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Abstract
In Thailand, pork is one of the most consumed meats nationwide. Pig farming is hence an important business in the country. 
However, 95% of the farms were considered smallholders raising only 50 pigs or less. With limited budgets and resources, 
the biosecurity level in these farms is relatively low. Pig movements have been previously identified as a risk factor in the 
spread of infectious diseases. Therefore, the present study aimed to explicitly analyze the pig movement network structure 
and assess its vulnerability to the spread of emerging diseases in Thailand. We used official electronic records of nationwide 
pig movements throughout the year 2021 to construct a directed weighted one-mode network. Degree centrality, degree dis-
tribution, connected components, network community, and modularity were measured to explore the network architectures 
and properties. In this network, 484,483 pig movements were captured. In which, 379,948 (78.42%) were moved toward 
slaughterhouses and hence excluded from further analyses. From the remaining links, we suggested that the pig movement 
network in Thailand was vulnerable to the spread of emerging infectious diseases. Within the network, we found a strongly 
connected component (SCC) connecting 1044 subdistricts (38.6% of the nodes), a giant weakly connected component 
(GWCC) covering 98.2% of the nodes (2654/2704), and inter-regional communities with overall network modularity of 0.68. 
The disease may rapidly spread throughout the country. A better understanding of the nationwide pig movement networks 
is helpful in tailoring control interventions to cope with the newly emerged diseases once introduced.

Keywords Animal movement · Community detection · Connected component · Network analysis · Trade network

Introduction

In Thailand, pork is one of the most consumed meats nation-
wide. In 2018, pork consumption was estimated at 10 kg 
per capita (FAO, 2016). Pig farming is hence an important 
business in the country. In total, 9,886,897 pig heads were 

notified in the database of the Department of Livestock 
Development (DLD) in 2015. These pigs were reared in 
191,289 households, of which 95% were considered small-
holders raising only 50 pigs or less (Department of livestock 
development, 2016). With limited budgets and resources, the 
biosecurity level in these farms is relatively low. Infectious 
diseases may attack the farms easily. Evidently, outbreaks 
of several infectious diseases were previously recorded in 
the Thai pig population. For instance, different lineages 
of porcine reproductive and respiratory syndrome viruses 
(PRRSV) have been separately introduced into Thai pig pro-
duction systems on different occasions and remained co-
circulated ever since (Tun et al., 2011). It is likely that other 
exotic pathogens, like African swine fever (ASF), may also 
behave like PRRSV.

As an example, ASF is caused by the only vector-
borne  DNA virus  and transmitted by soft ticks, which 
belong to the genus Ornithodoros (Burrage, 2013; Galindo 
and Alonso, 2017). However, the virus can also spread by 
the means of direct contact through oral-nasal routes or 
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ingestion of infected materials such as blood, feces, and 
urine (Dixon et al., 2019). Besides, the virus was observed 
as aerosol over a short distance (Olesen et al., 2017). These 
various routes of viral transmission make ASFV highly con-
tagious once invading a naïve population. In January 2022, 
ASFV was first notified in Thailand (OIE, 2022). A better 
understanding of the nationwide pig movement networks is 
helpful in tailoring control interventions to cope with such 
newly emerged epidemics.

The movements of pig and pig products play an important 
role in the spread of emerging infectious diseases. A study in 
Europe indicated that the movements of wild boars and the 
trade of pigs and their products were important risk factors 
of the ASF transmission in the region (Taylor et al., 2020). 
A previous study constructed an epidemiological model and 
suggested that the ASFV was likely to be introduced from 
a free-range herd and spread across the pig trade network 
in France (Andraud et al., 2019). This indicates the vulner-
ability of the trade network to the spread of any emerging 
infectious diseases, not limited to only the ASF.

Network analysis is a branch of study emerging from 
social science. This approach has been recently becoming 
more popular in veterinary epidemiology. It has been used in 
the study of animal movement patterns in different species, 
for example, pig (Salines et al., 2017), goat (Chintrakulchai 
et al., 2017), cattle (Notsu et al., 2020), and chickens (Wirat-
sudakul et al., 2014). These studies intended to capture the 
key actors in the network and link with the risk of disease 
occurrences such as foot-and-mouth disease (Wiratsudakul 
and Sekiguchi, 2018), avian influenza (Sun et al., 2018), and 
African swine fever (Lichoti et al., 2016).

Therefore, the present study aimed to explicitly describe 
and analyze the pig movement network structure at subdis-
trict and provincial levels, as well as assess its vulnerability 
to the spread of emerging infectious diseases once intro-
duced into Thailand.

Methods

Network analysis at the subdistrict level

We used official electronic records of pig movements in 
Thailand, from January 1 to December 31, 2021, to cross-
sectionally illustrate how pigs were distributed across the 
country. Briefly, Thai DLD has designed an electronic sys-
tem to capture all movements of livestock species including 
pigs. An online form must be filled out once animals are 
translocated between subdistricts and provinces. The sub-
districts (a smaller administrative subunit of the province) 
of origin and destination are recorded in each transaction. 
These movement data are centrally stored in the DLD data-
base. We filtered the pig movements and used them in our 

analysis. In this study, we excluded all links toward slaugh-
terhouses as these were dead-end.

A directed weighted one-mode network was constructed. 
A node represents a subdistrict, in which the pigs were 
moved in and out. In this nationwide pig movement network, 
a total of 484,483 pig movement activities were identified 
throughout the year 2021. After excluding slaughterhouses, 
we had 104,535 remaining trade activities for further analy-
sis. Ultimately, our network contained 2704 nodes (unique 
subdistricts) with 11,688 unique links (Fig. S1 of Supple-
mentary Material 1). No missing data were found in our 
dataset as these were included in the obligatory fields of 
our electronic recording system. Additionally, the data are 
mandatorily requested following our legal requirements 
for the permission of animal movements. The node was 
weighted by the aggregated number of movements in and 
out of the subdistrict within the year 2021. Degree central-
ity was calculated for both subdistrict and provincial levels 
with the formula DW

i
=
∑

j∈Π(i)Wij , where DW
i

 denotes the 
weighted degree of node i , W  is the frequency of pig move-
ment between node i and node  j , and node j is a contact 
member of node i ( Π(i) ). The power-law degree distribu-
tion,P(k) ∼ k−� , was fitted to the degree distribution with 
maximum likelihood method to assess the scale-free proper-
ties of the network. The parameter P(k) represents a fraction 
of nodes with k degree. The parameter � indicates the degree 
exponent (Barabási et al., 2001; Barabasi, 2009) that lied 
between 2 and 3 (May, 2006). We assessed the presence of 
both weakly and strongly connected components. The net-
work was divided into subgraphs based on a random walk 
algorithm to explore the emergence of the network commu-
nity. Then, the network modularity was calculated.

Network analysis at the provincial level

To ease the visualization, we aggregated the pig movement 
network from the level of subdistrict to the provincial level. 
Weighted degree centrality was also aggregated accordingly. 
Additionally, we mapped the community at this level after 
the largest network community was detected.

All network analyses were performed with the functions 
equipped in package “igraph” version 1.2.7 (Csardi and 
Nepusz, 2006) in R version 4.1.2 (R core team, Vienna, Aus-
tria). All network parameters used in our study are defined 
in Table 1.

Results

Network analysis at the subdistrict level

The node distribution and the relevant weighted degree 
centralities are shown in Table 2. The region with the 
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highest pig movement activities based on median weighted 
degree centrality was the west followed by east, central, 
north, northeast, and south, respectively. The node with 
the highest weighted degree centrality was identified in the 
northeastern region at Kham Ahuan subdistrict, Mueang 
district, Mukdahan province (Geocode: 490110) at 4962.

After assessing the power-law degree distribution, we 
found the degree exponent of 3.62 which was located 
outside the expected range. The network, hence, was not 
likely scale-free. The power-law fitted on the cumulative 
degree curve is shown in Fig. 1. In this network, a total of 
1658 strongly connected components (SCC) were detected. 
In which, a large SCC connecting 38.6% of the nodes 
(1044/2704) was found. In contrast, a giant weakly con-
nected component (GWCC) containing 2654 subdistricts 
(98.2% of the nodes) and 11,660 weighed connections 
were observed (Fig. 2). In total, 24 WCCs were identified. 
In the community detection, a total of 492 communities 
were captured, and the modularity was calculated at 0.68. 

The largest community together with the two runners-up 
are illustrated in Fig. 3.

Network analysis at the provincial level

Figure  4 demonstrates how pigs were spatially shipped 
between provinces in Thailand. The movement network 
covered all 77 provinces of the country. The highest overall 
movement and moving-in activities were observed in Nakhon 
Ratchasima province with the weighted degree centrality of 
864 and 398, respectively. On the other hand, the largest out-
degree centralities were found in Phatthalung provinces at 536. 
The top five provinces regarding weighted degree centrality 
values are depicted in Table 3.

At the provincial level, we mapped the largest community 
(Fig. 3A) to visualize the spatial distribution of the commu-
nity across regions of Thailand (Fig. 5). This community 
covered 61.0% of the provinces (47/77) with 228 weighted 
connections.

Table 1  Definition of network parameters

Parameter Definition References

Weighted degree centrality Number of nodes that are immediately connected to the focal node 
which is weighted with a certain quantifiable attribute. Here, we 
weighted the node with the aggregated number of movements in 
and out of that node during the study period

(Opsahl et al., 2010)

Weighted in-degree centrality The weighted degree centrality in which only the incoming connec-
tions are counted

(Opsahl et al., 2010)

Weighted out-degree centrality The weighted degree centrality in which only the outgoing connec-
tions are counted

(Opsahl et al., 2010)

Strongly connected components A subset of a directed graph in which all the nodes are mutually 
reachable through directed links

(Kao et al., 2007; Passafaro et al., 2020)

Weakly connected components A subset of a directed graph in which all the nodes are mutually 
reachable regardless of the direction of the links

(Kao et al., 2007; Passafaro et al., 2020)

Network community A subgraph in which the nodes are densely grouped but sparsely 
connected to the outsiders

(Newman, 2016)

Network modularity A fraction of links observed within communities minus those 
expected in a null model e.g., an equivalent randomly connected 
network

(Newman, 2006; Chen et al., 2018)

Table 2  Weighted degree 
centrality of the subdistricts, 
divided by regions in Thailand

Region Number of subdis-
tricts

Weighted degree centrality

Mean Median IQR Min Max

Central 555 72.3 17 4–60 1 1373
East 224 112.1 19.5 6–125 1 1425
North 309 68.91 15 3–57 1 1918
Northeast 965 72.4 11 3–43 1 4962
South 470 66.1 11 3–50 1 3093
West 181 104.5 23 5–89 1 1526
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Discussion

The pig movement network covered all regions in Thailand 
(Fig. S1). Nevertheless, subdistricts involved were mainly 
identified in the northeastern region and the central plains 
(Table 2). At the provincial level, the high volume of pig 
movements involved different central provinces (Nakhon 
Pathom, Suphan Buri, and Lop Buri) and other provinces 
located in the northeast (Nakhon Ratchasima and Khon 
Kaen), the south (Phatthalung and Nakhon Si Thammarat), 
and the east (Prachin Buri) (Table 3; Fig. 4). Indeed, many 
provinces in the central region reached their reputation for 
pig producing capacity, as reflected by the weighted degree 
centrality. Undoubtedly, the prevalence of several swine dis-
eases was remarkably high in the area, for examples, porcine 
reproductive and respiratory syndrome (Thanapongtharm 
et al., 2014; Jantafong et al., 2015; Olanratmanee et al., 
2015), porcine epidemic diarrhea (Puranaveja et al., 2009; 
Temeeyasen et al., 2014; Cheun-Arom et al., 2015), and 
swine influenza (Nonthabenjawan et al., 2015). Therefore, 
any emerging infectious diseases are hard to be eradicated 
from this region once introduced.

At the subdistrict level, the highest degree centrality was 
found in a subdistrict located in a northeastern province, 
namely Mukdahan. The province is found along the border 
of Thailand and Laos PDR. Besides, Nakhon Ratchasima, 
the province with the highest overall weighted degree cen-
trality, is also located in this region. Nakhon Ratchasima 
may act as a hub in the region supplying pigs to other prov-
inces including Mukdahan and the pigs may be further 
shipped elsewhere, probably to other neighboring countries. 
Nonetheless, we only focused on the domestic movements 
of the pigs. A future study exploring the transboundary 
movements is highly recommended. The highest weighted 
out-degree centrality was observed in Phatthalung province, 
located in the south (Table 3; Fig. 4). Given that the prov-
ince is located in the lower south, it may also act as another 
regional hub serving the pigs to other nearby provinces in 
this region. Holistically, the central plain was the national 
hub for pig production and the pigs were distributed through 
some regional hubs across the country. With limited man-
power and resources, the implementation of disease preven-
tion and control should be prioritized in these regional hubs 
as well as the movements across borders in these areas.
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−2

0
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Fig. 1  The power-law (red line) is fitted on the cumulative distribution function (CDF) curve of the node degree at the subdistrict level
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Focusing on the network structure, the trade network 
was vulnerable to the spread of infectious diseases. Even 
though the scale-free characteristics were not observed 
(Fig. 1), we found a large SCC and a GWCC in the network 
(Fig. 2). A scale-free network is characterized by a dispro-
portionate fraction of high degree centrality nodes and a 
flat tail degree distribution. The scale-free properties were 
observed in various complex networks such as World Wide 
Web (WWW), protein interactions, and social connections 
(Barabasi, 2009). Epidemiologically, super spreaders may 
arise from those highly connected nodes (Liu and Zhang, 

2011). This network structure was found to facilitate the 
spread of many viral diseases, for example, HIV/AIDS 
(Schneeberger et al., 2004) and avian influenza (Small et al., 
2007). Within the network, even low virulent pathogens can 
rapidly spread (Barabasi, 2009). Thus, it is worth assessing 
in any large-scale network. However, the vulnerability of 
this nationwide pig movement network was evidenced by 
the occurrence of GCCs. Such network subgraph was found 
in some other animal movement networks, for instance, a 
cattle trade network in Cambodia (Poolkhet et al., 2016), 
live bird market connections in Mali (Molia et al., 2016), 

Region
North
West
South
East
Northeast
Central

Fig. 2  A giant weakly connected component (GWCC) identified in 
the network (#node: 2654, #link: 11,660). The node size is propor-
tionate to degree centrality, calculated from the number of connected 
subdistricts during the study period. The arrowhead represents the 

direction of animal movements. The width of the link shows the rela-
tive frequency of the movements between the subdistrict of origin and 
that of destination
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and ostrich production system in South Africa (Moore et al., 
2014). The size of a GWCC was previously employed to 
estimate the upper bound of maximal epidemic size (Kiss 
et al., 2006; Dubé et al., 2008). Provided that our GWCC 
covered most of the nodes present in the network, infec-
tious diseases may spread rapidly throughout the trade chain 
causing dramatic nationwide outbreaks. Early detection is 
crucially important for preventing the emergence of exotic 
diseases in such a vulnerable network. Advanced technology 

such as artificial intelligence should be integrated to accel-
erate the disease detection process (Oeschger et al., 2021). 

A) Largest community (#node = 335, #link = 1,200)

Region
North West South East Northeast Central

B) Second largest community (#node = 250, #link = 683)

Region
North West South East Northeast Central

C) Third largest community (#node = 229, #link = 835)

Region
North West South East Northeast Central

Fig. 3  The top-three largest communities (A–C). The node size is 
proportionate to degree centrality, calculated from the number of con-
nected subdistricts during the study period. The arrowhead represents 

the direction of animal movements. The width of the link shows the 
relative frequency of the movements between the subdistrict of origin 
and that of destination

Fig. 4  Spatial distribution of the pig movement network in Thailand 
at the provincial level. The node size is proportionate to weighted 
degree centrality, calculated from the aggregated number of move-
ments in and out of the province during the study period. The arrow-
head represents the direction of animal movements. The width of the 
link shows the relative frequency of the movements between the prov-
ince of origin and that of destination

◂
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Active surveillance, for example, the use of sentinel animals, 
should be consecutively carried out (Oeschger et al., 2021). 
Additionally, relevant contingency plans should be promptly 
implemented once a foreign disease is detected.

Interestingly, several communities were detected with 
relatively high modularity (Clauset et al., 2004). Hence, it 
indicates that the pig trade network was densely connected 
within the groups but sparsely linked between different 
communities (Newman, 2006). It was suggested from pre-
vious studies that the emergence of multiple communi-
ties in the network may interrupt inter-community disease 
spread (Lentz et al., 2011; Rautureau et al., 2012). None-
theless, those studies were performed at the farm level. 
However, the pathogens may diffuse relatively fast within 
each intra-community network (Nigsch et al., 2013), as 
the nodes in such communities were firmly connected. In 
our pig movement network, around one-third of the nodes 
were included in the three largest communities (Fig. 3). 
Consequently, emerging infectious diseases may rapidly 
spread within these prominent subgraphs and then reach 
out to other surrounding minor communities. In addition, a 
large inter-regional community covering over 60% of Thai 
provinces was observed as depicted in Fig. 5. This com-
munity architecture pointed out that the virus was likely to 
disseminate across different regions. An emerging patho-
gen may firstly circulate within a particular region and the 
transregional propagation occurs afterward. Considering 
overall network characteristics, the Thai pig trade network 
was, to some extent, vulnerable to the spread of infectious 
diseases, particularly the highly contagious ones. The pig 
movement across regions should be seriously monitored. 
Once a new disease is detected in one region, other regions 
should be instantly informed, and preparedness should be 
promptly implemented as the disease may spread distantly 
through the network community.

We did face some potential limitations. First, the resolu-
tion of our pig movement data ends at the subdistrict level. 
In Thailand, the highest level of the administrative system 
is the province. Each province is then subdivided into dis-
tricts, subdistricts, and villages, respectively. The movement 
data at village and farm levels are not currently available. 
This is indeed an inevitable limitation we faced. The weak-
ness of this system was also pointed out in a previous study 
(Noopataya et al., 2015). Thai veterinary authorities should 
reconstruct the procedures to include filtration in the village 
or farm levels if possible. Second, the local transmission 
was not considered in our model. We exclusively focused on 
how diseases spread along with the contact network which 
is regarded as remote transmission. Third, we preliminarily 
worked in the spatial dimension of the pig movement net-
work. A future study exploring how the network changed 
over time is recommended. Finally, we excluded almost 80% 
of the original pig movement data as these moved directly 
to the slaughterhouses. However, these premises may pose 
the risk to some extent. A more elaborate modeling network 
classifying the risk of pig movement and relevant actors in 
different levels is suggested.

In conclusion, we suggested that the pig movement net-
work in Thailand was vulnerable to the spread of emerg-
ing infectious diseases, as evidenced by a GWCC, and 
the inter-regional communities found in the network. The 
disease may rapidly spread throughout the country once 
introduced.

Table 3  The top five provinces for weighted degree centralities

Province Weighted all-degree 
centrality

Province Weighted in-degree 
centrality

Province Weighted 
out-degree cen-
trality

Nakhon Ratchasima 864 Nakhon Ratchasima 398 Phatthalung 536
Phatthalung 805 Khon Kaen 336 Nakhon Ratchasima 466
Khon Kaen 684 Suphan Buri 318 Prachin Buri 459
Lop Buri 601 Nakhon Pathom 271 Nakhon Si Thammarat 438
Nakhon Si Thammarat 587 Phatthalung 269 Lop Buri 405

Fig. 5  Spatial distribution of the largest community at the provincial 
level (#node: 47, #link: 228). The node size is proportionate to the 
number of contacts each province has. The arrowhead represents the 
direction of animal movements. The width of the link shows the rela-
tive frequency of the movements between the province of origin and 
that of destination

◂
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Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11250- 022- 03205-8.
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