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An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint ⋆

Keywords: Optimal control, maximum cost, feedback control, epidemiology, SIR model

We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L 1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.

Introduction

Since the pioneering work of Kermack and McKendrick [16], the SIR model has been very popular in epidemiology, as the basic model for infectious diseases with direct transmission (see for instance [START_REF] Weiss | The SIR model and the foundations of public health[END_REF][START_REF] Li | An Introduction to Mathematical Modeling of Infectious Diseases[END_REF] as introductions on the subject). It retakes great importance nowadays due to the recent coronavirus pandemic. In face of a new pathogen, non-pharmaceutical interventions (such as reducing physical distance in the population) are often the first available means to reduce the propagation of the disease, but this has economic and social costs. In [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF][START_REF] Lobry | Qu'est ce que le Pic d'une Épidémie et Comment le Contrôler?[END_REF], the authors underline the need of control strategies for epidemic mitigation by "flattering the epidemic curve", rather than eradication of the disease that might be too costly. Several works have applied the optimal control theory considering interventions as a control variable that reduces the effective transmission rate of the SIR model, and studied optimal strategies with criteria based on running and terminal cost over fixed finite interval or infinite horizon [START_REF] Behncke | Optimal control of deterministic epidemics[END_REF][START_REF] Bolzoni | Time-optimal control strategies in SIR epidemic models[END_REF][START_REF] Bolzoni | Optimal control of epidemic size and duration with limited resources[END_REF][START_REF] Kantner | Beyond just "flattening the curve": Optimal control of epidemics with purely nonpharmaceutical interventions[END_REF][START_REF] Palmer | Optimal control of COVID-19 infection rate with social costs[END_REF][START_REF] Bliman | How best can finite-time social distancing reduce epidemic final size[END_REF][START_REF] Caulkins | The optimal lockdown intensity for COVID-19[END_REF][START_REF] Freddi | Optimal control of the transmission rate in compartmental epidemics[END_REF][START_REF] Ketcheson | Optimal control of an SIR epidemic through finite-time non-pharmaceutical intervention[END_REF][START_REF] Bliman | Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model[END_REF]. However, the highest peak of the epidemic appears to be the highly relevant criterion to be minimized (especially ⋆ This paper was not presented at any IFAC meeting. Corresponding author .

when there is an hospital pressure to save individuals with severe forms of the infection). In [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF], the authors studied the minimization of the peak of the infected population under the constraint that interventions occur on a single time interval of given duration. They obtained that the optimal control consists in four phases: no intervention, apply interventions to maintain the prevalence constant, apply a full intervention that stops the disease transmission and finally release any intervention. This control presents thus three switches and relies on a full break of the transmission. In the present work, we consider the same criterion, but under a budget constraint on the control, as an integral cost. We believe such a constraint to be more relevant as it takes into account the strength of the interventions and does not impose an a priori single time interval of given length for the interventions to take place. We have been able to prove that the optimal solution consists indeed in having interventions on a single time interval but with a control strategy that differs from the one obtained in [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF]. We shall see that it consists in applying interventions to maintain the prevalence at a constant precise value, so that the interventions are reduced progressively to the point where they are no longer necessary. Therefore, this strategy does not require to apply a full intervention as in [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF], which in practice is much less demanding. Let us also mention a more recent work [START_REF] Avram | Optimal control of a SIR epidemic with ICU constraints and target objectives[END_REF] that considers a kind of "dual" problem, which consists in minimizing an integral cost of the control under the constraint that the epidemic stays below a prescribed value and an additional constraint on the state at a fixed time. The structure of the optimal strategy given by the authors in [START_REF] Avram | Optimal control of a SIR epidemic with ICU constraints and target objectives[END_REF] is similar to the one we obtained without having to fix a time horizon and a terminal constraint. All the cited works rely on numerical methods to provide the effective control. Here, we give an explicit analytical expression of the optimal control. Let us stress that optimal control problems with maximum cost are not in the usual Mayer, Lagrange or Bolza forms of the optimal control theory [START_REF] Cesari | Optimization Theory and Applications[END_REF], for which the necessary optimality conditions of Pontryagin's Principle apply, but fall into the class of optimal control with L ∞ criterion, for which characterizations have been proposed in the literature mainly in terms of the value function (see for instance [START_REF] Barron | The Bellman equation for minimizing the maximum cost[END_REF]). Although necessary optimality conditions and numerical procedures have been derived from theses characterizations (see for instance [START_REF] Barron | The Pontryagin maximum principle for minimax problems of optimal control[END_REF][START_REF] Di Marco | Minimax optimal control problems. Numerical analysis of the finite horizon case[END_REF]), these approaches remain quite difficult and numerically heavy to be applied on concrete problems. On the other hand, for minimal time problems with planar dynamics linear with respect to the control variable, comparison tools based on the application of the Green's Theorem have shown that it is possible to dispense with the use of necessary conditions to prove the optimality of a candidate solution [START_REF] Hermes | Functional Analysis and Time Optimal Control[END_REF]. Although our criterion is of different nature, we show in the present work that it is also possible to implement this approach for our problem.

The paper is organized as follows. In the next section, we posit the problem of peak minimization to be studied. In Section 3, we define a class of feedback strategies that we called "NSN", and give some preliminary properties. Section 4 proves the existence of an NSN strategy which is optimal for our problem, and makes it explicit. Finally, Section 5 illustrates the optimal solutions on numerical simulations and discusses about the optimal strategy.

Definitions and problem statement

We consider the SIR model

       Ṡ = -βSI(1 -u) İ = βSI(1 -u) -γI Ṙ = γI (1)
where S, I and R denotes respectively the proportion of susceptible, infected and recovered individuals in a population of constant size. The parameters β and γ are the transmission and recovery rates of the disease. The control u, which belongs to U := [0, 1], represents the efforts of interventions by reducing the effective transmission rate. For simplicity, we shall drop in the following the R dynamics. Throughout the paper, we shall assume that the basic reproduction number R 0 is larger than one, so that an epidemic outbreak may occur.

Assumption 1

R 0 := β γ > 1.
For a positive initial condition (S(0), I(0)) = (S 0 , I 0 ) with S 0 + I 0 ≤ 1, we consider the optimal control problem which consists in minimizing the epidemic peak under a budget constraint inf

u(•)∈U max t≥0 I(t), (2) 
where U denotes the set of measurable functions u(•) that take values in U and satisfy the

L 1 constraint +∞ 0 u(t)dt ≤ Q.
In the epidemiological context, the integral of the control measures the cumulative efforts in reducing the incidence rate, and Q is a given value not be to exceeded.

Remark 1 From equations (1), one can easily check that the solution I(t) tends to zero when t tends to +∞ whatever is the control u(•), so that the supreme of

I(•) over [0, +∞) in (2) is reached.
Equivalently, one can consider the extended dynamics.

       Ṡ = -βSI(1 -u), İ = βSI(1 -u) -γI, Ċ = -u, (3) 
with the initial condition (S(0), I(0), C(0)) = (S 0 , I 0 , Q) and the state constraint

C(t) ≥ 0, t ≥ 0. (4) 
A solution of ( 3) is admissible if the control u(•) takes its values in U and the condition ( 4) is fulfilled.

The NSN feedback

Let us denote the immunity threshold

S h := R -1 0 = γ β < 1.
Note that S(•) is a non increasing function and that one has İ ≤ 0 when S ≤ S h , whatever is the control. If S 0 ≤ S h , the maximum of I(•) is thus equal to I 0 for any control u(•), which solves the optimal control problem.

We shall now consider that the non-trivial case.

Assumption 2 S 0 > S h .

Under this assumption, we thus know that for any admissible solution, the maximum of I(•) is reached for S ≥ S h . Consider the dynamics with the control u(t) = 0 for all t ≥ 0. One can check from equations (1) that the quantity

t → S(t) + I(t) -S h log(S(t)) (5) 
is constant. Then, one has

S(t) + I(t) -S h log(S(t)) = S 0 + I 0 -S h log(S 0 ) (6)
for any t > 0, and the maximum of I(•) reached for S = S h is given by the value

I h := I 0 + S 0 -S h -S h log S 0 S h .
We define the "NSN" (for null-singular-null) strategy as follows.

Definition 1 For Ī ∈ [I 0 , I h ], consider the feedback control

ψĪ (I, S) := 1 -S h S , if I = Ī and S > S h , 0, otherwise. (7) 
We denote the L 1 norm associated to the NSN control

L( Ī) := +∞ 0 u ψ Ī (t)dt, Ī ∈ [I 0 , I h ],
where u ψ Ī (•) is the control generated by the feedback [START_REF] Bolzoni | Time-optimal control strategies in SIR epidemic models[END_REF].

This control strategy consists in three phases:

(1) no intervention until the prevalence I reaches Ī (null control), (2) maintain the prevalence I equal to Ī by adjusting the interventions until S reaches S h or the budget is entirely consumed (singular control), (3) no longer intervention when S < S h (null control).

Remark 2 There is no switch of the control between phases 2 and 3, because u(t) tends to zero when S(t) tends to S h , according to expression [START_REF] Bolzoni | Time-optimal control strategies in SIR epidemic models[END_REF].

We shall discuss the practicability of this control in Section 5.

One can check straightforwardly the following properties are fulfilled.

Lemma 1 For any Ī ∈ [I 0 , I h ], the maximal value of the control u ψ Ī (•) is given by

u max ( Ī) := 1 - S h S < 1,
where S is solution of

S -S h log S = S 0 + I 0 -S h log S 0 -Ī.
Moreover, any solution given by the NSN strategy verifies

max t≥0 I(t) = Ī.

Optimal strategy

We first show that the function L can be made explicit.

Proposition 1 One has

L( Ī) = I h - Ī βS h Ī , Ī ∈ [I 0 , I h ]. (8) 
PROOF. Note first that whatever is Ī, S(•) is decreasing with the control [START_REF] Bolzoni | Time-optimal control strategies in SIR epidemic models[END_REF]. One can then equivalently parameterize the solution I(•), C(•) by

σ(t) := S 0 -S(t), instead of t. Let us put σ h := σ(t h ) = S 0 -S h .
As long as I < Ī, one has u = 0 which gives

       dI dσ = f (σ) := 1 -S h S0-σ > 0, dC dσ = 0.
Remind, from the definition of I h , that the solution I(•) with u = 0 reaches I h in finite time. Therefore, one can define the number

σ := inf{σ ≥ 0, I(σ) = Ī} ≤ σ h , which verifies σ 0 f (σ) dσ = Ī -I 0 . (9) 
For σ ∈ [σ, σ h ], one has u = 1 -S h /S, that is

       dI dσ = 0, dC dσ = -1 βS h Ī 1 -S h S0-σ = -f (σ) βS h Ī < 0.
One then obtains

L( Ī) = C(0) -C(σ h ) = 1 βS h Ī σ h σ( Ī) f (σ) dσ,
and with (9) one can write

L( Ī) = 1 βS h Ī σ h 0 f (σ) dσ + I 0 -Ī .
On the other hand, one has

σ h 0 f (σ) dσ = σ h + S h log S h S 0 = I h -I 0 ,
which finally gives the expression [START_REF] Bolzoni | Optimal control of epidemic size and duration with limited resources[END_REF].

Then, the best admissible NSN control can be given as follows.

Corollary 1 When Q ≤ I h -I0 βS h I0 , the smallest Ī ∈ [I 0 , I h ] for which the solution with the NSN strategy is admissible, is given by the value

Ī⋆ (Q) := I h QβS h + 1 ( 10 
)
and one has

L( Ī⋆ (Q)) = Q. ( 11 
)
We give now our main result that shows that the NSN strategy is optimal.

Proposition 2 Let Assumptions 1 and 2 be fulfilled. Then, the NSN feedback is optimal with

Ī = Ī⋆ (Q), Q < I h -I0 βS h I0 , I 0 , Q ≥ I h -I0 βS h I0 ,
where Ī⋆ (Q) is defined in [START_REF] Cesari | Optimization Theory and Applications[END_REF], and Ī is the optimal value of problem [START_REF] Barron | The Pontryagin maximum principle for minimax problems of optimal control[END_REF].

PROOF. When Q ≥ I h -I0 βS h I0
, the NSN strategy is admissible and the corresponding solution verifies max t≥0

I(t) = I 0 , which is thus optimal. Consider now Q < I h -I0 βS h I0 . Let (S ⋆ (•), I ⋆ (•), C ⋆ (•)
) be the solution generated by the NSN strategy with Ī = Ī⋆ (Q), and denote u ⋆ (•) the corresponding control. Let S := S ⋆ ( t) where t = inf{t > 0, I ⋆ (t) = Ī}, and t ⋆ h := inf{t > t, S ⋆ (t) = S h }. We consider in the (S, I) plane the curve

C ⋆ := {(S ⋆ (t), I ⋆ (t)); t ∈ [0, t ⋆ h ]}.
For S ≥ S, the control ( 7) is null and a upward normal to C ⋆ is given by the expression

⃗ n(S, I) = βSI -γI βSI , (S, I) ∈ C ⋆ with S ∈ [ S, S 0 ].
On the other hand, the vector field in the (S, I) plane of any admissible solution is

⃗ v(S, I, u) = -βSI(1 -u) βSI(1 -u) -γI .
Then, one has 

t h := inf{t > 0, S(t) = S h }.
One has thus I(t h ) < Ī. Define

T := t ⋆ h + 1 γ log Ī I(t h ) > t ⋆ h ,
and consider the non-admissible solution ( S(•), Ĩ(•), C(•)) of ( 3) on [0, T ] defined by the control

ũ(t) = u ⋆ (t), t ∈ [0, t ⋆ h ), 1, t ∈ [t ⋆ h , T ].
One can straightforwardly check with equations (3) that the solution ( S(t), Ĩ(t), C(t)) is

(S ⋆ (t), I ⋆ (t), C ⋆ (t)), t ∈ [0, t ⋆ h ), (S h , Ī exp(-γ(t -t ⋆ h )), C ⋆ (t ⋆ h ) + t ⋆ h -t), t ∈ [t ⋆ h , T ].
Remind, from Corollary 1, that one has C ⋆ (t ⋆ h ) = 0 by equation [START_REF] Di Marco | Minimax optimal control problems. Numerical analysis of the finite horizon case[END_REF]). Clearly, one has ( S(T ), Ĩ(T )) = (S h , I(t h )) and C(T ) < 0. We consider now in the (S, I) plane the simple closed curve Γ which is the concatenation of the trajectory ( S(•), Ĩ(•)) on forward time with the trajectory (S(•), I(•)) in backward time: 

Γ := {( S(τ ), Ĩ(τ )), τ ∈ [0, T ]} ∪ {(S(T + t h -t), I(T + t h -t)), τ ∈ [T, T + t h ]},
= D 1 - S h S 1 γI 2 dSdI > 0,
where D is the domain bounded by Γ (see Figure 1 as an illustration). This implies C(t h ) < C(T ) < 0 and thus a contradiction with the admissibility condition (4) of the solution (S(•), I(•), C(•)). We conclude that (S ⋆ (•), I ⋆ (•), C ⋆ (•)) is optimal.

Numerical illustrations and discussion of practical considerations

We illustrate the behavior of the optimal trajectories with numerical simulations for parameters and initial condition borrowed from [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF] , which studied the initial stage of COVID-19 disease. (see Table 1). For these values, one computes

R 0 = 3, S h = 1 3 , I h ≃ 0.3.
Figure 2 presents a simulation of the optimal NSN strategy for the budget Q = 28, as an example (the minimum 0.21 0.07 1 -10 -6 10 -6 Table 1 Chosen SIR parameters and initial condition, as in [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF]. Fig. 2. State variables and control over time for the optimal strategy with the budget Q = 28. peak is reached for Ī ≃ 0.1015). One can see that for maintaining the size I at the constant level I h , the control u is decreasing with respect to time until it reaches the value 0 (no intervention), exactly when the size of susceptible S reaches the immunity value S h . A particular feature of the optimal strategy is to do not have discontinuity of the control when the optimal trajectory leaves the singular arc. In practice, one might not have a precise measurement of the size of the susceptible population S to apply the feedback law [START_REF] Bolzoni | Time-optimal control strategies in SIR epidemic models[END_REF]. However, assuming that the proportion of the infected population I is measured with a relatively good accuracy, say daily, one could adjust the level of restrictions u to keep I as close as possible to I h . Let us underline that one does not necessarily need to measure S to know when to stop the interventions: they have simply to be applied until the budget Q is consumed. Equivalently, as the corresponding effort u decreases progressively until vanishing, the interventions phase ceases also when the control u takes the value 0.

As a comparison, we have computed the optimal strategy which minimizes the epidemic peak for a fixed time duration of interventions without consideration of any budget, obtained by Morris et al. in [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF] (see Figure 3). It consists in four phases: no intervention, maintain I constant, apply the maximal control (i.e. u = 1) and stop the intervention. This control presents thus three switches and relies on a full break of the transmission, differently to the NSN strategy which presents only one switch (see Remark 2) and does not require a full break (see the maximal value of the control given in Lemma 1). Apply-Fig. 3. Comparison of the time evolution of the infected population I and the control u between the optimal NSN strategy (in blue) and the optimal one of Morris et al. (in red)) [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF].

ing an NSN strategy appears thus less restrictive to be applied in practice. The strategy proposed by Morris et al. induces also a second peak: after the third phase, the prevalence I increases again up to a peak which has to be equal to the level maintained during the second phase if it is optimally chosen. But this second peak turns out to be non robust under a mischoice (or mistiming) of the second phase (see [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF] for more details). Comparatively, the NSN is naturally robust with respect to a bad choice of Ī: the maximum value of I is always guaranteed to be equal to Ī. However, a mischoice of Ī has an impact on the budget of the NSN strategy, given by expression [START_REF] Bolzoni | Optimal control of epidemic size and duration with limited resources[END_REF] and illustrated in Table 2 (for model parameters given in Table 1 and Q = 28). Table 3 gives the asymptotic size S ∞ < S h of the susceptible population for the two strategies under budget or duration constraint, corresponding to Figure 3. Note that for both strategies one has I = Ī (where Ī is the peak value of I) and S = S h when entering the last Ī -Ī⋆ -10% -5% -1% +5% +10%

L( Ī) -Q +17% +8% +1.5% -7% -14% Table 2 Variation of the control budget of the NSN strategy under a mischoice of Ī.

phase with u = 0. Then, S ∞ can be determined with the invariant property [START_REF] Bliman | How best can finite-time social distancing reduce epidemic final size[END_REF], as the solution of the equation

f (S ∞ ) := S ∞ -S h log(S ∞ ) = S h + Ī -S h log(S h ).
where f is decreasing for S ∞ < S h . This shows that for both constraints a lower peak implies a larger value of the final size of S (i.e. fewer susceptible individuals that have contracted the disease). 3 Comparaison of the final size of S for the two strategies, corresponding to Figure 3.

In case of a new epidemic among a large population, one can consider that the initial number of infected individuals is very low, while all the remaining population is susceptible. Therefore, one has S 0 + I 0 = 1 with I 0 very small, and the optimal value of Ī can be well approximated by its limiting expression for I 0 = 0, that is

Īℓ := 1 -S h + S h log(S h ) QβS h + 1 . ( 12 
)
From property [START_REF] Bliman | Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model[END_REF], one also gets an approximation of the value Sℓ of S when I reaches Īℓ with u = 0, as the solution of the equation

Sℓ + Īℓ -S h log( Sℓ ) = 1,
and then an approximation of the duration of the intervention is given by

d ℓ := S h -Sℓ γ Īℓ
(one can easily check that along the singular arc I = Ī, one has Ṡ = -γ Ī). For the parameters of Table 1, one obtains the limiting values given in Table 4. Provided that parameters β and γ of the disease are known (or estimated), and a budget Q is given, one can thus determine the minimal value of the peak and the optimal strategy to apply, without the knowledge of the initial size of the infected population.

In practice, one might not know precisely the initial condition. However, assuming that the proportion of the 4 The limiting optimal values for arbitrarily small I0 (with Q = 28) infected population is measured with a relatively good accuracy when it is not too small, one could apply the approximate feedback which consists in waiting the proportion I to be about the value Īl adjusting daily the effort u so that I remains close to Īl during the time interval d l .

The question of parameters estimation in the SIR model from data is out of the scope of the present work. However, while reaching I = Īℓ without intervention, one may expect refinement of the estimates of β and γ and thus an adjustment of the value of Īℓ .

Note that if it is rather the height of the peak Ī that is imposed, the corresponding effort can be determined with expression [START_REF] Freddi | Optimal control of the transmission rate in compartmental epidemics[END_REF], that is

Q = 1 βS h 1 -S h Ī -1 ,
as well as the duration of the intervention.

To have a better insight of the impacts of the available budget Q on the course of the epidemic, we have considered four characteristics numbers:

• t i : the starting date of the intervention,

• d: the duration of the intervention,

• Ī: the height of the peak,

• u max : the maximal value of the control, of the optimal solution, depicted on Figure 4 as a function of Q for I 0 = 10 -6 and S 0 + I 0 = 1. Let us note that the maximal budget Q under which it is not possible to immediately slow down the progress of the epidemic is given, according to Proposition 2, by

Q max := I h -I 0 βS h I 0 ≃ 4.3 10 6 ,
which is quite high. Moreover, the maximal value of the control is bounded by the value

u max ( Ī) ≤ 1 -S h = 2 3 ,
far from the value 1 (that would consists in a total lockdown of the population). On Figure 4, one can see that the peak Ī can be drastically reduced under a reasonable budget, and that taking larger budgets slows down the decrease of the peak, while the duration of the intervention carries on increasing, almost linearly. Indeed, one has Ṡ = -γ Ī on the singular arc and one thus gets d = ( S -S h )/(γ Ī). For an optimal value of Ī, one has Q = (I h -Ī)/(γ Ī) from [START_REF] Cesari | Optimization Theory and Applications[END_REF] and then one obtains

d = S -S h I h - Ī Q.
For large values of Q, Ī is small and S closed to one, which gives an approximation of d as the linear function of

Q d ≃ 1 -S h I h Q ≃ 2.194 Q.
This implies that for a long duration, fixing the budget Q or the duration d tends to be equivalent. Therefore, for the same large duration, the optimal peak gets near from the optimal one of the strategy of Morris et al. which constraints the duration only, but the difference of the budgets of these two strategies gets increasing with always a lower one for the NSN strategy, as one can see on Figure 5. Finally, this analysis highlights (as already mentioned in [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF][START_REF] Lobry | Qu'est ce que le Pic d'une Épidémie et Comment le Contrôler?[END_REF]) the importance to do not intervene too early (unless one has a very large budget) and to choose the "right" time to launch interventions. We believe that curves as in Figure 4 might be of some help for decision makers.

Conclusion

In this note, we have shown how to use the Green's Theorem as a geometric tool to prove the optimality of the "null-singular-null" control strategy for the minimization of the epidemic peak under a budget constraint. This strategy turns out to be different than the one proposed by Morris et al. [START_REF] Morris | Optimal, near-optimal, and robust epidemic control[END_REF] which minimizes the peak fixing a single interval length for interventions, and is simpler to apply. Although the objective of the present work was not to optimize the asymptotic size of the susceptible population (as for instance in [START_REF] Bliman | Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model[END_REF]), the study of a compromise between the epidemic peak and the final size could be the matter of future investigations.
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 1 Fig. 1. The closed curve Γ is composed of the trajectory (S ⋆ (•), I ⋆ (•)) in blue up to to the point (S h , Ī), the additional part ( S(•), Ĩ(•)) in red and the hypothetical better trajectory (S(•), I(•)) in backward time in green.
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 4 Fig. 4. Characteristics numbers as functions of Q.
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 5 Fig. 5. Comparison of the of the optimal strategies with same duration (NSN in blue and Morris et al. [20] in red).
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