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Abstract
Important mineralization of 14C-chlorpyrifos was found in a Tunisian soil exposed repeatedly to this
insecticide. A bacterial strain able to grow in minimal salt medium (MSM) supplemented with 25 mg L− 1

of chlorpyrifos was isolated from this soil. It was characterized as Serratia rubidaea strain ABS 10 using
morphological and biochemical analyses, as well as 16S rRNA sequencing. In liquid culture S. rubidaea
stain ABS 10 was able to almost entirely dissipate chlorpyrifos within 48 hours of incubation. Although, S.
rubidaea strain ABS 10 was able to grow on MSM supplemented with chlorpyrifos and to dissipate it in
liquid culture, it was not able to mineralize 14C-chlorpyrifos. Therefore, one can conclude that the
dissipation capability of this bacteria might be attributed to its capacity to adsorb CHL. In both non-sterile
and sterile soil inoculated with S. rubidaea strain ABS 10, chlorpyrifos was more rapidly dissipated than in
respective controls.

Introduction
After the ban of organochlorines (such as DDT, dieldrin or heptachor) and carbamates (such as
carbofuran), organophosphorus insecticides (OPs) have been extensively used in agriculture as a
substitute insecticides because of their high e�ciency and their supposed relatively low persistence and
low effect on the environment (Yang et al. 2005). However, the widespread use of OPs has led to severe
environmental issues because these compounds are often transported away from the sites where they
have been applied. For instance, OPs may enter aquatic environments via soil percolation, air drift or
surface runoff (Liang et al. 2011). Numerous reports indicate that OPs are toxic to humans causing
metabolic disorders and neuropathy in response to both acute and chronic exposure (Iyer and Makris,
2010). Among OPs, chlorpyriphos (CHL) with a broad-spectrum activity is one of the most frequently
used. CHL has relatively low water solubility (2 mg.L− 1) and is spontaneously hydrolyzed to 3,5,6-
trichloro-2-pyridinol(TCP) (Li et al. 2008). Although being applied on crop cover, a large proportion of this
insecticide reaches the soil, where both abiotic (i.e. sorption chemical degradation) and biotic
(biodegradation) processes control the fate and the activity of this compound. Particularly, the half-life
(DT50) of chlorpyrifos in soil is usually between 10 and 120 days, depending on the soil type, climate and
other environmental conditions such as composition of microbial communities (Abraham and
Silambarasan, 2016). Indeed, microbial activity has been deemed the most in�uential and signi�cant
cause of the OPs pesticides removal (Li et al. 2005). The ability of microorganisms to degrade OPs is
viewed as the primary means of removing these agrochemicals from soils (Cycon et al. 2013). A range of
species of bacteria capable of degrading OPs especially CHL by co-metabolism or by using pesticides as
a source of carbon and phosphorous (Cycon et al. 2013) has been reported by several researchers,
Enterobacter stain B-14, Stenotrophomonas sp. Strain YC-, Sphingomonas sp. Strain, Dsp-2, Paracoccus
sp. strain TRP, Bacillus pumilus strain C2A1, Cupriavidus sp. DT-1, Alcaligenes faecalis, Flavobacterium
sp, Klebsiella sp, Serratia sp, Pseudomonas sp (Silambarasan and Abraham 2013, Chisti et al. 2013).
Furthermore, it has been observed that repeated application of OPs lead to the enhancement of their
biodegradation in reason of the selection of degrading microbial populations (Singh et al. 2003). More
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investigation on microbial degradation of the OPs are required in order to not only understand processes
involved in their degradation but also to be able to develop bioremediation strategies to clean
contaminated soils (Cycon et al. 2013). Indeed, microbe based remediation relying on biosorption,
bioaccumulation, biotransformation or biomineralisation processes (Ayangbenro and Babalola 2017),
has received an increasing attention as it seems an applicable and cost-effective biotechnology to clean
up soils polluted with OPs (Singh et al. 2006; Chen et al. 2011). On the one hand, biotransformation and
biomineralization both contribute to the transformation of the pollutant, the last being viewed as the gold
standard as it leads to the complete transformation of the pollutant. Moreover, biosorption and
bioaccumulation contribute to the stabilization of pollutant in the environmental matrice by forming non-
extractable residues that are almost not-transferable to other compartment of the environment. From this
point of view, these last two processes are of interest to clean contaminated water by using microbial
biomass as a low-cost biobased adsorbent (Khadivinia et al. 2014) or to stabilize pollutant in a given
contaminated matrices’ in order to avoid further dispersion in the environment.

Hence, the present study aims not only to estimate the adaptation of microbial community of an
agricultural soil regularly exposed to CHL to its enhanced mineralization, but also to isolate and
characterize bacterial isolates able to grow on CHL as sole carbon source. The ability of one bacterial
isolate to dissipate CHL was estimated in liquid culture and in soil microcosms incubated under
controlled conditions in the laboratory in order to estimate its interest for bioremediation purposes.

Materials And Methods

Chemicals and culture medium
The tested compounds CHL (99.5% purity) was purchased from Sigma-Aldrich (St. Louis, MO, USA). All
other reagents (dimethyl sulfoxide DMSO and dichloromethane) used in this study were of high purity
and analytical grade. Organic free water was prepared with a Milli-Q/Milli-Ro system (Millipore Corp.,
Bedford, MA, USA). Stock solutions of chlorpyrifos were prepared at 5000 mg L-1 in dimethyl sulfoxide
(DMSO). For each experiment, 1 mL of CHL was added in the medium. For the microbial assays, mineral
salt medium (MSM) and Luria-liquid broth (LB) were used. The medium (MSM) contained 20 mL of
K2HPO4, 10 mL of MgSO4 7H2O, 10 mL of NaCl, 1 mL of CaCl2, 2 g of boric acid, 0,2 g of ZnSO4, 0,8g of
CuSO4, 0,25 g of NaNO, and 0,05g of CO(NO2)2, 1mL of FeSO4 6H2O was added per liter of distilled water.
The medium (LB) contained 10 g of peptone, 5 g of yeast extract and 10 g of NaCl per 1 liter of distilled
water (pH 7.0). After autoclaving (121°C, 20 min) and cooling the medium was supplemented with a
suitable CHL solution prepared as described above.

Sampling
The soil sample used in this study was collected from �eld site located in Mornag approximately 20 km
away from Tunis (36° 67′ 70.39 N, 10° 27′ 53.78 E), Tunisia. The sampling site has been in use for
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intensive agricultural practices since long and this soil has received leachates after application of
chlorpyrifos for several years. Soil sample was collected from a depth of 20 cm. Soil was mixed
thoroughly and plant debris were removed. Then soil was sieved at 2mm and kept at 4°C until its use (for
less than 3 weeks).

Mineralization of 14C-CHL in soil microcosms
The potential of the soil microbial community to mineralize chlorpyriphos (CHL) was evaluated using 14C-
labelled CHL (Izotop, speci�c activity = 118 µCi/mg) as described by El-Sebai et al. (2007). Four individual
replicates of 20 g soil microcosms were studied. For each replicate 1 mL of a methanol solution
comprising 60 mg.L-1 of 14C-CHL and 0.068 µ Ci of 14C-CHL was applied on an aliquot of 1g of dried soil.
After evaporation CHL contaminated soil was thoroughly mixed with the rest of soil. Soil humidity was
then adjusted to 40 % of the water holding capacity (WHC) and kept constant all along the 70 days of
incubation in the radiorespirometer. 14CO2 evolved from 14C-CHL was quanti�ed by liquid scintillation
counting (LS 6500 Multi-Purpose Scintillation Counter, Beckman) using ACSII scintillation �uid
(Amersham) (Storck et al. 2017).

Enrichment procedure, isolation and characterization of
chlorpyrifos degrading strain
Preliminary screening experiments were performed to obtain strains that were tolerant to CHL. The study
was conducted as described previously by Ben Salem et al. 2016.

Only one soil with three replicates was used in this study. Fresh soil sample was divided in six
subsamples of 50 g dry weight equivalent. Aqueous CHL solution were prepared at 4.8g. L-1 (which
corresponds to 10 times the recommended dose agronomic purpose) the day of its application starting
from Robust ® formulated solution. The duration of experiment was two weeks.

Soil samples were incubated at room temperature under laboratory conditions. They were watered every
two days to keep soil humidity at 40% of water holding capacity (WHC). Every two days, they were
irrigated with 10mL of commercial chlorpyrifos solutions as 10X concentrated solutions of pesticides to
exert a selective pressure favorable to the emergence of degrading bacterial populations. Three samples
were not treated with CHL but with equivalent amount of pure water (control). Two-days after CHL
application, soil was sampled to immediately carry bacterial isolation. Brie�y, one g of soil was added to
10 mL of physiological water (NaCl 9‰) and serially ten-times diluted. 100 µL of 10, 10-2 and 10-4

dilutions were streaked on PCA plates that were incubated for 16 hours at 37°C. Each colony growing on
the plate was puri�ed using the Z streak technique.
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Primary distinction between all the isolates was based on the size, color and morphology of their colonies
on the PCA plates. Bacterial colonies showing different morphologies were selected and further
characterized using API 20E (Biomérieux, Lyon, France) following the recommendations of the Bergey’s
manual of systematic bacteriology (Krieg et al. 1984). In addition, 16S rRNA amplicon generated by PCR
using the 27f and 1492r universal primer pair (Gürtler and Stanisich 1996) from DNA extracted from the
bacterial isolate was sequenced as previously described (Devers et al. 2008). 16S rRNA sequence was
compared to other sequences available in GenBank database (http: //www. ncbi.nlm.nih.gov/genbank)
using the BlastN search analysis (http://www.blast.ncbi.nlm.nih.gov/). Sequence was deposited in the
Genbank database (SUB8916609 S10 MW494965).

Bacterial growth kinetics in different liquid media
To investigate the growth of Serratia rubidaea strain ABS 10 with chlorpyrifos, 200 µl of strain (OD 600 =
0.8) were inoculated into 20 mL of either MSM or nutrient broth medium added with CHL at a �nal
concentration of 25 mg.L-1. The culture was incubated at 30±2°C on a rotary shaker at 120 rpm. The
bacterial growth was regularly monitored for 5 days by measuring the turbidity of the culture using a
spectrophotometer at 600 nm.

Inoculum preparation
 A bacterial colony was inoculated in LB medium and grown to reach the exponential phase. It was then
collected by centrifugation at 5000 g for 5 min. The cell pellet was washed twice with 0.9% of sterile NaCl
and then re-suspended in NaCl to obtain the bacterial suspension at a concentration of approximately
3.106 CFU /mL. The cell density (OD 600 nm) was measured using UV-Visible spectrophotometer (Lu et
al. 2013)

Dissipation of chlorpyrifos by S. rubidaea strain ABS 10 in
aqueous medium
CHL dissipation studies were performed in 250 mL Erlenmeyer �asks containing 100 mL of sterile MSM
supplemented with CHL at 25 mg L1 and inoculated with 1 mL of bacterial strain (approximately 3×106

cells.mL-1). Un-inoculated media comprising with the same concentration of CHL were used as control.
All the samples were incubated at 30 ± 2°C on a rotary shaker at 120 rpm for 5 days. Samples were
periodically taken from the culture under aseptically conditions to measure the remaining pesticide
concentration the culture medium. 

http://www.blast.ncbi.nlm.nih.gov/
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Dissipation of chlorpyrifos by S.rubidaea strain ABS 10 in
soil
To study the dissipation of chlorpyrifos in sterilized (SS) or natural (NS) soil inoculated with S .rubidaea
strain ABS 10 (B) or not S. rubidaea strain ABS 10. Brie�y, 100 g of sterilized soil (SS) or natural soil (NS)
was placed in a 250 ml Erlenmeyer �ask, inoculated or not with 30 ml of a S. rubidaea strain ABS 10
suspension (B) containing 3 × 106 cells.mL−1 and treated with CHL at 25 mg kg−1. The amount of carbon,
nitrogen and phosphorous were calculated using the relationship C/N/P 100:10:1. The sources of carbon,
nitrogen and phosphorous were glucose, (NH4)2SO4 and K2HPO4 respectively (Martin et al. 2007).
Sterilized soil not inoculated with S. rubidaea strain ABS 10 was used to estimate abiotic dissipation of
CHL (Pino et al. 2011). All �asks were incubated in an incubator at 30 ± 2 ◦C. Samples were periodically
removed aseptically to determine the pesticide concentration. Each treatment was performed in triplicate
(ntot=12).

Analytical methods
At regular intervals, 5–10 mL cultures were withdrawn from aqueous medium and centrifuged at 7200 ×
g for 10 min to obtain a cell-free medium. CHL was extracted twice from the supernatant with an equal
volume of dichloromethane (DCM). Organic layers of DCM were pooled and evaporated at 28 ± 2 °C. For
the analysis of CHL in soil, 5 g of soil samples was mixed with 10 ml of dichloromethane. The samples
were ultra-sonicated for 30 min at 30°C. After that, the mixture was centrifuged for 30 min on a rotary
shaker at 120 rpm. Then the samples were allowed to stand until the soil had settled, and the clear
supernatant was used to determine the pesticide concentration by GC-MS. Levels of CHL were measured
by GC-MS using an Agilent 6850N gas chromatograph (Agilent Technologies, USA), equipped with an
Agilent6973 MS detector. A capillary column HP-5MS (30 m, 0.25 mm, 0.50 mm) was used while
chromatographic separation was achieved with the following method: the GC oven temperature was
initially set at 70°C, for 2 min, and raised to 270°C at a rate of 20°C/min and held for 10 min. The injector
and detector were set at 250 and 280°C, respectively. The carrier gas Helium was used as at a constant
�ow rate of 1 mL/min. Electron impact (70ev) mass spectra were recorded from 100 to 550 amu (atomic
mass unit).

Data analysis
The four kinetic models proposed by the FOCUS working group on pesticide degradation kinetics (FOCUS,
2006) were used to calculate pesticide dissipation kinetic parameters. The four kinetic models proposed
by the FOCUS working group on pesticide degradation kinetics (FOCUS, 2006) were used to calculate
pesticide dissipation kinetic parameters: the single �rst order kinetic model (SFO), and the biphasic
models hockey stick (HS), �rst order multi-compartment model (FOMC) and double �rst order in parallel
model (DFOP).
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Data obtained from the dissipation experiments were �t to the exponential decay model. The �rst-order
model and the DT50 was calculated as follows:

Where Ct is the concentration of pesticide remaining in MSM or soil after t days, C0 is the initial

concentration of pesticide in MSM or soil. k and t are the rate constant (d-1) and degradation time in days
respectively (Focus, 2006)

Statistical analysis
All the experiments were performed in triplicates. The data were statistically analyzed using two-way
analysis of variance (ANOVA). When signi�cant differences test (P≤0.05) were observed, the means were
separated using Graphpad Prism, v7.00.

Results And Discussion

Mineralization of 14C- CHL in soil microcosms
After a ten days lag-phase, the soil microbial community e�ciently mineralized 14C-CHL reaching up to
70% of mineralization of initial radioactivity applied (Fig. 1). During the exponential phase, the rate of
mineralization was 1.3 % 14C-CO2 per day. The mineralization curve had sigmoid shape characteristics
from microbial community adapted to enhanced degradation of pesticides. One could hypothesize that in
response to the repeated CHL treatments applied to this arable soil the microbial community adapted to
its enhanced biodegradation that provides nutrient and energy sources for the growth CHL-degrading
community.

Indeed, the emergence of degrading microorganisms, among which CHL-degraders, has been observed in
soils regularly exposed to different pesticides (Singh, 2009). The use of pesticides as nutrient and energy
sources provides a selective advantage over other microorganisms (Copley, 2009). Adaptation to
enhanced degradation seems to be a common trait to soil microorganisms in response to repeated
pesticide treatments (Crouzet et al. 2010; De Andrea et al. 2003; Hussain et al. 2011; Vischetti et al. 2008;
Weaver et al. 2007). This is an environmental-friendly functional trait because it decreases the
persistence of pesticide residues in the soil as well as their dispersion in the environment and their
ecotoxicological impact to non-target organisms and supported ecosystem services (Topp et al. 2004).
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Isolation and characterization of bacterial strain growing on
CHL medium
In order to isolate bacterial strain able to transform CHL, enrichment cultures on MSM medium added
with CHL were conducted. In total we have been able to isolate four bacterial isolates able to grow on
MSM-CHL medium. Among these isolates, only one has the capability to grow on liquid MSM-CHL. This
isolate is aerobic, none spore forming, Gram negative, straight rods with rounded ends bacteria producing
small circular colonies on the nutrient agar plates. Its freshly grown culture showed positive tests for
oxidase, catalase, and exhibited the ability of nitrate reduction (Table 1). Its 16S rRNA gene sequence is
99% similar to Serratia rubidaea strain NBRC 103169 (Ac n° NR_114232), JCM1240 (Ac n° NR_024644),
and DSM 4480 (Ac n° NR_114716). Consequently, we proposed to name it Serratia rubidaea strain ABS
S10 (S10).
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Table 1
Morphological and biochemical characteristics of bacterial strain Serratia

rubidaea strain ABS 10 (+ active; - inactive)
Characteristics Serratia rubidaea strain ABS 10

Colony morphology small circular colonies on the nutrient agar plates

Gram strain -

Motility +

Indole test -

Methyl red -

Voges-Proskauer +

Citrate utilisation +

Catalase +

Oxidase -

Urease -

Nitrate reduction +

H2S production -

Gelatin liquefaction +

Glucose +

Sucrose +

Lactose -

Arabinose -

Sorbitol +

Mannitol +

Rhamnose -

Moreover, the growth of S10 was monitored in MSM-CHL and NB-CHL media (containing 25 mg.L− 1of
CHL) (Fig. 2). As expected S10 was unable to grow on MSM not supplemented with CHL. Contrariwise it
slightly grew on MSM supplemented with CHL as sole carbon source reaching 0.06 ± 2 a.u. after seventy-
two hours. Likewise, the growth of S. rubidaea strain ABS 10 was promoted by approximately a factor
two in the NB medium complemented with CHL as compared to the control. In both cases, a sharp
increase in growth was observed up to one day and the maximum growth was obtained after three days.
These results suggest that S10 can use CHL for its growth. However, on mineral salt medium the culture
poorly grew suggesting some metabolic limitations. This was con�rmed by the fact that S. rubidaea
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strain ABS 10 was unable to mineralize 14C-CHL labelled on the pyridine ring, suggesting that this strain
was not able to get access to C of the ring. Our observation is in accordance with earlier studies reporting
that a range of bacterial isolates such as, Serratia sp (Xu et al. 2007) Sphingobacterium sp, Alcaligens sp
(Abraham et al. 2013) Serratia marcescens (Cycon et al. 2013) Pseudomonas kilonensi (Khalid et al.
2016) able to grow in minimum salt medium supplemented with CHL as sole carbon source. In addition,
the supplementation of MSM-CHL medium with simple C source such as glucose or sucrose or more
complex one such as NB was shown to promote the growth of Pseudomonas kilonensi SRK1 suggesting
that easily degradable C source can fuel CHL degradation (Khalid et al. 2016). In fact, CHL has reported
to be degraded by bacteria co-metabolically that required additional carbon sources (Singh et al. 2006; Xu
et al. 2008 Abraham et al. 2013).

Among Serratia species, S. marcescens was shown to be able to use CHL concentration of 50 mg.L− 1 as
the only carbon source when grown in MSM (Abraham et al. 2013). Furthermore, others species of
Serratia were characterized for their high potential to grow in MSM supplemented with another OPs such
as diazinon (Abo-Amer 2011).

Dissipation of CHL by strain S. rubidaea strain ABS 10 in
liquid medium
The dissipation of CHL by S10 culture was assessed in resting cell experiment (Fig. 3). S10 rapidly
dissipated CHL with a rate of approximately 2.03 mg CHL per day. Within 24 hours, 92% of CHL initially
added was dissipated by S. rubidaea strain ABS 10 while only 20% of dissipation was observed in the
control, which consists of sterile medium not inoculated with this strain. It is noteworthy that as expected
CHL was also dissipated in the control but at slower rate than in the S. rubidaea strain ABS 10 culture,
and after 5 days of incubation 50% of the initial dose of chlorpyrifos remains. CHL half-life in S10 culture
was signi�cantly lower than in the control (1.15 vs 4.95 days, respectively) thereby con�rming its ability
to dissipate it. Keeping in mind that S. rubidaea strain ABS 10 was unable to mineralize 14C-CHL, one
could suggest that the rapid CHL dissipation in S. rubidaea strain ABS 10 culture was not due to its
mineralization but probably to its adsorption on bacterial cells as it was previously shown for the
herbicide 2,4-D (Benoit et al. 1998) or the insecticide chlordecone (Merlin et al. 2014) on fungal biomass.
Indeed, giving the fact that CHL is highly hydrophobic, it has strong a�nity to phospholipid bilayer
constituting microbial cell membrane on which it can sorb. CHL was previously reported to be hydrolyzed
co-metabolically by microorganisms (Chisti, et al. 2013) fueled by other C sources than CHL which, in this
case, does not constitute a source of C or energy to sustain its growth (Singh et al. 2006; Xu et al. 2008;
Abraham et al. 2013).

Dissipation of CHL in soil
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Dissipation of CHL was monitored in sterile- (Fig. 4, panels A) and native-soil (Fig. 4, panels B)
microcosms inoculated with S10 or not (control). Similar CHL dissipation kinetics were observed in non-
inoculated sterile and native soils. These two kinetics of dissipation were biphasic and CHL DT50 was
estimated to 2.1 days for both treatments. Despite the fact that the native soil micro�ora is able to
mineralize this insecticides (CHL), no differences in the dissipation kinetics observed in sterile- and
native-soils treated CHL). This apparent discrepancy is explained by the fact that the dissipation was
monitored only during a 6 days period of time during which mineralization of 14C-CHL is very low (Fig. 1).
Therefore over this short period of time CHL mineralization does not contribute to observed dissipation
which is most likely mainly governed by abiotic processes such as sorption on soil components.

The inoculation of S10 in the sterile and native soils resulted in a marked increase in the rate of CHL
dissipation as compared to their respective control (Fig. 4). In the inoculated native and sterile soils the
CHL DT50 were estimated to 1.1 days and 1.4 days, respectively (Table 2). Having in mind that the
dissipation of CHL in S10 culture was controlled by its sorption to bacterial cells, the improvement of the
dissipation of CHL observed in inoculated soils might be attributed to its biosorption on microbial cells.
This hypothesis is supported by the hydrophobic nature of CHL which provides to it a strong lipophilicity
compatible with the development of strong interaction with the cell membrane of microorganisms
(Angelova and Schumauder 1999).

Table 2
Kinetic data for the dissipation of CHL in aqueous medium (Minimum Salt

Medium MSM) and soils (SS: sterile soil and NS: native soil) by Serratia
rubidaea strain ABS 10 (B). Controls not inoculated with Serratia rubideae

strain ABS 10 were included. Data of dissipation kinetics were �tted to a decay
model, where K is the rate of dissipation (day-1) and DT50 is the time required

to reach 50 % of the initial pesticide dose.
Medium Treatment Equation R2 k (day− 1) DT50 (days)

MSM Control Ct = 27.3e− 0,1x 0.9 0.1 4.5

MSM B Ct = 9.8e− 0,6x 0.8 0.6 1.1

NS Control Ct = 39.7e− 0,3x 0.9 0.3 2.1

NS B Ct =7,3e− 0,6x 0.7 0.6 1

SS Control Ct = 39,4e− 0,3x 0.9 0.3 2.1

SS B Ct = 6,7e− 0,5x 0.6 0.5 1.4

In this short-term experiment, the dissipation of CHL was mainly governed by abiotic processes which
combined the sorption to soil components and the biosorption to S. rubidaea strain ABS 10 cells (3.106

CFU.mL− 1)
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Several microorganisms including bacteria, fungi and algae have been already reported as effective
biosorbents for removal of dyes, metal and even pesticides due to its low cost, non-toxic approach
regeneration capability and high e�ciency for pollutant uptake (Pathak and Dikshit, 2011). Particularly,
bacteria have been used as biosorbents owing to their ubiquity, size, and ability to grow under controlled
conditions and resilience to an extensive range of environmental conditions (Ayangbenro and Babalola
2017). Various heavy metals have been tested on bacteria species such as Pseudomonas, Enterobacter,
Bacillus and Micrococcus species. Their excellent sorption capacity is due to their high surface-to-volume
ratios and their numerous potential active chemosorption sites, such as the teichoic acid on the cell wall
(Mosa et al. 2016). Likewise, Zakeri et al. 2010 reported also that Serratia sp was an e�cient radium
biosorbent and might be appropriate candidate for designing biosorption remediation system.

Conclusion
This study showed that in response to long term exposure to CHL, the soil micro�ora adapted to its
enhanced mineralization. S.rubidaea strain ABS 10 a bacterial strain able to grow on mineral salt medium
added with CHL as sole carbon source was isolated from this soil. Although this strain was able to
rapidly dissipate CHL in liquid culture, it was not able to mineralize 14C-CHL labelled on the pyrazine ring.
In addition, S10 was shown to be a good biosorbent able to fully dissipate CHL within one day both in
liquid medium and in soil microcosms. The present study offers new insight in the development of a
remediation technology of CHL and other hydrophobic pollutants, based on the use of S10 as a
biosorbent.
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Figures

Figure 1
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Kinetics of mineralization of 14C-chlorpyrifos (CHL) in the soil over an eighty days incubation period.
Mean values ± standard deviation of percentage of initially added 14C-CHLare shown (n=3)

Figure 2

Growth of Serratia rubidaea strain ABS 10 (B) in mineral salt medium (MSM) and nutrient broth (NB)
liquid media supplemented with chlorpyriphos (CHL) or not. Mean values (arbitrary unit, a. u., absorbance
at 600 nm) ± standard deviation are shown (n=3 per treatment).

Figure 3

Dissipation of chlorpyrifos (CHL) in Serratia rubidaea strain ABS 10culture (B) and in mineral salt (MSM).
Mean values ± standard deviation are shown (n=3 per treatment).
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Figure 4

Dissipation of chlorpyrifos (CHL) in sterile (SS) or native (NS) soil inoculated with Serratia rubidaea strain
ABS 10 (B) of not. Mean values ± standard deviation are shown (n=3 per treatment).


