardi et al. (2020) 
enlightened potential population-level effects of exposure to very low-levels of 
nano-pesticides from their TKTD modelling outputs. Based on an integrated 
multi-faceted modelling approach, Roeben et al. (2020) were able to make the 
link between PPP exposure, ecology and toxicological effects on earthworms.

The most basic aim of using population models for the ERA of PPP is to 
establish the démographie outcome of the répétition of organism-level toxic 
events during the development of successive générations, through either sim­
ulation or projection exercises (Forbes et al., 2016). In connection with the 
cyclic répétition of agricultural treatments, they thus consider the cumulative 
outcome of mortality events (Topping et al., 2015), réductions of reproductive 
capacities {e.g., insecticides in pollinators Cresswell 2017 and seabirds Goutte 
et al. 2018) or disturbances of ail the phases of the life cycle (Chandler 
et al., 2004). But the first great value recognized in these models is that 
they simultaneously integrate ail the toxic effects of PPP exposure (survival, 
reproduction, growth, behavior, etc.), taking into account the characteristics
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of the life cycle of the species of concern when predicting the PPP consé­
quences on population persistence (Stark and Banks, 2003; Topping et al., 
2005; Forbes et al., 2016). Some authors establish dose-response relationships 
at the population level using as output different indicators of population size, 
population growth capacity or extinction risk calculated by these models 
(Stark et al., 2004; Lopes et al., 2005; Preuss et al., 2010; Hanson and Stark, 
2012; Stark, 2012; Goutte et al., 2018). Although highly conditioned by the 
choice of processes and conditions considered in each model, these studies 
propose to define protective concentration thresholds for the population by 
confronting these outputs with theoretical thresholds of maintenance or good 
démographie state of the populations.

In a cognitive mode of use, population models and sensitivity-elasticity 
analyses (Caswell, 2001) - frequently used in species conservation manage­
ment - allowed to understand the crucial rôle that life history traits plays in 
the démographie impacts of PPP. Numéro us modeling studies hâve empha- 
sized the importance of species life cycle characteristics in the démographie 
impact of PPP on animais or plants (Stark and Banks, 2003; Stark et al., 
2004; Raimondo and McKenney Jr, 2005; Lindsay et al., 2010; Stark et al., 
2015; Schmolke et al., 2017, 2018; Thursby et al., 2018; Banks et al., 2019). 
Structured population models are widely used in this framework of ERA 
(Forbes et al., 2016; Accolla et al., 2021), which is also found for PPP in our 
corpus of case studies: 50% of structured models versus only 15% for ABMs 
address the issue of differential démographie sensitivities between life cycle 
stages. Another major point relating to life cycle characteristics in PPP eco- 
logical models is the phenology and timing of exposure in relation to cultural 
practices that influence the risk of population exposure, the capacities of 
démographie compensation, or the recovery after short-term exposure. These 
temporal aspects, which hâve been extensively studied in pest management 
and biocontrol (Stark et al., 2004; Tonnang et al., 2017; Tang et al., 2019), are 
now being emphasized as determining factors in the vulnerability of non-target 
species, and in the relative severity of impacts of PPP treatment practices: 
reproductive phenology in bird species (Etterson and Bennett, 2013; Etterson 
et al., 2017; Moore et al., 2018; Crocker and Lawrence, 2018), annual devel­
opment cycle in pollinators (Thompson et al., 2005), in aquatic invertebrates 
(Galic et al., 2012; Sorensen et al., 2020) or in plants exposed to herbicides 
(Schmitt et al., 2013). The other overarching element considered is the spatial 
dimension in the processes of exposure or in population dynamics response 
(Topping and Odderskær, 2004; Dalkvist et al., 2009; Forbes et al., 2016; 
Schmolke et al., 2017; Accolla et al., 2021). PPP population and landscape 
models thus make it possible to retrace (i) the complex ecology of certain 
species (amphibians in EFSA PPR Panel 2018b; endangered mammals in 
Nogeire et al. 2015; or fish in Schmolke et al. 2021), (ii) the spatial heterogene- 
ity of resources (soil invertebrates in Johnston et al. 2014; birds in Topping 
and Odderskær 2004; bees in Becher et al. 2014; Thorbek et al. 2017; Gegear
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et al. 2021; More et al. 2021), (iii) the migratory links between habitats or 
throughout the population distribution area (Galic et al., 2012; Focks et al., 
2014), which can compensate for local PPP effects or on the contrary export 
the démographie impacts to non-contaminated areas (Chaumot et al., 2003; 
Schaefer et al., 2017). Various studies hâve thus highlighted the influence of 
landscape structure on the impacts of various agricultural PPP practices on 
non-target populations (e.g., in vole, Wang and Grimm 2010; Dalkvist et al. 
2013; hare, Topping et al. 2016) and identihed spécifie areas of the landscape 
that are particularly at risk for species of conservation concern (Engelman 
et al., 2012) or important for ecosystem functioning (Kattwinkel et al., 2011).

The démographie framework also led some studies to emphasize the possi- 
bility of compensation between PPP-induced mortality or reduced fecundity 
and the release of natural density-dependent Controls (e.g., compétition) that 
buffer PPP population impacts (Stark and Banks, 2003; Stark, 2012). These 
processes hâve been investigated in wild rodents (Wang et al., 2001; Wang 
and Grimm, 2010), in relation to territorial behavior in hsh (Mintram et al., 
2018) or hare (Kleinmann and Wang, 2017), in soil invertebrates (Reed et al., 
2016), in pollinators (Bryden et al., 2013), and in plants (Schmolke et al., 
2018). This effect of density level led some authors to point out the specihcity 
of the démographie response of rare or endangered species to PPP exposure 
(Topping et al., 2005). Taking into account density-dependence phenomena 
can complicate the mathematical analysis of structured models, as well as the 
degree of knowledge required for the parameterization of simulation models. 
Similarly to the habits in generic ERA (Accolla et al., 2021), our PPP case 
studies show that 80% of ABMs include density-dependence against only 40% 
of structured models. One of the great advantages of ABMs is to make these 
density-dependence phenomena emerge from individual behaviors and thus 
mechanistically include the effects of PPP at the heart of these processes, as 
illustrated by the interplay of the démographie effect of neonicotinoids and 
the size of bumblebee colonies (Crall et al., 2019).

One current perspective for increasing the ecological relevance of popula­
tion models is the considération of PPP multigenerational effects in ERA. As 
illustrated by pioneer studies on the transgenerational effects of fungicides act- 
ing as endocrine disruptors in wild rodent populations (Dalkvist et al., 2009, 
2013), ABMs are particularly well suited to take into account the exposure his- 
tory according to the pedigree of individuals and the transfer of effects between 
générations. Moreover, while population genetic models hâve been integrated 
in the study of PPP résistance for several years (Onstad and Meinke, 2010), 
the micro-evolutionary aspects possibly leading to adaptation and associated 
htness costs are up to now totally absent from PPP population modeling for 
non-target species. But here again, ABMs seem particularly promising for inte- 
grating this type of long-term effects once they are better documented in the
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ecotoxicological literature, following the example of quantitative genetics mod- 
eling practices used in pest résistance management (Ives et al., 2017; Slater 
et al., 2017).

4.2.5 Intégration of recovery processes, from individual to  
population level recovery

Population models place the assessment of PPP effects at larger spatial and 
temporal scales than the évaluation solely focused on toxicological individual 
responses (Forbes et al., 2009). Agricultural treatments cause toxic stresses 
that may be episodic and punctual (puise exposure) or localized in the habitat 
space of non-target populations. Various population studies hâve thus focused 
on the capacity for population recovery after exposure to PPP (Wang et al., 
2001; Hanson and Stark, 2012; Wang, 2013; Mintram et al., 2018), implying 
the capacity for recolonization from uncontaminated refuge areas on small 
spatial scales (Van Den Brink et al., 2007; Galic et al., 2012, 2014) or at 
larger distances, e.g., river network (Focks et al., 2014). This issue is very 
prédominant in the literature on the use of ecological models for PPP ERA: 
60% of the case studies of population models in our corpus ht into such a 
framework of puise exposure, as well as 40% of the landscape studies. These 
developments are partly driven by the proposai to use population models to 
apply an ecological recovery option in PPP ERA, where législation explicitly 
allows limited adverse effects of PPP if recovery of exposed populations can 
be achieved within a given time period (Hanson and Stark, 2012; Focks et al., 
2014; Galic et al., 2014). The literature offers different définitions and a mul­
titude of recovery indicators, which refer to a return to a pre-exposure State, 
or a state simulated in a control scénario. This population state can be of dif­
ferent natures, based on the abundance or on the level of occupancy of the 
different patches of the population distribution area (Topping et al., 2015). 
PPP impacts and their acceptability are dehned in terms of recovery capac­
ity, recovery time, response amplitude, probability of extinction, or duration 
of low-level density period, e.g., Wang et al. (2001); Hanson and Stark (2012); 
Hayashi et al. (2016); Thursby et al. (2018). Population models can be used 
to identify the déterminants of recovery capacity, in particular to distinguish 
between autogenic (local démographie recovery) and allogenic (recolonization) 
capacity, e.g., Van Den Brink et al. (2007); EFS A PPR Panel (2018b); Schae- 
fer et al. (2017). From an applied point of view, highlighting the importance 
of migratory processes in population recovery within agricultural landscapes 
justifies the préservation of spatial connectivity and the importance of refuge 
zones (Galic et al., 2012, 2014; Focks et al., 2014). Modeling can also allow the 
évaluation of sustainable levels of treatment frequency for populations (Focks 
et al., 2014) following similar méthodologies developed in biocontrol and for 
the pest management (Stark et al., 2004; Tonnang et al., 2017; Tang et al., 
2019).
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4.2.6 Assessment of P P P  impacts at the community level
Statistical extrapolation using SSD approaches

There are two main types of standard outputs when performing SSD anal­
yses. When SSD is used in a prospective risk assessment, the final aim is to 
dérivé Predicted No-effect Concentrations (PNEC) and the derived Toxicity 
Exposure Ratios (TER). The PNEC is a prospective level of environmen- 
tal safety corresponding to the concentration below which adverse effects are 
not expected to occur (European Commission, 2003). The TER is dehned 
as the ratio of the measure of the effects (e.g., LD^o, LC$o, NOËL) to the 
estimated exposure. It is the reciprocal of a risk quotient (RQ) or a hazard 
quotient (HQ, Stephenson et al. (2006)). In a rétrospective assessment of the 
level of environmental safety, EQS are preferred, especially in the context of 
the Water Framework Directive (WFD, Technical Guidance Document (2011), 
Lepper (2002)). Within the WFD, a distinction is even made between the 
annual average EQS (AA-EQS) and the maximum allowable concentration 
EQS (MAC-EQS) values (Brock et al., 2006).

For both types of apical criteria (namely, final decision criteria that will be 
used by regulators), the main standard output derived from SSD is the HCP 
statistically corresponding to the pth percentile of the probability distribution 
that is htted to toxicity input values. As stated by Posthuma et al. (2002), 
the HCP is the exposure concentration assumed to be protective for (1 —p)% 
of the species within the considered ecosystem. Most of the time, the HC$ is 
calculated, at least for PPP (Brock et al., 2004; Van Den Brink et al., 2006; 
Daam et al., 2010; Mensah et al., 2013; Ramo et al., 2018; Iwasaki et al., 2015; 
Van Den Brink et al., 2019; Baillard et al., 2020). Almost ail tools associate 
uncertainty limits around the mean or the médian of the delivered HCp esti­
mâtes. The PNEC can be calculated from the HC$ (Tier-2 PNEC), accounting 
for uncertainty by dividing the HC$ by a certain coefficient. According to 
authors, the relationship between the HC$ and the PNEC may differ: it can 
be assumed equal to the médian HC$ (Brock et al., 2006), to its lower-limit 
(Daam et al., 2010), to the ratio of the HC$ by an uncertainty factor (Mentzel 
et al., 2021); in the regulatory context, either to the ratio of the HC$ by 
an appropriate Assessment Factor (AF, European Commission 2003) or also 
equal to the médian HCz estimate [e.g., EFSA PPR Panel (2015b)). Note 
that ratios based on SSD outputs are now preferred: for example the Tier-1 
Regulatory Acceptable Concentration (RAC) is an EC^o/AF, while the Tier- 
2B RAC is an EfC^/AF as usually preferred in aquatic risk assessment (EFSA 
PPR Panel, 2013). Note that in EFSA PPR Panel (2013), the TER is rather 
denoted as ETR (standing for exposure-toxicity ratio), dehned as the Pre­
dicted Environmental Concentration (PEC) over the RAC. A value of ETR < 
1 (that is PEC < RAC) indicates an acceptable risk. Other calculations from 
single or very few toxicity indices for isolated species are more related to the 
REACH terminology, such as for example the RQ equal to the PEC over the 
PNEC (Iwasaki et al., 2015; Sorgog and Kamo, 2019).
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The application of S SD in a rétrospective risk assessment of Chemicals 
consists in predicting a fraction of the community which is likely to be impacted 
by a spécifie concentration of a given substance. Then, the standard output is 
the Potentially Affected Fraction (PAF) (De Zwart, 2005).

Regarding mixtures studied via SSD, most analyses aim at calculating 
multiple-substance P AF  or msPAF. Such outputs corne from a combination 
of SSD for each individual compound with CA or RA models (Jesenska et al., 
2013). In particular, Jesenska et al. (2013) evaluated the impact of different 
data validation approaches (such as removal of duplicate values and outliers, 
testing of different exposure durations and purity levels of studied herbicides, 
using different sets of input data, namely NOEC vs. EC5 0 , and considering 
different taxonomie groups) in a rétrospective model case study. Interestingly, 
they conclude that the use of rough non-validated data seems to provide 
robust results, especially when few ecotoxicity values are available for certain 
compound(s).

Analysis and prédiction of possible indirect PPP effects within communities
Even if the SSD method does not account for any species interaction, com- 

paring the SSD method used at Tier-2 to food-chain models at Tier-3 of ERA, 
Brock et al. (2004) stated that a protection level based on direct effects (such as 
reflected by the F[C$ estimate) could also protect against indirect effects. Nev- 
ertheless, while unavoidable within community experiments, indirect effects 
are not very often directly studied and accounted for in models at the commu­
nity level, in general. Only Clemow et al. (2018) used an SSD-based approach 
to highlight both direct and indirect effects for hsh and aquatic invertebrates 
exposed to malathion. Compared to the SSD concept and food-chain models, 
the PERPEST model was proposed to account for more information on eco- 
logical risks when a common toxicological MoA is evaluated (Van Den Brink 
et al., 2002, 2006); indeed the PERPEST model considers both recovery and 
indirect effects. In brief, the PERPEST simultaneously predicts the probabil- 
ity of classes of effects (no, slight, or clear effects, plus an optional indication 
of recovery) on various grouped endpoints of a particular concentration of a 
PPP on community endpoints (e.g., community metabolism, phytoplankton, 
and macro-invertebrates). It is entirely based on literature data gathered in a 
database to perform prédiction where no effects on a semi-held scale hâve been 
published. The PERPEST model was specihcally emplopyed to address direct 
and indirect effects in Van Den Brink et al. (2006) and successfully applied to 
PPP (Daam et al., 2010; Ramo et al., 2018). Reeg et al. (2017) studied direct 
and indirect effects of herbicides on non-target grassland communities.

In fact, food-web models are more appropriate to deal with indirect effects. 
For example, Traas et al. (2004) studied indirect effects of PPP on biomass 
and recovery within a microcosm. With very simple models, De Hoop et al. 
(2013) concluded to the existence of food mediated indirect effects of atrazine 
on zoobenthos populations, while Joncour and Nelson (2021) demonstrated 
the direct and indirect impact of spinosad on insect life-histories.
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PPP bioaccumulation and biomagnification within food chains /  food webs
Within our bibliographie corpus, only the paper by Scholz-Starke et al. 

(2018) appeared as addressing the issue of biomagnification. Indeed, they 
employed the AQUATOX framework to simulate aquatic trophic guild 
dynamic accounting for hydrodynamics and nutrients together with the 
dynamics of the exposure substance and its métabolites: they showed a signif- 
icant biomagnification of métabolites. However, the issue of bioaccumulation 
is mentioned several times within food-web studies (Nfon et al., 2011; Ren 
et al., 2017), while it has been far more basically addressed by Sanchez-Bayo 
et al. (2002) via the use of the Ecological Risk Ratio (EcoRR) approach.

Development of tools that integrate both exposure and effects
From a particular case study on bees, Crenna et al. (2020) underlined how 

important it is to consider both exposure and effects across ail applied PPP, 
instead of focusing only on PPP with high ecotoxicity potentials or modes 
of action specihcally targeting insects. Nevertheless, combined studies that 
looked at both exposure and effects are rather rare within our corpus. At the 
community level, a hrst attempt was made by Sanchez-Bayo et al. (2002) with 
its EcoRR approach, while a deeper intégration of both aspects came later 
with Nfon et al. (2011) who combined fate and food-web models to estimate 
the food-web transfer of Chemicals in small aquatic ecosystems. Then, thanks 
to the AQUATOX models, improvements in integrating both exposure and 
effect modelling was undertaken either for trophic guilds of aquatic organisms 
(Scholz-Starke et al., 2018) or lake ecosystems (Galic et al., 2019).

The SYNOPS-WEB model (Strassemeyer et al., 2017) allows quantita­
tive assessment of the potential risk of PPP for the environment (leaching to 
groundwater) and for various Reference Species (RS) in soil (RS: earthworms), 
surface water (RS: algae, Lemna sp., Daphnia sp., Chironomus sp. and hsh) 
and held margins (RS: bees). The acute and chronic risk indices are calcu- 
lated as exposure toxicity ratio (ETR) where the PEC (in soil, surface water 
or held margin) is related to a toxicity value of the considered RS. For multi­
ple application events and multiple active ingrédients, the acute risk of a full 
application strategy is considered as the maximum risk posed by ail appli­
cation events and ail active ingrédients applied within one végétative period. 
The chronic risk values are aggregated additively for each RS according to 
the concept of CA. The chronic risk aggregation of an application pattern is 
carried out in two steps: hrst, the chronic risk values are calculated for each 
applied active ingrédient and added on a daily basis to dérivé curves of ETR 
sums; second, the maximum of these ETR-sum-curves is derived thus consti- 
tuting the chronic risk of the full application strategy. It was demonstrated 
that SYNOPS-WEB reliably modelled the PPP exposure of aquatic organ­
isms. The model could be improved with the intégration of more mitigation 
measures such as strip till techniques, mulch seeding, création of buffer strips 
or multi-functional held margins (Strassemeyer et al., 2017).
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Among models accounting for both exposure and effects, there is also the 
work by Baudrot et al. (2020) who developed a heuristic non-spatialized model 
including montane water voles, specialist vole predators and the red fox as a 
generalist predator consuming voles, mustelids and other preys. Thanks to a 
broad-range sensitivity analysis on poorly informed toxicological parameters, 
they investigated the impact of hve farmer functional responses (that is varying 
amounts of anticoagulant rodenticide spread according to different thresholds 
in vole densities) on predator-prey relationships, anticoagulant rodenticide 
transfer across the trophic chain and population effects.

At last, Baudrot et al. (2021) made a step further developing a spatially- 
explicit exposure-hazard model considering both the dynamics of pollen 
dispersai obtained by convolving genetically modihed plants émission with a 
dispersai kernel and a TKTD model accounting for the impact of toxin inges­
tion on individual survival of on non-target Lepidoptera. This exposure-effect 
combined modelling approach allowed authors to better assess the ecological 
risk of Bt-maize at the landscape scale.

5 S trengths and lim itations o f th e  em ploym ent 
of th e  different m odel categories in P P P  ER A

5.1 G enericity  and transversality
5.1.1 Applicability of population models: from general to  

local case-study spécifie ERA
There is a consensus in the literature on the complementarity between simple 
generic population models addressing large scale questions for ERA of PPP 
{e.g., identification of species at risk at a national level with respect to a cer­
tain type of PPP use) and more précisé and spécifie modeling at local scales 
(e.g., influence of landscape éléments, or spécifie agricultural practices on a 
species locally at risk) (Topping et al., 2005; Forbes et al., 2015). Decision 
guides for the choice of population models now make it possible to identify 
the trade-offs to be made between genericity, realism and précision of an ERA 
according to its objectives (Raimondo et al., 2021). One of the strong aspects 
of population model frameworks is their portability between species, as already 
illustrated for birds (Etterson et al., 2017), pollinators (Becher et al., 2018), 
earthworms (Forbes et al., 2021), and plants (Schmolke et al., 2018). This rapid 
cross-species transposition of population models (especially structured models) 
benefits from the recent constitution of large ecological databases of démo­
graphie traits in conservation science (e.g., in birds, fish, mammals, plants). It 
allows the rapid parameterization of population models on a large number of 
species and it could help in the relative ranking of species vulnerabilities to the 
different uses of PPP (Forbes et al., 2015; Etterson et al., 2017; Rueda-Cediel 
et al., 2019). On the other hand, mechanistic population models can also be 
adapted to local or population-specific conditions by incorporating the influ­
ence of environmental parameters on individual biological input variables and
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species phenology (50% of the case studies in our corpus integrate such influ­
ence). The assessment of PPP population impacts is then refined, for example, 
according to température conditions in chironomids (Diepens et al., 2016) or 
in aquatic plants (Schmitt et al., 2013), according to trophic and dietary con­
ditions, such as in daphnids (Preuss et al., 2010), bee (Abi-Akar et al., 2020), 
partridge (Millot et al., 2015), or in function of different landscape structures 
(Focks et al., 2014; Topping et al., 2016). This also enables the projection of 
scénarios of climate change or land use évolution (Nogeire-McRae et al., 2019) 
as can be done in the field of pest control (Donatelli et al., 2017). These envi- 
ronmental factors may constitute stressors additional to PPP, and population 
models are mobilized to compare PPP relative impacts in multi-stress con- 
texts (hypoxia and insecticides in salmon, Landis et al. 2020, insecticides and 
parasitism in pollinators in Becher et al. 2014; Schmolke et al. 2019, flooding 
régime and herbicides in a threatened plant in Schmolke et al. 2017).

5.1.2 Limitation and applicability of mixture models to 
environmental case studies

Regarding environmental monitoring and risks, mixture models hâve been used 
for many years to assess the risks estimated from monitoring data on envi­
ronmental concentrations (George et al., 2003; Schuler and Rand, 2008; Vaj 
et al., 2011; Chen et al., 2020). Cruzeiro et al. (2016) measured 56 priority PPP 
belonging to distinct categories (insecticides, herbicides and fungicides) in 42 
surface water samples. Based on the CA and IA models, they used a two-tiered 
approach to assess the hazard of the PPP mixture, at the maximum concen­
tration found, reflecting a potential risk. In the same way, Kuzmanovic et al. 
(2016) assessed ecotoxicological risks of Chemical pollution in four Iberian river 
basins and its relationship with the aquatic macro-invertebrate community 
status using a data set including more than 200 emerging and priority com- 
pounds measured at 77 sampling sites along four river basins. The Toxic Units 
(TU) approach was used to assess the risk of individual compounds and the 
CA model to assess the site-specific risk. A difficulty highlighted by Perez et al. 
(2011) is that shifts for synergism and/or antagonism might occur depending 
on the dominant Chemical présent. However, Verro et al. (2009) exposed several 
considérations that support the suitability of the CA model for assessing risk 
for ecologically relevant PPP mixtures. These authors said that a few Chem­
icals are responsible for > 80% of the toxicity, rendering différences between 
CA and IA prédictions very small. Moreover, the most toxic components of the 
mixtures often hâve the same MoA. A geo-referenced représentation of results 
allows analyzing the spatial pattern of toxic mixture assemblage in order to 
prioritize the locations at risk and to detect the group of compounds causing 
the greatest risk at different scales (Faggiano et al., 2010). However, predicting 
the effect from mixture assumes that the compounds will co-occur spatially 
and temporally which is not always the case (Faggiano et al., 2010).

Moreover, évaluation of effects on organisms at stimulatory doses of Chem­
icals, known as hormesis, lacks a common statistical approach for mixtures
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(Belz and Duke, 2018). Prédiction of effective hormetic doses can be facili- 
tated by using joint action models but to date there is no mechanistic models 
to predict the hormetic magnitude in mixtures. The IA model assumes a dis- 
similar MoA and multiplicity of effects up to a maximum response of 100% 
(Streibig et al., 2000), which is inappropriate to model hormetic doses leading 
to a response of > 100 (Belz and Duke, 2018). Nevertheless, some promising 
attempts were made to predict the hormetic magnitude. The sélection of a 
reference model like CA can be used to describe mixtures of dissimilarly and 
similarly acting compounds (Belz and Duke, 2018). If the observed mixture 
data deviates synergistically or antagonistically from a reference model, the 
predefined curved isobole models of Hewlett or Vqlund are available to model 
observed déviation patterns (Sorensen et al., 2007).

5.2 U n certa in ty  and m od elling  practices
In the guidance on how to characterize, document and explain uncertainties 
in risk assessment recently published by EFSA (EFSA Scientific Committee, 
2018), uncertainty analyses are the process of identifying limitations in sci­
entific knowledge and evaluating their implications for scientific conclusions. 
ERA relies on a very general définition of the uncertainty, that is referring to 
ail types of limitations in available knowledge that affect the range and proba- 
bility of possible answers to an assessment question. Focusing on the modelling 
cycle, it is strongly recommended, if not mandatory, to quantify the parame- 
ter uncertainty (for example with 95% confidence or credibility intervals), but 
also to include a sensitivity analysis, an uncertainty analysis and the compari- 
son of prédictions with observed data when setting up the model (EFSA PPR 
Panel, 2014). In particular, if the model is eventually to be used to extrapolate 
from one situation to another, the resulting effect on the level of uncertainty 
should be clearly stated.

In support of the above general statement, note that within the guidance 
document on tiered risk assessment of PPP for aquatic organisms in edge- 
of-field surface waters (EFSA PPR Panel, 2013), it is clearly recommended 
that:

• A qualitative évaluation of the uncertainties affecting refined RA should be 
provided based on a tabular approach. In case of multiple fines of evidence, 
uncertainties affecting each line should be evaluated separately.

• If the qualitative évaluation of uncertainty reveals not sufficient to détermine 
whether an unacceptable level of impact may occur, it is required to either 
(i) make an effort to get additional data to reduce the uncertainty, or (ii) use 
deterministic or probabilistic methods to refine uncertainty quantification.

5.2.1 (Q)SAR models
In general, the uncertainty of the (Q)SAR models is well characterized due to 
the conformation of the models to the OECD (Q)SAR validation principles (see 
Section 4.1.1). First, the recent (Q)SAR models were always developed using
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a training and a validation data set (80% - 20% of the data set generally) and 
could also be evaluated on another external data set (Figure 7). In addition, 
several traditional validation metrics are applied to assess the accuracy, the 
stability/robustness and the reliability of the (Q)SAR models (reviewed in 
Gramatica and Sangion 2016):

• Goodness-of-fit: Root Mean Square Error (RMSE), détermination coeffi­
cient (R2), détermination coefficient adjusted (R2dj), and Lack Of Fit (LOF) 
which was dehned as being proportional to the least-squares error corrected 
by the number of descriptors and the number of training data (Furuhama 
et al., 2019).

• Robustness: cross-validation corrélation coefficient, i.e., Q2 LOO (Leave- 
One-Out) which shows the prédictive ability for internai validation of the 
model (based on the training set compounds), and leave-one out cross- 
validated R M SE , and R2d;j (i.e., R M SE CV and Q2dj). The absence of 
corrélation could be checked by low values of R2 calculated on scrambled 
response (Galimberti et al., 2020).

• Reliability: Q2 metrics (prédictive performance or R2 Prédiction) measures 
the reliability of a model, which will not be enough to dehne the model 
performance when new molécules are engaged (see application domain). Q2 
can be calculated using different formulae (referred as F\, F2 or Fs). Q2 and 
the Concordance Corrélation Coefficient (CCC) are the typical statistical 
metrics used for the external validation of the developed model Pandey et al. 
( 2020) .

Elsewhere, numerous quantitative and graphical quality indicators for clas­
sification models can be applied (Venko et al., 2018). In binary classifications, 
such as toxic (positive) or non-toxic (négative), several metrics were computed 
to assess the model qualities: accuracy (proportion of any substances cor- 
rectly classihed), sensitivity (proportion of true positives correctly classihed), 
specihcity (proportion of true négatives correctly classihed), and efficacy (pro­
portion of de-prioritization candidates) (Benigni et al., 2020; Herrmann et al., 
2020) .

The reliability of the (Q)SAR model prédictions is also due to their domain 
of applicability. Leverage is one of the standard methods for the analysis of 
the domain of applicability of the model. The leverage value hd for the ith 
PPP is calculated from the descriptor matrix and compared to their critical 
leverage value (h*) depending on the number of variables used in the model 
and on the number of training compounds (Basant et al., 2015b). The value 
of hi > h* indicates that the structure of the compound substantially dif­
fère from those used for the calibration. Therefore, the compound is located 
outside the optimum prédiction space. Frequently, the Williams plot is con- 
sidered for representing the domain of applicability of the (Q)SAR models. 
This graph represents the standardized residual value according to the lever­
age value (Figure 7) (Basant et al., 2015b). Some software, such as the open 
source platform VEGA-HUB, assess the reliability of the prédiction using the
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Applicability Domain Index (ADI) . This index is an aggregated resuit taking 
into account several aspects: (i) similar molécules with known experimental 
value and their accuracy (or average error) in their prédiction, (ii) concordance 
among the target and similar molécules for the experimental data, (iii) Atom 
Centered Fragments (ACF) similarity check, (iv) descriptors noise sensitivity 
analysis, and (v) model descriptors range check (Carnesecchi et al., 2020).

Finally, accuracy, stability/robustness and reliability of most of the 
(Q)SAR models were generally checked during the last fifty years on PPP 
toxicity (Basant et al., 2015a, 2016; Carnesecchi et al., 2020; Hamadache 
et al., 2018; Venko et al., 2018). In addition, some of the papers published 
before hâve been re-assessed for their consistency with these principles (Pavan 
et al., 2008). Moreover, according to the OECD guidance document (OECD, 
2014), the consensus approach can be applied when several complementary 
models are available. Thus, the newly developed models would contribute to 
more reliable prédictions of toxicity of PPP (Venko et al., 2018). Concordance 
with ail these principles guarantees rigorous and independent validation of 
(Q)SAR models which is an essential step toward their regulatory acceptance 
(Eriksson et al., 2003).

5.2.2 DR and TKTD models
Most probably due to old habits in ERA, but maybe also due to a lack of 
computer resources some décades ago, uncertainties associated with the use 
of DR models are still rarely fully reported, meaning not systematically, usu- 
ally only summarized by rough standard déviations. On the contrary, among 
works based on TKTD models, there is an increasing number of contributions 
providing information on uncertainties, in various forms depending on the 
inference method used. Baudrot and Charles (2019) even proposed some use- 
ful recommendations to address uncertainties in ERA using TKTD models. 
Fraser et al. (2002) discussed of uncertainty in biomagnihcation factors and 
half-lives of métabolites, while Weijs et al. (2013) used a Morris sensitivity 
analysis followed by the eFAST test to quantitatively test the influence of the 
most sensitive parameters on their model output. We also noticed an increas­
ing use of probabilistic methods, such as Bayesian inference (Weijs et al., 
2013) or Bayesian Networks (BN) (Kaikkonen et al., 2020; Mentzel et al., 
2021), which hâve proven their efficiency in quantifying uncertainties. And 
to go in the same direction, Rubach et al. (2010) hâve even illustrated that 
a complementary use of least-squares htting with the Levenberg-Marquardt 
(LM) algorithm and Monte Carlo Markov Chain (MCMC) methods is much 
more useful than the use of LM alone.

5.2.3 Population and landscape models
The uncertainty associated with the outputs of population or landscape mod­
els is very often addressed by these up-scaling tools, which methodologically
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rely on different sensitivity or elasticity analyses (50% of the models in the 
corpus) or which integrate environmental stochasticity into the scénarios 
tested (60% of the studies). The outputs of these models are thus most often 
expressed in the form of distributions of values or probabilities of démo­
graphie effects. However, the fact that an uncertainty is almost systematically 
expressed in the outputs of these models should not make us forget the reduc- 
tionist aspect of these modelling approaches which, by définition, can only 
focus on a limited number of processes. Also, this issue is of high relevance 
considering that the use of population and landscape models is proposed in 
the literature to contribute to higher Tier assessment of PPP (refinement for 
population-level endpoints) (Forbes et al., 2009; EFSA PPR Panel, 2018b). 
These models are indeed sometimes seen as surrogate cost-effective methods 
of achieving higher levels of ecological relevance when higher Tier data (meso- 
cosms, field studies) are lacking (Hanson and Stark, 2012). However, like any 
bottom-up approach, it only accounts for the toxic effects and environmen­
tal variables that are considered in the modelling processes. It is therefore 
important for risk assessors to bear in mind this reductionist aspect of the 
up-scaling approach, which is often falsely erased in view of the intégrative 
and population-level dimension of the outputs of these models. Hence, the 
efforts to propose sound decision guides, e.g., Schmolke et al. (2017); Rai- 
mondo et al. (2021), which explicitly State the hypothèses taken into account 
in the modelling process and the scope of the questions addressed for the 
ERA, become very important for this issue. As a warning illustration, we were 
able to document in our corpus some adverse effects of PPP that are mostly 
ignored despite their importance for population effects, and the suitability of 
ecological models to integrate these effects. Models, particularly ABMs, are 
for instance very adapted to take into account individual behaviors in the 
emergence of population dynamics (Accolla et al., 2021), especially spatial 
behaviors. However, it appears from our case studies data set that direct 
behavioral disruption by PPP is actually considered in only 15% of popula­
tion models for animal species while more than half of these models deliver 
an impact assessment in a spatial frame, and less than 10% in landscape-scale 
studies. Another finding from our analysis of population case studies is that 
less than 50% of them consider sub-lethal effects (75% for structured models 
but 40% for ABMs). This also illustrâtes the gap that may exist between the 
intégrative possibilities offered by the population-modelling framework and 
the reductionism of the proposed assessment. This gap is mainly explained 
by a problem of experimental data availability on PPP sublethal effects in 
environmental species (effects on reproduction, individual growth, develop­
ment, behaviour) but also in some cases to deliberate choices in modeling 
assumptions. Indeed, studies that integrate only mortality for animais or 
population growth inhibition phenomena in algae and plants represent 50% 
of the studies between 2000 and 2010, 70% between 2011 and 2015 and again 
50% from 2016 to 2020. This is partly related to the strong development of 
population recovery studies that only consider the acute léthal toxic effects
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of PPP during short peaks of exposure and ignore the delayed or long-term 
effects of environmental imprégnation by PPP.

5.2.4 M ulti-species models
SSD approaches On a general point of view, SSD analyses are expected to pro­
vide smaller uncertainties on apical risk assessment indices in comparison with 
the approach using AF that is applied for a limited number of toxicity values 
(Borges et al., 2017; Jesenska et al., 2013). Such indices are for example the 
RAC as dehned in the guidance document on tiered risk assessment for PPP 
for aquatic organisms in edge-of-held surface waters (EFSA PPR Panel, 2013). 
In addition to the EU PPP régulation, water bodies are also regulated by the 
WFD Technical Guidance Document (2011); European Commission (2002a) 
which provides a framework to evaluate the Chemical and ecological quality of 
the water bodies in the EU from EQS. Short-term (Maximal Acceptable Con­
centrations, MAC-EQS) and long-term (Annual Average, AA-EQS) EQS are 
based on ECso and EC io values, respectively, or SSD calculations.

Even if not systematically provided when delivering HCp estimâtes, the 
uncertainty is nevertheless sometimes taken into considération (Daam et al., 
2010; Van Den Brink et al., 2006). Van Dam et al. (2004) tried to iden- 
tify possible uncertainty sources in using SSD. First, they noted that small 
sample sizes when characterizing SSD added substantial uncertainty to the 
assessment. Another factor contributing to uncertainty is the unknown ability 
of the considered species to recover following exposure to the compounds 
under study. They also established that uncertainty may surround the expo­
sure characterization. Van Dam et al. (2004) concluded that, although the 
uncertainty can be quantihed using the confidence limits around the htted 
probability distributions, which in some cases spanned an order of magnitude 
of the reported ELPp values, the data variability is usually high, a part never 
explained by the models. Very interestingly, Kon Kam King et al. (2015) 
innovated with a hierarchical approach of the SSD exploiting its founding 
basis that ail tested species represent a random sample from a theoretical 
community so that their responses follow a distribution; this means that 
parameters describing the DR of each species within the sample follow a 
probability distribution themselves. In this approach, species for which the 
response is characterized with large uncertainty on the parameters of the DR, 
or where data are missing, contribute less to final htted SSD. Kon Kam King 
et al. (2015) were hnally able to provide EtC$ estimâtes accounting for the 
uncertainty of the original raw data. At last, even if identihed a long time ago 
(Aldenberg and Jaworska, 2000; Verdonck et al., 2000; Forbes et al., 2001; 
Forbes and Calow, 2002), great progress and improvements hâve only been 
made recently to account for uncertainties in SSD approaches. For example, 
to overcome some theoretical criticisms of the SSD, Bayesian inference may be 
used to ht SSD (He et al., 2014). Also Grist et al. (2006) demonstrated that it 
could reduce the uncertainty. More generally, Bayesian inference and MCMC
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methods gradually become popular in the field of environmental science like 
with water quality models and hydrological models (Jeremiah et al., 2012) 
as it allows considering multiple issues and System components as well as 
handling missing data and uncertainty easily. Bayesian inference is now also 
successfully used in the field to environmental risk assessment (see for exam­
ple Chen and Pollino 2012; Baudrot and Charles 2019; Charles et al. 2021).

Community models
Usually involving a large number of parameters, community models 

inevitably exhibit a higher parameter uncertainty (Strauss et al., 2017), com- 
pared to simpler models such as DR or even TKTD models. This is indeed a 
matter of fact that having more parameters to estimate (what in essence char- 
acterizes community models), if the sample size of input data sets is limited, 
then parameter estimâtes will be less précisé. This can be due to difficul- 
ties in making converge the optimizing algorithm in particular. The use of 
Bayesian inference to estimate the parameters of the mechanistic food-web 
model Streambugs (Kattwinkel et al., 2016) perfectly illustrâtes how to ade- 
quately handle uncertainties, and how it is particularly helpful to identify 
potential improvements in the model structure and in the experimental design.

5.2.5 M ixture models
In mixture models, uncertainties will be generally larger than in assessments 
of single Chemical substances as there are more sources of uncertainties. As for 
other models, it is important to consider the uncertainties when interpreting 
the results. Thus, uncertainties hâve to be identihed in each stage of the mix­
ture model framework and an overall uncertainty analysis has to be integrated 
in the risk characterisation. The EFSA guidance on risk assessment of mul­
tiple Chemicals (EFSA Scientihc Committee, 2019) lists the most important 
aspects of uncertainty analysis for each step of the risk assessment of combined 
exposure to multiple Chemical substances.

5.3 R ep rod u cib ility  o f m od el ou tp u ts
The issue of reproducibility is more generally related to scientihc integrity, 
an issue reviewed by Mebane et al. (2019) for applied environmental sciences, 
with a particular emphasis on ecotoxicology. Reproducibility is only one of the 
prerequisites for a crédible research (Wilkinson et al., 2016) and differently 
concerns materials, especially data (e.g., Rubach et al. (2010); Reeg et al. 
(2018); EFSA PPR Panel (2017)), methods and results (e.g., Tyne et al. 2015) 
as described in papers. Focusing on model outputs, only few authors gave 
enough information for full reproducibility, given that some results cannot 
of course be exactly reproduced due to stochastic processes in the modelling 
approach (Carr and Belanger, 2019; Schneckener et al., 2020; Charles et al., 
2021; Charles et al., 2021).
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6 M odelling  approaches in th e  European P P P  
régulation

6.1 R egu latory  con tex t
In the European Union, the approval of an active substance and the placing 
of a PPP on the market require, among others, to assess their ecotoxicological 
effects and the corresponding risks. The soil, water (including sédiments) and 
air compartments are considered. The overall objective is to approve only 
the compounds which do not hâve any harmful effect on human or animal 
health or any unacceptable effects on the environment (European Commission, 
2009) (see Section 2). Therefore, the régulation holds on strict approval and 
exclusion criteria for active substances (European Commission, 2020). In this 
context, prospective risk assessment based on modelling approaches is of great 
interest.The ecotoxicological risk assessment phase is detailed in the régulation 
and in the guidance documents notified at the European level (i.e., approved 
by the different member states), leading to a harmonized procedure between 
member states. In the light of the diversity of organisms potentially exposed 
in situ to the different PPP and their active substances, the assessment has 
to be done for several biological groups which are related to a wide range of 
environmental media: birds, aquatic organisms, arthropods, earthworms, soil 
non-target microorganisms, and other non-target organisms (flora and fauna) 
believed to be at risk. Each biological group is associated to spécifie protection 
goals, which will drive the choice of the methods to use (e.g., kind of tests and 
models) for risk assessment.

6.2 R isk  assessm ent in P P P  régu lation
Whatever the investigated biological group, the risk assessment follows a 
tiered-approach which is since décades widely used within the scientific com- 
munity. The tiered-approach consists of structuring the risk assessment process 
along a gradient of environmental representativeness, and complexity of experi­
mental System, leading to a refinement of the risk (Figure 9). The risk is usually 
assessed by comparing effect (hazard identification and characterization) and 
exposure.
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The first Tier (Tier-1) is intended to be simple and protective. It mostly 
relies on the use of norrnalized or standardized tests (e.g.. DR exposiue design) 
performed in laboratory and including one taxa (e.g., 0 1 1e micro-algal species) 
exposed to one compound under controllcd conditions. As snob tests are rel- 
atively easy to rcproducc and to perforai, lhey ncglect the cffccls of various 
otber factors sucli as tbc biotic interactions into stress organism rcsponscs. 
The following tiers rely on approacbes eliaracterized by a liigber degree of 
environment-aï représentât iveness. Tins kind of approach aims at refining tlie 
risk assessment and at prodiic.ing more realistic thresbolds. In the different 
guidance documents, going from Tier-1 to higher tiers means, for example, to 
intégrale more realistic cxposurc concentra Lions into tbc risk assessment, to 
consider organisms susceptible to bc particularly exposed (e.g., according to 
tbeir habitat, feeding habits, life-cycle), to intégrale additional sensitivity data 
or to use more sophisticated models or experimental devices such as mesocosms 
(EFSA PPR Panel, 2013).

6.3 C urrent use o f  m od eling  in P P P  régu lation
Currently, most of tbc nolified guidance document recommendations are linked 
to the type of tests to perforai (e.g., organism, exposure duration) and to the 
metliods to assess and to refine the risk assessment. Nevertheless, the use of 
various kinds of model is already recommended in several cases (EFSA PPR 
Panel, 2013; EFSA, 2009).

First, DR modcls are widcly used for dossier constitution as il supports tbc 
dérivation of a sensitivity value (e.g., E C r) which can be la ter used to dérive 
for example an HCP as well as to assess the risk (e.g., TER). This type of model 
can be applied at every Tier as long as it fits modelling good practice (e.g.,
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enough tested concentrations) but is especially of great importance in Tier- 
1 studies to model the required organism responses (e.g., mortality, growth, 
reproduction) to an increasing gradient of stress (here, Chemical concentra­
tion). For example, the normalized tests performed on aquatic organisms, as 
well as on birds or mammals, rely on such models. However, DR model can 
also be recommended in the context of higher Tier experiments, as it can 
potentially support the development of more sophisticated models.

Second, notihed guidance documents also recommend for Tier-2 approaches 
the use of SSD models. In the regulatory context, the SSD models présent 
the advantage to induce less uncertainty compared to Tier-1 approaches, as 
they are based on the sensitivity values of various taxa (hve to eight are at 
least requested depending on the biological group). For example, the use of 
SSD models is recommended for aquatic organisms, non-target plants and soil 
organisms but, in this last case, a methodological guidance for this kind of 
organisms is still required. However, SSD are not suitable models for ail of 
the biological groups involved in the PPP régulation (e.g., EFSA PPR Panel 
(2015a)).

Within the multi-species category, community models are also of great 
interest for regulatory purposes, especially for higher tier studies dedicated 
to refine risk assessment. However, working at such an ecological level could 
constrain their use by regulators because these community models are ail case- 
study dépendent.

Finally, notihed guidance documents also recommend the use of (Q)SAR 
models to estimate sensitivity values, to reduce the number of tests on the 
biota, and to explore PPP métabolites (e.g., potential to bioaccumulate).

Over the above-cited modeling approaches, the notihed guidance docu­
ments also deal with other models to develop or to validate (if those models 
already exist but are not enough tested for a use in the regulatory context). 
For example, in 2013, the notihed guidance document for the aquatic organ­
isms (EFSA PPR Panel, 2013) highlighted that mechanistic models such as 
TKTD, population or food-web models hâve a great potential for effect and 
risk assessment. But the insuhicient insights regarding those models hâve so far 
prevent their use in the regulatory context. It has to be underlined that, since 
2013, EFSA hâve published several documents to promote the development of 
models for PPP regulatory purpose, and to give to the assessors enough élé­
ments to understand and assess these models. These documents are detailed 
in the following section.

6.4 Towards th e  im p lém en tation  o f m ore m od els in th e  
regu latory con text

The hndings drawn from the guidance documents currently notihed is that only 
few models are approved in the context of PPP régulation, and can be used 
routinely for ecotoxicological risk assessment. If the documents make authority 
and are the references for the decision-makers to state if a dossier is admissible 
or not, the other publications of the EFSA journal (e.g., Scientihc Opinion,
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Technical Report) draw the perspectives and provide new Unes of thinking for 
the next guidance documents. Figure 10 shows, in a chronological, order the 
publications of the guidance documents (dark blue) for the different biological 
groups, and the other publications such as “ Scientific Opinion" and “Technical 
reports'’ (grey) which are directly or indirectly related to the use of modeling 
in PPP régulation. As indicated above, several documents hâve been published 
in the EFSA journal since 2013 highlighting the increasing interest of EFSA 
for the use of modeling in this context. Those publications can be spécifie to 
one biological group or addressed to several groups.
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to  P P P  régulation. ‘ ApisRAM  is a m odel under developm ent to  be relcased in 2025 (More 
et al., 2021).

In 2014, the Scientific Opinion dealing with the good modeling practice in 
the context of mechanistic effect models for risk assessment of PPP (EFSA 
PPR. Panel, 2014) showed EFSA encourages the use of mechanistic models in 
régulation, and the need of an harmonized procedure at the EU level for the 
development and the validation of new models. The crucial rôle of modeling 
and its application at the different lcvels of the tiered-approach is illustrâted 
in Figure 9. The EFSA Scientific Opinion highlights the relevance of effect 
models but déploré the rejection of several models used in dossiers because 
of: (i) the lack of harmonizalion in their development, (ii) the lack of qnality 
control, and (iii) disagreement between the member states. Moreover, this 
Scientific Opinion highlights varions points to consider during the develop­
ment of a model that will be used under the régulaiory context and notes 
tliat tliere is still a rooni for improvement regarding modeling development or
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validation. Currently, the models of interest for PPP régulation are mechanis- 
tic models such as organism level effect (TKTD) models, population models 
{e.g., Individual-Based Modelling), community models (e.g., food web model) 
or those combining several of them.

The lack of data constitutes one of the major limiting factors to develop new 
models and/or to validate the existing ones. Except the DR models and the 
(Q)SAR models which are already used and accepted in the dossiers, it appears 
from the EFS A documents that there is a real need to use the S SD models 
on more biological groups (limits explained in the above section), as well as 
the TKTD, population and food web models (Figure 9). However, models like 
SSD, QSARs or TKTD which require testings are of course not compatible 
with the animal welfare considération. Thus, the choice of the models dépends 
on the biological group and on the bio-ecological characteristics (e.g., ability 
to move and at what scale, stages of life, physiology) of the organisms targeted 
by each document.

TKTD models are of high interest for the dossiers (EFSA PPR Panel, 
2018a; EFSA, 2009). For example, DEBtox models based on energetic bud­
gets deal with sublethal effects and thus présent a great potential for various 
organisms. Also, the GIJTS model, based on survival data, is of high poten­
tial for hshes, benthic macro-invertebrates and aquatic stages of amphibians. 
Regarding primary producers, for which the sensitivity to a PPP is mostly 
characterized using growth as endpoint, a TD model developed for micro- 
algae (Weber et al., 2012) and a TKTD model developed for the macrophyte 
Lemna (Schmitt et al., 2013) hâve been reported. TKTD models can also be 
used for the reptiles and amphibians but the lack of data for those groups 
hâve prevented any progress (EFSA PPR Panel, 2018b).

Population models also présent a high potential for most of biological 
groups involved in PPP régulation. Based on their bio-ecological characteris­
tics, the population models at the landscape scale would be the most suitable 
ones to characterize the risk induced by the PPP for non-target arthropods, 
and for reptiles and amphibians. For example, the reptiles and the amphib­
ians can be associated to different media depending on their stages of life, 
and they are able to move at the landscape scale. For this group, it is recom- 
mended to use population models such as ALMaSS (Animal, Landscape and 
Man Simulation System, Topping et al. 2003) which takes into considération 
these different variables. Finally, the birds and mammals group may beneht 
from population models but the notihed guidance document of 2013 déploré 
the lack of methodology and guidance for their use.

The Figure 10 also demonstrates that bees received a spécifie attention 
during the last years with the setting in 2013 of a dedicated guidance doc­
ument (EFSA, 2013). However, as this document was not accepted at the 
European scale, the SANCO document from 2002 is still the official guidance
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document (European Commission, 2002b). In 2015, the BEEHAVE model was 
also in the heart of a Scientific Opinion for its use in the regulatory context 
(EFSA PPR Panel, 2015d). This model aims at estimating the decrease of a 
colony after PPP exposure. Its assessment by EFSA experts revealed its relia- 
bility for bees but not for wild bees because of the lack of experimental data. 
More recently, an éditorial document has announced the development of the 
ApisRAM model (More et al., 2021) dealing with data directly obtained from 
hives, and deriving the risk assessment of Chemical factors alone or combined 
at large spatial and temporal scales, among others. In both cases, BEEHAVE 
and ApisRAM are based on population models.

Finally, food-web models are of high interest for sédiment organisms 
(EFSA PPR Panel, 2015c). The sédiment compartment can play the rôle of 
sink for persistent substances and/or hydrophobie ones (log10 K ow > 3), and 
can change the exposure of the organisms living in the sédiment. In this case, 
the use of such model could support the considération of biomagniheation 
into PPP ERA. Guidances are expected (EFSA PPR Panel, 2015c).

Beyond ail of the above-cited models, those dealing with PPP mixture 
toxicity prédiction should also be considered in the regulatory framework 
(European Commission, 2020; EFSA, 2013; EFSA PPR Panel, 2013). Recently, 
the Court of Justice of the European Union conhrmed the need to consider 
the join toxicity of ail of the components (e.g., active substance, safener, syn- 
ergist, co-formulant) before the placing on the market of a PPP (CJEU, lst 
oct. 2019, C-616/17, pt 75). Also, mixtures are integrated to the régulation 
(EC) No 1272/2008 on classification, labelling and packaging of substances 
and mixtures. Two models are frequently used in the scientific community: the 
CA and the IA models. The first one is mainly recommended by the guidance 
documents as it tends to be more conservative (EFSA PPR Panel, 2013).

At the end, the use of modelling approaches in registration dossiers will 
mostly rely on the targeted biological group, on the required level of risk rehne- 
ment (e.g., Tier-2 or more), and on the available data to parameterize the 
models. However, among the different models which are recommended in EFSA 
documents, one can suspect a temporal évolution in the category of used mod­
els. For example, “simple” ones like SSD hâve a long history in PPP régulation 
as they were already recommended in 2002 for non-target plants (European 
Commission, 2002b), while more developed ones still required guidance for 
users and assessors. This calls for a comprehensive analysis of the dossiers to 
characterize the real usage of modelling approaches in PPP régulation.
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7 P oten tia l contributions and prosp ects of 
current and future m odelling  too ls

7.1 (Q )S A R  m odels
(Q)SAR models hâve the potential to provide rapid, in silico estimâtes of 
ecotoxicological endpoints. In addition, they can be an important tool for 
environmental risk assessment of the dégradation products, métabolites and 
impurities, when it cannot be performed experimentally.

The potential for application in PPP régulation seems there as (Q)SAR 
approaches properly used can be a valuable tool for providing prédictions on 
Chemical toxicity (Villaverde et al., 2020; Mombelli and Pandard, 2021). In 
addition, several available tools already exist and, for a given substance, may 
fall into the applicability domain of a multitude of in silico models, raising the 
question of which model(s) and/or tool(s) to apply (Herrmann et al., 2020). 
Nevertheless, there are several areas for improvement to facilitate the work of 
decision-makers. It is necessary to allow them to establish with a maximum 
of certainty if: (i) the (Q)SAR model is scientihcally valid, (ii) the predicted 
effect is of regulatory utility, and (iii) the model is applicable to the substance 
of interest.

As far as scientihc validity is concerned, (Q)SAR models can provide pré­
dictions in case of unknown MoA, but a prerequisite is the availability of 
appropriate training data for model development (Herrmann et al., 2020) and 
appropriate supporting information such as (Q)SAR Model Reporting For­
mats (QMRF) (e.g., JRC QSAR model Database). Overall, it appears that, 
if properly used and evaluated, (Q)SAR approaches can be a valuable tool 
for providing ht-for-purpose prédictions in the framework of régulations on 
Chemical toxicity (Mombelli and Pandard, 2021). For example, Mombelli and 
Pandard (2021) highlighted the regulatory relevance and robustness of (Q)SAR 
prédictions for acute hsh toxicity and demonstrated a level of reliability of 
the prédiction comparable to the experimental data. This kind of validation 
exercises conducted by third parties can also contribute to enhance knowledge 
about models and their intrinsic limitations so that informed decision-making 
can take places (Mombelli and Pandard, 2021).

For a ready regulatory applicability usefulness, focusing the development 
of (Q)SAR models as a function of endpoints of regulatory interest formalized 
by OECD guidelines would render their application straightforwardly relevant. 
Always from a regulatory point of view, it would be very useful to extensively 
cover the different trophic levels and biological organization levels since, for 
instance, only a minority of work on (Q)SAR provided models for algae or for 
long term risk at the population or community level. (Q)SAR approaches are 
constrained by the experimental data availability and quality, so the data sets 
are one of the most important (Q)SAR éléments. Consequently, to improve 
their ecological relevance, the scientihc community has to work on the lack of 
ecotoxicological data for PPP covering the whole biodiversity and investigating 
sub-lethal and chronic effects.
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To overcome this limitation, the development of the quantitative form of 
AOP (qAOP) (see for example, Conolly et al. (2017))and their association with 
(Q)SAR models seems very promising. Indeed, MechoA approach in (Q)SAR 
aiming at predicting the Molecular Initiating Event (MIE) sounds convenient 
to provide input to qAOP, which are able to translate subtle functional déficits 
within individuals into population-level effects under different ecological and 
environmental scénario.

For the applicability to a given substance, the framework proposed by 
VEGA hub (Benfenati et al., 2013) seems very promising (ADI), and uncer- 
tainty associated to the model prédiction should be more systematically 
communicated. However, an identihed limitation of the (Q)SAR model cornes 
from the difficulty to explain data from complex MoA using relatively sim­
ple models, and therefore the causal toxicological mechanisms generally 
stay unknown even if the physico-chemical déterminants can be accurately 
described (Villaverde et al., 2020). Lastly, even if tools are available, an expert 
judgment should as often as possible be consulted. For example, a (Q)SAR 
prédiction can be compared with a read-across prédiction based on the clos- 
est structural analogues to hâve an idea of the relevance of the prédiction. To 
improve applicability, different studies hâve explored strategies for combining 
prédictions from multiple (Q)SAR tools to improve the prédiction of several 
endpoints. These consensus models show better overall prédictive capacity 
than individual (Q)SAR tools and sound promising (Villaverde et al., 2020).

The intégration of TKTD and (Q)SAR modelling represents an interesting 
and promising held of research. In such an integrated scheme, (Q)SAR models 
provide interpolation for toxicological responses and toxicokinetic parameters. 
Indeed, this synergy between the two modelling approaches can greatly reduce 
the need for animal testing while optimizing in cost-efficient ways toxicological 
resources (Mombelli and Pandard, 2021). Finally, the promotion of capacity 
building in governmental agencies aiming at increasing awareness about in 
silico tools would rapidly resuit into an enhanced and informed use of in silico 
approaches during decision-making.

7.2 T K T D  m odels
Below are some possible directions that can be learned from the analysis of the 
literature on TKTD models in terms of prospects for the future, both from a 
purely research point of view, and to improve ERA:

• For regulatory purposes and for use by non-experts, TKTD models need 
to be as simple (i.e., simple enough to be used on - somewhat extended - 
standard toxicity test data) and transparent as possible (Jager, 2020).

• TKTD models should be as représentative as possible of the widest diversity 
of PPP, both in their bioavailability and MoA (Crenna et al., 2020).

• TKTD models should be both calibrated and validated on data collected 
under time-variable exposure, agreeing that this type of scénario is more 
realistic from an environmental point of view (Van Den Brink et al., 2019);
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in other words they should include the exposure history of organisais (Jager 
and Kooijman, 2005).

• Tested species should be relevantly chosen regarding their representative- 
ness of field conditions, rather than being selected for their accessibility in 
laboratories (Arlos et al., 2020; Roeben et al., 2020; Bart et al., 2021).

• TKTD models could be improved by considering ecologically relevant bio- 
logical traits, such as the movement behaviour (Roeben et al., 2020), the 
actual size (Dalhoff et al., 2018) or the membrane permeability (Crenna 
et al., 2020), to name but a few examples.

• TK models should consider several routes of exposure as well as the possi­
ble presence of métabolites in order to also quantify their bioaccumulation; 
indeed, sometimes métabolites can be more toxic than the parent compound 
to which they dérivé. In addition there is no longer technical reasons to limit 
ourselves to simplistic TK models since ready-to-use tools exist to perform 
relevant TK modelling analyses in all-in-one facilities (Ratier et al., 2021).

• Field studies are still too rare, while they would be really useful to test the 
prédictive power of model outputs.

Of course, such improvements for a better use of TKTD models should 
not make us forget that in recent years, there has been a widespread drive to 
hâve more relevant testing strategies, accounting for the animal welfare and 
including the 3R principles European Commission (2009). Already a current 
practice in REACH (Lilienblum et al., 2008), but first introduced few décades 
ago (Russel, W. M. S. and Burch, 1959) and still debated (Goldberg, 2009; 
Balls, 2020), the 3R principles refers to the principle of réduction, replacement, 
and rehnement of animal studies. The objective of réduction is to decrease the 
number of animais used for research and regulatory purposes. The replacement 
approach includes in vitro or in silico methods. Rehnement involves reducing, 
eliminating, or relieving animais’ pain or distress, and thereby improving their 
well-being (Tan et al., 2021). Additionally, there is a need to change the classi- 
cal, animal testing-based approach towards more modem tools that are more 
prédictive for humans. This has been particularly explored for TK and TKTD 
models (Heringa et al., 2013; Terry et al., 2014).

7.3 P op u lation  and landscape m odels
Various authors suggest, in the reviewed papers, that ecological models are 
very little applied in regulatory PPP ERA (Hommen et al., 2016; Accolla et al., 
2021; Raimondo et al., 2021). A spécifie analysis of PPP registration dossiers 
actually submitted to régulation agencies should be conducted to conhrm this 
statement. This probable underuse of population models in regulatory ERA 
is surprising when compared to the wide use of similar population models in 
species conservation or hsheries resource management. Nevertheless, there is a 
strong consensus among stakeholders on the potential contribution of ecologi­
cal models to PPP ERA. One possible explanation emerging from our literature 
review in using population and landscape models in ERA is an obvious lack of
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easy running tools for people not advertised in modelling in general, in these 
type of models in particular. Filling this gap could be a new challenge in a 
near future.

Firstly, models could inform the ecological criteria to be taken into account 
at ail tiers of prospective ERA (Forbes et al., 2015), e.g., choice of test species 
and life stages fixed by regulators for lower Tier assessments, définition of 
ecological scénarios to be tested in higher Tier assessments with a worst-case 
scénario approach (Rico et al., 2016). Secondly, they allow the uncertainty 
sources attached to the évaluation criteria to be tested in silico. They should 
make it possible to reexamine the arbitrary safety factors applied in ERA to 
guaranty ecosystem protection when extrapolating to the multitude of contexts 
of PPP use (Focks et al., 2014). But while ignoring the fact that most of 
these mechanistic models are rather cognitive tools to inform on the ecological 
complexities in PPP impacts (Forbes et al., 2009), the debate for their use in 
ERA is most often unfortunately conhned to the sole question of validating 
their prédictive capacity as stated by Wang (2013), the models then being only 
considered as mere forecasting tools in the same way as meteorological models 
for weather prédiction. Yet, as pointed 30 years ago by Barnthouse (1992), 
the real issue in determining whether models can contribute to regulatory risk 
assessment should be credibility rather than validity.

In addition to prospective ERA, population and landscape models can con­
tribute to understand held ecological impacts of PPP by providing information 
on their relative contribution to dégradation of biodiversity, particularly for 
non-target species of patrimonial value or keystone species for ecosystem func- 
tioning (e.g., Topping and Odderskær 2004; Abi-Akar et al. 2020; Landis et al. 
2020). Similarly, they can be used to evaluate future population trajectories 
under different scénarios of climatic, agricultural or landscape évolution (as in 
Nogeire-McRae et al. 2019).

The informative value of model outputs regarding population and ecosys­
tem threat in agricultural landscapes is crucial for their acceptance in 
environmental risk management. Some works already illustrâtes how ecologi­
cal models can be used to establish the relevance of traditional risk assessment 
endpoints with respect to the recovery capacities of populations (Hayashi et al., 
2016). They may also inform the choices of évaluation endpoints regarding 
their relationship with key ecosystem services (Croft et al., 2018). However, the 
endpoints derived from population projection models or the indicators quan- 
tifying population extinction risk in simulation approaches currently lack any 
reference grid for their interprétation in terms of impact severity and possi­
ble population collapse. Conservation science (e.g., for the définition of species 
conservation status by the International Union for Conservation of Nature), 
but also the widely-accepted use of models in hsheries management or in épi­
démie forecasting, may well inspire the évolution of future PPP ERA practices 
(Thursby et al., 2018). The harmonization and the common définition of ref­
erence thresholds of population vulnerability to be applied to these endpoints 
could indeed operationalize the use of ecological models in the management
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of PPP risk for non-target species and better inform decision-making in PPP 
environmental management. This could présent a high value for ERA since 
Spécifie Protection Goals (SPG) are in most cases defined on the population 
level. Thus, the use of ecological models offers a promising avenue to link 
typical test results on the organism level and the SPG of PPP ERA.

7.4 M u lti-sp ecies m odels
SSD models

Ecological interactions are rarely taken into account in ERA, while it is 
important to consider both direct and indirect effects of Chemical exposure 
(e.g., Brock et al. 2004). Nevertheless, SSD approaches currently hâve large 
implications in législation and risk management, so that they are discussed 
a lot (Posthuma et al., 2002). Critical issues are both fundamental (e.g., its 
statistical rather than its ecological basis) and technical (e.g., the necessary 
number of input data). Also, it is not conhrmed to what extent classical out- 
puts, such as PAF (for substance alone) and msPAF (for mixtures) could be 
considered predictors in a rétrospective perspective of mixture impacts on held 
communities (Posthuma and De Zwart, 2006); this motivated a lot of model 
confirmation studies that were mainly focused on the 5th percentile of the 
htted SSD namely the HC$ (see Posthuma et al. 2002). Recently, the SSD 
method was scrutinized in detail for its potentiality to support ERA within the 
framework of the European WFD which suggests using models to assess the 
likelihood that Chemicals affect water quality for management prioritization. 
Deriving SSD analyses for more than 12000 Chemicals, Posthuma et al. (2019) 
concluded that SSD is a versatile and comprehensive approach to prevent, 
assess, and manage Chemical pollution problems.

Recently, Fox et al. (2020) published a summary of the current status of 
SSD approaches, and elaborated on several recent developments for SSD meth- 
ods, specihcally, model averaging, multi-modality and software development. 
Identifying several technical issues to urgently deal with for SSD improve- 
ments, Fox et al. (2020) also proposed some future directions with respect 
to the use of SSD, ultimately aiming at facilitating wider international col­
laboration and, further, a possible harmonization of SSD methods. Regarding 
technical issues, to name but a few, Fox et al. (2020) mention the choice of a 
parametric or a non-parametric (i.e., distribution-free) modelling, the choice 
of frequentist versus Bayesian inference, the tricky question of the sample size 
(also stated by Carr and Belanger 2019), the expected shape of the distribu­
tion, the representativeness of species sample possibly leading to bi-modality 
when there are clearly two groups of species sensitivities or because of a very 
spécifie MoA of Chemical compound.

SSD methods hâve also been used in combination with complementary 
approaches in order to account for additional influencing phenomena on species 
sensitivities. Nagai and Taya (2015) showed that considering the MoA of com- 
pounds improved the accuracy of estimating SSD markedly. The PERPEST 
model is also an approcha allowing to include the considération of MoA (Van
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Den Brink et al., 2002, 2006). Based on the tact that SSD is a probabilistic risk 
assessment model, Giddings et al. (2000) evaluated potential toxic effects of 
diazinon in the Sacramento-San Joaquin System, based on data sets collected 
from laboratory toxicity tests for 63 species. Qu et al. (2011) illustrated the 
improvement in the RQ method expressing the ecological risk as the degree of 
overlap between the distribution of environmental exposure concentrations and 
the distribution of toxicity values. A step further was made in the study of mix­
tures effects using SSD (Cedergreen et al., 2004; Jesenska et al., 2013; Li and 
You, 2015; Silva et al., 2015), some authors also accounting for the effects of 
environmental factors (Rico et al., 2011, 2018). Clemow et al. (2018) proposed 
a rehnement of the SSD including exposure simulation aiming at identifying 
direct and indirect effects of malathion on amphibians. Nevertheless, Clemow 
et al. (2018) agréé that their approach does not allow for representing the daily 
fluctuations of malathion over the course of multiple applications. However, 
taking into account a time-variable exposure was early identihed as a crucial 
issue (Cedergreen et al., 2004; Van Dam et al., 2004); so the combination of 
SSD with TKTD models could be the next step further in improving Tier-2 
ERA based on SSD, especially for PPP (Van Den Brink et al., 2019).

Last but not least, held study data hâve been highlighted for their added- 
value in SSD analyses to better characterize the exposure, as for example 
De Zwart (2005) who used a Géographie Information System (GIS) map to 
predict aquatic exposure to PPP in held ditches; Van Dam et al. (2004) who 
htted a break-point régression model to held monitoring data, providing a 
time-dependent estimate of exposure to tebuthiuron; or Li and You (2015) 
who combined effect data with the probability distributions of environmental 
exposures of contaminants. But held study data hâve also been highlighted to 
beneht from held ecotoxicity information issued from microcosm or mesocosm 
studies. For example, Brock et al. (2004) concluded that the SSD approach 
cannot be seen as a complété alternative to semi-held experiments, even if 
a protection level based on direct effects (e.g., the HCs) will also protect 
against indirect effects. Van Den Brink et al. (2006) then proposed the con­
cept of NOECecosystem (dehned as the highest test concentration causing 
no observed effects in microcosm or mesocosm experiments) to be used to 
extrapolate from laboratory to held data. Today, NOECecosystem is not used 
anymore, replaced by the concept of effect classes and the dérivation of Ecolog­
ical Threshold Option (ETO)- and Ecological Recovery Option (ERO)-RAC 
from mesocosm studies (EFSA PPR Panel, 2013). Schipper et al. (2014) pre- 
sented a different approach from the previous ones, based on the Stacked 
Species Distribution Modeling (S-SDM). Establishing an S-SDM for several 
species to describe their probability of occurrence in relation to multiple envi­
ronmental factors, they were able to study the variation of this probability of 
occurrence along the gradient of each environmental factor with the remaining 
ones hxed. Hence, Schipper et al. (2014) investigated how held-based SSD (f- 
SSD) for a given environmental factor changed under confounding inhuences, 
such as low, medium or high environmental disturbance.
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Community and food web models
What is particularly striking about the community models in terms of gaps 

is different according to the type of models. ABM/IBM-type models, together 
with BN models, account for a lot of refined biological processes combined 
with stochastic links, thus making it difficult to keep a critical eye on the 
relevancy of model outputs at the community level: do they really emerge from 
the modelling itself? Are they only artifactual, due to spécifie initial condition 
in simulations, for example? These models also rarely quantify uncertainties 
on outputs while they include both uncertainty and variability as input by 
essence.

Food-web models, also rarely accounting for uncertainties, reveal a notice- 
able gradient from the simplest ones (Damgaard et al., 2008) to the most 
complex ones (Nfon et al., 2011) giving rise to the question of the best compro­
mise to find. There is a real challenge to be realistic enough from a biological 
point of view (enough species and ecological processes to account for) but sim­
ple enough from a modeling point of view (based on the parsimony principle) 
so that the model appears finally sound. However, to find the best compro­
mise may strongly be related to the available experimental data, obviously 
not manipulable afterwards. Hence, simple food-web models will usually be 
employed with microcosm data (Traas et al., 2004), while more complex ones 
will be suitable for mesocosm data (Bartell et al., 2018; David et al., 2019). 
Some food-web models also seldom proved helpful because strictly dépendent 
on a particular species (e.g., bumble bees with bumble-BEEHAVE Becher 
et al., 2018 or ApisRAM More et al. 2021).

A probabilistic RQ is a more informative alternative to the traditional 
single-value RQ, which is often interpreted as a binary outcome. Indeed, it can 
be useful useful for ranking of different scénarios as well as prioritizing among 
alternative risk scénarios (in Campbell et al. (2000), cited in Mentzel et al. 
(2021)). Among probabilistic approaches, the Bayesian Network (BN) models 
are increasingly being used to model environmental Systems, in order to: inte- 
grate multiple issues and System components; utilise information from different 
sources; and handle missing data and uncertainty (Chen and Pollino, 2012). 
As illustrated by Mentzel et al. (2021), a BN has been developed and param- 
eterised for three PPP based on monitoring data from a catchment located in 
South-East Norway. The authors used toxic effects data for several freshwa- 
ter species representing various taxonomie groups (namely, NOEC  values for 
growth and reproduction).

7.5 M ixture m odels
Mixture models should include the assessment of dose-level dépendent dévi­
ation as it was suggested that concentrations of Chemicals can influence 
interactions between PPP (Lopez Aca et al., 2018; Sanches et al., 2018; 
Kristofco et al., 2015). For instance, in Chen et al. (2014), it is reported that 
CA had severe limitations when the dose-response curves of the individual 
Chemicals were not identical at low effect concentrations. Similarly, Ritz et al.
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(2021) found that fixed-ratio designs (PPP and their mixture are used at 
increasing doses) should be preferred as they allow validation of the assumed 
dose-response relationship and, consequently, provide much stronger claims 
about antagonistic and synergistic effects than factorial designs (lots of PPP 
are only available at a single dose level and a mixture simply combines these 
doses). For this reason, Marques et al. (2012) or Pestana et al. (2010) under- 
lined the need for higher number of testing combinations and concentrations 
of each stressor to improve model calibration.

Moreover, mixture models should include the status of test species at 
different time points (time-to-event), as suggested by Qiu et al. (2017) who 
used the AFT model, that assesses the relationships between the time-to- 
event and treatments. The AFT model, which prédictive power and accuracy 
can be improved by setting more observation time points in experimental 
design, provides a simple and valuable method to quantify the interactions 
and to evaluate the outcomes of exposure to a mixture of Chemicals. This 
is in accordance with Broerse and Van Gestel (2010) who explained that 
analyzing mixture toxicity at successive time points may be a good way 
to explain observed mixture effects. Indeed, this allows the application of 
process-based models (time-toxicity relationships, DEBtox) that estimate 
time-independent parameters (uptake and élimination rate constants) besides 
only time-dependent toxicity estimâtes (LCX or ECX), which may enable 
extrapolations beyond the standard exposure time.

Finally, Carnesecchi et al. (2019), working on bees, proposed the following 
perspectives for mixture and other models:

• Development of in silico tools such as (Q)SAR models to predict combined 
toxicity of mixtures.

• Characterization of the synergistic potential of Chemicals including TK inter­
actions either through inhibition or induction of metabolism or through 
direct TD interactions. The CA and IA models provide a validated initial risk 
assessment approach to predict mixture toxicity, but they are mechanisti- 
cally uninformative (Lister et al., 2011). Accounting for Chemical uptake and 
élimination in mixtures is an essential requirement for mechanistic under- 
standing of Chemical interactions. Svendsen et al. (2010) explained that 
where interactions occurred between the hve tested PPP, these could be 
explained by information on the potential mechanisms of compound toxi- 
cokinetics. These authors concluded that detailed analysis of toxicokinetics 
and toxicodynamics can aid in further understanding of interactions in mix­
tures. A need exists for a better understanding of the dynamics of the effects 
of mixtures, underlining the need for measurements with intermediate time 
points (Baas et al., 2007). To select CA or IA as the most appropriate model 
for any given mixture, knowledge about the MoA of Chemicals included is 
required. This mechanistic classification is achieved using knowledge of the 
toxicodynamics rather than, for example, the toxicokinetics of the Chemical.
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• For multiple species or the whole ecosystem, S SD can be applied to estimate 
HCX (hazardous concentration for < x% of the species) for multiple Chem­
icals of concern with the aim to identify whether the estimated exposure 
exceeds the HCX, as the médian for x% species affected in the SSD (EFSA 
Scientihc Committee, 2019).

In brief, to better understand mixture effects of PPP, efforts must be done 
on:

• Understanding the mechanisms (uptake and élimination, effects)
• Predicting time sériés of exposure.
• Using more concentrations in tests with mixtures.
• Coupling mixture models to other modelling approaches; for instance, Bart 

et al. (2021) combined both CA and IA models to GUTS models to account 
for both mixtures and the time course of processes leading to toxicity.

8 C onclusion  and perspectives
The basic expectation from the use of computational prédiction models in PPP 
ERA is to avoid testing ail the PPP and métabolites. Hence, they can be used 
to link Chemical structure or concentrations of PPP with activity and toxicity 
on organisms. Models also hâve the potential to assess PPP effects on sets of 
several species under various environment types, to extrapolate adverse effects 
across levels of biological organization, to decipher their underlying mecha­
nisms, and to support the prédiction of joint effects caused by mixtures of 
Chemicals. This review led thus to the conclusion that (Q)SAR, DR, TKTD, 
population, landscape, and community models are increasingly recognized for 
the risk assessment of PPP, notably under the impetus of regulatory author- 
ities having encouraged the development of good modeling practice guides, 
harmonization and reference modeling procedures. In the framework of the 
prospective ERA, (Q)SAR models are already used to supply in silico ecotox- 
icological endpoints hlling in the toxicity data gaps for the multitude of PPP 
and species diversity, and reducing the breadth of the experimental task. While 
the value of ecological models addressing population, landscape and commu­
nity scales is undisputed for PPP ERA, their possible place is still ambiguous 
in assessment schemes, oscillating between strict simulating tools of ecolog­
ical outcomes used as endpoints for risk assessment, versus cognitive tools 
informing on species vulnerabilities and critical environmental factors in PPP- 
exposed ecosystems to be considered in assessment procedures. These tools 
still suffer from unfriendliness to be routinely used in ERA.

The vision of models as surrogate cost-effective methods for ecotoxicological 
assessment offering cross species/substances extrapolation facilities, between 
climatic or geographical conditions extrapolation, and up-scaling intégration 
of multiple PPP effects should not hide the still major weakness of available 
experimental data informing on chronic and non-lethal effects of PPP among
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ecological communities. This point is still a major limitation for a Sound appli­
cation of models as prédictive tools of PPP ecological impacts. At the same 
time, although more information is needed to better depict and predict the 
effects of PPP on living organisms at different scales, models should be parsi- 
monious, meaning that they must accomplish the desired level of explanation or 
prédiction with as few predictor variables and parameters as possible. Decision 
guides are increasingly proposed to help modelers to select relevant modelling 
options adapted to each spécifie risk assessment questioning. With a too large 
number of input parameters, models exhibit a higher uncertainty which has 
to be characterized. Moreover, the parameters which drives the model should 
be estimated as accurately as possible to decrease the uncertainty. Thus, to 
be relevant, prédiction models should include a sensitivity analysis, an uncer­
tainty analysis and the comparison of prédictions with observed data. In that, 
Bayesian inference is a relevant and promising approach to estimate the param­
eters, to handle uncertainties, and to identify potential improvements in the 
model structure and experimental designs.

Some future developments of models also emerged from this review such 
as the considération of PPP multigenerational effects or the study of “multiple 
stressors”. These terms generally refer to the combination of natural stressors 
(abiotic and biotic) and Chemical exposure, thus including “cocktail effects” due 
to Chemicals mixture. Effect modelling can help to gain knowledge on interac­
tions between multiple stressors and their joint effects. Moreover, in order to 
address the “things that matter” in protecting the environment, i.e., keystone 
species and ecosystem services, ecotoxicological models describing effects on 
organisms could be coupled with ecological models informing on interactions 
between organisms and the functions they fulhll. Thus, modelling the effects 
of PPP and other stressors on living organisms, from their application in the 
held (exposure) to their functional conséquences on the ecosystems at different 
scales of time and space would help going towards a more sustainable man­
agement of natural resources. However, a lot of data and knowledge remain to 
be acquired, whether on ecological or ecotoxicological part. For instance, food 
web and community models at scales relevant for ecological processes are still 
not enough developed. Also, modelling approaches based on emerging methods 
such as the so-called “omics” are still lacking despite their great potential for 
ERA (e.g., detect early effects, improve mechanistic understanding). In addi­
tion, the considération of the different reviewed modeling facets is still poorly 
developed in the framework of rétrospective ERA of PPP, while their use for 
the interprétation of ecological monitoring data in view of PPP use practices, 
and a dialog with the domains of species conservation and wildlife exploitation 
management which routinely use models, could constitute wealthy avenues to 
facilitate the use of models in ecotoxicology, and improve the knowledge and 
the prédiction of PPP effects on biodiversity.
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