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Abstract

We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model
when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a
budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected
population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss
and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already
proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.
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1 Introduction

Since the pioneering work of Kermack and McKendrick
[16], the SIR model has been very popular in epidemi-
ology, as the basic model for infectious diseases with di-
rect transmission (see for instance [22,18] as introduc-
tions on the subject). It retakes great importance nowa-
days due to the recent coronavirus pandemic. In face of a
new pathogen, non-pharmaceutical interventions (such
as reducing physical distance in the population) are of-
ten the first available means to reduce the propagation
of the disease, but this has economic and social costs.
In [20,19], the authors underline the need of control
strategies for epidemic mitigation by “flattering the epi-
demic curve”, rather than eradication of the disease that
might be too costly. Several works have applied the op-
timal control theory considering interventions as a con-
trol variable that reduces the effective transmission rate
of the SIR model, and studied optimal strategies with
criteria based on running and terminal cost over fixed fi-
nite interval or infinite horizon [4,7,8,15,21,5,9,12,17,6].
However, the highest peak of the epidemic appears to be
the highly relevant criterion to be minimized (especially

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author .

when there is an hospital pressure to save individuals
with severe forms of the infection). In [20], the authors
studied the minimization of the peak of the infected pop-
ulation under the constraint that interventions occur on
a single time interval of given duration. They obtained
that the optimal control consists in four phases: no inter-
vention, apply interventions to maintain the prevalence
constant, apply a full intervention that stops the disease
transmission and finally release any intervention. This
control presents thus three switches and relies on a full
break of the transmission. In the present work, we con-
sider the same criterion, but under a budget constraint
on the control, as an integral cost. We believe such a con-
straint to be more relevant as it takes into account the
strength of the interventions and does not impose an a
priori single time interval of given length for the inter-
ventions to take place. We have been able to prove that
the optimal solution consists indeed in having interven-
tions on a single time interval but with a control strat-
egy that differs from the one obtained in [20]. We shall
see that it consists in applying interventions to maintain
the prevalence at a constant precise value, so that the in-
terventions are reduced progressively to the point where
they are no longer necessary. Therefore, this strategy
does not require to apply a full intervention as in [20],
which in practice is much less demanding. Let us also
mention a more recent work [1] that considers a kind of
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“dual” problem, which consists in minimizing an inte-
gral cost of the control under the constraint that the epi-
demic stays below a prescribed value and an additional
constraint on the state at a fixed time. The structure of
the optimal strategy given by the authors in [1] is simi-
lar to the one we obtained without having to fix a time
horizon and a terminal constraint. All the cited works
rely on numerical methods to provide the effective con-
trol. Here, we give an explicit analytical expression of
the optimal control.

Let us stress that optimal control problems with maxi-
mum cost are not in the usual Mayer, Lagrange or Bolza
forms of the optimal control theory [10], for which the
necessary optimality conditions of Pontryagin’s Princi-
ple apply, but fall into the class of optimal control with
L∞ criterion, for which characterizations have been pro-
posed in the literature mainly in terms of the value func-
tion (see for instance [3]). Although necessary optimality
conditions and numerical procedures have been derived
from theses characterizations (see for instance [2,11]),
these approaches remain quite difficult and numerically
heavy to be applied on concrete problems. On the other
hand, for minimal time problems with planar dynamics
linear with respect to the control variable, comparison
tools based on the application of the Green’s Theorem
have shown that it is possible to dispense with the use
of necessary conditions to prove the optimality of a can-
didate solution [14]. Although our criterion is of differ-
ent nature, we show in the present work that it is also
possible to implement this approach for our problem.

The paper is organized as follows. In the next section, we
posit the problem of peak minimization to be studied.
In Section 3, we define a class of feedback strategies that
we called “NSN”, and give some preliminary properties.
Section 4 proves the existence of an NSN strategy which
is optimal for our problem, andmakes it explicit. Finally,
Section 5 illustrates the optimal solutions on numerical
simulations and discusses about the optimal strategy.

2 Definitions and problem statement

We consider the SIR model
Ṡ = −βSI(1− u)

İ = βSI(1− u)− γI

Ṙ = γI

(1)

where S, I and R denotes respectively the proportion of
susceptible, infected and recovered individuals in a pop-
ulation of constant size. The parameters β and γ are the
transmission and recovery rates of the disease. The con-
trol u, which belongs to U := [0, 1], represents the efforts
of interventions by reducing the effective transmission
rate. For simplicity, we shall drop in the following the R

dynamics. Throughout the paper, we shall assume that
the basic reproduction number R0 is larger than one, so
that an epidemic outbreak may occur.

Assumption 1

R0 :=
β

γ
> 1.

For a positive initial condition (S(0), I(0)) = (S0, I0)
with S0 + I0 ≤ 1, we consider the optimal control prob-
lem which consists in minimizing the epidemic peak un-
der a budget constraint

inf
u(·)∈U

max
t≥0

I(t), (2)

where U denotes the set of measurable functions u(·)
that take values in U and satisfy the L1 constraint∫ +∞

0

u(t)dt ≤ Q.

In the epidemiological context, the integral of the con-
trol measures the cumulative efforts in reducing the in-
cidence rate, and Q is a given value not be to exceeded.

Remark 1 From equations (1), one can easily check that
the solution I(t) tends to zero when t tends to +∞ what-
ever is the control u(·), so that the supreme of I(·) over
[0,+∞) in (2) is reached.

Equivalently, one can consider the extended dynamics.
Ṡ = −βSI(1− u),

İ = βSI(1− u)− γI,

Ċ = −u,

(3)

with the initial condition (S(0), I(0), C(0)) = (S0, I0, Q)
and the state constraint

C(t) ≥ 0, t ≥ 0. (4)

A solution of (3) is admissible if the control u(·) takes
its values in U and the condition (4) is fulfilled.

3 The NSN feedback

Let us denote the immunity threshold

Sh := R−1
0 =

γ

β
< 1.

Note that S(·) is a non increasing function and that one

has İ ≤ 0 when S ≤ Sh, whatever is the control. If
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S0 ≤ Sh, the maximum of I(·) is thus equal to I0 for any
control u(·), which solves the optimal control problem.
We shall now consider that the non-trivial case.

Assumption 2
S0 > Sh.

Under this assumption, we thus know that for any ad-
missible solution, the maximum of I(·) is reached for
S ≥ Sh. Consider the dynamics with the control u(t) = 0
for all t ≥ 0. One can check from equations (1) that the
quantity

t 7→ S(t) + I(t)− Sh log(S(t)) (5)

is constant. Then, one has

S(t) + I(t)− Sh log(S(t)) = S0 + I0 − Sh log(S0) (6)

for any t > 0, and the maximum of I(·) reached for
S = Sh is given by the value

Ih := I0 + S0 − Sh − Sh log

(
S0

Sh

)
.

We define the “NSN” (for null-singular-null) strategy as
follows.

Definition 1 For Ī ∈ [I0, Ih], consider the feedback con-
trol

ψĪ(I, S) :=

{
1− Sh

S , if I = Ī and S > Sh,

0, otherwise.
(7)

We denote the L1 norm associated to the NSN control

L(Ī) :=
∫ +∞

0

uψĪ (t)dt, Ī ∈ [I0, Ih],

where uψĪ (·) is the control generated by the feedback (7).

This control strategy consists in three phases:

(1) no intervention until the prevalence I reaches Ī (null
control),

(2) maintain the prevalence I equal to Ī by adjusting
the interventions until S reaches Sh or the budget
is entirely consumed (singular control),

(3) no longer intervention when S < Sh (null control).

Remark 2 There is no switch of the control between
phases 2 and 3, because u(t) tends to zero when S(t)
tends to Sh, according to expression (7).

We shall discuss the practicability of this control in Sec-
tion 5.

One can check straightforwardly the following properties
are fulfilled.

Lemma 1 For any Ī ∈ [I0, Ih], the maximal value of the
control uψĪ (·) is given by

umax(Ī) := 1− Sh
S̄
< 1,

where S̄ is solution of

S̄ − Sh log S̄ = S0 + I0 − Sh logS0 − Ī .

Moreover, any solution given by the NSN strategy verifies

max
t≥0

I(t) = Ī .

4 Optimal strategy

We first show that the function L can be made explicit.

Proposition 1 One has

L(Ī) = Ih − Ī

βShĪ
, Ī ∈ [I0, Ih]. (8)

PROOF. Note first that whatever is Ī, S(·) is decreas-
ing with the control (7). One can then equivalently pa-
rameterize the solution I(·), C(·) by

σ(t) := S0 − S(t),

instead of t. Let us put σh := σ(th) = S0 − Sh.

As long as I < Ī, one has u = 0 which gives
dI

dσ
= f(σ) := 1− Sh

S0−σ > 0,

dC

dσ
= 0.

Remind, from the definition of Ih, that the solution I(·)
with u = 0 reaches Ih in finite time. Therefore, one can
define the number

σ̄ := inf{σ ≥ 0, I(σ) = Ī} ≤ σh,

which verifies ∫ σ̄

0

f(σ) dσ = Ī − I0. (9)
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For σ ∈ [σ̄, σh], one has u = 1− Sh/S, that is
dI

dσ
= 0,

dC

dσ
= − 1

βShĪ

(
1− Sh

S0−σ

)
= − f(σ)

βShĪ
< 0.

One then obtains

L(Ī) = C(0)− C(σh) =
1

βShĪ

∫ σh

σ̄(Ī)

f(σ) dσ,

and with (9) one can write

L(Ī) = 1

βShĪ

(∫ σh

0

f(σ) dσ + I0 − Ī

)
.

On the other hand, one has∫ σh

0

f(σ) dσ = σh + Sh log

(
Sh
S0

)
= Ih − I0,

which finally gives the expression (8).

Then, the best admissible NSN control can be given as
follows.

Corollary 1 When Q ≤ Ih−I0
βShI0

, the smallest Ī ∈ [I0, Ih]

for which the solution with the NSN strategy is admissible,
is given by the value

Ī⋆(Q) :=
Ih

QβSh + 1
(10)

and one has
L(Ī⋆(Q)) = Q. (11)

We give now our main result that shows that the NSN
strategy is optimal.

Proposition 2 Let Assumptions 1 and 2 be fulfilled.
Then, the NSN feedback is optimal with

Ī =

{
Ī⋆(Q), Q < Ih−I0

βShI0
,

I0, Q ≥ Ih−I0
βShI0

,

where Ī⋆(Q) is defined in (10), and Ī is the optimal value
of problem (2).

PROOF. When Q ≥ Ih−I0
βShI0

, the NSN strategy is ad-

missible and the corresponding solution verifies

max
t≥0

I(t) = I0,

which is thus optimal.

Consider now Q < Ih−I0
βShI0

. Let (S⋆(·), I⋆(·), C⋆(·)) be the
solution generated by the NSN strategy with Ī = Ī⋆(Q),
and denote u⋆(·) the corresponding control. Let

S̄ := S⋆(t̄) where t̄ = inf{t > 0, I⋆(t) = Ī},

and
t⋆h := inf{t > t̄, S⋆(t) = Sh}.

We consider in the (S, I) plane the curve

C⋆ := {(S⋆(t), I⋆(t)); t ∈ [0, t⋆h]}.

For S ≥ S̄, the control (7) is null and a upward normal
to C⋆ is given by the expression

n⃗(S, I) =

[
βSI − γI

βSI

]
, (S, I) ∈ C⋆ with S ∈ [S̄, S0].

On the other hand, the vector field in the (S, I) plane of
any admissible solution is

v⃗(S, I, u) =

[
−βSI(1− u)

βSI(1− u)− γI

]
.

Then, one has

n⃗(S, I).v⃗(S, I, u) = −βγSI2u ≤ 0,

for any (S, I) ∈ C⋆ with S ∈ [S̄, S0], which shows that
any admissible solution is below the curve C⋆ in the (S, I)
plane for S ∈ [S̄, S0]. For S ∈ [Sh, S̄], the curve C⋆ is an
horizontal line with I = Ī. Therefore, if there exists an
admissible solution (S(·), I(·), C(·)) with maxt I(t) < Ī,
its trajectory in the (S, I) plane has to be below the
curve C⋆ for any S ∈ [Sh, S0]. Let

th := inf{t > 0, S(t) = Sh}.

One has thus I(th) < Ī. Define

T := t⋆h +
1

γ
log

(
Ī

I(th)

)
> t⋆h,

and consider the non-admissible solution (S̃(·), Ĩ(·), C̃(·))
of (3) on [0, T ] defined by the control

ũ(t) =

{
u⋆(t), t ∈ [0, t⋆h),

1, t ∈ [t⋆h, T ].

One can straightforwardly check with equations (3) that

the solution (S̃(t), Ĩ(t), C̃(t)) is{
(S⋆(t), I⋆(t), C⋆(t)), t ∈ [0, t⋆h),

(Sh, Ī exp(−γ(t− t⋆h)), C
⋆(t⋆h) + t⋆h − t), t ∈ [t⋆h, T ].
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Remind, from Corollary 1, that one has C⋆(t⋆h) = 0

by equation (11)). Clearly, one has (S̃(T ), Ĩ(T )) =

(Sh, I(th)) and C̃(T ) < 0. We consider now in the (S, I)
plane the simple closed curve Γ which is the concatena-
tion of the trajectory (S̃(·), Ĩ(·)) on forward time with
the trajectory (S(·), I(·)) in backward time:

Γ := {(S̃(τ), Ĩ(τ)), τ ∈ [0, T ]}∪
{(S(T + th − t), I(T + th − t)), τ ∈ [T, T + th]},

that is anticlockwise oriented by τ ∈ [0, T + th]. Then
one has

C̃(T )− C(th) =

∮
Γ

dC.

From equations (3), one gets

dC = − dS
βSI − dt = − dS

βSI +
dS+dI
γI =

(
1− Sh

S

)
dS
γI + dI

γI

and thus

C̃(T )− C(th) =

∮
Γ

P (S, I)dS +Q(S, I)dI,

with

P (S, I) =

(
1− Sh

S

)
1

γI
, Q(S, I) =

1

γI
.

By the Green’s Theorem, one obtains

C̃(T )− C(th) =

∫∫
D

(
∂Q

∂S
(S, I)− ∂P

∂I
(S, I)

)
dSdI

=

∫∫
D

(
1− Sh

S

)
1

γI2
dSdI > 0,

where D is the domain bounded by Γ (see Figure 1 as

an illustration). This implies C(th) < C̃(T ) < 0 and
thus a contradiction with the admissibility condition
(4) of the solution (S(·), I(·), C(·)). We conclude that
(S⋆(·), I⋆(·), C⋆(·)) is optimal.

5 Numerical illustrations and discussion of
practical considerations

We illustrate the behavior of the optimal trajectories
with numerical simulations for parameters and initial
condition borrowed from [20] , which studied the initial
stage of COVID-19 disease. (see Table 1). For these val-
ues, one computes

R0 = 3, Sh =
1

3
, Ih ≃ 0.3.

Figure 2 presents a simulation of the optimal NSN strat-
egy for the budgetQ = 28, as an example (the minimum

D

S
h

I

S

I

S S0

Fig. 1. The closed curve Γ is composed of the trajectory
(S⋆(·), I⋆(·)) in blue up to to the point (Sh, Ī), the additional

part (S̃(·), Ĩ(·)) in red and the hypothetical better trajectory
(S(·), I(·)) in backward time in green.

β γ S(0) I(0)

0.21 0.07 1− 10−6 10−6

Table 1
Chosen SIR parameters and initial condition, as in [20].

Fig. 2. State variables and control over time for the optimal
strategy with the budget Q = 28.

peak is reached for Ī ≃ 0.1015). One can see that for
maintaining the size I at the constant level Ih, the con-
trol u is decreasing with respect to time until it reaches
the value 0 (no intervention), exactly when the size of
susceptible S reaches the immunity value Sh. A partic-
ular feature of the optimal strategy is to do not have
discontinuity of the control when the optimal trajectory
leaves the singular arc. In practice, one might not have a
precise measurement of the size of the susceptible popu-
lation S to apply the feedback law (7). However, assum-
ing that the proportion of the infected population I is
measured with a relatively good accuracy, say daily, one
could adjust the level of restrictions u to keep I as close
as possible to Ih. Let us underline that one does not nec-
essarily need to measure S to know when to stop the
interventions: they have simply to be applied until the
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budget Q is consumed. Equivalently, as the correspond-
ing effort u decreases progressively until vanishing, the
interventions phase ceases also when the control u takes
the value 0.

As a comparison, we have computed the optimal strat-
egy which minimizes the epidemic peak for a fixed time
duration of interventions without consideration of any
budget, obtained byMorris et al. in [20] (see Figure 3). It
consists in four phases: no intervention, maintain I con-
stant, apply themaximal control (i.e. u = 1) and stop the
intervention. This control presents thus three switches
and relies on a full break of the transmission, differently
to the NSN strategy which presents only one switch (see
Remark 2) and does not require a full break (see the
maximal value of the control given in Lemma 1). Apply-

Fig. 3. Comparison of the time evolution of the infected
population I and the control u between the optimal NSN
strategy (in blue) and the optimal one of Morris et al. (in
red)) [20].

ing an NSN strategy appears thus less restrictive to be
applied in practice. The strategy proposed by Morris et
al. induces also a second peak: after the third phase, the
prevalence I increases again up to a peak which has to
be equal to the level maintained during the second phase
if it is optimally chosen. But this second peak turns out
to be non robust under a mischoice (or mistiming) of the
second phase (see [20] for more details). Comparatively,
the NSN is naturally robust with respect to a bad choice
of Ī: the maximum value of I is always guaranteed to be
equal to Ī. However, a mischoice of Ī has an impact on
the budget of the NSN strategy, given by expression (8)
and illustrated in Table 2 (for model parameters given
in Table 1 and Q = 28).

Table 3 gives the asymptotic size S∞ < Sh of the sus-
ceptible population for the two strategies under budget
or duration constraint, corresponding to Figure 3. Note
that for both strategies one has I = Ī (where Ī is the
peak value of I) and S = Sh when entering the last

Ī − Ī⋆ −10% −5% −1% +5% +10%

L(Ī)−Q +17% +8% +1.5% −7% −14%

Table 2
Variation of the control budget of the NSN strategy under a
mischoice of Ī.

phase with u = 0. Then, S∞ can be determined with the
invariant property (5), as the solution of the equation

f(S∞) := S∞ − Sh log(S∞) = Sh + Ī − Sh log(Sh).

where f is decreasing for S∞ < Sh. This shows that for
both constraints a lower peak implies a larger value of
the final size of S (i.e. fewer susceptible individuals that
have contracted the disease).

same budget same duration

NSN S∞ ≃ 0.135

Morris et al. S∞ ≃ 0.129 S∞ ≃ 0.152

Table 3
Comparaison of the final size of S for the two strategies,
corresponding to Figure 3.

In case of a new epidemic among a large population, one
can consider that the initial number of infected individ-
uals is very low, while all the remaining population is
susceptible. Therefore, one has S0 + I0 = 1 with I0 very
small, and the optimal value of Ī can be well approxi-
mated by its limiting expression for I0 = 0, that is

Īℓ :=
1− Sh + Sh log(Sh)

QβSh + 1
. (12)

From property (6), one also gets an approximation of
the value S̄ℓ of S when I reaches Īℓ with u = 0, as the
solution of the equation

S̄ℓ + Īℓ − Sh log(S̄ℓ) = 1,

and then an approximation of the duration of the inter-
vention is given by

dℓ :=
Sh − S̄ℓ
γĪℓ

(one can easily check that along the singular arc I = Ī,

one has Ṡ = −γĪ). For the parameters of Table 1, one
obtains the limiting values given in Table 4. Provided
that parameters β and γ of the disease are known (or
estimated), and a budget Q is given, one can thus de-
termine the minimal value of the peak and the optimal
strategy to apply, without the knowledge of the initial
size of the infected population.

In practice, one might not know precisely the initial con-
dition. However, assuming that the proportion of the
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Īℓ S̄ℓ dℓ

0.1015 0.8406 71.39

Table 4
The limiting optimal values for arbitrarily small I0 (with
Q = 28)

infected population is measured with a relatively good
accuracy when it is not too small, one could apply the
approximate feedback which consists in waiting the pro-
portion I to be about the value Īl adjusting daily the
effort u so that I remains close to Īl during the time in-
terval dl.

The question of parameters estimation in the SIR model
from data is out of the scope of the present work. How-
ever, while reaching I = Īℓ without intervention, one
may expect refinement of the estimates of β and γ and
thus an adjustment of the value of Īℓ.

Note that if it is rather the height of the peak Ī that
is imposed, the corresponding effort can be determined
with expression (12), that is

Q =
1

βSh

(
1− Sh
Ī

− 1

)
,

as well as the duration of the intervention.

To have a better insight of the impacts of the available
budget Q on the course of the epidemic, we have consid-
ered four characteristics numbers:

• ti: the starting date of the intervention,
• d: the duration of the intervention,
• Ī: the height of the peak,
• umax: the maximal value of the control,

of the optimal solution, depicted on Figure 4 as a func-
tion of Q for I0 = 10−6 and S0+I0 = 1. Let us note that
the maximal budget Q under which it is not possible to
immediately slow down the progress of the epidemic is
given, according to Proposition 2, by

Qmax :=
Ih − I0
βShI0

≃ 4.3 106,

which is quite high. Moreover, the maximal value of the
control is bounded by the value

umax(Ī) ≤ 1− Sh =
2

3
,

far from the value 1 (that would consists in a total lock-
down of the population). On Figure 4, one can see that
the peak Ī can be drastically reduced under a reason-
able budget, and that taking larger budgets slows down

Fig. 4. Characteristics numbers as functions of Q.

the decrease of the peak, while the duration of the in-
tervention carries on increasing, almost linearly. Indeed,
one has Ṡ = −γĪ on the singular arc and one thus gets
d = (S̄ − Sh)/(γĪ). For an optimal value of Ī, one has
Q = (Ih − Ī)/(γĪ) from (10) and then one obtains

d =
S̄ − Sh
Ih − Ī

Q.

For large values of Q, Ī is small and S̄ closed to one,
which gives an approximation of d as the linear function
of Q

d ≃ 1− Sh
Ih

Q ≃ 2.194Q.

This implies that for a long duration, fixing the budget
Q or the duration d tends to be equivalent. Therefore, for
the same large duration, the optimal peak gets near from
the optimal one of the strategy of Morris et al. which
constraints the duration only, but the difference of the
budgets of these two strategies gets increasing with al-
ways a lower one for the NSN strategy, as one can see on
Figure 5.

Fig. 5. Comparison of the performances of the optimal strate-
gies with same duration (NSN in blue and Morris et al. [20]
in red).

Finally, this analysis highlights (as already mentioned
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in [20,19]) the importance to do not intervene too early
(unless one has a very large budget) and to choose the
“right” time to launch interventions. We believe that
curves as in Figure 4 might be of some help for decision
makers.

6 Conclusion

In this note, we have shown how to use the Green’s The-
orem as a geometric tool to prove the optimality of the
“null-singular-null” control strategy for the minimiza-
tion of the epidemic peak under a budget constraint.
This strategy turns out to be different than the one pro-
posed by Morris et al. [20] which minimizes the peak
fixing a single interval length for interventions, and is
simpler to apply. Although the objective of the present
work was not to optimize the asymptotic size of the sus-
ceptible population (as for instance in [6]), the study of
a compromise between the epidemic peak and the final
size could be the matter of future investigations.
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