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RESEARCH ARTICLE

The long‑term effects of genomic selection: 
1. Response to selection, additive genetic 
variance, and genetic architecture
Yvonne C. J. Wientjes1*  , Piter Bijma1, Mario P. L. Calus1, Bas J. Zwaan2, Zulma G. Vitezica3 and 
Joost van den Heuvel2 

Abstract 

Background:  Genomic selection has revolutionized genetic improvement in animals and plants, but little is known 
about its long-term effects. Here, we investigated the long-term effects of genomic selection on response to selec-
tion, genetic variance, and the genetic architecture of traits using stochastic simulations. We defined the genetic 
architecture as the set of causal loci underlying each trait, their allele frequencies, and their statistical additive effects. 
We simulated a livestock population under 50 generations of phenotypic, pedigree, or genomic selection for a single 
trait, controlled by either only additive, additive and dominance, or additive, dominance, and epistatic effects. The 
simulated epistasis was based on yeast data.

Results:  Short-term response was always greatest with genomic selection, while response after 50 generations was 
greater with phenotypic selection than with genomic selection when epistasis was present, and was always greater 
than with pedigree selection. This was mainly because loss of genetic variance and of segregating loci was much 
greater with genomic and pedigree selection than with phenotypic selection. Compared to pedigree selection, selec-
tion response was always greater with genomic selection. Pedigree and genomic selection lost a similar amount of 
genetic variance after 50 generations of selection, but genomic selection maintained more segregating loci, which 
on average had lower minor allele frequencies than with pedigree selection. Based on this result, genomic selection is 
expected to better maintain genetic gain after 50 generations than pedigree selection. The amount of change in the 
genetic architecture of traits was considerable across generations and was similar for genomic and pedigree selection, 
but slightly less for phenotypic selection. Presence of epistasis resulted in smaller changes in allele frequencies and 
less fixation of causal loci, but resulted in substantial changes in statistical additive effects across generations.

Conclusions:  Our results show that genomic selection outperforms pedigree selection in terms of long-term genetic 
gain, but results in a similar reduction of genetic variance. The genetic architecture of traits changed considerably 
across generations, especially under selection and when non-additive effects were present. In conclusion, non-
additive effects had a substantial impact on the accuracy of selection and long-term response to selection, especially 
when selection was accurate.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Animal breeding has substantially increased the perfor-
mance of livestock populations over the last century [1, 
2]. This has been achieved by selecting the genetically 
best performing individuals to produce the next genera-
tion based on own performance and/or performances of 
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relatives. In spite of the strong selection, these pedigree-
based selection methods have proven to be sustainable, 
as genetic variation and rates of genetic gain have been 
stable for many generations in several animal and plant 
species, both in commercial breeding programs and in 
experimental selection lines [3–6].

Recently, genomic selection has revolutionized animal 
breeding [7, 8]. Within genomic selection, genotypes on 
several thousands of DNA markers covering the genome, 
along with recorded phenotypes, are used to identify the 
genetically best animals. In some breeding programs, 
genomic selection has doubled the annual rate of genetic 
gain compared to pedigree-based selection [9, 10]. Argu-
ably, genomic selection enables selection for lowly-her-
itable traits [11, 12] and for traits that are difficult or 
expensive to measure [13–15], for which pedigree-based 
selection is generally not very effective. These properties 
have resulted in the rapid implementation of genomic 
selection in animal breeding programs worldwide [8, 
16–18].

The accuracy of selection and, thereby, the genetic gain 
from genomic selection are affected by the genetic archi-
tecture of traits [19–21], i.e. the set of causal loci that 
underlie each trait, their allele frequencies, and their sta-
tistical additive effects. The genetic architecture is largely 
unknown for most traits, including those under selection 
in breeding programmes, but is known to evolve over 
time as a result of new mutations and changes in allele 
frequencies due to selection and drift [1, 2, 22–26]. When 
interactions are present within (dominance) or between 
(epistasis) loci, the statistical additive effects (also known 
as allele substitution effects) depend on the allele fre-
quencies at the locus itself, as well as on those of inter-
acting loci. This means that functional dominance and 
epistatic effects contribute to additive genetic variation, 
depending on allele frequencies [27–29]. Although inter-
actions between loci are known and common [30–33], 
not much is known about their interaction network or 
how those interactions contribute to genetic variance 
components or how those contributions change over 
generations as a result of drift or selection. To date, the 
network of genetic interactions has been most intensively 
studied in yeast, where 90% of the loci associated with 
a trait were found to be involved in at least one interac-
tion, with only few interactions for most loci, and many 
interactions for only a few loci [34–36]. Boone et al. [36] 
and Mackay [37] argue that it is likely that this network of 
genetic interactions is similar in other species, including 
livestock and humans.

We hypothesize that genomic selection accelerates 
changes in the genetic architecture of traits across gen-
erations, which can affect long-term genetic gain. The 
reason for this is not only that genomic selection is 

more effective, but also because the distribution of the 
selection pressure across the genome is different with 
genomic selection. Classical selection methods based on 
pedigree relationships distribute selection pressure rela-
tively evenly across the genome [38]. This is in contrast 
to genomic selection, which puts less weight on loci with 
rare alleles [38, 39]. Thus, genomic selection methods 
select more strongly genomic regions that surround loci 
with a large contribution to the additive genetic variance 
and may significantly increase changes in allele frequen-
cies at those loci [40]. Therefore, although genomic selec-
tion may substantially accelerate the rate of genetic gain 
in the short-term, we expect that by ignoring regions 
with a smaller contribution to additive genetic vari-
ance, genomic selection increases the risk of losing rare 
favourable alleles or may fail to increase the frequency 
of such alleles [41–43]. Loss of rare favourable alleles 
reduces genetic variation and genetic gain in the long 
term [38] and also limits the potential for future selection 
on other traits. However, currently, these expectations 
have not been investigated in detail or tested in breeding 
populations.

Therefore, the aim of this study was to investigate the 
long-term effects of genomic selection on the genetic 
architecture of traits. Using simulation, we compared 
genomic selection to phenotypic and pedigree-based 
selection. We investigated the impact of those selection 
methods on the rate of genetic gain, the loss in genetic 
variance, and the change in genetic architecture over 50 
generations of selection. The results provide more insight 
on the long-term evolution of the genetic architecture 
and genetic variation of traits under different selection 
methods.

Methods
Simulated population
We simulated a livestock population over 50 genera-
tions of selection. As a first step, we constructed a his-
torical population in which selection was absent and 
mating was at random, using the QMSim software 
[44]. The first 2000 generations (generation − 3050 
to − 1050) consisted of 1500 individuals, after which 
the size of the population gradually decreased to 100 
over 500 generations (generation − 1050 to − 550) to 
generate linkage disequilibrium. This was followed by 
a gradual increase in population size to 1500 over 500 
generations (generation − 550 to − 50). From the last 
historical generation (generation − 50), 100 females 
and 100 males were randomly sampled and used as 
input for our own custom Fortran program, in which 
they were randomly mated (mating ratio 1:1) with 
a litter size of 10 (5 females and 5 males). In each of 
the next 50 discrete generations, 100 females and 100 



Page 3 of 21Wientjes et al. Genetics Selection Evolution           (2022) 54:19 	

males were randomly sampled and mated to build-
up mutation-drift equilibrium (generation − 50 to 
0), using a randomly selected proportion of 0.2. Gen-
eration 0 formed the base population for the 50 gen-
erations of selection. In the following generations, we 
used truncation selection to select the best 100 females 
and 100 males, which were randomly mated using a 
mating ratio of 1:1 and a litter size of 10 (5 females and 
5 males), resulting in a selected proportion of 0.2 for 
both females and males. Five selection methods were 
used, as explained below. This process was replicated 
20 times.

Genome
The simulated genome contained 10 chromosomes of 
100 cM each. The number of recombination events per 
chromosome was sampled from a Poisson distribution 
with on average one recombination per chromosome, 
uniformly distributed across the chromosome.

In the historical population, 200,000 randomly 
spaced bi-allelic loci per chromosome were simulated 
with a recurrent mutation rate of 5× 10−5 to maintain 
at most two alleles at a locus. The population structure 
and mutation rate resulted in a U-shaped allele fre-
quency distribution of the loci in the historical popula-
tion. In the last historical generation, 2000 segregating 
loci were randomly selected to become causal loci. By 
randomly selecting 200 loci from each of 100 equally-
sized bins based on allele frequency, another set of 
20,000 segregating loci were selected as genetic mark-
ers. This resulted in a uniform distribution of the allele 
frequency of the markers, reflecting the ascertainment 
bias of markers that are typically placed on commercial 
marker chips [45–47].

After the historical population, the number of muta-
tions per individual was sampled from a Poisson dis-
tribution with an average of 0.6, which resulted in a 
mutational variance of ~ 0.001σ 2

e  under our simulated 
additive model (as explained later), as is often observed 
in real populations [48–50]. A random 4000 loci that 
did not segregate in the last generation of the histori-
cal population were chosen to be subject to mutation. 
The loci and effects of the mutations were recycled to 
limit the computational requirement. In each genera-
tion, a locus was drawn from the potential loci that did 
not segregate at that time, while maximizing the time 
between two mutations at the same locus. As such, each 
of the 4000 loci was used on average once each 6 to 7 
generations. We believe that recycling the same muta-
tions does not impact the results of our study, because 
the vast majority of the mutations are lost in the first 
generation due to drift, regardless of their effect.

Genetic and phenotypic values
Three genetic models were used to simulate phenotypic 
values; a model with only additive effects (A), a model 
with additive and dominance effects (AD), and a model 
with additive, dominance, and epistatic effects (ADE). 
In the last historical generation, functional (or biologi-
cal) additive and dominance effects were assigned to all 
2000 causal loci and to the 4000 loci for mutations. At the 
same time, epistatic effects were assigned to 90% of those 
loci, as was observed for the yeast data [34].

Functional additive effects ( a ) were sampled from a 
normal distribution with mean 0 and standard devia-
tion 1. Functional dominance effects ( d ) were simulated 
proportional to the additive effect by first sampling a 
dominance degree ( dd ) for each locus from a normal 
distribution with mean 0.2 and standard deviation 0.3 
[51–53], and then computing the dominance effect of 
locus i as di = ddi|ai| . This resulted in mostly positive 
dominance effects, with a bit of overdominance, as was 
empirically observed in pigs [51].

Only pairwise epistatic effects were simulated, because 
higher-order interactions have little effect on the phe-
notypic variance when the allele frequency distribution 
is U-shaped [27, 28, 54]. The number of interactions per 
locus was sampled using the interaction network found 
between the ~ 6000 genes in yeast [34, 55], with many loci 
with few interactions and few loci with many interactions 
(Fig. 1). This was done by creating an interaction matrix 
from the network in yeast, with elements of 1 when loci 
interacted and 0 otherwise. From this matrix, columns 
and corresponding rows were selected for all loci with 
an interaction. For the interaction between loci B and C , 
nine epistatic degrees ( ε ) were independently sampled 
from a normal distribution with mean 0 and standard 
deviation 0.45, one for each of the nine possible two-
locus genotype combinations. The sampled ε were used 
to create nine epistatic effects ( e ) for each interaction 
as e = ε

√
|aBaC | (Table  1), resulting in larger epistatic 

effects for loci with a larger additive effect. This resulted 
in the creation of all types of epistasis, i.e. additive-by-
additive, additive-by-dominance, and dominance-by-
dominance. However, by simulating the epistatic effects 
in this random manner, the simulated epistatic effects 
also contributed to functional additive or dominance 
effects (Table  1). When computing functional additive, 
dominance, and epistatic variance components, we first 
redistributed the simulated epistatic effects in the correct 
underlying functional effects. This was achieved by solv-
ing for each interaction the nine equations in Table 1 for 
the eight separate functional additive ( aB and aC ), domi-
nance ( dB and dC ), additive-by-additive ( k ), additive-by-
dominance ( l and m ) and dominance-by-dominance ( n ) 
epistatic effects that were underlying that interaction and 
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adding the additive and dominance effects to the func-
tional additive and dominance effects of the correspond-
ing loci.

The functional genetic effects were combined with the 
genotypes of the individuals to calculate total genetic val-
ues. For each individual, a residual term was also sampled 
from a normal distribution with mean zero and standard 
deviation equal to the square root of 1.5 times the vari-
ance of total genetic values in the last historical genera-
tion, resulting in a broad sense heritability of 0.4 in that 
generation.

Statistical effects
The natural and orthogonal interaction approach (NOIA) 
[56, 57] was applied in each generation to compute statis-
tical additive and dominance effects based on the func-
tional additive, dominance, and epistatic effects of all 
causal loci (the 2000 segregating causal loci and the 4000 
loci for mutations) and their allele frequencies [52]. For 
each locus i, the part of the dominance effect that is sta-
tistically additive was calculated as (1− 2pi)di, where pi is 
the frequency of the focal allele (i.e. allele B for locus B in 
Table 1). For each interaction between loci B (with alleles 
b and B ) and C (with alleles c and C ), part of the func-
tional epistasis is converted into statistical additive and 
statistical dominance effects that were computed from 
three components: (1) a vector y with functional epistatic 

effects, y′ =
[

e00 e10 e20 e01 e11 e21 e02 e12 e22
]

, (2) 
a 9 × 9 diagonal matrix D with the expected frequencies 
of the two-locus haplotypes, assuming that loci segregate 
independently, and (3) a 9 × 9 matrix W with the mean 
and orthogonal contrasts for the two loci, constructed as 
W = WB ⊗WC , with:

where pBB , pBb , and pbb represent the frequencies of 
the genotypes BB , Bb , and bb for locus B . The statistical 
effects related to the interaction between loci B and C 
then follow from:

where µ is a general mean, αx is the statistical additive 
effect related to locus x , δx is the statistical dominance 
effect related to locus x , and αα, αδ, δα, and δδ are, respec-
tively, the additive-by-additive, additive-by-dominance, 
dominance-by-additive, and dominance-by-dominance 
epistatic effects. Note that the NOIA model was run sep-
arately for each pair of interacting loci, such that only the 

WB =











1 pBb + 2pbb
−2pBbpbb

pBB+pbb−(pBB−pbb)
2

1 pBb + 2pbb − 1
4pBBpbb

pBB+pbb−(pBB−pbb)
2

1 pBb + 2pbb − 2
−2pBBpBb

pBB+pbb−(pBB−pbb)
2











,

bBC =
[

µ αB
BC

δB
BC

αC

BC
(αα)BC (δα)BC δC

BC
(αδ)BC (δδ)BC

]′

=
(

W′DW
)−1

W′Dy,

Fig. 1  Histogram of the number of interactions per causal locus

Table 1  Simulated epistatic model for two-locus interactions

First, nine epistatic effects ( e00 to e22 ) were simulated randomly, by sampling for each effect an epistatic degree ( ε ) from a normal distribution and scaling them by the 
additive effects of the two loci (i.e. e00 = ε00

√
|aBaC | ). Then, those nine epistatic effects were used to estimate the separate functional additive ( aB and aC ), dominance 

( dB and dC ), additive-by-additive ( k ), additive-by-dominance ( l  and m ) and dominance-by-dominance ( n ) epistatic effects that were underlying those epistatic effects

Genotype locus B Genotype locus C

CC Cc cc

BB e00 = µ+ aB + aC + k e01 = µ+ aB + dC +m e02 = µ+ aB − aC − k

Bb e10 = µ+ dB + aC + l e11 = µ+ dB + dC + n e12 = µ+ dB − aC − l

bb e20 = µ− aB + aC − k e21 = µ− aB + dC −m e22 = µ− aB − aC + k
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functional interaction effects were considered and not 
the functional additive and dominance effects. Therefore 
αB
BC = (pC − qC)k + 2pCqCm+ (1− 2pB)(pC − qC)l+

2pCqC(1− 2pB)n, and δBBC = −(1− 2pC )l + 2pC (1− pC )n; 
where k , l , m , and n are the additive-by-additive, 
dominancy-by-additive, additive-by-dominance and 
dominance-by-dominance functional epistatic effects 
(Table 1), respectively.

The total statistical additive effect at locus i was calcu-
lated as:

and the total statistical dominance effect as:

where the summations were taken across all interactions 
that involved locus i.

The statistical additive effect was used to compute 
the total additive genetic value (i.e. true breeding value) 
across all loci i of each individual as A =

∑

waiαi , with:

In the same way, the statistical dominance effect was 
used to compute the total dominance deviation across all 
loci i of each individual as D =

∑

wdiδi , with:

By definition, the variance in A across all individuals 
is the additive genetic variance, the variance in D across 
all individuals is the dominance genetic variance, and 
the variance in total genetic values across all individuals 
is the total genetic variance. The total genetic variance 
minus the additive and dominance variance is the epi-
static variance.

Selection methods
Five methods were used to select the sires and dams 
of the next generation. As a base line for comparison, 
the first method randomly selected the parents (RAN-
DOM) and was meant to capture the impact of drift 
alone. The second method selected the individuals 
with the highest phenotypic values to become the par-
ents of the next generation (MASS). The third method 
selected individuals with the highest estimated breed-
ing values using a pedigree best linear unbiased pre-
diction (BLUP) model that included own performance 

αi = ai + (1− 2pi)di +
∑

αi
ij ,

δi = di +
∑

δiij ,

wai =







pBb + 2pbb
pBb + 2pbb − 1
pBb + 2pbb − 2

for genotypes







BB
Bb
bb

.

wdi =















−2pBbpbb
pBB+pbb−(pBB−pbb)

2

4pBBpbb
pBB+pbb−(pBB−pbb)

2

−2pBBpBb
pBB+pbb−(pBB−pbb)

2

for genotypes







BB
Bb
bb

.

information of the selection candidates (PBLUP_OP). 
The fourth and fifth methods selected individuals 
with the highest genomic estimated breeding values 
from a genomic BLUP model that either included own 
performance information of the selection candidates 
(GBLUP_OP) or not (GBLUP_NoOP).

Breeding value estimation for the last three methods 
was performed using the MTG2 software [58]. Each 
generation, breeding values were estimated simultane-
ously with estimating the variance components, using 
the phenotypic information of the previous three gen-
erations, and for PBLUP_OP and GBLUP_OP using 
also phenotypic information of the present generation. 
The PBLUP method used a relationship matrix based 
on a pedigree that included all individuals from the 
present generation and the previous eight generations. 
The GBLUP methods used a relationship matrix based 
on marker genotypes of the present generation and the 
previous three generations, computed using Method 
1 of VanRaden [59], with allele frequencies estimated 
based on the genotype data of those generations. The 
model for breeding value estimation included a fixed 
mean, a random additive genetic effect, a random lit-
ter effect, and a residual. The random litter effect was 
included to capture resemblance between full sibs due 
to non-additive genetic effects, which could otherwise 
bias the estimated breeding values. Although domi-
nance and epistatic effects were simulated, these were 
not included in the breeding value estimation model, 
because additive models are generally used in breeding 
programs and only the breeding value is transmitted to 
the offspring.

Comparing genetic models and selection methods
The three genetic models (A, AD, and ADE) and five 
selection methods resulted in 15 scenarios that were 
applied to each of the 20 replicates of the simulated pop-
ulation. The scenarios were compared based on accu-
racies of selection, phenotypic trend, additive genetic 
variance, additive genic variance (calculated as the sum of 
2pi(1− pi)α

2
i  across all causal loci i ), expected heterozy-

gosity, average minor allele frequency (MAF), and num-
ber of segregating causal loci across the 50 generations of 
selection. Accuracy of selection within a generation was 
calculated as the correlation between the true and esti-
mated breeding values among animals in that generation.

One of our main aims was to evaluate how fast the 
genetic architecture of the trait changed due to selection. 
The genetic architecture can change because: (1) the sub-
set of loci affecting the trait changes due to new mutations 
and loci becoming fixed, (2) the allele frequencies of those 
loci change, which can result in changes in the proportion 
of the additive genetic variance explained by each locus, 
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or (3) the statistical additive effects of the loci change as a 
result of changes in allele frequencies and of non-additive 
effects, which can also change the proportion of additive 
genetic variance explained by a locus. To quantify changes 
in genetic architecture, we defined three criteria that each 
reflected one of those mechanisms, namely: (1) the Jaccard 
index [60] for the segregating causal loci, (2) the correla-
tion of allele frequencies at those loci between generations, 
and (3) the correlation of statistical additive effects at those 
loci between generations. For the first criterion, we calcu-
lated the Jaccard index [60] between generation 0 (before 
selection) and each of the generations after selection as 
the number of overlapping segregating loci divided by the 
total number of segregating loci in the two generations. 
For the second criterion, we calculated the correlation of 
allele frequencies in generation 0 with those in each sub-
sequent generation, using only the loci that segregated in 
generation 0 and still segregated in the generation in ques-
tion. For the third criterion, we calculated the correlation 
of statistical additive effects in generation 0 with those in a 
subsequent generation, again including only loci that seg-
regated in both generations.

Results
Properties of the simulated population
The distribution of allele frequencies of the segregating 
causal loci was strongly U-shaped (see Additional file 2: 
Fig. S1) and comparable to the distribution of allele fre-
quencies of segregating loci that is observed in sequence 
data of livestock populations [61–64]. In the RANDOM 
scenario, where no selection was performed, the pattern 
of allele frequencies remained similar across genera-
tions, indicating that the population was approximately 
in mutation-drift equilibrium. Moreover, the pattern of 
linkage disequilibrium in the population (see Additional 
file 2: Fig. S2) was similar to that found in pig and chicken 
populations [65–67]. This indicates that the effective 
population size of the simulated population was compa-
rable to that in real livestock populations, which ranges 
from 40 to 130 [40, 68–70].

With model ADE, epistasis at the functional level was 
abundant and 49% of the variation in the total genetic 
value was generated by functional epistatic effects and 
only 19% by functional additive effects. However, most 
of the genetic variance at the statistical level was addi-
tive (62%) or due to dominance (33%), and only 5% was 
epistatic variance in generation 0, which is reasonably 
close to results for litter size in pigs [71]. The broad-sense 
heritability was set to 0.4 for all genetic models, resulting 
in a narrow-sense heritability of ~ 0.25 for model ADE. 
This heritability was considerably lower than the narrow-
sense heritability of ~ 0.40 for model A and ~ 0.38 for 
model AD. Altogether, those parameters indicate that the 

genetic architecture that was simulated based on model 
ADE could represent the genetic architecture of a quanti-
tative trait in a livestock population.

Accuracy of selection
In the first generation of selection, the accuracy of selec-
tion was always highest with genomic selection including 
own performance (GBLUP_OP) (Fig.  2). The accuracy 
was ~ 0.83 for models A and AD, and ~ 0.72 for model 
ADE. The lower accuracy for model ADE is a result of 
the lower narrow-sense heritability for this model. For 
all genetic models, the accuracy of the pedigree selec-
tion scenario with own performance (PBLUP_OP) in 
generation 1 was ~ 0.09 lower than with GBLUP_OP, the 
accuracy of genomic selection without own performance 
(GBLUP_NoOP) was ~ 0.13 lower than with GBLUP_OP, 
and the accuracy of MASS was ~ 0.21 lower than with 
GBLUP_OP. As expected, the accuracy of MASS was 
equal to the square root of the narrow-sense heritability.

Across generations, the accuracy of selection decreased 
for all scenarios. The decrease was largest in the first 
generations as a result of the Bulmer effect [72]. There-
after, the decrease was slightly larger for the genomic 
selection scenarios (GBLUP_OP and GBLUP_NoOP) 
than for PBLUP_OP and MASS. As a result, differences 
in accuracy between the scenarios were smaller after 50 
generations of selection than in the first generation. The 
accuracy decreased fastest under the ADE genetic model, 
especially for the genomic selection scenarios. Under 
this genetic model, the accuracies of PBLUP_OP, MASS 
and GBLUP_OP were similar after 50 generations of 
selection.

Genetic gain
Across generations, the average phenotypic value in the 
population was constant for the RANDOM scenario and 
increased with selection (Fig. 3). The rates of genetic gain 
in the first generations resembled the results for accu-
racy, with the highest values for GBLUP_OP, followed 
by PBLUP_OP, GBLUP_NoOP, and finally MASS, and 
smaller values when non-additive effects were present. 
The rate of genetic gain decreased over generations, but 
considerably less for MASS than for the other selec-
tion methods. Thus, after 50 generations of selection, 
cumulative genetic gain was greater for MASS than for 
PBLUP_OP and GBLUP_NoOP under all genetic models, 
and MASS also outperformed GBLUP_OP under model 
ADE.

Additive genetic and genic variance
The additive genetic and genic variances were approxi-
mately constant for the RANDOM scenario and 
decreased with selection (Fig. 4). As expected, the largest 
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Fig. 2  Accuracy of selection across generations for four selection methods and three genetic models. The four selection methods were: 
MASS selection, PBLUP selection with own performance (PBLUP_OP), GBLUP selection without own performance (GBLUP_NoOP) or with own 
performance (GBLUP_OP). The three genetic models were a model with only additive effects (A), with additive and dominance effects (AD), or with 
additive, dominance and epistatic effects (ADE). Results are shown as averages of 20 replicates and the width of the lines represents the average 
plus and minus one standard error

Fig. 3  Phenotypic trends for the five selection methods and three genetic models. The phenotypic trend is scaled by the additive genetic standard 
deviation in the generation before selection in order to make the results comparable across the genetic models. The five selection methods were: 
RANDOM selection, MASS selection, PBLUP selection with own performance (PBLUP_OP), GBLUP selection without own performance (GBLUP_
NoOP) or with own performance (GBLUP_OP). The three genetic models were a model with only additive effects (A), with additive and dominance 
effects (AD), or with additive, dominance and epistatic effects (ADE). Results are shown as averages of 20 replicates and the width of the lines 
represents the average plus and minus one standard error
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drop in additive genetic variance was observed in the 
first generations of selection as a result of the Bulmer 
effect, similar to what was observed for the accuracy of 
selection; by more than 20% in the first three genera-
tions of selection. The total drop in genetic variance after 
50 generations of selection was more or less similar for 

GBLUP_OP and GBLUP_NoOP, for which less than 
20% of the initial genetic variance was maintained under 
genetic models A and AD. Under model ADE, more 
genetic variance was maintained (~ 24%) for GBLUP_
OP and GBLUP_NoOP after 50 generations of selec-
tion. Only slightly more genetic variance (~ 25%) was 

Fig. 4  Additive genetic (a–c) and additive genic (d–f) variances across generations for the five selection methods and three genetic models. The 
trend is scaled by the additive genetic or additive genic variance in the generation before selection in order to make the results comparable across 
the genetic models. The five selection methods were: RANDOM selection, MASS selection, PBLUP selection with own performance (PBLUP_OP), 
GBLUP selection without own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The three genetic models were a model with 
only additive effects (A), with additive and dominance effects (AD), or with additive, dominance and epistatic effects (ADE). Results are shown as 
averages of 20 replicates and the width of the lines represents the average plus and minus one standard error
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maintained with PBLUP_OP, for which the loss in genetic 
variance was reasonably similar across the three genetic 
models. With MASS, the loss in genetic variance was 
considerably less, with ~ 40% of the variance maintained 
after 50 generations of selection.

The additive genic variance is not affected by transient 
effects such as the Bulmer effect [72]. Therefore, the loss 
in genic variance was smaller than the loss in genetic var-
iance, especially in the first generations (Fig.  4). Except 
for this difference in the first generations, the trends in 
additive genic and genetic variance were very similar.

Number of segregating causal loci
The number of segregating causal loci decreased for 
the scenarios with selection (Fig.  5). For PBLUP_OP, 
the number of loci decreased fastest, with a reduction 
by almost 50% after 50 generations of selection. For 
GBLUP_OP and GBLUP_NoOP, the decrease was slightly 
smaller; 42% for GBLUP_OP and 40% for GBLUP_NoOP. 
For MASS, the decrease was substantially smaller, at 
only 20%. The loss in segregating loci was slightly smaller 
when non-additive effects were present. Interestingly, the 
number of segregating loci in generation 50 was smaller 
for PBLUP_OP than for GBLUP_OP and GBLUP_NoOP, 

while the additive genic variance was slightly larger for 
PBLUP_OP.

Average minor allele frequency at segregating causal loci
The additive genic variance depends on the number of 
segregating causal loci, as well as their MAF. In the first 
generations of selection, the average MAF of segregat-
ing loci increased, especially for PBLUP_OP (Fig.  6). 
Thereafter, the average MAF decreased and after 50 gen-
erations of selection, it was below its initial value, with 
the smallest values for the GBLUP scenarios. We found 
that the average MAF of PBLUP_OP and MASS after 50 
generations of selection were slightly above the average 
MAF before selection, but only under the genetic model 
ADE. The impact of MASS on the average MAF of segre-
gating loci was very small. The higher average MAF for 
PBLUP_OP can explain the larger additive genic variance 
for PBLUP_OP than for GBLUP_OP and GBLUP_NoOP, 
although PBLUP_OP resulted in a smaller number of 
segregating loci (Fig. 4 vs. Fig. 5).

Accumulated heterozygosity
In a random mating population, the accumulated het-
erozygosity depends on the number of segregating 
causal loci (Fig.  5), their average MAF (Fig.  6) and on 

Fig. 5  Numbers of segregating causal loci across generations for the five selection methods and three genetic models. The five selection methods 
were: RANDOM selection, MASS selection, PBLUP selection with own performance (PBLUP_OP), GBLUP selection without own performance 
(GBLUP_NoOP) or with own performance (GBLUP_OP). The three genetic models were a model with only additive effects (A), with additive and 
dominance effects (AD), or with additive, dominance and epistatic effects (ADE). Results are shown as averages of 20 replicates and the width of the 
lines represents the average plus and minus one standard error
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Fig. 6  Average minor allele frequencies (MAF) of segregating causal loci across generations for the five selection methods and three genetic 
models. The five selection methods were: RANDOM selection, MASS selection, PBLUP selection with own performance (PBLUP_OP), GBLUP selection 
without own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The three genetic models were a model with only additive 
effects (A), with additive and dominance effects (AD), or with additive, dominance and epistatic effects (ADE). Results are shown as averages of 20 
replicates and the width of the lines represents the average plus and minus one standard error

Fig. 7  Average accumulated heterozygosity for segregating causal loci across generations for the five selection methods and three genetic models. 
The five selection methods were: RANDOM selection, MASS selection, PBLUP selection with own performance (PBLUP_OP), GBLUP selection 
without own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The three genetic models were a model with only additive 
effects (A), with additive and dominance effects (AD), or with additive, dominance and epistatic effects (ADE). Results are shown as averages of 20 
replicates and the width of the lines represents the average plus and minus one standard error
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the variation in MAF among those loci (see Additional 
file 2: Fig. S3 and Additional file 3). As expected, selection 
resulted in a decrease in the accumulated heterozygosity 
(Fig. 7). The reduction in accumulated heterozygosity was 
similar for GBLUP_OP and GBLUP_NoOP, slightly less 
for PBLUP_OP, and considerably less for MASS. More-
over, the accumulated heterozygosity decreased more 
slowly when non-additive effects were present. Thus, 
the decrease in heterozygosity was smaller for pedigree 
than for genomic selection, and depended on the genetic 
model.

Changes in genetic architecture
Across generations, the subset of causal loci underlying 
the trait (Fig. 8) and their allele frequencies (Fig. 9) and 
statistical additive effects (Fig.  10) changed. The change 
in the subset of loci was measured by the Jaccard index, 
which was substantial, especially in the first generation. 
Note that approximately 600 new mutations occurred in 
each generation, most of which were lost immediately. 
As a result, two consecutive generations already dif-
fered in nearly 1200 causal loci. The subset of loci that 
affected the trait changed considerably with drift (RAN-
DOM) but the change was amplified by selection. After 
50 generations, the average Jaccard index was ~ 0.27 for 

RANDOM, ~ 0.21 for MASS, and between 0.10 and 0.15 
for PBLUP_OP, GBLUP_NoOP, and GBLUP_OP. The Jac-
card index was slightly higher when non-additive genetic 
effects were present. Altogether, these results indicate 
that the subset of loci that affect the trait constantly 
changed across generations due to new mutations and 
drift, and that this change was amplified by selection.

Selection also strongly amplified the change in allele 
frequencies at causal loci compared to drift (Fig. 9) and 
(see Additional file 4: Figs. S1 to S15). Due to drift alone, 
the correlation between allele frequencies of causal loci 
that segregated in both generation 0 and generation 50 
was ~ 0.93 (RANDOM). The change in allele frequencies 
as a result of selection was largest under model A, with a 
correlation between the allele frequencies in generations 
0 and 50 of only ~ 0.10 for GBLUP_OP, GBLUP_NoOP, 
and PBLUP_OP, and of 0.44 for MASS. These correlations 
were slightly higher under model AD. When epistatic 
effects were also present, the change in allele frequencies 
was much smaller, and the correlation was ~ 0.28 after 50 
generations of GBLUP_OP, GBLUP_NoOP, and PBLUP_
OP, and 0.66 for MASS.

As a result of the change in allele frequencies, statisti-
cal additive effects of the loci changed when non-addi-
tive effects were present (Fig.  10) and (see Additional 

Fig. 8  Change in the subset of segregating causal loci across generations for the five selection methods and three genetic models. The change in 
the subset of segregating causal loci is described by the Jaccard index. The five selection methods were: RANDOM selection, MASS selection, PBLUP 
selection with own performance (PBLUP_OP), GBLUP selection without own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). 
The three genetic models were a model with only additive effects (A), with additive and dominance effects (AD), or with additive, dominance 
and epistatic effects (ADE). Results are shown as averages of 20 replicates and the width of the lines represents the average plus and minus one 
standard error
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file 5: Figs. S1 to S10). These changes were quite limited 
when only additive and dominance effects were pre-
sent, with an average correlation of 0.94 between the 
statistical additive effects in generations 0 and 50 for 
all selection methods. When epistatic effects were also 
present, this correlation was much lower, with an aver-
age correlation of 0.95 for RANDOM, 0.65 for MASS, 
0.51 for PBLUP_OP, 0.47 for GBLUP_NoOP, and 0.45 
for GBLUP_OP. Within 10 generations of selection 
based on GBLUP_OP, GBLUP_NoOP or PBLUP_OP, 
these correlations had already dropped to ~ 0.90.

Discussion
We investigated the long-term effects of genomic selec-
tion on the rate of genetic gain, additive genetic variance, 
and the genetic architecture of quantitative traits. Results 
showed that, across 50 generations of genomic selection 
(GBLUP), the accuracy of selection, the rate of genetic 
gain, the amounts of additive genetic and genic variation, 
and the number of segregating causal loci decreased. The 
same trends were also observed for phenotypic (MASS) 
and pedigree (PBLUP) selection, but the reductions in 
these parameters were slightly smaller for PBLUP and 
considerably smaller for MASS. The main results of our 

study are summarized in Table 2, which also refers to the 
most likely mechanisms that underlie the results, which 
will be further discussed in the following sections.

Genetic gain
The cumulative genetic gain after 50 generations of 
GBLUP_OP selection was 8 to 9% higher than with 
PBLUP_OP, and 16 to 20% higher than with GBLUP_
NoOP, mainly as a result of a higher accuracy. Selection 
resulted in a decrease in the accuracy over generations, 
which is in agreement with previous research [41, 73]. 
The drop in accuracy was largest for the model with epi-
static effects (as will be further explained later), especially 
for GBLUP_OP and GBLUP_NoOP. Therefore, the pres-
ence of epistatic effects resulted in a larger decrease in 
rate of genetic gain over generations.

The drop in accuracy over generations was always smaller 
for MASS than for the other selection methods. Together 
with the ability of MASS to maintain more genetic varia-
tion, this resulted in the highest cumulative genetic gain 
after 50 generations for MASS when epistasis was present, 
and almost the highest cumulative gain when epistasis was 
absent, which agrees with previous research [74, 75].

Based on the causal loci that were segregating after 50 
generations of selection, we estimated the theoretical 

Fig. 9  Change in the allele frequencies of segregating causal loci across generations for the five selection methods and three genetic models. The 
change in allele frequencies is represented by the correlation in allele frequencies between the generation of interest and the generation before 
selection (generation 0). The five selection methods were: RANDOM selection, MASS selection, PBLUP selection with own performance (PBLUP_OP), 
GBLUP selection without own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The three genetic models were a model with 
only additive effects (A), with additive and dominance effects (AD), or with additive, dominance and epistatic effects (ADE). Results are shown as 
averages of 20 replicates and the width of the lines represents the average plus and minus one standard error
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maximum genetic gain that could still be achieved when 
all these loci would become fixed for the favourable 
allele, using the statistical additive effects of generation 
50 (see Additional file 6: Table S1). This theoretical max-
imum was highest for RANDOM, followed by MASS, 
and was on average 7.6% and 6.1% higher for GBLUP 
with or without own performance than for PBLUP with 
own performance. This suggests that GBLUP is more 
sustainable in terms of maintaining future genetic gain 
than PBLUP.

Genetic variance
All selection methods resulted in a significant loss in 
genetic variance (Fig. 4). Part of this loss was transient 
and a result of the Bulmer effect [72]. The reasonably 
small difference between the genetic and genic variance 
indicates that this transient loss of genetic variance was 
limited (see Additional file 2: Fig. S4). Therefore, most of 
the loss in genetic variance was permanent and resulted 
from changes in allele frequencies.

Genic variance is a function of the number of segregat-
ing causal loci ( n ), their average heterozygosity 

(

HE

)

 , the 
average square of their statistical additive effects 

(

α2
)

, 
and the covariance between their heterozygosity and α2 

(Cov
(

HE ,α
2
)

) (see Additional file 3). Although the total 
loss in genic variance was comparable for GBLUP and 
PBLUP, PBLUP lost more segregating causal loci than 
GBLUP (see Additional file 6: Table S2). In contrast, the 
loss in average heterozygosity level at causal loci was 
greater for GBLUP than for PBLUP, likely because of 
stronger family selection with PBLUP, which agrees with 
its higher level of pedigree inbreeding than with GBLUP 
(see Additional file 6: Table S3).

Besides the drop in the number of segregating causal 
loci and their average heterozygosity, the genic variance 
slightly decreased over generations with GBLUP and 
PBLUP, as a result of a decrease in α2 over generations 
(see Additional file 6: Table S2). This drop in α2 is likely 
because loci with a larger statistical additive effect were 
more likely to become fixed over generations, which was 
stronger when epistasis was present. The covariance 
between HE and α2 was in general close to zero and con-
tributed only little to the genic variance.

Compared to GBLUP and PBLUP, the loss in genic 
variance was much smaller for MASS. This was mostly 
because MASS maintained much more segregating loci, 
probably because MASS is better able to exploit and 
maintain rare favorable alleles than GBLUP and PBLUP 
[41, 76] and because selection pressure on loci is smaller 

Fig. 10  Change in the statistical additive effects of segregating causal loci across generations for the five selection methods and three genetic 
models. The change in statistical additive effects is represented by the correlation in the effects between the generation of interest and the 
generation before selection (generation 0). The five selection methods were: RANDOM selection, MASS selection, PBLUP selection with own 
performance (PBLUP_OP), GBLUP selection without own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The three genetic 
models were a model with only additive effects (A), with additive and dominance effects (AD), or with additive, dominance and epistatic effects 
(ADE). Results are shown as averages of 20 replicates and the width of the lines represents the average plus and minus one standard error
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with MASS, which reduces the loss of segregating loci as 
a result of hitchhiking [77].

The loss in genic variance was slightly smaller when 
non-additive effects were present. With non-additive 
effects, the statistical additive effects of loci depend on 
their allele frequencies [37, 78]. For some loci, the sign 
of the statistical additive effects even changed over gen-
erations when epistasis was present (see Additional file 5: 
Figs. S1 to S10), which changed the direction of selection 
on these loci and limited the number of loci that became 
fixed in the population. This resulted in a larger num-
ber of segregating loci (Fig. 5) and a higher level of het-
erozygosity (Fig. 7) after 50 generations of selection when 
non-additive effects were present (see Additional file  6: 
Table S2).

Genetic architecture
Our initial plan was to quantify the change in genetic 
architecture by the additive genetic correlation between 
generations. However, this turned out to be very com-
plex, because this correlation depends on the subset 
of individuals used. For example, the genetic correla-
tion between generations 1 and 10 depends on whether 
it is estimated based on individuals from generation 1, 
from generation 10, or both [52]. Therefore, we decided 
to focus on three measures that reflect the underlying 
mechanisms, i.e. the changes in the subset of segregating 
causal loci, in their allele frequencies, and in their statisti-
cal additive effects.

Contrary to our expectations and to earlier results [40, 
77], the average change in allele frequencies at segregat-
ing loci across generations was similar for GBLUP and 
PBLUP. The variance of the change in allele frequencies 
at loci was, however, larger for GBLUP than for PBLUP 
(see Additional file  6: Table  S4). These results confirm 
that GBLUP focusses more on a subset of the genome 
that changes rapidly in allele frequencies, while PBLUP 
spreads the selection pressure more evenly across the 
genome [38, 39].

We hypothesized that the changes in allele frequen-
cies could result in changes in true breeding values 
over generations when non-additive effects are present. 
Therefore, we estimated the correlation between true 
breeding values of individuals from generation 50 with 
the true breeding values of the same individuals for 
performance in generations 49 through 47, where true 
breeding values for a particular generation were calcu-
lated using the statistical additive effects of those gen-
erations. The correlation was always higher than 0.99 
when only additive or additive and dominance effects 
were present, but substantially lower than 1 for PBLUP 
and GBLUP when epistasis was present (Table 3; ~ 0.95 
with generation 49, ~ 0.91 with generation 48, and 

~ 0.87 with generation 47), with slightly lower values 
for GBLUP. This indicates that the correlation of true 
breeding values between generations decreased rapidly, 
although the correlation of statistical additive effects 
was very high between subsequent generations (> 0.99, 
Fig.  10), which is probably because statistical additive 
effects changed more rapidly for loci that had a high 
MAF or a large effect (see Additional file 5: Figs. S1 to 
S10). This phenomenon drastically decreased the infor-
mativeness of previous generations for prediction of 
breeding values, which reduced the accuracy of selec-
tion. Thus, recent generations of reference popula-
tions are more useful for genomic prediction, not only 
because they are more closely related to the selection 
candidates [68, 79, 80], but also because their genetic 
architecture is more similar to that of the selection can-
didates. This might explain why it is sometimes benefi-
cial to remove earlier generations from the reference 
populations [81, 82]. Moreover, the correlation between 
statistical additive effects cannot be used to investigate 

Table 3  Correlation of true breeding values (TBV) of individuals 
from generation 50 between performance in generation 50 and 
each of the three previous generationsa for three genetic models 
(A, AD, ADE) and five selection methodsb

a True breeding values were estimated for individuals from generation 50, for 
performance in generation 50 and the three previous generations based on the 
genotypes of the individuals in generation 50 and the statistical additive effects 
of each of those generations
b Results are shown as averages across the 20 replicates with their 
corresponding standard errors of the mean between brackets

Correlation in TBV of generation 50 with

Generation 49 Generation 48 Generation 47

Model A

 RANDOM 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)

 MASS 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)

 PBLUP 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)

 GBLUP_NoOP 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)

 GBLUP_OP 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)

Model AD

 RANDOM 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)

 MASS 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)

 PBLUP 1.00 (0.000) 0.99 (0.001) 0.99 (0.001)

 GBLUP_NoOP 1.00 (0.000) 0.99 (0.001) 0.99 (0.001)

 GBLUP_OP 1.00 (0.000) 0.99 (0.000) 0.99 (0.001)

Model ADE

 RANDOM 0.99 (0.000) 0.99 (0.000) 0.99 (0.000)

 MASS 0.98 (0.001) 0.98 (0.002) 0.97 (0.003)

 PBLUP 0.95 (0.003) 0.92 (0.006) 0.90 (0.007)

 GBLUP_NoOP 0.96 (0.004) 0.91 (0.009) 0.86 (0.012)

 GBLUP_OP 0.95 (0.003) 0.91 (0.006) 0.87 (0.010)
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the informativeness of previous generations, because 
a high correlation between statistical additive effects 
does not necessarily imply that the correlation between 
true breeding values is high.

Non‑additive effects
A large part of the functional dominance and epistatic 
effects at causal loci can be converted into additive 
genetic variance [26, 29, 30, 83]. Due to this conversion, 
it is difficult to draw conclusions about the magnitude of 
the functional epistasis in a population based on the level 
of epistatic variance [84, 85]. In our study, for example, 
the epistatic variance only explained 5% of the genetic 
variance, although almost 50% of the variation in the 
total genetic value was generated by functional epistatic 
effects.

The conversion of non-additive effects into statisti-
cal additive effects depends on allele frequencies, with a 
larger proportion of the non-additive effects converted 
into statistical additive effects when allele frequencies 
are closer to 0 or 1 [27–29]. As a result, the MAF of a 
locus was negatively correlated with the absolute value 
of its statistical additive effect in our simulations, already 
before selection, although functional effects were simu-
lated independently of allele frequencies (Fig.  11). A 
negative correlation between MAF and the size of the 
estimated additive effects of loci is often observed in 
empirical studies [86–88], and our results show that 
the presence of non-additive effects can contribute to 
explaining this finding and that it is not necessarily a 
result of selection.

Little is known about the structure and network of 
epistatic interactions. We only simulated pairwise inter-
actions and mimicked the genetic interaction network 
observed in yeast, with many loci that have few interac-
tions and few loci that have many interactions. Although 
studied in less detail than in yeast, similar interaction 
networks have been reported for C. elegans [89], dros-
ophila [31] and mice [90], and are also found for pro-
teins [35], which led Boone et  al. [36] and Mackay [37] 
to argue that it is likely that the interaction network 
between genetic loci is similar in other species such 
as livestock and humans. Thus, we used the knowledge 
that is available on interaction effects from yeast [34] to 
make the simulations as realistic as possible. However, we 
still had to make simplifications such as only including 
pair-wise interactions and independence of interaction 
effects between pairs. We expect that the trend in genetic 
gain, genetic variance, and genetic architecture for the 
three genetic models is likely correct because it follows 
expectations, however, the magnitude of the differences 
between models and selection methods could be affected 
by those simplifications.

Genetic evaluation methods
To estimate genomic relationships, we used the allele 
frequencies for the individuals that were included in the 
genomic relationship matrix, i.e. the selection candi-
dates and the previous three generations. In an additive 
analysis model, the use of different allele frequencies 
affects the estimates of the variance components but 
not the ranking of the estimated breeding values [91, 
92] and, therefore, not the response to selection. The 

Fig. 11  Correlation between the absolute statistical additive effect and the minor allele frequency at causal loci for the three genetic models. 
The three genetic models were a model with only additive effects (A), with additive and dominance effects (AD), or with additive, dominance and 
epistatic effects (ADE)
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allele frequencies of the markers followed a uniform 
distribution, as is common for loci that are included on 
most commercial marker chips [45–47], which is differ-
ent from the distribution of the causal loci, which was 
U-shaped. This difference could result in a slight bias in 
the estimated variance components and breeding values 
for the GBLUP scenarios [93, 94], which could have had a 
slightly negative effect on the long-term response for the 
GBLUP scenarios.

The models used in our study to estimate breeding val-
ues included only an additive effect. The availability of 
genomic data enables inclusion of non-additive effects 
in the breeding value estimation model [95–97]. We 
tested the benefit of including a dominance effect in the 
GBLUP model with own performance for the genetic 
models AD and ADE. With the AD genetic model, inclu-
sion of a dominance effect in the GBLUP model had a 
negligible effect on genetic gain and loss of genetic vari-
ance (see Additional file  2: Figs. S5 and S6). With the 
ADE genetic model, inclusion of a dominance effect in 
GBLUP resulted in slightly higher long-term response to 
selection, which became apparent after about 20 genera-
tions. This is likely related to the much larger dominance 
variance in the ADE model compared to the AD model, 
which probably makes it more difficult for the random 
litter effect to capture all dominance genetic variance, 
resulting in a slight bias in estimated breeding values 
when a dominance effect is not included, which accumu-
lates over generations. With the ADE genetic model, the 
cumulative genetic gain for the GBLUP model with dom-
inance effects was comparable to MASS selection after 50 
generations of selection. This result shows that inclusion 
of a dominance effect in the breeding value estimation 
model can be beneficial in the long-term when non-addi-
tive effects are large.

Relevance for breeding programs
Our results show a larger loss in genetic variance than 
generally observed in actual populations, which is often 
observed in simulation studies e.g. [41, 43, 74, 76]. The 
loss in genetic variance was mainly due to a reduction in 
the number of segregating causal loci and in the mean 
heterozygosity at these loci. These results suggest that the 
average change in allele frequency was larger in our sim-
ulations than in actual populations. Moreover, the large 
differences between the RANDOM scenario and the 
selected scenarios suggest that the large changes in allele 
frequencies were mainly due to selection, rather than 
drift. The change in allele frequency at a locus due to 
selection depends on the proportion of genetic variance 
explained by the locus and on the level of linkage dise-
quilibrium among loci that are under selection. Hence, in 
our simulations, a typical causal locus may have explained 

more variation than in actual populations, due to either a 
larger effect or a higher MAF, and the smaller genome of 
roughly 1/3 of the size of a typical livestock genome may 
have increased the effect of linkage. At present, we have 
insufficient knowledge of the number of loci and the joint 
distribution of the allele effects and allele frequencies in 
livestock populations to draw strong conclusions. It is 
also difficult to predict whether the larger loss in genetic 
variance than observed in actual populations affects the 
comparison of the selection methods. To be more in line 
with reality, a larger genome with more causal loci and 
lower MAF could be simulated, resulting in a less severe 
reduction in genetic variance. However, an agreement of 
the trend in genetic variance between simulations and 
actual populations still does not prove that the changes in 
genetic architecture observed in simulation match those 
of actual populations.

In our simulations, MASS outperformed GBLUP after 
50 generations when both dominance and epistatic 
effects were present. Note, however, that we compared 
selection responses per generation, while the generation 
interval may differ between selection methods. Especially 
for GBLUP without own performance, the generation 
interval can be substantially reduced in some livestock 
populations, such as dairy cattle [9, 10]. Moreover, com-
mercial breeding programs typically control the rate of 
inbreeding, for example by optimal contribution selec-
tion [98–101], which limits the loss in long-term genetic 
gain.

The focus of this study was not on optimization of 
breeding programs for long-term genetic gain, which is 
not realistic in practice because of competition between 
breeding companies, and optimization of long-term gain 
requires sacrificing short-term gain. Instead, our focus 
was on the long-term consequences of genomic selection 
compared to selection strategies that have a longer his-
tory in livestock populations, such as MASS and PBLUP, 
which have been proven to be sustainable for a relatively 
large number of generations.

Conclusions
Our results show that short-term response was always 
greatest with GBLUP, while long-term response was 
greater for MASS than for GBLUP when epistasis was 
present, and was always greater for MASS than for 
PBLUP. This was mainly the result of a much larger loss 
in genetic variance and number of segregating loci with 
GBLUP and PBLUP than with MASS. The genetic gain 
of PBLUP with own performance records was always in 
between that of GBLUP with and without own perfor-
mance records. GBLUP and PBLUP showed a similar loss 
in genetic variance, but the underlying mechanism was 
different with GBLUP maintaining more loci but with a 
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lower MAF than PBLUP. The maximum genetic gain that 
could still be obtained after 50 generations was higher for 
GBLUP selection than for PBLUP, which suggests that 
GBLUP maintains long-term genetic gain better than 
PBLUP. Changes in the genetic architecture of the trait, 
i.e. Jaccard index of segregating causal loci, correlation 
in allele frequencies, and correlations in statistical addi-
tive effects across generations, were strongly amplified 
by selection but, in contrast to our hypothesis, compa-
rable for GBLUP and PBLUP. Non-additive effects were 
relatively unimportant in the short-term but had a sub-
stantial impact on the accuracy and genetic gain when 
multiple generations were included in the reference pop-
ulation and selection was accurate.
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(PBLUP_OP), GBLUP selection without own performance (GBLUP_NoOP) 
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additive and dominance effects (AD), or with additive, dominance and 
epistatic effects (ADE). Results are shown as averages of 20 replicates and 
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variance for the GBLUP model with own performance and with and with-
out a dominance effect for the genetic models with non-additive effects. 
The trend is scaled by the additive genetic or additive genic variance in 
the generation before selection in order to make the results comparable 
across the genetic models. The two genetic models were a model with 
additive and dominance effects (AD), or with additive, dominance and 
epistatic effects (ADE). Results are shown as averages of 20 replicates and 

the width of the lines represents the average plus and minus one standard 
error. 

Additional file 3. Decomposition of additive genetic variance. This file 
provides a theoretical decomposition of the additive genetic variance. 

Additional file 4: Figure S1. Scatterplot of allele frequencies of all causal 
variants in different generations for the genetic model with additive 
effects (Model A) under RANDOM selection. Figure S2. Scatterplot of 
allele frequencies of all causal variants in different generations for the 
genetic model with additive effects (Model A) under MASS selection. Fig-
ure S3. Scatterplot of allele frequencies of all causal variants in different 
generations for the genetic model with additive effects (Model A) under 
PBLUP selection with own performance (PBLUP_OP). Figure S4. Scatter-
plot of allele frequencies of all causal variants in different generations for 
the genetic model with additive effects (Model A) under GBLUP selection 
without own performance (GBLUP_NoOP). Figure S5. Scatterplot of allele 
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effects (Model AD) under MASS selection. Figure S8. Scatterplot of allele 
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S11. Scatterplot of allele frequencies of all causal variants in different 
generations for the genetic model with additive, dominance and epistatic 
effects (Model ADE) under RANDOM selection. Figure S12. Scatterplot 
of allele frequencies of all causal variants in different generations for the 
genetic model with additive, dominance and epistatic effects (Model 
ADE) under MASS selection. Figure S13. Scatterplot of allele frequencies 
of all causal variants in different generations for the genetic model with 
additive, dominance and epistatic effects (Model ADE) under PBLUP selec-
tion with own performance (PBLUP_OP). Figure S14. Scatterplot of allele 
frequencies of all causal variants in different generations for the genetic 
model with additive, dominance and epistatic effects (Model ADE) under 
GBLUP selection without own performance (GBLUP_NoOP). Figure S15. 
Scatterplot of allele frequencies of all causal variants in different genera-
tions for the genetic model with additive, dominance and epistatic effects 
(Model ADE) under GBLUP selection with own performance (GBLUP_OP). 

Additional file 5: Figure S1. Scatterplot of statistical additive effects in 
different generations for the genetic model with additive and dominance 
effects (Model AD) under RANDOM selection. Figure S2. Scatterplot of 
statistical additive effects in different generations for the genetic model 
with additive and dominance effects (Model AD) under MASS selection. 
Figure S3. Scatterplot of statistical additive effects in different generations 
for the genetic model with additive and dominance effects (Model AD) 
under PBLUP selection with own performance (PBLUP_OP). Figure S4. 
Scatterplot of statistical additive effects in different generations for the 
genetic model with additive and dominance effects (Model AD) under 
GBLUP selection without own performance (GBLUP_NoOP). Figure S5. 
Scatterplot of statistical additive effects in different generations for the 
genetic model with additive and dominance effects (Model AD) under 
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RANDOM selection. Figure S7. Scatterplot of statistical additive effects in 
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epistatic effects (Model ADE) under MASS selection. Figure S8. Scatterplot 
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selection with own performance (PBLUP_OP). Figure S9. Scatterplot of 
statistical additive effects in different generations for the genetic model 
with additive, dominance and epistatic effects (Model ADE) under GBLUP 
selection without own performance (GBLUP_NoOP). Figure S10. Scat-
terplot of statistical additive effects in different generations for the genetic 
model with additive, dominance and epistatic effects (Model ADE) under 
GBLUP selection with own performance (GBLUP_OP). 

Additional file 6: Table S1. Maximum genetic gain1 that is still possible 
after 50 generations of selection for the five selection methods and three 
genetic models2. The five selection methods were: RANDOM selection, 
MASS selection, PBLUP selection with own performance (PBLUP_OP), 
GBLUP selection without own performance (GBLUP_NoOP) or with own 
performance (GBLUP_OP). The three genetic models were a model with 
only additive effects (A), with additive and dominance effects (AD), or 
with additive, dominance and epistatic effects (ADE). 1The maximum 
genetic gain in generation 50 is estimated as the genetic gain when all 
loci would be fixed for the favourable allele, using the statistical additive 
effects of generation 50 and neglecting mutations. 2Results are shown 
as averages across the 20 replicates with their corresponding standard 
errors of the mean between brackets. Table S2. Percentual change in 
the components of the genetic variance after 10 and 50 generations of 
selection for the five selection methods and three genetic models1. The 
five selection methods were: RANDOM selection, MASS selection, PBLUP 
selection with own performance (PBLUP_OP), GBLUP selection without 
own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). 
The three genetic models were a model with only additive effects (A), 
with additive and dominance effects (AD), or with additive, dominance 
and epistatic effects (ADE). 1Results are shown as averages of 20 replicates 
with their corresponding standard errors of the mean between brackets. 
Increases in the value of a component are represented in bold. Table S3. 
Average pedigree inbreeding coefficient after 50 generations of selec-
tion for the five selection methods and three genetic models1. The five 
selection methods were: RANDOM selection, MASS selection, PBLUP 
selection with own performance (PBLUP_OP), GBLUP selection without 
own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). 
The three genetic models were a model with only additive effects (A), 
with additive and dominance effects (AD), or with additive, dominance 
and epistatic effects (ADE). 1Results are shown as averages of 20 replicates 
with their corresponding standard errors of the mean between brackets. 
Table S4. Average and variance of change in allele frequency of causal 
loci1 across 50 generations of selection for the five selection methods and 
three genetic models2. The five selection methods were: RANDOM selec-
tion, MASS selection, PBLUP selection with own performance (PBLUP_OP), 
GBLUP selection without own performance (GBLUP_NoOP) or with own 
performance (GBLUP_OP). The three genetic models were a model with 
only additive effects (A), with additive and dominance effects (AD), or with 
additive, dominance and epistatic effects (ADE). 1Causal loci included only 
the causal loci segregating in generation 0. 2Results are shown as averages 
of 20 replicates with their corresponding standard errors of the mean 
between brackets.

Acknowledgements
Not applicable.

Authors’ contributions
YCJW obtained funding for this study. YCJW, PB, MPLC, BJZ, ZGV and JH (all 
authors) participated in the design of the study. YCJW performed the simula-
tions and statistical analyses and wrote the first draft of the paper. YCJW, PB, 
MPLC, BJZ, ZGV and JH were involved in the interpretation of the results. All 
authors read and approved the final manuscript.

Funding
This publication is part of the project ‘(R)evolution of traits? Quantifying the 
genetic change in traits over generations as a result of Genomic Selection’ 
(with project number 16774) of the research programme Veni which is 
(partly) financed by the Dutch Research Council (NWO). The use of the HPC 
cluster has been made possible by CAT-AgroFood (Shared Research Facilities 
Wageningen UR).

Availability of data and materials
All scripts used to generate the data during this study are included in 
Additional file 1. This file contains the QMSim input file, Fortran programs and 
seeds used to select the markers and causal loci, to simulate functional effects 
and genotypes and phenotypic values of new generations, and the interac-
tion matrix used to simulate epistatic effects.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Animal Breeding and Genomics, Wageningen University & Research, 6700 
AH Wageningen, The Netherlands. 2 Laboratory of Genetics, Wageningen Uni-
versity & Research, 6700 AH Wageningen, The Netherlands. 3 INRAE, INP, UMR 
1388 GenPhySE, 31326 Castanet‑Tolosan, France. 

Received: 9 April 2021   Accepted: 10 February 2022

References
	 1.	 Hill WG. Is continued genetic improvement of livestock sustainable? 

Genetics. 2016;202:877–81.
	 2.	 Hill WG, Kirkpatrick M. What animal breeding has taught us about 

evolution. Annu Rev Ecol Evol Syst. 2010;41:1–19.
	 3.	 Havenstein GB, Ferket PR, Qureshi MA. Growth, livability, and feed 

conversion of 1957 versus 2001 broilers when fed representative 1957 
and 2001 broiler diets. Poult Sci. 2003;82:1500–8.

	 4.	 Dudley JW, Lambert RJ. 100 generations of selection for oil and protein 
in corn. Plant Breed Rev. 2003;24:79–110.

	 5.	 Havenstein GB, Ferket PR, Qureshi MA. Carcass composition and yield 
of 1957 versus 2001 broilers when fed representative 1957 and 2001 
broiler diets. Poult Sci. 2003;82:1509–18.

	 6.	 Beniwal BK, Hastings IM, Thompson R, Hill WG. Estimation of changes in 
genetic parameters in selected lines of mice using REML with an animal 
model. 1. Lean mass. Heredity (Edinb). 1992;69:352–60.

	 7.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

	 8.	 Meuwissen THE, Hayes BJ, Goddard ME. Genomic selection: a paradigm 
shift in animal breeding. Anim Front. 2016;6:6–14.

	 9.	 García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van 
Tassell CP. Changes in genetic selection differentials and generation 
intervals in US Holstein dairy cattle as a result of genomic selection. 
Proc Natl Acad Sci USA. 2016;113:E3995–4004.

	 10.	 Schaeffer L. Strategy for applying genome-wide selection in dairy cat-
tle. J Anim Breed Genet. 2006;123:218–23.

	 11.	 Wolc A, Stricker C, Arango J, Settar P, Fulton JE, O’Sullivan NP, et al. 
Breeding value prediction for production traits in layer chickens using 
pedigree or genomic relationships in a reduced animal model. Genet 
Sel Evol. 2011;43:5.

	 12.	 Calus MPL, Meuwissen THE, de Roos APW, Veerkamp RF. Accuracy 
of genomic selection using different methods to define haplotypes. 
Genetics. 2008;178:553–61.

	 13.	 Goddard ME, Hayes BJ. Mapping genes for complex traits in domes-
tic animals and their use in breeding programmes. Nat Rev Genet. 
2009;10:381–91.

	 14.	 Daetwyler HD, Swan AA, van der Werf JH, Hayes BJ. Accuracy of pedi-
gree and genomic predictions of carcass and novel meat quality traits 
in multi-breed sheep data assessed by cross-validation. Genet Sel Evol. 
2012;44:33.



Page 20 of 21Wientjes et al. Genetics Selection Evolution           (2022) 54:19 

	 15.	 Calus MPL, de Haas Y, Pszczola M, Veerkamp RF. Predicted accuracy of 
and response to genomic selection for new traits in dairy cattle. Animal. 
2013;7:183–91.

	 16.	 Knol EF, Nielsen B, Knap PW. Genomic selection in commercial pig 
breeding. Anim Front. 2016;6:15–22.

	 17.	 Wolc A, Kranis A, Arango J, Settar P, Fulton JE, O’Sullivan NP, et al. Imple-
mentation of genomic selection in the poultry industry. Anim Front. 
2016;6:23–31.

	 18.	 Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: 
genomic selection in dairy cattle: progress and challenges. J Dairy 
Sci. 2009;92:433–43.

	 19.	 Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact 
of genetic architecture on genome-wide evaluation methods. Genet-
ics. 2010;185:1021–31.

	 20.	 Wientjes YCJ, Calus MPL, Goddard ME, Hayes BJ. Impact of QTL prop-
erties on the accuracy of multi-breed genomic prediction. Genet Sel 
Evol. 2015;47:42.

	 21.	 Hayes BJ, Pryce JE, Chamberlain AJ, Bowman PJ, Goddard ME. Genetic 
architecture of complex traits and accuracy of genomic prediction: 
coat colour, milk-fat percentage, and type in Holstein cattle as con-
trasting model traits. PLoS Genet. 2010;6: e1001139.

	 22.	 Wright S. Evolution in Mendelian populations. Genetics. 
1931;16:97–159.

	 23.	 Robertson A. A theory of limits in artificial selection. Proc R Soc Lond 
B Biol Sci. 1960;153:234–49.

	 24.	 Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th 
ed. Harlow: Pearson Education Limited; 1996.

	 25.	 Hansen TF, Álvarez-Castro JM, Carter AJR, Hermisson J, Wagner GP. 
Evolution of genetic architecture under directional selection. Evolu-
tion. 2006;60:1523–36.

	 26.	 Le Rouzic A, Carlborg Ö. Evolutionary potential of hidden genetic 
variation. Trends Ecol Evol. 2008;23:33–7.

	 27.	 Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly 
additive genetic variance for complex traits. PLoS Genet. 2008;4: 
e1000008.

	 28.	 Mäki-Tanila A, Hill WG. Influence of gene interaction on complex trait 
variation with multilocus models. Genetics. 2014;198:355–67.

	 29.	 Barton NH, Turelli M. Effects of genetic drift on variance components 
under a general model of epistasis. Evolution. 2004;58:2111–32.

	 30.	 Carlborg Ö, Jacobsson L, Ahgren P, Siegel P, Andersson L. Epistasis 
and the release of genetic variation during long-term selection. Nat 
Genet. 2006;38:418–20.

	 31.	 Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH, Ayroles JF, 
et al. Epistasis dominates the genetic architecture of Drosophila 
quantitative traits. Proc Nat Acad Sci USA. 2012;109:15553–9.

	 32.	 Flint J, Mackay TFC. Genetic architecture of quantitative traits in mice, 
flies, and humans. Genome Res. 2009;19:723–33.

	 33.	 Carlborg Ö, Haley CS. Epistasis: too often neglected in complex trait 
studies? Nat Rev Genet. 2004;5:618–25.

	 34.	 Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, 
et al. A global genetic interaction network maps a wiring diagram of 
cellular function. Science. 2016;353: aaf1420.

	 35.	 Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, et al. Global 
mapping of the yeast genetic interaction network. Science. 
2004;303:808–13.

	 36.	 Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and 
networks with yeast. Nat Rev Genet. 2007;8:437–49.

	 37.	 Mackay TFC. Epistasis and quantitative traits: using model organisms 
to study gene–gene interactions. Nat Rev Genet. 2014;15:22–33.

	 38.	 Goddard ME. Genomic selection: prediction of accuracy and maximi-
sation of long term response. Genetica. 2009;136:245–57.

	 39.	 Bijma P. Long-term genomic improvement—new challenges for 
population genetics. J Anim Breed Genet. 2012;129:1–2.

	 40.	 Heidaritabar M, Vereijken A, Muir WM, Meuwissen T, Cheng H, 
Megens H-J, et al. Systematic differences in the response of genetic 
variation to pedigree and genome-based selection methods. Hered-
ity (Edinb). 2014;113:503–13.

	 41.	 Jannink J-L. Dynamics of long-term genomic selection. Genet Sel 
Evol. 2010;42:35.

	 42.	 De Beukelaer H, Badke Y, Fack V, De Meyer G. Moving beyond manag-
ing realized genomic relationship in long-term genomic selection. 
Genetics. 2017;206:1127–38.

	 43.	 Liu H, Meuwissen THE, Sørensen AC, Berg P. Upweighting rare favour-
able alleles increases long-term genetic gain in genomic selection 
programs. Genet Sel Evol. 2015;47:19.

	 44.	 Sargolzaei M, Schenkel FS. QMSim: a large-scale genome simulator 
for livestock. Bioinformatics. 2009;25:680–1.

	 45.	 Groenen MAM, Megens H-J, Zare Y, Warren WC, Hillier LW, Crooijmans 
RPMA, et al. The development and characterization of a 60K SNP chip 
for chicken. BMC Genomics. 2011;12:274.

	 46.	 Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton 
MP, et al. Development and characterization of a high density SNP 
genotyping assay for cattle. PLoS One. 2009;4:e5350.

	 47.	 Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, 
Beever JE, et al. Design of a high density SNP genotyping assay in 
the pig using SNPs identified and characterized by next generation 
sequencing technology. PLoS One. 2009;4:e6524.

	 48.	 Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunder-
land: Sinauer Associates Inc.; 1998.

	 49.	 Hill WG. Predictions of response to artificial selection from new muta-
tions. Genet Res. 1982;40:255–78.

	 50.	 Houle D, Morikawa B, Lynch M. Comparing mutational variabilities. 
Genetics. 1996;143:1467–83.

	 51.	 Bennewitz J, Meuwissen THE. The distribution of QTL additive and 
dominance effects in porcine F2 crosses. J Anim Breed Genet. 
2010;127:171–9.

	 52.	 Duenk P, Bijma P, Calus MPL, Wientjes YCJ, van der Werf JHJ. The impact 
of non-additive effects on the genetic correlation between popula-
tions. G3 (Bethesda). 2020;10:783–95.

	 53.	 Sun X, Mumm RH. Method to represent the distribution of QTL additive 
and dominance effects associated with quantitative traits in computer 
simulation. BMC Bioinformatics. 2016;17:73.

	 54.	 Barton NH. How does epistasis influence the response to selection? 
Heredity (Edinb). 2016;118:96–109.

	 55.	 Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. 
BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 
2006;34:D535–9.

	 56.	 Álvarez-Castro JM, Carlborg Ö. A unified model for functional and 
statistical epistasis and its application in quantitative trait loci analysis. 
Genetics. 2007;176:1151–67.

	 57.	 Vitezica ZG, Legarra A, Toro MA, Varona L. Orthogonal estimates of 
variances for additive, dominance and epistatic effects in populations. 
Genetics. 2017;206:1297–307.

	 58.	 Lee SH, van der Werf JHJ. MTG2: an efficient algorithm for multivariate 
linear mixed model analysis based on genomic information. Bioinfor-
matics. 2016;32:1420–2.

	 59.	 VanRaden PM. Efficient methods to compute genomic predictions. J 
Dairy Sci. 2008;91:4414–23.

	 60.	 Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud 
Sci Nat. 1908;44:223–70.

	 61.	 Eynard SE, Windig JJ, Leroy G, van Binsbergen R, Calus MPL. The effect 
of rare alleles on estimated genomic relationships from whole genome 
sequence data. BMC Genet. 2015;16:24.

	 62.	 Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, 
Brøndum RF, et al. Whole-genome sequencing of 234 bulls facilitates 
mapping of monogenic and complex traits in cattle. Nat Genet. 
2014;46:858–65.

	 63.	 Bolormaa S, Chamberlain AJ, Khansefid M, Stothard P, Swan AA, Mason 
B, et al. Accuracy of imputation to whole-genome sequence in sheep. 
Genet Sel Evol. 2019;51:1.

	 64.	 Heidaritabar M, Calus MPL, Megens H-J, Vereijken A, Groenen MAM, 
Bastiaansen JWM. Accuracy of genomic prediction using imputed 
whole-genome sequence data in white layers. J Anim Breed Genet. 
2016;133:167–79.

	 65.	 Veroneze R, Lopes PS, Guimarães SEF, Silva FF, Lopes MS, Harlizius B, 
et al. Linkage disequilibrium and haplotype block structure in six com-
mercial pig lines. J Anim Sci. 2013;91:3493–501.

	 66.	 Badke YM, Bates RO, Ernst CW, Schwab C, Steibel JP. Estimation of link-
age disequilibrium in four US pig breeds. BMC Genomics. 2012;13:24.



Page 21 of 21Wientjes et al. Genetics Selection Evolution           (2022) 54:19 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	 67.	 Andreescu C, Avendano S, Brown SR, Hassen A, Lamont SJ, Dekkers 
JCM. Linkage disequilibrium in related breeding lines of chickens. 
Genetics. 2007;177:2161–9.

	 68.	 Wientjes YCJ, Veerkamp RF, Calus MPL. The effect of linkage disequilib-
rium and family relationships on the reliability of genomic prediction. 
Genetics. 2013;193:621–31.

	 69.	 Uimari P, Tapio M. Extent of linkage disequilibrium and effective popula-
tion size in Finnish Landrace and Finnish Yorkshire pig breeds. J Anim 
Sci. 2011;89:609–14.

	 70.	 Welsh CS, Stewart TS, Schwab C, Blackburn HD. Pedigree analysis of 
5 swine breeds in the United States and the implications for genetic 
conservation. J Anim Sci. 2010;88:1610–8.

	 71.	 Vitezica ZG, Reverter A, Herring W, Legarra A. Dominance and epistatic 
genetic variances for litter size in pigs using genomic models. Genet Sel 
Evol. 2018;50:71.

	 72.	 Bulmer MG. The effect of selection on genetic variability. Am Nat. 
1971;105:201–11.

	 73.	 Muir WM. Comparison of genomic and traditional BLUP-estimated 
breeding value accuracy and selection response under alternative trait 
and genomic parameters. J Anim Breed Genet. 2007;124:342–55.

	 74.	 Verrier E, Colleau JJ, Foulley JL. Long-term effects of selection based 
on the animal model BLUP in a finite population. Theor Appl Genet. 
1993;87:446–54.

	 75.	 Wei M, Caballero A, Hill WG. Selection response in finite populations. 
Genetics. 1996;144:1961–74.

	 76.	 Mulder HA, Lee SH, Clark S, Hayes BJ, van der Werf JH. The impact of 
genomic and traditional selection on the contribution of mutational 
variance to long-term selection response and genetic variance. Genet-
ics. 2019;213:361–78.

	 77.	 Liu H, Sørensen AC, Meuwissen THE, Berg P. Allele frequency changes 
due to hitch-hiking in genomic selection programs. Genet Sel Evol. 
2014;46:8.

	 78.	 Fisher RA. The genetical theory of natural selection. Oxford: Oxford 
University Press; 1930.

	 79.	 Pszczola M, Strabel T, Mulder HA, Calus MPL. Reliability of direct 
genomic values for animals with different relationships within and to 
the reference population. J Dairy Sci. 2012;95:389–400.

	 80.	 Clark SA, Hickey JM, Daetwyler HD, van der Werf JHJ. The importance of 
information on relatives for the prediction of genomic breeding values 
and the implications for the makeup of reference data sets in livestock 
breeding schemes. Genet Sel Evol. 2012;44:4.

	 81.	 Lourenco DAL, Misztal I, Tsuruta S, Aguilar I, Lawlor TJ, Forni S, et al. Are 
evaluations on young genotyped animals benefiting from the past 
generations? J Dairy Sci. 2014;97:3930–42.

	 82.	 Weng Z, Wolc A, Shen X, Fernando RL, Dekkers JCM, Arango J, et al. 
Effects of number of training generations on genomic predic-
tion for various traits in a layer chicken population. Genet Sel Evol. 
2016;48:1–10.

	 83.	 Hill WG. “Conversion” of epistatic into additive genetic variance in finite 
populations and possible impact on long-term selection response. J 
Anim Breed Genet. 2017;134:196–201.

	 84.	 Huang W, Mackay TFC. The genetic architecture of quantitative traits 
cannot be inferred from variance component analysis. PLoS Genet. 
2016;12: e1006421.

	 85.	 Cheverud JM, Routman EJ. Epistasis and its contribution to genetic vari-
ance components. Genetics. 1995;139:1455–61.

	 86.	 Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, 
et al. Finding the missing heritability of complex diseases. Nature. 
2009;461:747–53.

	 87.	 Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, et al. 
Rare and low-frequency coding variants alter human adult height. 
Nature. 2017;542:186–90.

	 88.	 Zeng J, de Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, Yengo L, et al. 
Signatures of negative selection in the genetic architecture of human 
complex traits. Nat Genet. 2018;50:746–53.

	 89.	 Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG. Systematic 
mapping of genetic interactions in Caenorhabditis elegans identi-
fies common modifiers of diverse signaling pathways. Nat Genet. 
2006;38:896–903.

	 90.	 Tyler AL, Ji B, Gatti DM, Munger SC, Churchill GA, Svenson KL, et al. 
Epistatic networks jointly influence phenotypes related to metabolic 

disease and gene expression in diversity outbred mice. Genetics. 
2017;206:621–39.

	 91.	 Strandén I, Christensen OF. Allele coding in genomic evaluation. Genet 
Sel Evol. 2011;43:25.

	 92.	 Wientjes YCJ, Bijma P, Vandenplas J, Calus MPL. Multi-population 
genomic relationships for estimating current genetic variances 
within and genetic correlations between populations. Genetics. 
2017;207:503–15.

	 93.	 Wientjes YCJ, Calus MPL, Duenk P, Bijma P. Required properties for 
markers used to calculate unbiased estimates of the genetic correlation 
between populations. Genet Sel Evol. 2018;50:65.

	 94.	 Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. 
Common SNPs explain a large proportion of the heritability for human 
height. Nat Genet. 2010;42:565–9.

	 95.	 Vitezica ZG, Varona L, Legarra A. On the additive and dominant variance 
and covariance of individuals within the genomic selection scope. 
Genetics. 2013;195:1223–30.

	 96.	 Toro MA, Varona L. A note on mate allocation for dominance handling 
in genomic selection. Genet Sel Evol. 2010;42:33.

	 97.	 Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. Estimating addi-
tive and non-additive genetic variances and predicting genetic merits 
using genome-wide dense single nucleotide polymorphism markers. 
PLoS One. 2012;7:e45293.

	 98.	 Sonesson AK, Woolliams JA, Meuwissen THE. Genomic selection 
requires genomic control of inbreeding. Genet Sel Evol. 2012;44:27.

	 99.	 Doekes HP, Veerkamp RF, Bijma P, Hiemstra SJ, Windig JJ. Trends in 
genome-wide and region-specific genetic diversity in the Dutch-
Flemish Holstein-Friesian breeding program from 1986 to 2015. Genet 
Sel Evol. 2018;50:15.

	100.	 Woolliams JA, Berg P, Dagnachew BS, Meuwissen THE. Genetic contri-
butions and their optimization. J Anim Breed Genet. 2015;132:89–99.

	101.	 Meuwissen THE. Maximizing the response of selection with a prede-
fined rate of inbreeding. J Anim Sci. 1997;75:934–40.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	The long-term effects of genomic selection: 1. Response to selection, additive genetic variance, and genetic architecture
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Simulated population
	Genome
	Genetic and phenotypic values
	Statistical effects
	Selection methods
	Comparing genetic models and selection methods

	Results
	Properties of the simulated population
	Accuracy of selection
	Genetic gain
	Additive genetic and genic variance
	Number of segregating causal loci
	Average minor allele frequency at segregating causal loci
	Accumulated heterozygosity
	Changes in genetic architecture

	Discussion
	Genetic gain
	Genetic variance
	Genetic architecture
	Non-additive effects
	Genetic evaluation methods
	Relevance for breeding programs

	Conclusions
	Acknowledgements
	References




