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Coffee is deemed to be a high-risk crop in light of upcoming climate changes.

Agroforestry practices have been proposed as a nature-based strategy for coffee farmers

to mitigate and adapt to future climates. However, with agroforestry systems comes

shade, a highly contentious factor for coffee production in terms of potential yield

reduction, as well as additional management needs and interactions between shade

trees and pest and disease. In this review, we summarize recent research relating to the

effects of shade on (i) farmers’ use and perceptions, (ii) the coffee microenvironment, (iii)

pest and disease incidence, (iv) carbon assimilation and phenology of coffee plants, (v)

coffee quality attributes (evaluated by coffee bean size, biochemical compounds, and cup

quality tests), (vi) breeding of new Arabica coffee F1 hybrids and Robusta clones for future

agroforestry systems, and (vii) coffee production under climate change. Through this

work, we begin to decipher whether shaded systems are a feasible strategy to improve

the coffee crop sustainability in anticipation of challenging climate conditions. Further

research is proposed for developing new coffee varieties adapted to agroforestry systems

(exhibiting traits suitable for climate stressors), refining extension tools by selecting

locally-adapted shade trees species and developing policy and economic incentives

enabling the adoption of sustainable agroforestry practices.
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INTRODUCTION

The coffee sector generates a global annual income exceeding
$200 billion with a tendency for steady market growth of 2.2%
every year (The Coffee Guide, 2021). There are more than 12.5
million coffee farms at the beginning of the coffee value chain,
with ca. 60% belonging to smallholders, producing coffee on <5
ha (Enveritas, 2019). A large proportion of smallholder coffee
farmers are living below the poverty line of $3.20 USD a day
(The Coffee Guide, 2021).

As for several other economically important crops, ecological
modeling approaches have predicted that coffee production will
be threatened in the forthcoming years due to climate change
(Chengappa et al., 2017; Asayehegn et al., 2018; Rahn et al., 2018;
Grüter et al., 2022). The forecasted weather variation includes
perturbations in intra- and inter-annual rainfall patterns, more
frequent drought periods, elevated temperatures, as well as a
shift in geographical coffee growing regions (Bunn et al., 2015a;
de Sousa et al., 2019). In fact, the annual world coffee supply
is already subjected to instability, mainly triggered by recurrent
periods of drought accompanied by high temperature and
irradiance as well as by episodes of frost (Caramori et al., 1996;
Morais et al., 2006; Rigal et al., 2020a; Braga et al., 2021) affecting
plant development, flowering, fruit set, and production (DaMatta
and Ramalho, 2006). These impacts are believed to mainly affect
Coffea arabica (Arabica) due to an inherent sensitivity to elevated
temperatures, drought, pest, and diseases. Coffea canephora has
previously been predicted to respond better to climate change
than Arabica (Jayakumar et al., 2017; DaMatta et al., 2018).
However, recent studies suggest that the alleged “heat tolerance”
boasted by C. canephora (Robusta) plants could have been
overestimated (Kath et al., 2020). Others point to elite Arabica
genotypes which exhibit a heat and drought tolerance when
simulated under climate change scenarios such as elevated air
CO2 (eCO2) (Martins et al., 2014; Rodrigues et al., 2016; Ramalho
et al., 2018; DaMatta et al., 2019; Avila et al., 2020a,b; Semedo
et al., 2021). Still, impacts on both Arabica and Robusta plants
are expected to occur, thus on-farm climate change mitigation
and adaptation practices will be essential for a sustainable coffee
management and productivity.

The cultivation of coffee under shaded agroforestry systems
(AFS) (Figure 1) or intercropped with other trees/crops are
among the agricultural practices able to improve microclimate
conditions and mitigate the negative effects of climate change to
coffee plants (Jaramillo et al., 2013; Partelli et al., 2014; Oliosi
et al., 2016; Pham et al., 2019). Traditional coffee cultivation
practices are often carried out by poorer farmers (Jha et al.,
2014). These practices consist of growing coffee under native
forest trees with a layered canopy. Generally, the higher the
coffee cultivation intensity, the lower the layer complexity and
plant diversity becomes. In its most intensified form (full-sun
mono-crop systems), all plant diversity is lost. Since the late 90s,
coffee farmers have moved toward intensive production systems,
increasing inputs and decreasing the area of traditional shade-
grown coffee. In new coffee growing regions (i.e., Southeast Asia),

Abbreviations:AFS, agroforestry systems; CLR, coffee leaf rust; eCO2, elevated air
CO2; FS, full-sun; WoS, web of science.

full-sun (FS) coffee cultivation systems dominate other forms
(Jha et al., 2014), as is the case in Brazil, the world’s largest
coffee producer.

AFS enables several positive impacts such as buffering
extreme temperatures andminimizing water loss by reducing soil
evaporation and crop transpiration (DaMatta, 2004; Lin et al.,
2008; Jha et al., 2014; Gomes et al., 2020; de Carvalho et al.,
2021) as well as contributing to on-farm carbon sequestration
(Ehrenbergerová et al., 2016). For this reason, AFS is today
considered a nature-based solution for perennial crops which are
sensitive to climate change. AFS has been shown to also reduce
pests and diseases, e.g., by bolstering in-situ natural enemies of
pests (Ratnadass et al., 2012). However, controversy surrounds
the use of shade trees in coffee production due to their negative
impacts on coffee growth and yield, as well as their potential
to exacerbating biotic stressors (especially foliar disease such as
coffee leaf rust—CLR) (Haggar et al., 2011; Avelino et al., 2020;
Durand-Bessart et al., 2020; Gichuru et al., 2021).

The implications of AFS on coffee cup quality are also of
the upmost importance, and the demand for specialty, high
quality, and sustainably sourced coffee has skyrocketed over
the last decade for both Arabica and Robusta coffee (van der
Vossen et al., 2015). Industry and consumer demands call for
a challenging feat—coffee cultivars/clones capable of coping
with climate change combined with high yield and cup quality,
produced under sustainable agricultural practices.

Coffee-AFS are living systems, highly variable to their given
environments. A healthy coffee AFS should integrate localized,
on-farm management practices including regulation of soil,
water, tree, pest and disease to ensure ecological, economic, and
social benefit of the system (Sebuliba et al., 2021). Given the
documented variation within coffee-AFS, it is of the upmost
importance for the coffee community to stay informed of the
newest findings relating the interactions between shade and
the coffee crop. For this reason, this literature review aims to
bring together recent findings from studies (mainly performed
in field trials) relating to the use of agroforestry compared to
FS (open cultivated) systems in Arabica and Robusta coffee
production. We evaluate recent work(s) in light of several
important aspects associated with coffee management and future
sustainability. This includes the effects of shade on (i) farmers’
use and perceptions, (ii) the coffee microenvironment, (iii) pest
and disease incidence, (iv) carbon assimilation and phenology of
coffee plants, (v) coffee quality attributes, (vi) breeding of new
Arabica coffee F1 hybrids for future AFS systems, and (vii) coffee
production under climate change. The interactions between these
key aspects can influence whether coffee farmers adopt the use of
shade trees (Figure 2). Through this review, we begin to decipher
whether shaded systems are a feasible, nature-based strategy for
coffee farmers faced with climatic hazards through exploration of
these key aspects.

ANALYSIS OF THE BIBLIOGRAPHY

In this work, we reviewed literature concerning coffee production
under controlled field studies using shaded environments or
within agroforestry-like systems. We based the review on
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FIGURE 1 | Different ways of cultivating coffee under shade. (A) Terraced Arabica coffee on an elevated site in amongst a mixture of trees species. (B) Experimental

trial with C. canephora (Conilon cv.) in an agroforestry system intercropped with a single shade tree species. Photos © Benoit Bertrand and © Pierre Marraccini.

FIGURE 2 | Key aspects relating to shaded-coffee systems. Any of the given factors may bear weight in the on-farm decision-making relating to the use and

management of shaded-coffee systems.

database searches in Web of Science (WoS) and Scopus, as well
as supplementary publications retrieved through other means
(publication alerts, sent from colleagues etc.).

The core keywords used in the database searches were
“agroforestry” AND “coffee” AND “climate.” This allowed for
the inclusion of studies relating to both the C. arabica L. and C.
canephora Pierre ex A. Froehner species. Additional key words
were used in combination with the core keywords to cover each
thematic area. These included (i) “farmer” AND “perception”
OR “farmer” AND “use,” (ii) “microclimate” OR “aboveground,”
(iii) “pest” OR “disease,” (iv) “phenology” OR “carbon” AND
“assimilation,” (v) “quality” OR “biochemical” OR “organoleptic,”
(vi) “hybrid,” and (vii) “climate change.” The date range was
open for each search conducted and thus results spanned from
1976 to 2022 (including pre-prints). However, the majority of

the studies found were dated between 2010 and 2022. Seven
separate searches were conducted for each thematic area viaWoS
and Scopus on the 18th January 2022. In total 246 publications
were reviewed across all thematic areas. The majority of the
shade-related coffee research was found to be located in AFS-
promoting countries such as in Latin America (e.g., Costa Rica,
Colombia, Mexico, and Nicaragua). Given this, a geography
bias was detected, with a large number of the work reviewed
coming from these countries. This is likely connected to the long
coffee cultivation history in Latin America and the rather recent
commercial expansion into South East Asian countries (i.e.,
Vietnam) and Africa (i.e., Kenya, Tanzania, and Uganda). Despite
this bias, many large coffee producing countries (e.g., Brazil,
India, Kenya, Uganda, and Vietnam) are beginning to integrate
AFS as a management approach. Therefore, some studies from
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these geographies were found (but to a lesser extent than the Latin
American studies).

COFFEE FARMERS’ USE AND
PERCEPTION OF SHADE TREES

There are no global data sets pertaining to the extent or share
of coffee AFS compared to mono-crop or FS coffee to date.
There is however, scientific consensus that coffee AFS is gradually
diminishing in its share of total coffee area and is under threat
from policies favoring intensive, highly productive systems (Jha
et al., 2014; Albers et al., 2021; Harvey et al., 2021). According to
the most recent attempt to quantify the share of AFS in coffee
producing regions, Jha et al. (2014) found that <24% of the
coffee area worldwide in 2010 was managed with traditional
and diverse shade, 35% with sparse shade and 41% under FS.
This study followed up on a 1996-study that reported massive
conversions of shade coffee to intensively managed sun systems
during the period from 1970 to 1990 in Latin America (Perfecto
et al., 1996). This trend has continued until today, though at lower
rates than previously recorded (Harvey et al., 2021). During the
1990’s, coffee areas in Latin America and Africa have declined,
while areas in Asia have increased, most notably in Vietnam,
under intensive FS systems and thereby exacerbating the trend
toward a lower share of shaded coffee (Jha et al., 2014). Key
drivers to this trend were the national policies which targeted
increasing yields to support greater exports. Breeding efforts have
also traditionally focused on plant vigor and productivity (van
der Vossen et al., 2015). However, the recent implementation of
new agricultural policies, both public and private, and breeding
efforts turned their attention to shaded coffee and intercropping
systems, often as an adaptation strategy to climate change or
as part of a certification process (Rice, 2018; Vanderhaegen
et al., 2018; Bertrand et al., 2021). Recent efforts, notably public
programs in Vietnam and China, have pushed for the conversion
of large areas of full sun coffee into shaded systems (Rigal et al.,
2018) and for the introduction of fruit trees intercropped with
coffee trees (Thuy et al., 2019).

Coffee AFS vary in size and complexity, ranging from simple
mixtures involving a few shade tree species planted at regular
intervals within the rows of coffee trees to traditional or so-
called “rustic systems,” where coffee is planted in plots of forests.
In a rustic coffee AFS, numerous tree species can provide an
almost complete shade cover through a multi-strata tree canopy
(Somarriba et al., 2004). Shade tree abundance and diversity
varies according to a number of farm and farmer characteristics,
such as farmers’ livelihood and diversification level, available
space on the farm, and availability of workforce labor (Méndez
et al., 2009; Rice, 2011; Lamond et al., 2016; Robbins et al., 2021).

The coffee crop under AFS is often less intensively managed
than in FS systems, with fewer inputs in form of labor and
expensive agrochemicals going into the production. Pruning
of shade trees and leaf litter will reduce, to some extent,
the need for chemical fertilizers (Bravo-Monroy et al., 2016).
Additionally, the multi-strata agroforestry systems may reduce
occurrences of certain pests and diseases (Soto-Pinto et al., 2002;

Durand-Bessart et al., 2020) and thus the need for pesticide
application. However, coffee AFS are not always the panacea
for pest control, and these complex biotic networks were also
reported to favor specific pests and pathogens depending on
environmental factors (Allinne et al., 2016).

AFS use is common amongst small-scale coffee farmers, as
labor is mainly family-based and used to manage all types of
crops in the AFS of limited size. This is also associated with little
access to agrochemical inputs (either due to market constraints
and/or high costs), altogether resulting in lower management
costs per hectare (Jezeer et al., 2017). On larger farms, labor may
become the limiting factor for diverse shade systems, as found
by Robbins et al. (2021) in India, where larger farms had higher
abundance and diversity of shade trees than small farms due to
better availability of hired labor. In a review of studies spanning
26 years across Latin America, Jezeer et al. (2017) reported that
lower costs and supplementary income from shade tree products
made shaded systems more profitable than non-shaded systems.
Products from shade trees, such as fruits, firewood, timber and
othermaterials, canmake up a substantial part of the total income
from coffee AFS (Rice, 2008; Souza et al., 2010; Thuy et al., 2019),
and highly diverse coffee AFS increase the household’s food
and nutrition sources, especially in the shortage season (Jemal
et al., 2021). Payment for ecosystem services can also generate
additional source of revenues for AFS-coffee farmers (Cole, 2010;
Thuy et al., 2021). Diversification of income from shade trees can
be a safety net or gap-closing strategy especially important during
times of low coffee prices (Gordon et al., 2007; Rice, 2011).

AFS must be locally tailored to answer farmers’ constraints
and needs, and to cope with local environmental conditions.
The criteria established by each farmer to select shade trees are
undoubtedly useful to other farmers, but one farm system can
not necessarily be replicated to another site (Souza et al., 2010).
For instance, the adequate degree of shade varies according to the
elevation (Rahn et al., 2018). Coffee farmers in Kenya perceived
dense shade as potentially problematic at high elevations, while
they considered it beneficial at low elevations in regulating
temperature, sun damages and pest incidences (Lamond et al.,
2016). This may change in future scenarios with climate change
and elevated atmospheric CO2, where 50% shade at high
elevations will become beneficial as found in yield models by
Rahn et al. (2018). In Uganda, coffee farmers selected perennial
shade trees that were fast growing, with small leaves and wide
crowns (Sebuliba et al., 2021). This tendency often results in the
selection of exotic species over native trees (Graham et al., 2021),
which no doubt alters local biodiversity and conservation aspects.
Incompatible shade trees (having negative impacts on coffee)
were often tolerated if they provided other benefits/services to
the farming household (Graham et al., 2021). In their study in
Brazil, Souza et al. (2010) found that farmers’ first criterion for
selecting tree species was compatibility with coffee, i.e., trees
with deep roots and that would not bring sanitary problems
to coffee trees, followed by biomass production, labor needed
for tree management, and income diversification. In that study,
shade itself was not a criterion for shade tree selection. Another
study in southwest China found that farmers preferred trees with
dense canopies and high economic returns despite their negative
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impact on coffee yield (Rigal et al., 2018). By contrast, a study
in Indonesia found that coffee farmers selected tree species as a
means of increasing coffee yield (Zaitunah and Ahmad, 2021).
In Ethiopia, the decision to adopt AFS was found to be first
determined by the provision of direct economic benefits and,
to a lesser degree, by social factors such as gender, family size,
educational level, and land tenure (Gebru et al., 2019). A study
in Mexico found that farmers chose 40–80% shade cover to
mitigate climate shocks, such as long heatwaves (Ruiz-García
et al., 2021), and that the indigenous Huastec Mayan farming
communities harbored a high number of edible plants in their
coffee AFS (Heindorf et al., 2021). It is therefore essential to adapt
AFS locally to answer farmers’ needs in favor of the adoption
and scaling up of shaded-coffee systems and must also fit
with farmers’ perceptions of shade trees. Nevertheless, providing
information regarding shade tree benefits to farmers with limited
experience with coffee AFS management is also important.
Farmers near Mt. Elgon in Uganda, who had received training
as part of a Trees of Food Security program, had a more positive
view on the management costs and the benefits from shade trees
compared to non-participating farmers (Buyinza et al., 2022).

Several studies have shown that farmers are aware of the trade-
offs involved in introduction of shade tree species in coffee farms,
and that they understand the impacts of agroforestry practices
on coffee phenology and productivity (Cerdán et al., 2012; van
der Wolf et al., 2016; Rigal et al., 2018; Dumont et al., 2019).
Some of these studies even reveal in-depth knowledge of the
complex causality between shade trees and agronomic services,
such as soil conservation, nutrient cycling or pest, and disease
management, as well as adverse competitive effects between
plant species (Bagyaraj et al., 2015; Lamond et al., 2016; Liebig
et al., 2016; van der Wolf et al., 2016; Nesper et al., 2017, 2018;
Dumont et al., 2019). This extensive knowledge and its impact
on farming practices is reflected in the farmers management of
the percentage of shade throughout the year to regulate humidity,
rainfall interception, light interception, and fungal diseases, such
as CLR and American leaf spot (Cerdán et al., 2012). Farmers’
willingness and ability to convert to and manage coffee AFS
will depend on the economic performances of these systems and
on the implementation of financial mechanisms to reward the
adoption of more sustainable practices and the production of
higher quality coffee (Borrella et al., 2015; Verburg et al., 2019).
This transition will also require farmers’ access to financial credit,
as well as access to information and to adequate seedlings of
both shade trees (Rigal et al., 2018), and coffee (van der Vossen
et al., 2015). Furthermore, the adoption of shaded systems to
coffee crops must be accompanied by the design of suitable AFS
and their associated management practices. In traditional coffee
growing areas, farmers’ extensive local ecological knowledge can
therefore be an asset in designing and scaling up locally tailored
agroforestry practices (van der Wolf et al., 2016).

SHADE AND THE COFFEE
MICROENVIRONMENT

Shade trees can be beneficial in environments that are becoming
increasingly less suitable for coffee cultivation (Ehrenbergerová

et al., 2021). The presence of shade trees in coffee farming systems
has generally been associated with favorable microclimate
modifications such as lower air temperature fluctuations,
increased air relative humidity, lower wind speed (see Table 1)
and decreased frost damages (Figure 3). Research concerning
ecosystem services by shade trees in coffee plantations have also
noted an overall positive impact on soil fertility, total organic
matter, and nutrient cycling, a reduced soil evaporation and
soil erosion, as well as higher on-farm sequestration of carbon
(Cannavo et al., 2011; Dubberstein et al., 2018; Guillemot et al.,
2018; Padovan et al., 2018; De Giusti et al., 2019; Sarmiento-
Soler et al., 2019; Jácome et al., 2020; Villarreyna et al., 2020; Zaro
et al., 2020). An aspect relating to the belowground competition is
weed control, with a significant reduction of weeds present under
shaded coffee systems compared to full sun (Nestel and Altieri,
1992). Moreover, the weed species’ commonly found in shaded
systems (such as Commelinaceae spp.) tend to be less competitive
with coffee plant for resources than those more prominently
found in FS plantations such as Poaceae spp. and Compositae spp.
(Staver et al., 2001).

As a general rule, the selection and pruning of shade trees
should favor the aboveground positive impacts while reducing
the competition between coffee and shade trees for light, water
and nutrients (Beer et al., 1998; Souza et al., 2010; van der Wolf
et al., 2016). The selection of shade tree species with deeper
root systems is especially important to ensure belowground
complementarity rather than competition (Padovan et al., 2015;
Rigal et al., 2020a). Here, we focus the review on the impact of
shade trees on aboveground growing conditions, which will be
directly impacted by climate change.

Temperatures
Changes in temperatures and intra- and inter-annual rainfall
patterns will negatively impact the suitability of large areas
traditionally suitable for coffee production (Bunn et al., 2015a;
Semedo et al., 2018; de Sousa et al., 2019; Gomes et al., 2020).
Although some areas might benefit from new climatic conditions
(especially areas at high elevations which will see an increase in
temperatures and a shift from sub-optimal to optimal conditions)
(Ceballos-Sierra and Dall’Erba, 2021) overall coffee production
is expected to decline due to global warming (Kath et al., 2020).
In addition, climate change is expected to increase the frequency
and severity of extreme temperature events, both for heatwaves
or cold spells, which will further impact coffee production. Shade
trees offer a mitigation strategy for these climatic hazards, with
overall cooler daytime air temperatures, thus contributing to
maintain suitable growing conditions at lower elevations (de
Souza et al., 2012; Rahn et al., 2018; Gomes et al., 2020). A
buffering impact of shade trees on air temperatures has been
reported in numerous studies, withminimumnight temperatures
found to be 0.5–2◦C higher than under FS, and maximum
daytime temperatures 4–5◦C lower compared to FS (Lin, 2007;
Siles et al., 2010; Rigal et al., 2020a; Merle et al., 2022). This
buffering impact offers the double asset of protecting coffee trees
from climatic hazards such as frost (Figure 3) and lowering heat
stress during peak temperatures in the dry season, therefore
providing conditions more suitable for photosynthetic activity
(van Kanten and Vaast, 2006).
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TABLE 1 | Summary of microclimate factors influenced by shade in the coffee field.

Microclimate factor Condition Effect References

Daily temperature fluctuations Natural shade trees Reduced Staver et al., 2001

DaMatta and Ramalho,

2006

Maximum daily temperature Natural shade trees (incl. Cajanus cajan and Toona

ciliata)

Reduced by 3–5 ◦C Staver et al., 2001

Morais et al., 2006

Oliosi et al., 2016

Average daily leaf temperatures Sub-optimal (>700m.a.s.l.) Reduced by 4 ◦C Vaast et al., 2005

Optimal conditions (>1,100m.a.s.l.) Reduced by 2 ◦C Vaast et al., 2005

Relative air humidity Natural shade trees and artificial shade (during the dry

period)

Increased DaMatta and Ramalho,

2006

Oliosi et al., 2016

Coltri et al., 2019

Wind speed Natural shade trees and artificial shade (during the dry

period)

Reduced by 22–99% DaMatta and Ramalho,

2006

Coltri et al., 2019

Radiation Natural shade trees and artificial shade (during the dry

period)

Reduced by 15–90% Morais et al., 2006

Coltri et al., 2019

Coffee leaf transpiration (per unit

leaf area)*

Natural shade trees (Eucalyptus deglupta, Terminalia

ivorensis, and Erythrina poeppigiana)

Reduced van Kanten and Vaast,

2006

Frost damage protection Natural shade trees (Cajanus cajan, Bischofia javanica,

Cinnamomum camphora, and Jacaranda mimosifolia)

Increased Morais et al., 2006

Rigal et al., 2020b

Soil organic matter Natural shade trees Increased by 10% Rigal et al., 2020a

Soil microbial abundance

(bacterial and fungal

communities including

arbuscular mycorrhiza)

Natural shade trees

Natural shade trees

Increased by 64%

Enhanced soil

microbial fauna

Rigal et al., 2020a;

Bagyaraj et al., 2015

Soil enzymes (involved in C and

N cycling)

Natural shade trees Increased Rigal et al., 2020a

*However the combined transpiration of shade trees and coffee plants contributed a larger overall eco-system transpiration, thus reducing the overall water availability compared to full

sun conditions (van Kanten and Vaast, 2006).

FIGURE 3 | Frost protection of coffee plants by agroforestry practices. Young C. arabica plants (16 months old) in an experimental field of the Northern Mountainous

Agriculture and Forestry Science (NOMAFSI) station of Mai Son (Son La province, Vietnam) under either agroforestry (AFS) with Leucaena leucocephala or full sun (FS)

conditions and affected by frost (10th December 2019). AFS coffee plants were not damaged by frost (shown with green leaves). FS coffee plants damaged by frost

are with brown and inclined leaves after a couple of hours and died within a day. (A) Photograph taken in the AFS trial showing the FS trial. (B) Photograph taken in

the FS trial showing the AFS trial. Note: the smoke seen in photograph (B) was the result of controlled fires, which were lit the day after the first frost event. This was a

short-term management practice intended to warm the coffee field microenvironment above 0 ◦C in subsequent nights. Photos © Philippe Vaast.
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Water-Use
Coffee was found to transpire more per unit leaf area in full sun
than under shade, which indicates a higher level of environmental
stress in non-shaded conditions, due to higher irradiance, wind
speed, air temperature and vapor pressure deficit (VPD) in
FS environment than in shaded conditions (van Kanten and
Vaast, 2006; Lin, 2010; Coltri et al., 2019). Lower water use
(due to reduced transpiration rates) could potentially become
an important feature under future conditions of limited water
availability namely due to more frequent and extended periods
of drought (accompanied with greater high air temperatures)
(DaMatta et al., 2018; Sarmiento-Soler et al., 2019; Byrareddy
et al., 2021). However, the combined transpiration of shade
trees and shaded coffee plants may contribute to a larger eco-
system transpiration volume, with an overall reduction of water
availability under shade compared to full sun (Sarmiento-Soler
et al., 2019). This is especially relevant for coffee production
areas where an extension of the dry season period is forecasted
due to climate change (Cannavo et al., 2011). However, recent
attempts to compare water loss between coffee-AFS and FS
by a system of in-field sensors and pluviometers showed an
overall higher water loss in unshaded environments (de Carvalho
et al., 2021). The detrimental impact of competition for water
by shade trees in AFS has been recently reported in cocoa
systems (Abdulai et al., 2018). This study showed a direct link
to cocoa tree mortality in the shaded systems, when facing
extreme drought conditions, highlighting the importance of
carefully selecting shade tree species capable of extracting water
from deeper soil horizons compared to the accompanying
crop plant/tree (Bayala and Prieto, 2020; Muñoz-Villers et al.,
2020).

PEST AND DISEASE INCIDENCE UNDER
SHADE

The shaded-coffee environment within AFS hosts biological
richness in terms of tree species, epiphytes, mammals, birds,
reptiles, amphibians, and arthropods (Perfecto et al., 1996,
2005; Moguel and Toledo, 1999; Jezeer et al., 2019; Udawatta
et al., 2021). Coffee-AFS provide ecological services, which in
turn might benefit coffee production, for example by lowering
dominance of pests through both direct and indirect competition
(Kellermann et al., 2008; Perfecto et al., 2014). Moreover,
the coffee plants themselves naturally attract a large range
of natural enemies to pests and diseases, including lizards,
ants, lady beetles, mites, predatory, and parasitoid wasps,
and microorganisms such as entomopathogenic fungi (Perfecto
et al., 2021; Venzon, 2021). Monoculture farming of coffee
however, does not provide the adequate environment nor
nutrition to maintain a high level of these natural enemies in
the field.

The ecological interactions in coffee agroecosystems relating
to prominent pests and diseases such as the coffee berry
borer beetle (Hypothenemus hampei Ferrari), CLR (caused
by the fungus Hemileia vastatrix Berk. & Broome), or the
American leaf spot disease (caused by the fungus Mycena

citricolor Berkeley & Curtis) are still being elucidated today
(Avelino et al., 2020; Castillo et al., 2020; Cerda et al., 2020;
Granados-Montero et al., 2020; Hajian-Forooshani et al., 2020;
Merle et al., 2020).

Results reported on the incidence of pests and diseases vary
according to site conditions (altitude etc.), farm management,
shade tree species, density of shade, and as well as the presence
of forest areas on and/or surrounding the farm (Karp et al.,
2013). In fact, some studies showed a higher incidence of pest
or disease infestation under shade vs. FS conditions (Soto-Pinto
et al., 2002; Bosselmann et al., 2009; Avelino et al., 2012, 2020;
Bukomeko et al., 2018; Durand-Bessart et al., 2020). By contrast,
other reports showed pest and disease reduction in coffee under
AFS due to the presence of more birds and ants, as well as
microclimate modifications in the shade compared to the sun
fields (Johnson et al., 2010).

Specific shade tree traits such as canopy openness and leaf
area have been recently found to explain most microclimate
conditions (Merle et al., 2022), and significantly relate to CLR
incidence levels (Gagliardi et al., 2021). These findings may
serve as a “missing link” to explain the AFS-CLR dynamics
and shows the importance of shade tree selection in a coffee-
AFS due to potential synergistic or antagonistic effects on these
cropping systems. The Inga sp. is a common shade tree species
in coffee-AFS and has been linked to an enhanced natural
pest control for the coffee plant in proximity to its canopy
due to its extra floral nectars (Rezende et al., 2014). Large
and heavily shaded canopies of sap-exuding shade trees have
been shown to have a dampening effect on the devastating
Black Coffee Twig Borer (BCTB causal beetle: Xylosandrus
compactus) (Bukomeko et al., 2018). However, this effect is lost
under the shade tree Albizia chinensis (Wu, 2016; Bukomeko
et al., 2018). A so-called “shelter effect” of rubber shade trees
was recently revealed to allow for the persistence of Coffee
Leaf Miner (CLM) on coffee leaves during the cold autumn
and winter seasons (Righi et al., 2013). Although a higher
number of leaves were mined in the shade, overall damage to
the coffee plant by CLM was lower under the shade. These
studies highlight the significant impacts of pests and diseases
on coffee production and in turn on farmers’ livelihood, and
the importance of shade tree selection for their synergistic or
antagonistic effects on key coffee pests or pathogens. Further
research is needed to elucidate the interactions between pest
and/or disease and coffee-shaded systems, especially along
varied shade, temperature, and altitude gradients for better
understanding and prediction of future outbreaks (Liebig et al.,
2019).

SHADE EFFECTS ON CARBON
ASSIMILATION AND PHENOLOGY OF
COFFEE PLANTS

Although the shade-modified microclimate may be overall
favorable for the coffee plant, the associated reduction in solar
irradiation in AFS is a cause of concern for many coffee-growers.
Low light regime is the feature of shade-grown coffee most
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commonly associated with yield reductions, and a number
of works corroborate this claim (Clemens and Zablah, 1993;
Campanha et al., 2004; DaMatta, 2004). Due to the lack of a
common “shade metric,” uncertainty lies in the levels of shade
stated in the primary literature sources of the present review.
Some researchers described shade in terms of a percentage of
light interception at the coffee plant level (Bosselmann et al.,
2009; Steiman et al., 2011; Partelli et al., 2014; Charbonnier
et al., 2017). This indicator best characterizes homogeneous
shade covers. Others report shade density in terms of the
number of shade trees per hectare or distance from shade trees
(Carvalho et al., 1961; Hernández Guerra, 1995; Baggio et al.,
1997; Pilati, 2005; Siles et al., 2010; Virginio Filho et al., 2015;
Araújo et al., 2016; Javier Lopez-Garcia et al., 2016), or in
terms of shade tree leaf area index (Charbonnier et al., 2013;
Rigal et al., 2020a), which might better describe AFS based on
sparse shade trees or on fruit trees with low and thick canopy
covers. A few studies were found to measure and/or simulate
the level of shade cast by trees throughout the day (Charbonnier
et al., 2013; Coltri et al., 2019). These approaches allowed for
estimation of the amount of the radiation reaching coffee trees
at different hours.

Natural shade trees provide an anisotropic delivery of light to
their understory in terms of quantity and quality (e.g., assessed
by the quantum ratio of red to far-red light; Vanderbilt and
Grant, 1985; Chazdon et al., 1996; Lee et al., 1996). In tropical
rainforests the average intensity of radiation on the forest floor
ranges from 5 to 25 µmol photons m−2

·s−1 (within the λ 400–
700 nm range), which is equivalent to around 1–3% of sunlight
delivered above the canopy (Chazdon et al., 1996; Lee et al.,
1996). Spectral distributions of light within naturally shaded
systems can also vary significantly compared to FS conditions,
because leaves from the higher canopy strata will differentially
absorb more red (R) and blue (B) light and reflect or transmit
more far red (FR) light. This leads to altered light quality,
with a low R:FR light conditions in the lower strata (where
coffee will be growing), particularly in dense canopies. This
may also have implications in plant resilience/response to other
environmental biotic and abiotic stresses (Courbier and Pierik,
2019). The changed R:FR ratio may also trigger morphological
and anatomical changes in the coffee crop. This is frequently
observed by the development of shade leaves, which are thin
but have larger area than leaves developed under FS. Shade trees
within a coffee AFS will therefore provide a varying spectral
quantity and quality over the course of the day/season due
to sun orientation, over the course of their development and
dependent on which shade-tree species are present (Vanderbilt
and Grant, 1985). This temporal shading effect of natural shade
trees may allow for light environments that reduce the over-
excitation of the photosynthetic apparatus and the probability
of photo-inhibition to occur at high irradiance periods in the
day, particularly at noon, but also reduce the photosynthetic light
amount needed for carbon assimilation. However, coffee is able
to maintain net photosynthesis at levels similar to full sun at up
to 55% light reduction, because photosynthetic light saturation
are reached at irradiances quite below FS values in leaves
acclimated to high irradiance exposure (Ramalho et al., 2000;

Franck et al., 2007). Additionally, a recent study corroborates
the idea of photosynthetic maintenance in shaded-coffee plants
(Charbonnier et al., 2017). Despite a 60% reduction in irradiance
below the canopy of the shade trees, coffee plants grown under
shade increased their light-use efficiency by 50% and the overall
aboveground net primary productivity (leaves, fruit, wood, etc.)
was not statistically different to that of the FS-grown plants. This
demonstrates how coffee plants can potentially compensate for
the reduction in solar irradiation in a shaded environment by
increasing their photosynthetic efficiency. Martins et al. (2013)
supported this hypothesis by demonstrating a comparable level of
net photosynthesis in coffee plants grown under 90% shade cover
compared to FS, when calculated on a mass basis. This study also
determined difference in the kinetics of photosynthesis, showing
that the shade grown leaves exhibited faster photosynthetic
induction compared with their sun counterparts, likely explained
as an adaptive response to use the light energy from sun-flecks.
Such increased photosynthetic performance observed in shade-
grown coffee may allow the plant to maximize the potential
for carbon assimilation in a low light environment, and is
likely associated to the forest-understory evolutionary origin
of C. arabica.

Nevertheless, there are cases in which the well-illuminated
leaves from the upper part of the coffee canopy showed
greater net carbon assimilation rate (A), associated with higher
electron transport rate, as compared to self-shaded, lower-canopy
coffee leaves in the same plant (Araujo et al., 2008). This
study also concluded that there was no major difference in
stomatal and mesophyll conductance between sun and shaded
coffee leaves, which were similar regardless of leaf position.
However, morphological (e.g., variations in specific leaf area
and leaf inclination) or anatomical plasticity is likely of greater
value in terms of acclimation to low-light environments. When
considering leaf age, Campa et al. (2017) found that only
mature coffee leaves were capable of acclimating to high-
light conditions for C. arabica cv. Naryelis (grown under
controlled conditions). The growing and juvenile leaves (under
development) were found to have inefficient photo-protection
mechanisms, scarce antioxidant protection, and a poor ability
to export sucrose under increasing light conditions. These
observations suggest that despite the fact that the C. arabica
Naryelis cv. was selected for FS conditions, immature leaves
of this cultivar are somehow sensitive to high light levels.
These findings are in line with other reports showing a
high acclimation plasticity of newly-matured coffee leaves after
transition from deep shade to FS exposure, associated with
the reinforcement of photosynthetic components, anti-oxidative
and photo-protective mechanisms, as well with changes in the
lipid profile of chloroplast membranes (Ramalho et al., 1997,
1998, 2000). Interestingly, these high irradiance stress responses,
which potentially exacerbate oxidative stress conditions (as a
secondary stress), constitute a common response in coffee leaves
to other stresses such as heat (Rodrigues et al., 2016), cold
(Ramalho et al., 2014), and drought (Dubberstein et al., 2020),
thus confirming plasticity of some elite coffee genotypes to
environmental constraints that should be explored in terms of
breeding purposes.
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TABLE 2 | The effects of shade on beans size, biochemical and organoleptic attributes associated with coffee quality of C. arabica cultivars and C. canephora species.

Bean

size

Caffeine Chlorogenic

acids

Sucrose Trigonelline Lipids Acidity Aroma Body References

Bourbon Guyot et al., 1996

Catimor Muschler, 2001, 2004; Somporn et al., 2012

Catuaí Guyot et al., 1996

Caturra = Muschler, 2001, 2004; Bosselmann et al., 2009

Costa Rica 95 Vaast et al., 2006; Worku et al., 2018

IAPAR 59 Geromel et al., 2008; Delaroza et al., 2017

K7 Alves et al., 2018; Cheng et al., 2020

C. canephora

=

Vaast and Raghuramulu, 2012; Odeny et al., 2014;

Alves et al., 2018; Ehrenbergerová et al., 2021

, increased; , decreased; =, equivalent to full sun.

Full-sun cultivation of coffee promotes a higher number of
nodes and fruits per branch, leading to a greater competition
between fruits, resulting in smaller beans, and biennial
production due to heavy flowering followed by reduced flowering
in the subsequent year (Cannell, 1974, 1976, 1985; DaMatta,
2004), although these problems can be mostly overcome with
adequate fertilization and irrigation management under full sun
cropping. In contrast, shaded-coffee production is synonymous
with fewer nodes per branch, lower fruit loads and hence less
competition between fruits, leading to larger beans, less alternate
bearing pattern and less branch dieback (DaMatta, 2004). All
these factors influence the annual yields and profitability of the
coffee farm and are thus critical in the decision-making process
regarding light/shade management. In particular, the flowering
intensity has a direct influence on fruit loading in coffee plants
(Franck et al., 2007). The Caturra cultivar of C. arabica was
reported to produce a high variation in flower intensity across
a spectrum of light, resulting in ca. 4,620, 3,052, 1,500, and
605 flowers per plant, under FS condition, 25, 50, and 75%
light reduction, respectively. While shade has been reported to
have a beneficial effect on bean size and density (Muschler,
2001, 2004; Morais et al., 2006; Vaast et al., 2006; Geromel
et al., 2008; Bote and Struik, 2011; Somporn et al., 2012), the
reduced flowering intensity under lowered irradiation in many
cases leads to yield reduction (Vaast et al., 2006; Jaramillo-Botero
et al., 2010). Therefore, coffee growers using shade-systems must
balance the fine-line of negative effects (e.g., associated with
flowering intensity) with the positive effects (e.g., lower need
of water or fertilization inputs), to obtain a desired fruit load
and bean quality. This is no easy feat and likely dependent on
individual cultivar sensitivity to a low-light environment with
respect to flowering, as well as to other environmental factors
(i.e., whether the farm is operating under optimal/sub-optimal
conditions of water availability and temperature, etc.) and/or
the management the shade level through timely pruning of
shade trees.

SHADE EFFECTS ON COFFEE QUALITY
ATTRIBUTES

There is little literature devoted to shade effects on cup
quality or on the biochemical composition of coffee beans
(Leroy et al., 2006). Here, we define coffee quality in the
context of the bean size, biochemical composition, as well
as organoleptic attributes mainly for C. arabica and for C.
canephora (when available), with the main interactions between
shade and coffee quality attributes shown in Table 2. As
the farmers’ choice of cultivar is a critical factor influencing
quality, we also assess shade effects at the cultivar level
(where feasible).

Shade Effects on Coffee Bean Size
Bean size is an important parameter defining coffee quality,
with large beans being frequently associated with better cup
quality and high prices in international markets (Vaast et al.,
2006; Sanz-Uribe et al., 2017). For Arabica, high percentages of
large coffee beans were reported under both natural and artificial
shade (Table 2). The effects of shade on coffee bean size can be
explained by the fewer branches produced under shade, with
smaller number of nodes per branch, and fewer numbers of
flowers per node. These shade impacts contribute to a reduced
fruit load under shade (Cannell, 1976; Morais et al., 2006; Vaast
et al., 2006; Jaramillo-Botero et al., 2010). Moreover, shade also
lowers the tree stress (explaining lower biannual bearing pattern)
(Fahl et al., 1994), and hence favors slow fruit ripening, better
filling of beans which increases bean size, and ultimately cup
quality (Morais et al., 2006; Vaast et al., 2006; Bote and Struik,
2011; da Silva Neto et al., 2018).

Compared to shade studies on C. arabica coffee, the impacts of
shade on C. canephora are much scarcer. Vaast and Raghuramulu
(2012) showed that the effects of shade on Robusta bean
size were largely dependent on the shade trees selected and
rainfall conditions. Under low rainfall conditions, Robusta
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intercropped with Artocarpus heterophyllus, Dalbergia latifolia,
and Lagerstroemia microcarpa had a higher percentage of
larger than normal bean size (coffee grading AA equivalent
to >7mm diameter) than those intercropped with Grevillea
robusta. However, Robusta intercropped with A. heterophyllus
or G. robusta provided lower AA bean percentage under high
rainfall. Another study also reported that the AA bean percentage
was strongly and positively influenced by the density of non-
Grevillea shade trees but not by that of G. robusta (Boreux et al.,
2016). In a more recent study performed across three Robusta
plantations in Cambodia, Ehrenbergerová et al. (2021) showed
that coffee bean size, as well as fruit ripening and yield, were not
affected by shade trees.

Shade Effects on Coffee Bean Biochemical
Composition
Although shade is widely documented to delay coffee bean
maturity, knowledge of shade effects relating to coffee
biochemical compounds is somewhat limited (Cheng et al.,
2016). In green beans, coffee quality can be ascertained by
quantifying some chemical compounds, namely sugars (e.g.,
sucrose), lipids, chlorogenic acids (CGA), and caffeine (Leroy
et al., 2006). The light effects on sucrose are uncertain, since
it was reported to increase both under FS (Vaast et al., 2006;
Geromel et al., 2008; Delaroza et al., 2017; Worku et al., 2018),
and shaded conditions (Guyot et al., 1996; Muschler, 2001, 2004;
Somporn et al., 2012) (Table 2). A general negative relationship
between fat and sucrose contents has been reported in both
Arabica and C. canephora coffee species (Montagnon et al., 1998;
Bertrand, 2002; Vaast et al., 2006). As sucrose is a precursor of
polysaccharides and fat compounds (Bradbury and Halliday,
1990), Vaast et al. (2006) hypothesized that the high sucrose
(as well CGAs and trigonelline) and low lipid contents (often
observed under FS condition) pointed toward incomplete
bean maturation, although a tendency to lower lipid content
can result also from higher temperatures in mature beans
(Ramalho et al., 2018).

The variation of bean biochemical contents observed under
shaded vs. FS coffee beans is speculated to arise from differential
enzymatic activities. In pericarp and perisperm tissues separated
from C. arabica matured cherries, higher activities of sucrose
synthase (EC 2.4.1.13) and sucrose-phosphate synthase (SPS: EC
2.4.1.14) were detected under shade as compared to full-sun
(Geromel et al., 2006). These two enzymes also had high activity
peaks in developing beans (endosperm) which could explain the
sucrose reduction and the increase in reducing sugars observed
under shade condition. By performing DPPH (1,1-Diphenyl-2-
picrylhydrazyl) radical-scavenging activity assays, Somporn et al.
(2011) reported that bean extracts of C. arabica cv. Catimor
grown under shade had higher antioxidant activities than those
from plants grown under FS.

In amore recent study on Robusta, Alves et al. (2018) analyzed
the polyphenol oxidase (PPO) activity, an enzyme commonly
considered as associated with good cup quality (Mazzafera, 1999).
The results of sensorial analyses performed by these authors
corresponded to PPO activities in beans with shade-grown coffee

plants exhibiting lower PPO than those measured in beans
harvested under FS condition.

The bean biochemical composition (and their associated cup
quality) variation observed in shaded vs. FS cultivated coffee
plants has been attributed to greater expression of genes involved
in important metabolic pathways (de Castro and Marraccini,
2006; Cheng et al., 2020). For example, the elevated sucrose
level observed in lower canopy (LC) beans compared to the
upper canopy (UC) beans is likely the result of increased
expression of a battery of genes (such as SPS1, SPS2.2, SUS2.1,
CIN, VIN1, and VINI.2), previously reported to play a key
role in coffee bean sugar metabolism (Geromel et al., 2006;
Privat et al., 2008; Joët et al., 2009; Marraccini, 2020). Another
example of this is the elevated expression of RD22 (a gene
involved in plant responses to stress as reported by Yamaguchi-
Shinozaki and Shinozaki, 1993) in beans from LC compared
to UC, suggesting that the continued bean growth until the
red stage in LC was facilitated by a stronger dehydration
resistance and less chlorophyll degradation. Today, we are
closer to characterize candidate genes (CGs) associated with the
slow bean maturity process (Cheng et al., 2020). By selecting
genotypes or environments (such as AFS) which are able to
increase the expression of such CGs, higher quality coffee
may be obtained, mitigating the adverse forecasted effects of
climate change.

Shade Effects on Organoleptic Attributes
The previous section showed that shade influenced the
biochemical composition of coffee beans. Among these
compounds, it is well-known that sucrose, caffeine and
trigonelline are essential flavor precursors able to form flavor
components after roasting (Grosch, 2001; Homma, 2001).
For example, caffeine is associated with the strength, body,
and bitterness of coffee beverage and trigonelline is strongly
correlated with high coffee quality (Farah et al., 2006; Janzen,
2010). The genetic origin (species and cultivar) of coffee plants
can greatly influence the final cup quality (Bertrand et al.,
2003, 2006; Leroy et al., 2006; Montagnon et al., 2012). The
environmental conditions of coffee cultivation are also key
drivers of cup quality (Bertrand et al., 2012). Positive quality
attributes such as acidity, fruity character and flavor quality
were found to be correlated and typical of coffees produced
at cool climates and higher elevations (Bertrand et al., 2012).
Therefore it is a great concern that increasing temperatures
(associated with predicted climate change) will likely lead to
negative impact on mid and lowland coffee quality. Worku et al.
(2018) reported that the acidity of coffee grown under shade
increased by 0.22 points for each 100m increase in altitude, while
no altitude effect on cup acidity was reported for coffee grown
without shade. Acidity, trigonelline and total CQA content were
reported to significantly increase in green beans under higher
temperatures (Ramalho et al., 2018). Altogether, these findings
suggest that the drift of these compounds under changing
temperatures might be predominantly genotype-related. In
a more recent study also performed in Ethiopia, C. arabica
grown under diverse forests covers and densities (Tassew et al.,
2021), also reported that cup quality organoleptic attributes
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(acidity, body, raw total, flavor, and cup total values) as well as
grade were significantly and positively affected by shade and
increasing elevation.

Several studies have highlighted the positive effects of shade
on coffee cup quality (Table 2). On the contrary, a negative
effect of natural shade on cup quality (fragrance, acidity, body,
and sweetness) was reported for the C. arabica cv. Caturra
grown at high altitudes (between 1,439 and 1,629m.a.s.l.) in
Southern Colombia (Bosselmann et al., 2009). This negative effect
was likely due to the relatively high altitude of the study site,
suggesting that the shaded environment promoted a lower than
optimal air temperature for coffee production. Negative effects of
shade on cup quality were also reported by Tolessa et al. (2017)
when investigating the effects of both altitude and shade on
the quality of Ethiopian specialty coffee. Their results suggested
that the changes of quality scores driven by altitude, shade, and
harvest period were small, but nonetheless led to re-classification
of speciality coffee (Q1: SCAA note≥85) to a lower classification
(Q2: SCAA note 80–84.75) resulting in a lower international
market price for farmers.

At the field level, the spatial distribution of both coffee
and shade trees also influences the coffee bean biochemical
composition (Delaroza et al., 2017) and consequently its cup
quality. When studying the spatial distribution of different shade
trees (Anadenanthera falcata, Albizia polycephala, and Cassia
grandis), da Silva Neto et al. (2018) observed that the distance
between coffee plants and shade trees affected the cup quality of
beans from C. arabica cv. Obatã Vermelho. The best coffee cup
quality was observed when coffee was harvested ∼1m from the
trunk of the shade trees.

Shade effects on quality act through complex interactions
with environmental (e.g., altitude/temperature), shade trees and
processing (e.g., post-harvest treatments) factors, especially in
sub-optimal zones (Walyaro, 1983; Joët et al., 2010; Geneti,
2019; Hameed et al., 2020). While positive effects of shade
on coffee quality are now well-recognized for Arabica, few
articles were dedicated to show the impact of shade on C.
canephora cup quality. The shade effects on C. canephora coffee
have recently been examined and shown to positively correlate
with growth, yield, physiological, photosynthetic, ecological and
microclimatic variables (Venancio et al., 2019; Piato et al.,
2020). However, shade cover beyond 30% was associated with
reduced beverage quality in the same review. When studying the
effects of shade composition on Indian Robusta coffee quality,
Vaast et al. (2011) reported that increasing the percentage of
Grevillea robusta exotic species resulted in a decrease in cup
quality as well as aroma and body. In a recent study, sensorial
analyses performed by Alves et al. (2018) revealed that roasted-
ripe beans of Brazilian C. canephora (known as “Conilon”)
grown under rubber (Hevea brasiliensis) shade trees produced
a lower cup quality than those grown under FS. The authors
noticed the superior quality of sun-grown Conilon beans was also
accompanied with higher lipid, total sugar contents, PPO activity
and lesser membrane damages than under shade. Altogether,
these observations led the authors to propose that shade-grown
Conilon beans have undergone micro-organismal activity and/or
undesired (or excessive) fermentation during cultivation, which

resulted in lower coffee quality. Given the potential negative
impact on cup quality, the use of densely shaded cultivation
practices is not recommended for C. canephora. However, much
work remains in order to characterize the cultivar and/or
environmental dependency of bean quality changes, both in
Arabica and, especially, in Robusta clones.

BREEDING OF NEW ARABICA COFFEE F1
HYBRIDS FOR FUTURE AGROFORESTRY
SYSTEMS

Coffee cup quality clearly depends on coffee genotypes and on
the genotype-environment interactions (Moschetto et al., 1996;
Bertrand et al., 2006; Montagnon et al., 2012; Cheng et al., 2016).
Historically, coffee breeding efforts have been mostly geared
toward higher yield, as well as to pest and disease resistance
(Lashermes et al., 2009; Bertrand et al., 2011), inadvertently at
the expense of quality. Paradoxically, the demand for specialty,
high quality, and sustainably sourced coffee has dramatically
increased in the last decade (van der Vossen et al., 2015). These
consumer trends call for coffee breeding efforts geared toward
improving coffee quality and production under sustainable
AFS conditions.

Over the last three decades, a new generation of Arabica
coffee hybrids has been developed for a sustainable production of
coffee (Bertrand et al., 2019). Unlike previous breeding programs,
focused on high yielding varieties with CLR resistance (e.g.,
Lashermes et al., 2009; Bertrand et al., 2011), recent breeding
strategies have extended the selection of Arabica hybrids to
include high cup quality and adaptation to shaded systems (van
der Vossen et al., 2015; Georget et al., 2019). These modern
Arabica breeding programs widen the very narrow genetic base
of cultivated American coffee cultivars by crossing them with
wild Ethiopian germplasm (Engelmann et al., 2007; van der
Vossen et al., 2015). Such crosses of cultivated lines (such as the
Sarchimors) with wild pools often results in hybrid vigor where
the offspring (F1-hybrids) exhibit higher vegetative growth and
yield than its two parents (Fu et al., 2014). A quick recovery
process of genes (in a single cross), which has also shown to be
involved in adaptation to shade has recently been explored and
proved to be successful when selecting ombrophilous Ethiopian
individuals as the male parent to the F1 hybrids (van der Vossen
et al., 2015; Georget et al., 2019).

Arabica F1 coffee hybrids have shown a better agronomic
performance, yield and cup quality, and higher bean size
compared to their cultivated Sarchimor parental lines (Bertrand
et al., 2019;Marie et al., 2020). In Costa Rica, F1 hybrids produced
between 11 and 26% more coffee yield compared to their parents
and had an 8–10% increase in the 100-bean weight (Bertrand
et al., 2005). Across a Central American network of 15 field trials
combining FS and AFS systems, these hybrids demonstrated
average yields that were 37% higher than the best commercial
varieties, such as Caturra and Catimor, in both systems (Bertrand
et al., 2006, 2011). Moreover, these high yields and quality
parameters weremore stable over varying environments, climates
and production cycles, thus confirming their homeostasis and
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potential for acclimation to future climate conditions. When
comparing performance under AFS conditions, the hybrids
produced 50% more green beans than commercial pure line
varieties (Bertrand et al., 2011). In culture chambers, F1 hybrids
have also demonstrated a higher resistance to CLR especially
when under low light conditions compared to commercial, pure
line varieties, even when coupled with a low nitrogen supply as
often observed in agroforestry conditions (Toniutti et al., 2017).
It was recently proposed, that an altered circadian clock coupled
with a higher photosynthetic efficiency could explain the superior
agronomic performance of hybrids and their higher homeostasis
(Toniutti et al., 2019; Breitler et al., 2020).

Molecular indicators and/or predictors, which can
characterize shade-adapted coffee genotypes, are currently
being identified. For example, it has been demonstrated that
a high content of specific secondary metabolites such as
chlorogenic acid 5-CQA and xanthone mangiferin indicates an
adaptability to shade in coffee plants (Duangsodsri et al., 2020).
Moreover, 5-CQA and mangiferin leaf contents, in full sun and
shade, allowed for differentiating the genetic groups of Ethiopian
wild accessions (higher contents) vs. cultivated American
pure lines. This may be linked to the origin of the Ethiopian
wild accessions, i.e., understory bushes in mesophilous forests
(Sylvain, 1955) and that of American pure lines derived from the
C. arabica “Yemen-Harare” group domesticated for cultivation
in full sunlight (Scalabrin et al., 2020). The Arabica F1 hybrids
had very similar concentrations of 5-CQA and mangiferin in the
leaves of shaded and unshaded plants to those measured in their
mother American pure lines, suggesting a significant maternal
effect in adaptation to light growing conditions. This should
be considered in future breeding programs. Such biochemical
indicators will strengthen research around the potential for shade
adaptability of coffee, allowing the development of physiological
models of functioning under shade and can be exploited as
potential markers to control the selection of more high-yielding
varieties suitable for agroforestry. For this breeding purpose, all
the genetic resources and the Arabica hybrids under selection
must be placed under shade and this, from the juvenile stages in
the nursery.

Using the new Arabica coffee F1 hybrids as a case study,
the BREEDCAFS project [Breeding Coffee for Agroforestry
Systems (2017–2021), https://www.breedcafs.eu/] has tested
coffee varieties under AFS conditions. This project also
characterized and identified the main response mechanisms
of the coffee plant under several stressful conditions (e.g.,
heat, drought) and the potential mitigation role of eCO2

against stress impacts. Some of these new hybrids have been
found to be better adapted and suited for climate change
scenarios, while maintaining cup-quality and a robust defense
system to biotic and abiotic stresses. The large-scale production
and distribution of F1-hybrids is ongoing to provide farmers
with high-quality and affordable seedlings. New horticultural
solutions like mini-cuttings (Georget et al., 2017; Etienne
et al., 2018) and seed gardens using mother plants with male
sterility (Georget et al., 2019) are making the F1 hybrids more
accessible to coffee farmer communities who often live in remote
mountainous areas.

Unlike Arabica coffee, breeding programs geared toward
C. canephora coffee currently do not select for shaded
cultivation systems (Carvalho et al., 2019; Alkimim et al.,
2021). Moreover, selection criteria for AFS were not clearly
established until Bertrand et al. (2021) proposed a list of
target traits including productivity, size of the beans, sensory
score, and coffee tree volume allowing a high number
of trees per hectare. Applying these criteria, they found
hybrids capable of producing up to 22% more than the
best pure line under full sun. Nevertheless, selecting for
AFS requires years of phenotyping data and are quite time
and money consuming. By combining extensive phenotyping
with eco-physiological, metabolomic and transcriptomic studies,
analytical, and predictive tools for coffee genomic selection have
been recently developed (Mbebi et al., 2021). This has led to
marker-aided rapid selection and a novel approach for breeding
of perennial crops.

If climate change leads to extreme temperature increases, the
extensive gene pool of themore than 120 wild species (Armarego-
Marriott, 2021) may be researched and exploited in breeding
programs aiming for more climate resilient coffee plants.
Currently, only the two species C. arabica and C. canephora are
cultivated. The idea was given recently by Davis et al. (2021) who
reported that C. stenophylla, a wild species from Upper West
Africa reveals a superior flavor and a sensory profile analogous
to high-quality Arabica coffee. These authors demonstrated that
this species grows at a mean annual temperature 6.2–6.8◦C
higher than Arabica coffee. Another example is C. racemosa
Lour. (formerly known as C. ibo) which received a golden
medal in a Lisbon fair in 1906 due to unique characteristics of
taste and aroma, considered the best coffee of all Portuguese
colonies (Vasconcellos, 1906), being present in lowlands (below
200m) and areas of low water availability in Mozambique
(Hallé and Faria, 1973). The valorization of these wild species
could result in the selection of a large number of interspecific
hybrids adapted to much hotter and drier climates as well as
to shade.

COFFEE PRODUCTION UNDER CLIMATE
CHANGE

Some climate model scenarios estimate a 50% decrease in the
global area suitable for coffee production by 2050, which can
reach up to 85% reduction in Brazil alone (Davis et al., 2012;
Baca et al., 2014; Bunn et al., 2015a,b). This loss of adequate
areas was estimated to be accompanied by aggravated incidence
of pests and diseases (Magrach and Ghazoul, 2015), severe yield
drops (van der Vossen et al., 2015), and even the extinction
of a large number of wild coffee species (Davis et al., 2019).
Still, negative climate impacts in coffee producing regions can be
attenuated through climate adaptation measures. These include
research, extension, and credit subsidies for improved coffee
varieties, adequate irrigation, and the implementation of AFS
management and ultimately considering the possibility of crop
substitution (Koh et al., 2020). However, some coffee genotypes
have demonstrated an intrinsic resilience to environmental
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constraints (Dubberstein et al., 2020; Semedo et al., 2021) than
traditionally anticipated, but in line with the somewhat harsh
environmental conditions endured by the plants under full
sun conditions (DaMatta and Ramalho, 2006). Furthermore,
a growing body of recent evidence shows that the increasing
concentration of atmospheric CO2 (usually associated to global
warming), can actually improve the coffee plant photosynthetic
performance (Ramalho et al., 2013; Ghini et al., 2015), promote
carbon investment in reproductive structures (Rakocevic et al.,
2020), and boost yield under adequate rain fed (or irrigated)
water supply (DaMatta et al., 2019; Pham et al., 2019). More
importantly, eCO2 was shown to strengthen the resilience to
supra-optimal temperatures on both C. arabica and C. canephora
plants up to ∼37◦C or even 42◦C (Martins et al., 2014,
2016; Rodrigues et al., 2016; Marques et al., 2021). This was
associated with a reinforcement of photochemical efficiency,
biochemical functioning, and protective mechanisms (Martins
et al., 2016; Rodrigues et al., 2016; Scotti-Campos et al., 2019;
Avila et al., 2020a,b). Although eCO2 can alter the content of
some compounds in the coffee bean (Marcheafave et al., 2020;
Rakocevic et al., 2021), it may also have a positive role in
the preservation of bean quality under heat stress (Ramalho
et al., 2018). Recent reports show the combined effects of high
light and eCO2 in improving coffee growth and photosynthetic
performance (Marçal et al., 2021). However, allometric and
biomass partitioning of the coffee plants is affected by combined
high light and eCO2 treatments, most commonly resulting in a
higher root biomass-to-total leaf area and lower leaf area ratio
(Avila et al., 2020a; Marçal et al., 2021). Other studies have
attempted to mimic high atmospheric demand (such as elevated
vapor pressure deficit) under non-limiting soil-water supply
(Machado Filho et al., 2021). Genotypic variation was observed in
root and stem hydraulic conductances and conductivity, as well
as whole plant conductivity as a coping mechanism for elevated
vapor pressure deficit in coffee. Studies such as these allow for
physiological predictions of how elevated temperatures can affect
coffee in irrigated farming systems.

Additionally, eCO2 was recently reported to have also marked
implications on how coffee plants respond to soil water deficit,
greatly attenuating drought impacts (even under severe water
deficit conditions) regarding, among others, the photosynthetic
performance, hydraulic conductance, and growth, as well as
gene expression and metabolite profile (Avila et al., 2020a,b;
Fernandes et al., 2021; Rodrigues et al., 2021; Semedo et al.,
2021). When eCO2 is combined with a single drought episode,
high genotypic heterogeneity has been observed in the primary
metabolite responses of both C. arabica and C. canephora
cultivars (Rodrigues et al., 2021). These findings stress the
phenotypic plasticity of the Coffea genome and how it can
be harnessed through targeted climate adaptation breeding
programs. Moreover, improved modeling approaches (namely
integrating the eCO2 “fertilization” effect) can constitute a
powerful tool to assist coffee cultivation under climate change
(Rahn et al., 2018). By designing shade management strategies
(i.e., selecting the right tree species according to the local
context and regulating shade level along an altitudinal or rainfall
range) coffee systems can be adapted to climate change at

landscape scale. Despite recent projections by Moat et al. (2017),
showing an overall negative impact of climate change on the
Ethiopian coffee sector, the recent findings on eCO2 and the
use of elite coffee genotypes reviewed here support a less grim
perspective than earlier forecasted by modeling approaches
eluded to (largely based on temperature drifts) (DaMatta et al.,
2019). In this context, continued breeding for improved shade
tolerance and climate adaptability will likely further improve
land-use prospects for coffee cultivation.

CONCLUDING REMARKS

We started out this work in order to shed light on whether
shaded-coffee is a feasible, nature-based solution for climate
change in coffee production. In order to answer this enquiry,
we took a comprehensive look at the coffee farm, starting
with the farmer’s use of shade and global perceptions of
the services of shade trees across the coffee belt. We then
focused on the aboveground interactions of the shaded coffee
microenvironment (including effects on the air temperature and
water-use) as well as pest and disease incidence. The carbon
assimilation and phenology of coffee plants was examined under
shaded environments as these aspects directly relate to coffee
yields. The development of coffee quality attributes under shade
is highly contentious and thus also present in this evaluation of
the coffee-AFS. Breeding trends and directions were considered
in relation to Arabica F1 hybrids and Robusta clones under
AFS. Finally, we evaluated the newest data pertaining to coffee
production under climate change in order to determine the
most relevant physiological limitations of the coffee plant under
future climates.

Many smallholder coffee farmers demonstrate a sound
expertise in shade management for coffee production throughout
the seasons to optimize and counteract farm humidity, light
interception and fungal pathogen attacks. By utilizing shade,
coffee farmers may also reap the associated benefits including
increased biodiversity, biological control of pests and diseases,
climate-buffering services, as well as diversified incomes resulting
from shade-tree products. While there has been a general
decrease in coffee AFS over the last couple of decades, the
growth in demand for specialty, certified coffee, combined with
consumers’ increased concern for sustainability and farmers’
need to adapt to climate change, could reverse the trend, and
favor the uptake of more coffee AFS in the future.

Shaded-coffee systems are shown to alter both the above-
and belowgroundmicroenvironment, and impact the physiology,
phenology (and therefore yield) as well as quality attributes of
coffee. Recent work examining the shade effects (associated with
AFS) on the coffee micro-environment tended to corroborate
past studies which showed reductions in air temperatures, wind
speeds, radiation levels, weeds, coffee water transpiration losses,
and protection from frost events.

Regarding the physiology and phenology of coffee plants
under shade, the photosynthetic performance of coffee plants can
potentially compensate for the reduction in irradiation under
shaded-environments; however, a lowered flowering intensity
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can lead to yield reductions if the shade level is too high. These
physiological aspects could be taken into account also in future
breeding efforts, in order to reduce negative shade effects in
new genotypes.

In terms of the shade effects on coffee diseases and pests,
many of the recent findings appear to be locally specific to
their environments and/or the shade tree species used, hence
a large variation was observed by a number of studies in this
context. Pest or pathogen management advice should be as
local as possible and linked to weather forecasting (especially
precipitation and humidity) in order to be relevant to the coffee
farming region.

Several cup quality and/or biochemical attributes of coffee
were also shown to evolve positively under shade on C. arabica
cultivars such as Catuaí, Catimors (especially CR95), and
Sarchimors (especially IAPAR59), although for some cultivars no
sensible advantages arise from shade implementation. Moreover,
recent Arabica breeding programs have developed F1-hybrids
able to maintain high yield and cup quality under shaded
conditions. In the case of C. canephora coffee, preliminary
research has pointed toward a decrease in quality aspects under
shaded environments. Moreover, current breeding trends for C.
canephora do not prioritize selection for shade, but could be
oriented toward breeding for high-temperature-resistant clones.

Studies examining the impact of eCO2 on the coffee plant
are quite new (within the last decade), but have already shown
that eCO2 can improve coffee plant photosynthetic performance,
promote carbon investment in reproductive structures, boost
yield, and, especially important can increase plant vigor and its
resilience to heat and drought constraints. However, the coffee
plant is still highly vulnerable to the other detrimental impacts
associated with climate change, thus new management practices
must be considered for future production.

Overall, coffee AFS should match farmers’ needs along
with risk assessments of climatic hazards specific to the local
environment. When AFS are site-specific in this way they can act
as an adaptation strategy against climate change. The buffering
effects, which AFS have on the coffee microclimate, serve as a
mitigation against unfavorable environments or climate change
events. Given this, coffee farmers may in fact be better off
managing an AFS compared to intensive FS systems. Finally,
the array of ecosystem services together with alternate revenue
streams and increased cup qualities (for Arabica), provided by
shade trees, may help compensate for potential yield losses under
coffee AFS.

In order to correct the geography bias evident in the literature,
an expansion of AFS-coffee studies is encouraged to take place
in South East Asia (e.g., Vietnam and India) as well as in
Africa (e.g., Kenya, Tanzania, and Uganda). This would allow
for the examination of coffee-AFS across different cultivation
environments and eventually lead to the implementation of
management practices, which are both culturally and locally
relevant. Future research should continue the development of
coffee varieties adapted to agroforestry systems, in particular
those which can maintain a high level of yield under shade.
This can help to improve the overall profitability of coffee
plantations in AFS. Research must continue to refine extension
tools including the selection of locally-adapted shade tree
species and mobilize their widespread use by coffee farmers.
Other management practices can also be optimized along
the coffee production cycle such especially concerning shade
tree management (i.e., timely pruning). Finally, multi-faceted
approaches which consider the market, social, and policy
issues must also come into play in order to provide necessary
recommendations to enable the adoption of AFS in coffee
cultivation. An example of this is an incentivized scheme for the
renovation of existing coffee farms using AFS together with new
Arabica hybrid varieties bred for the AFS environment.
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