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A B S T R A C T   

Given the difficulty of measuring pathogen transmission in wildlife, epidemiological studies frequently rely on 
cross-sectional seroprevalence. However, seropositivity indicates only exposure to a pathogen at an unknown 
time. By allowing to obtain repeated test results from individuals sampled multiple times over an extended 
period, longitudinal data help reduce this uncertainty. We used capture-mark-recapture data on bank vole 
(Myodes glareolus) individuals collected at four sites over ten years in northeastern France to investigate the 
impact of environmental variables on seroprevalence and incidence of Puumala orthohantavirus (PUUV). PUUV 
causes a chronic infection without apparent symptoms, that may however impair survival of its rodent host in the 
wild. Viral transmission between rodents may occur through direct contact or via the environment. Principal 
component analysis was used to deal with multicollinearity among environmental variables. Incidence and 
seroprevalence were investigated with either generalized estimating equations or Poisson regression models 
depending on the number of observations for each season. In spring, only the factor site was found to be sig
nificant for seroprevalence, while a principal component including meteorological conditions of the previous 
winter and the normalized difference vegetation index (NDVI) of both the previous winter and spring had a 
significant effect on incidence. In autumn, only the factor site was significant for incidence, while two principal 
components, including either the meteorological conditions of the autumn and previous spring or NDVI of the 
autumn significantly affected seroprevalence. We discuss these results in light of the particular demography of 
small mammals. We encourage other researchers to investigate the relationships between demographic param
eters of wild host populations and the environment, by using both incidence and seroprevalence.   

1. Introduction 

Emerging infectious zoonotic diseases are mainly caused by patho
gens from wildlife (Jones et al., 2008; Karesh et al., 2012). To prevent 
human diseases, it is essential to monitor pathogens circulating in 
wildlife and to understand the risk factors for wildlife infection. How
ever, epidemiological studies in wildlife are limited by the difficulty of 

observing and collecting data on animal interactions in wildlife and 
imperfect detection of cases (Craft and Caillaud, 2011). Facing these 
issues, epidemiological studies frequently rely on cross-sectional sero
prevalence data. However, seropositivity is only the result of exposure of 
an animal to a pathogen at some time in the past (Cleaveland et al., 
2007). This moment will be even more difficult to estimate if the 
persistence of antibodies is long. Using serological data from short-term 
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and one-shot case studies, common for wildlife, is therefore not suffi
cient to estimate the time of infection and to evaluate risk factors for 
infection. In domestic animals, a recent study highlighted that imperfect 
detection of cases in logistic or zero-inflated Poisson models increased 
the probability of identifying false risk factors (Combelles et al., 2019). 
Imperfect case detection can lead to confusion between risk factors for 
disease occurrence and factors related to detection, especially if the 
spatial distribution of the disease is heterogeneous. (Vergne et al., 
2014), and biases in estimates of the survival probability of individuals 
in different infection states and in the probabilities of infection and re
covery (Benhaiem et al., 2018). To deal with this imperfect detection of 
cases, some authors (e.g. Hazel et al., 2000; MacCallum, 2000) have 
recommended repeated monitoring of susceptible animals in longitu
dinal serology studies of wildlife. Accordingly, a recent study has 
demonstrated that combining repeated test results from individuals 
sampled multiple times over an extended period improved detection of 
Mycobacterium bovis in badgers (Buzdugan et al., 2017). In this way, 
long-term monitoring of individuals, combined with systematic testing 
of captured individuals for the pathogen of concern, provides an 
important tool to estimate epidemiological parameters in wildlife (Craft 
and Caillaud, 2011). 

Orthohantaviruses are zoonotic pathogens that have caused an 
increasing number of clinically apparent human infections in Europe 
over the past ten years (Heyman et al., 2011). The most prevalent 
orthohantavirus in Western Europe is Puumala virus (PUUV), whose 
reservoir is the bank vole (Myodes glareolus), a wide-spread rodent in this 
region. Viral transmission between rodents may occur through direct 
contact (biting, grooming, shared nesting, etc.) or via the environment 
(Kallio et al., 2006a). Rodents develop chronic infections, but clinical 
symptoms have never been reported (Bernshtein et al., 1999). However, 
previous studies have documented tissue pathologies in infected hosts 
(Lyubsky et al., 1996; Netski et al., 1999 but see Botten et al., 2000) and 
more recent papers have suggested that orthohantaviruses decrease the 
probability of survival of their hosts (Luis et al., 2012; Tersago et al., 
2012). Humans are contaminated indirectly, through inhalation of 
aerosolized excreta of infected bank voles, and usually develop a mild 
form of hemorrhagic fever with renal syndrome (HFRS) called neph
ropathia epidemica (NE, Penalba et al., 2001). Approximately 100 
human hospitalized cases are detected annually in France, all of them 
located in the northeastern part of the country (Reynes et al., 2019). 

As the number of NE cases has been found to be related to seropre
valence of infection in the reservoir host (Drewes et al., 2017; Swart 
et al., 2017; Tersago et al., 2011; Voutilainen et al., 2016), there has 
been strong interest in modeling rodent seroprevalence to predict 
human risk. Several studies have investigated the role of environmental 
factors, including food availability, meteorological variables (tempera
ture, precipitation, and humidity), and habitat conditions, on rodent 
population dynamics and virus survival in the environment (reviewed in 
Monchatre-Leroy et al., 2017). However, using PUUV seroprevalence as 
an indicator of rodent infection is not without flaws. First, young bank 
voles may be positive to serological testing because of maternal anti
bodies (that may last for about two and a half months; Kallio et al., 
2006b). Second, life-long persistence of PUUV antibodies in infected 
bank voles (Voutilainen et al., 2015) contributes further to blur the exact 
moment when an individual was infected. As a consequence, the asso
ciation between seroprevalence and infection calculated at a given time 
is confused by the uncertain time since rodent exposure and infection 
with PUUV. Third, there is actually great variability in the findings of all 
studies investigating seroprevalence (Drewes et al., 2017; Linard et al., 
2007; Olsson et al., 2005; Piechotowski et al., 2008; Reil et al., 2015; 
Schwarz et al., 2009; Swart et al., 2017; Tersago et al., 2008; Thoma 
et al., 2014), certainly because of profound differences in methodolog
ical approaches and the short time span of most studies (see Moncha
tre-Leroy et al., 2017). To alleviate these issues, incidence, i.e. the 
number of new cases of infected bank voles, that allows us to define 
epizootic dynamics and to identify populations at risk, may be 

considered. 
Using longitudinal capture-mark-recapture data on individual bank 

voles, we set out to investigate the impact of environmental risk factors 
on the epidemiology of PUUV infection in reservoir populations moni
tored seasonally over a ten-year period at four different sites in north
eastern France. We used the normalized difference vegetation index 
(hereafter NDVI, see Pettorelli et al., 2005), temperature, and cumula
tive rainfall to assess the impact of the environment on both seropre
valence, as has frequently been done in previous studies, and incidence 
of PUUV infection. 

2. Methods 

2.1. Data collection 

Rodents were trapped from 2000 to 2009 at four sites (referred to as 
sites A, B, C, and D hereafter) located in the Ardennes department, 
located on the border of France and Belgium. Sites A and B, 2 km apart in 
Elan forest, are located in the middle of the department (near Charle
ville-Mézières) and sites C and D (5 km apart in Croix-Scaille forest) are 
about 30 km to the north. Rodent trapping was conducted five times per 
year (typically sessions occurred in April, June, July, September, and 
October) (for further details, see Augot et al., 2008). The trapping grid 
was based on 49 live traps (7 × 7 Ugglan Live Trap). The distance be
tween two traps was 15 m (Augot et al., 2008). For each session, traps 
were baited with pieces of carrots and sunflower seeds and set for three 
consecutive nights. Trapped rodents were individually marked by 
toe-clipping and released at their original site of capture after collecting 
a blood sample from the retro-orbital sinus and identifying the species. 
All rodents were weighted and sexed. All the procedures were carried 
out according to Council Directive 86/609/EEC and the French trans
position of this directive, Décret 2001–486 of June 2001 that were in 
force during the experimentation. Other rodent species were caught in 
the field, e.g. Apodemus spp., but only data from bank voles were 
included in the analysis given that it is the only reservoir species for 
PUUV. 

2.2. PUUV seroprevalence and incidence data 

Sera were tested by enzyme linked immunosorbent assay (ELISA) on 
PUUV and Hantan virus antigen (Augot et al., 2006). From these sero
logical data, we wish to compute two epidemiological measures, inci
dence and seroprevalence. Both incidence and seroprevalence are 
usually defined as ratios with the population size of the population 
under concern at the denominator. Ideally, population size should have 
been estimated directly from the capture-mark-recapture data collected 
in the field and a particularly popular method to estimate population 
size from field data for small mammals is the closed population models, 
that is based on a minimal set of assumptions (Otis et al., 1978). In their 
seminal paper, Otis et al. (1978: 78) warned that a number of distinct 
animals per trapping session between 10 and 20 was too low to apply 
these models. Unfortunately, numbers of distinct animals were below 
this threshold of 20 for most trapping sessions (see Table S4). Thus we 
did not try to estimate population size and use instead the numbers of 
bank voles captured in the computations of incidence and seropreva
lence, as detailed below. 

Concerning seroprevalence, all individuals weighting 14 g or less 
were considered young individuals still protected by maternal anti
bodies (Kallio et al., 2006b) and were therefore excluded from the 
number of seropositive individuals. Seroprevalence was calculated as 
the proportion of seropositive rodents among all individuals captured 
during a given trapping session: 

Prt =
Number of seropositive individuals > 14g at t

Number of individuals captured at t
.

An incident rodent is a new case of PUUV infection between two 
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captures. Seronegative rodents were considered as susceptible. Sero
positive rodents were considered as incident or susceptible or excluded 
from the rodents’ counts, depending on their weights and their sero
logical histories (see Table 1). Incidence rates (IRs) between two suc
cessive trapping sessions were calculated as the ratio of incident 
individuals among susceptible individuals:  

The denominator represents then the average number of individuals at 
risk (Thrusfield, 2005: 55).  

Given that the relationships between incidence rate or seropreva
lence and environmental covariates depend on the season (Moncha
tre-Leroy et al., 2017), we split the data into two seasons. However, 
because a measure of incidence was calculated over a time interval 
separating two trapping sessions, while a measure of seroprevalence was 
calculated for each trapping session, seasons were slightly different 
between incidence and seroprevalence. Concerning seroprevalence, 
“spring” included the three sessions from April to July (ending August 
10, 2000) and “autumn” the two sessions from September to October 
(starting August 28, 2001 and August 27, 2003). Concerning incidence, 
“spring” included the first three measures and “autumn” only the last 
one (between September and October, see Fig. 1). 

2.3. Environmental data 

We gathered data on environmental variables reported in the liter
ature as risk factors for rodent infection (reviewed in Monchatre-Leroy 
et al., 2017). NDVI measures the photosynthetic activity of vegetation 
and is therefore considered an indicator of the quantity of green vege
tation. Green vegetation is an extremely important component of the 
environment for bank voles because it provides both food and cover 
from predators. Data were acquired from the Global Agriculture Moni
toring (GLAM) project (https://ipad.fas.usda.gov/glam.htm), with a 
spatial resolution of 250 m and a 16-day compositing period. The French 
national meteorological Institute (Météo France) provided daily tem
perature and precipitation data for sites A and B, respectively at 16.5 

and 15.5 km from the meteorological station of Charleville-Mézières 
(indicative number 08105005). The French national forest Institute 
(ONF) provided meteorological data for sites C and D, respectively at 2.2 
and 3.3 km from the private station of Croix-Scaille forest (EPC08) in 
Ardennes. Minimum and maximum daily temperatures and daily cu
mulative rainfall were available from each meteorological station. 

Because correlation was strong between minimum and maximum daily 
temperatures at each meteorological station (Pearson correlation: 0.94, 
p-value < 2.10− 16), only maximum daily temperatures were used. We 
calculated mean values for each variable for the previous winter (from 
November to January), spring (from April to July) and autumn (from 
September to October). We also calculated mean annual maximum 
temperature values two years before (“TempY-2”), as this value may be 
considered an indicator of seed production during the year preceding 
the captures, and thus a surrogate variable for food availability of bank 
voles (see Clement et al., 2009). Variables for the spring analyses 
included NDVI (“NDVIw”, “NDVIs”), temperatures (“tempw”, “temps”), 
and rainfall (“rainw”, “rains”) of the previous winter and spring, 
respectively, and temperature two years before (“TempY-2”). Variables 
for the autumn analyses included NDVI (“NDVIs”, “NDVIa”), tempera
tures (“temps”, “tempa”), and rainfall (“rains”, “raina”) of the spring and 
autumn, respectively (Table 2). 

2.4. Statistical analyses 

2.4.1. Environmental variables 
Evaluation of correlations among variables underlined strong mul

ticollinearity; correlations and partial correlations were assessed with 
the ppcor Package in R (R Core Team, 2018). Among variables for the 
spring analysis, there was a correlation structure between rainw, tempw 
and temps (correlations and partial correlations significant with 
p < 0.05). Among variables for the autumn analysis, there was a cor
relation between tempa, temps, NDVIa and rains (correlations and partial 
correlations significant with p < 0.05). To alleviate this difficulty, new 
variables were defined using a principal component analysis (PCA) in R 
(FactoMineR Package). Based on the decrease of eigenvalues, we 
decided to keep the first two principal components for spring and the 
first three for autumn. Taken together, these principal components 
explained 65.5% of the variance in spring (Fig. S1, Table S1) and 85.2% 
of the variance in autumn (Fig. S1, Table S2). 

To interpret each principal component, we considered the variables 
with the highest contribution (i.e. highest squared cosine (cos2) values 
(Abdi and Williams, 2010)). For the PCA on spring variables, meteoro
logical data (both temperatures and rainfall) in spring and the proxy for 
food availability contributed most to Principal Component 1, and 
meteorological data during the previous winter and the NDVI in spring 
and winter contributed most to Principal Component 2 (Table 3). 
Similarly, for the PCA on autumn variables, meteorological data in both 
spring and autumn contributed most to Principal Component 1, NDVI in 
autumn to Principal Component 2, and NDVI in spring to Principal 
Component 3 (Table 4). 

2.4.2. Generalized estimating equation and Poisson regression models 
We stress that site D was excluded from all statistical analyses 

because of a limited number of captures (see Results below). The data 
were counts of seropositive or incident rodents trapped at one or several 
trapping sessions at each site, within each season. These counts were 
likely to be correlated within a season for a given site (see below), i.e. to 

Table 1 
Decision rules to identify incident individuals, depending on the weight of ro
dents and their serological histories. ‘+’ denotes seropositive individuals and ‘-’ 
denotes seronegative individuals. A seropositive status for individuals with a 
weight less than or equal to 14 g was not considered as a result of an infection 
(incident) but due to maternal antibodies.  

Weight> 14 g  
Capture at t Recapture at t + 1 Counted as incident between t and t + 1 
þ þ No (excluded from the data) 
þ – No (this transition does not exist in the data) 
– þ Yes 
– – No 
Weight≤ 14 g  
Capture at t Recapture at t + 1 Counted as incident between t and t + 1 
þ þ No (maternal antibodies) 
þ – No (this transition does not exist in the data) 
– þ Yes 
– – No 
Weight≤ 14 g Weight> 14 g  
Capture at t Recapture at t + 1 Counted as incident between t and t + 1 
þ þ Yes (maternal antibodies) 
þ – No (maternal antibodies) 
– þ Yes 
– – No  

IRt to t+1 =
Number of incident indiviuals between t and t + 1

(Number of susceptible individuals at t + Number of susceptible individuals at t + 1)/2
.
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be longitudinal data with panels consisting of the combination of year by 
site (Hardin and Hilbe, 2003). Generalized estimating equations (GEE) 
are statistical models particularly suitable to deal with this kind of data 
as they allow the different measurements within a panel to be correlated 
(Hardin and Hilbe, 2003; Liang and Zeger, 1986). Besides GEE models 
make the assumption of no correlation between panels, which appears to 
be reasonable at first approximation, given the short dispersal and life 
expectancy of bank voles, relative to the experimental design we used 
(Bernshtein et al., 1999; Karlsson and Potapov, 1998; Yoccoz et al., 
1998). 

A limitation of GEE models is that their performances decrease 
greatly if the number of panels is too small (see below), and a standard 
rule of thumb is to use at least 30 panels (see p. 132 of Hardin and Hilbe, 

2003; even 40 for randomized clustered trials according to Li and 
Redden, 2015). The number of panels in our data sets was either 28 
(incidence at spring) or 29 (seroprevalence at spring and autumn). As a 
result, we decided to compute all standard errors from the best model 
using the Kauermann and Carroll (2001) correction for small samples. 
However, this small sample correction is not currently implemented in 
PROC GENMOD, the SAS procedure designed to run “classic” GEE 
models, i.e. using asymptotic estimators, estimated by the method of 
moments as proposed by Liang and Zeger (1986). Thus, we had to use 
another procedure, PROC GLIMMIX that makes use of a different esti
mation method, i.e. residual pseudo-likelihood, to be able to work out 
the Kauermann and Carroll (2001) correction. As already reported by 
other authors facing the very same problem (McNeish and Harring, 
2017; McNeish and Stapleton, 2016), estimates from PROC GENMOD 
and PROC GLIMMIX before the correction were, however, nearly 
identical. 

Except for the analysis of incidence in autumn, full GEE models 
included the logarithm of the number of susceptible rodents or the 
number of rodents captured (calculated as described in Fig. 1) as an 
offset, factors site (site), time interval (ti) for incidence or trapping ses
sion (session) for seroprevalence, the two or three first principal com
ponents (PC1, PC2 and PC3) as continuous covariates, and all two-way 
interactions between site and principal components (PC1 *site, PC2 *site 
and PC3 *site). Additionally, to deal with the fact that the numbers of 
incident (or seropositive) rodents may not be independent between time 
intervals (or sessions) within a given year, we used an exchangeable 
process or an autoregressive process of first order as a working corre
lation matrix. To make a choice between an exchangeable and an 
autoregressive process of first order structure as the working correlation 

Fig. 1. Definition of season in seroprevalence and incidence. Prsn: Seroprevalence in session n, IRn to n+1: incidence rate from session n to n + 1.  

Table 2 
Description of variables used in the modeling of seasonal incidence or seropre
valence during 2000–2009.  

Variables Method of calculation 

temps Average of daily maximum temperatures from April to July 
rains Cumulative rainfall from April to July 
NDVIs Average of NVDI values acquired every 16 days from April to July 
tempa Average of daily maximum temperatures from August to October 
raina Cumulative rainfall from August to October 
NDVIa Average of NVDI values acquired every 16 days from August to October 
tempw Average of daily maximum temperatures during the previous 

November–January period 
rainw Cumulative rainfall during the previous November–January period 
NDVIw Average of NVDI values during the previous November–January period 
tempY-2 Average daily maximum temperatures from June to August 2 years 

before  

Table 3 
Contribution of variables to principal components (spring analysis).  

Variables PC1 PC2 

cos2 correlation p-value cos2 correlation p-value 

NDVIs 0.05 / ns  0.50 0.71 < 0.001 
NDVIw 0.09 / ns  0.48 0.70 < 0.001 
temps 0.69 0.83 < 0.001  0.01 / ns 
tempw 0.27 0.52 0.001  0.60 0.77 < 0.001 
rains 0.56 -0.74 < 0.001  0.05 / ns 
rainw 0.18 -0.42 0.020  0.63 0.80 < 0.001 
tempY-2 0.47 0.68 < 0.001  0.01 / ns 
Interpretation Meteorological conditions in spring and the proxy of food availability Meteorological conditions and NDVI of previous winter and NDVI in spring 

cos2: quality of variables projection on each principal component, ns: not significant 
NDVIs: average of NVDI values from April to July / NDVIw: average of NVDI values during the previous November–January period / temps: average of daily maximum 
temperatures from April to July / tempw: average of daily maximum temperatures during the previous November–January period / rains: cumulative rainfall from 
April to July / rainw: cumulative rainfall during the previous November–January period / tempY-2: average daily maximum temperatures from June to August two 
years before. 
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matrix, we worked out the correlation between Pearson residuals in the 
same season, from the full model with an independence structure cor
relation. In case of an autoregressive process of first order, we would 
expect a decrease in the correlation from lag 1 (consecutive observa
tions) to lag 2 (observations separated by two time intervals). 

For the analysis on incidence in autumn, we used a Poisson regres
sion model because there was only one observation by year and site. The 
data were sparse, however, and it was not possible to estimate site- 
specific slopes for the environmental covariates PC1 and PC2 for sites 
A and B. Therefore, we included a common slope for sites A and B (both 
sites were 2 km away in the same Elan forest) and a specific slope for site 
C plus site-specific slopes for PC3 in the full model. 

We carried out a backward model selection. At each step, the term 
with the highest p-value was removed on the next step until all effects 
remaining in the model were significant. Regarding incidence in 
autumn, likelihood ratio tests were used in model selection. For the 
three other data sets, generalized robust score tests known to be con
servative (Guo et al., 2005) were used. Model selection was carried out 
using the “mmmgee” package (Ristl et al., 2019) in R. All estimates are 
displayed with a 95% confidence interval constructed from t-quantiles, 
as recommended by several authors for GEE estimates (Li and Redden, 
2015; Pan and Wall, 2002; Teerenstra et al., 2010). 

3. Results 

3.1. Seroprevalent and incident rodents 

Overall, we trapped 2056 individual bank voles. Among them, 672 
were recaptured once at least (952 recaptures in total). The percentage 
of recaptured rodents by trapping session and site was on average 0.33 
(SD=0.29). The number of captures was very different between years, 
seasons, and sites (Fig. 2 and Table S3). However, site D displayed 
markedly fewer captures than other sites. For instance, the maximum 
annual number of captures at site D was 64 (in 2005) versus more than 
100 at site C for two years (maximum: 310), at site A for six years 
(maximum: 278), and at site B for three years (maximum: 242). Thus, 
because of this limited number of captures, site D was excluded from all 
statistical analyses. 

Very few animals were trapped in years 2004 and 2006, while years 
2001, 2003 and 2005 were years with many captures at all sites. Cap
tures were more regular at site A (seven years with captures in all ses
sions) than at sites B and C (five years with captures in all seasons). Most 
captures were made at site A (n = 1174) in comparison with site B 
(n = 827), and site C (n = 748). 

There were more seroprevalent rodents than incident ones (Fig. 3 
and Table S4). There was no or only one incident rodent at site C for six 
years (2000, 2001, 2003, 2006, 2007 and 2009) and at sites A and B for 
seven years (2000, 2002, 2004, 2006, 2007, 2008 and 2009). Some 
seroprevalent rodents were trapped every year at each site, except in 
2006 for all sites, in 2000 for site A and in 2009 for site B. 

3.2. Model selection and estimates from best model 

3.2.1. Spring models 

3.2.1.1. Seroprevalence. There were 74 observations pooled into 28 
panels (combinations of year by site). The correlation between Pearson 
residuals from the full model did not decrease from lag 1 to lag 2 but 
instead seemed relatively constant (lag 1: 0.464, lag 2: 0.488). This 
suggested an exchangeable working correlation matrix. The correlation 
estimate from the best model was high (0.70). The best model included a 
single variable site (Table S5). The seroprevalence estimate at site C 
(0.31 [0.25; 0.40]) was the highest and was significantly different from 
that at site A (0.10 [0.04; 0.23], p = 0.01), but not from the seropre
valence estimate at site B (0.23 [0.14; 0.39], p = 0.29). The seropreva
lence estimate at site A was marginally significantly different from the 
one at site B (p = 0.08). 

3.2.1.2. Incidence. There were 82 observations pooled into 28 panels. 
The correlation between Pearson residuals from the full model 
decreased markedly from lag 1 to lag 2 (lag 1: 0.223, lag 2: 0.008). This 
pattern suggested an autoregressive process of first order as the working 
correlation matrix. The corresponding correlation estimate from the best 
model was rather small (0.31). The best model included principal 
component PC2 and factor session. Principal component PC2 was actu
ally marginally significant (p = 0.06), but because it is known that the 
generalized robust score test on which the model selection was based is 
conservative (Guo et al., 2005), we decided to keep it in the best model. 
Spring incidence increased (0.27 [0.01; 0.53]) with increasing principal 
component PC2, i.e. with increasing spring and winter NDVI, rainfall, 
and temperature of previous winter. Incidence varied between sessions 
during the spring season: it was at its lowest level in April–June (0.01 
[0.01; 0.03]), increased significantly to a maximum in June–July (0.06 
[0.04; 0.08] p < 0.001) and then decreased slightly in July–September 
(0.04 [0.02; 0.07] p < 0.05, see Fig. 4). The incidence estimate in 
June–July was not significantly different from incidence in July–Sep
tember (p = 0.26). 

3.3. Autumn models 

3.3.1. Seroprevalence 
There were 53 observations pooled into 29 panels. The correlation 

estimate from the best model of seroprevalence was small (0.36). We 
kept the marginally significant interaction site*PC1 in the best model 
(p = 0.08) because the generalized robust score test is known to be 
conservative (Guo et al., 2005). The best model thus included principal 
components PC1 and PC2 as well as factor site and interaction site*PC1 
(Table S6). Autumn seroprevalence increased with increasing principal 
component PC1 (i.e. with increasing spring and autumn temperatures 
and decreasing spring and autumn rainfalls) at sites A and B (with slopes 
of 1.15 [0.49; 1.80] and 0.78 [0.20; 1.36], respectively) while there was 

Table 4 
Contribution of variables to principal components (autumn analysis).   

PC1 PC2 PC3 

cos2 correlation p-value cos2 correlation p-value cos2 correlation p-value 

NDVIs 0.10 / ns  0.14 0.37 0.050  0.75 0.87 < 0.001 
NDVIa 0.30 0.54 0.002  0.55 0.74 < 0.001  0.04 / ns 
temps 0.56 0.75 < 0.001  0.25 -0.49 0.010  0.07 / ns 
tempa 0.83 0.91 < 0.001  0.00 / ns  0.02 / ns 
rains 0.70 -0.83 < 0.001  0.08 / ns  0.06 / ns 
raina 0.43 -0.65 < 0.001  0.26 0.51 0.050  0.00 / ns 
Interpretation Meteorological conditions of spring and autumn of the same year NDVI in autumn NDVI in spring 

cos2: quality of variables projection on each principal component, ns: not significant 
NDVIs: average of NVDI values from April to July / NDVIa: average of NVDI values from August to October / temps: average of daily maximum temperatures from April 
to July / tempa: average of daily maximum temperatures from August to October / rains: cumulative rainfall from April to July / raina: cumulative rainfall from August 
to October. 
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no significant relationship at site C (slope: 0.13 [− 0.44; 0.70]). Simi
larly, seroprevalence increased with increasing principal component 
PC2 (i.e. with increasing NDVI in autumn) at all sites (slope: 0.32 [0.05; 
0.59]). The seroprevalence estimate was the highest at site C (0.28 
[0.08; 1.04]) and the lowest at site A (0.01 [0.00; 0.07], p < 0.001). The 
estimate at site B (0.09 [0.03; 0.27]) was marginally different from the 
estimate at site A (p = 0.06) and did not differ significantly from the 
estimate at site C (p = 0.17). 

3.3.2. Incidence 
Concerning incidence, there were 29 observations. The best model 

included only factor site (Table S6). The incidence estimate at site A 
(0.01 [0.00; 0.04]) was the lowest and was significantly different from 
that at site B (0.05 [0.02; 0.13], p = 0.04) and site C (0.05 [0.02; 0.13], 
p = 0.04). The incidence estimate at site B was not significantly different 
from the incidence estimate at site C (p = 0.97). 

Fig. 2. Number of captures of bank voles per year, trapping session, and site.  
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4. Discussion 

Our study assessed the impact of environmental variables on PUUV 
incidence and seroprevalence in bank vole populations, monitored over 
ten years at four different sites in northeastern France. Depending on the 
season, we found statistically significant relationships between principal 
components, including environmental variables like NDVI, rainfall or 
temperature, and incidence or seroprevalence epidemiological measures 
of PUUV infection. 

4.1. Environmental variables 

Incidence and seroprevalence are two different epidemiological 
measures of infection. The former has been much less frequently used to 
investigate links between environmental variables and PUUV epidemi
ology (Monchatre-Leroy et al., 2017). This is surprising given that an
tibodies remain life-long in infected bank voles (Bernshtein et al., 1999; 
Kallio et al., 2006b; Voutilainen et al., 2015), and thus seroprevalence 
may rather be considered a measure of cumulative infection over an 

Fig. 3. Incidence and seroprevalence per trapping session and site.  
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extended period of time, while incidence is more representative of 
exposure and immediate infection by PUUV. Accordingly, the pattern of 
correlation among the three counts of rodent in spring was different for 
the seroprevalence and the incidence. The correlation was high for 
seroprevalence (0.70 from the GEE model) and relatively constant over 
the two lags while it was much lower for incidence (0.31 from the GEE 
model) and decreased much from first to second lag. Therefore, to 
investigate links between environment and PUUV epidemiology, inci
dence appears more suitable than seroprevalence because it will track 
down more closely the variability in environmental variables than will 
the seroprevalence. 

Accordingly, we did not find any influence of environmental condi
tions on seroprevalence in spring, while we found that incidence 
increased with increasing rainfall and temperatures, i.e. relatively warm 
and wet meteorological conditions in the previous winter. As proposed 
by Flowerdew et al. (2017) and Vanwambeke et al. (2019), these 
meteorological conditions would promote better winter survival of ro
dents and an earlier and more intense breeding season in spring. The 
increase in the number of rodents would then facilitate PUUV trans
mission in the population (Clement et al., 2009; Escutenaire et al., 2000; 
Reil et al., 2017). Our results also highlighted that incidence increased 
with increasing winter and spring NDVI. NDVI is an indicator of the 
quantity of green vegetation that may represent, for bank voles, a food 
resource, protective cover against predators, or a source of materials to 
insulate themselves from the cold (Flower et al., 2019; Pettorelli et al., 
2005). It is difficult to deduce which biological mechanisms are behind 
the impact of NDVI on incidence in our study. As far as we know, no 
other study has investigated the relationship between NDVI and inci
dence in any hantavirus/rodent pathosystem. However, other studies 
have shown a positive association between NDVI or other related in
dexes and incidence of human cases (NE), although at a different tem
poral scale, typically annual rather than seasonal (Barrios et al., 2013; 
Linard et al., 2007; Viel et al., 2011). Given the importance of season
ality in the demography of rodents, more work is needed to elucidate the 
link between NDVI, incident bank voles, and human cases. 

In autumn, we did not find any influence of environmental condi
tions on incidence, but this data set has markedly fewer observations 
than the three others (see results), and the analysis had likely much 
lower statistical power as a result. However, our results showed that 
seroprevalence in autumn increased with increasing autumn NDVI at all 
sites and that, at two sites, seroprevalence increased with increasing 
temperatures and decreasing rainfall in spring and autumn, i.e. rela
tively warm and dry meteorological conditions. Others studies about the 
influence of rain, temperature, or NDVI on rodent seroprevalence found 
mixed results (Linard et al., 2007; Tersago et al., 2008) and the mech
anisms of action of environmental conditions on rodent seroprevalence 

are still poorly understood (Monchatre-Leroy et al., 2017). Long-term 
monitoring of rodent populations allowing a more accurate descrip
tion of the variability in seroprevalence over seasons would greatly 
improve our understanding of the mechanisms acting in natural host 
populations. 

4.2. Seasonnal patterns of seroprevalence and incidence 

As generally reported in other studies (Escutenaire et al., 2000; 
Kallio et al., 2010; Khalil et al., 2017; Voutilainen et al., 2016), sero
prevalence was higher in spring than in autumn although the difference 
between the two estimates was small at site C. This general pattern is 
thought to reflect the accumulation of infections through the course of a 
year in the cohorts of bank voles (Voutilainen et al., 2016). Interpreting 
the variation of incidence seems less straightforward. We found that 
incidence was low at the beginning of spring, then increased to a 
maximum between June and July, slightly decreased in late summer and 
then, depending on the site, decreased further (site A) or tended to level 
off in autumn (sites B and C, see Fig. 4). In the same vein, Bernshtein 
et al. (1999) had studied a population of bank voles for five years in 
Russia and reported a peak in incidence in June, and then a steady 
decrease until August for two high-density years. Douglass et al. (2007) 
monitored a population of deer mouse, Peromyscus maniculatus, the host 
of Sin Nombre Virus for ten years in Montana, USA and reported a steady 
increase in incidence from spring to early summer, and then a plateau 
until October. 

In fact, the incidence pattern we have described may be explained 
mainly by the peculiar demography of small mammals. First, many 
authors have reported, for several hantavirus/rodent pathosystems, that 
individuals become infected at the onset of sexual maturity (Glass et al., 
1988) or that breeding individuals are more infected than non-breeding 
individuals, which suggests that engaging in reproductive activities 
entails a higher risk of becoming infected by the virus for an individual 
(Bernshtein et al., 1999; Douglass et al., 2007; Escutenaire et al., 2002; 
Olsson et al., 2002; Tersago et al., 2012). Second, it is known that, in 
contrast to individuals born early in the breeding season, the individuals 
born later will not engage in reproductive activities, but will overwinter 
and breed the year after (Gliwicz, 1989; Prevot-Julliard et al., 1999; 
Wiger, 1979). In this study, the first trapping session, April, corresponds 
roughly to the start of the breeding season, as shown by the small 
numbers of juveniles trapped at this session over the ten years at the 
three sites (2001: 1 juvenile 2007: 7 juveniles on two sites), so the bulk 
of the population is made up of overwintered individuals. If, as sug
gested by Voutilainen et al. (2015), seroconversion is generally high 
during winter, most overwintered individuals are infected during 
winter. Given that the peak of shedding occurs within one month after 
inoculation in laboratory experiments (Hardestam et al., 2008 but see 
Voutilainen et al., 2015), these overwintered individuals will no longer 
shed much virus in spring. This, combined with the typically small 
population sizes observed in spring, may explain why virus transmission 
is low at the beginning of the reproductive season. Alternatively, if, as 
suggested by Bershtein et al. (1999) and Olsson et al. (2002), most adults 
are infected when breeding activities resume, the low estimate of inci
dence observed between April and June in this study may rather be due 
to the low population size and the delay between the infection and the 
appearance of antibodies in the blood. This delay is not well known but 
was estimated to be 18 days in a laboratory experiment by Yanagihara 
et al. (1985). This is a rather low estimate as Hardestam et al. (2008) 
further showed a large variance between individuals. The following 
strong increase in incidence observed between April to June and June to 
July is likely the consequence of reproduction by the first cohorts of 
bank voles, born in April and May. About 80% of all juveniles captured 
in this study were trapped about equally in June and July (132 and 146 
juveniles pooled over the three sites over the whole period, respec
tively). This massive influx of young will result in a decrease of inci
dence by two mechanisms: (1) this massive influx of young may result in 

Fig. 4. Incidence estimates and their 95% confidence interval from best model.  
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a temporary decrease of incidence, observed between time interval June 
to July and time interval July to September in this study, by inflating the 
population of susceptible individuals. This is the juvenile dilution effect 
described previously by Mills et al. (1999); see also Adler et al. (2008) on 
seroprevalence. (2) since the circulation of the virus was high in the 
previous time interval (June to July), many mothers of these young were 
actually infected by the virus and then would have passed them 
maternal antibodies. Voutilainen et al. (2016) reported that young with 
maternal antibodies may represent a high proportion of seropositive 
animals in July (up to 25–35% in peak years) in a Finnish population of 
bank voles. Now, given that these maternal antibodies will protect the 
young against the infection for about 80 days (Bernshtein et al., 1999; 
Kallio et al., 2006b), there will be a pool of young immune to the 
infection for a relatively long period of time which may further hinder 
the spread of the virus in the population (Kallio et al., 2015, 2010; 
Reijniers et al., 2020) and contribute to the stronger decrease in inci
dence observed between July to September and September to October at 
site A. Nonetheless, this decrease may also partly stem from the fact that 
most individuals born in the late reproductive season do not engage in 
reproductive activities until spring of next year. The pattern observed at 
sites B and C may be different, with a plateau rather than a decrease in 
incidence in autumn. Although the wide confidence intervals of these 
two incidence estimates call for caution, the difference would be best 
explained in terms of emigration (see below). 

4.3. Site effect 

Finally, best models displayed a significant site effect for seropre
valence and incidence estimates in autumn and for seroprevalence es
timates in spring. More specifically, site A displayed lower incidence and 
seroprevalence than both sites B and C. This is particularly puzzling as 
site A and site B are located 2 km apart in the same broad-leaved forest, 
Elan, while site C is located in another forest with spruce (Croix-Scaille), 
30 km away. Therefore, the differences in seroprevalence and incidence 
did not match the distances between sites, and did not match the 
different tree composition of the two forests either. In the absence of a 
specific study about the physical and ecological characteristics of the 
sites, it is difficult to pinpoint the factor responsible for these differences. 
However, on demographic grounds, we can speculate that site A was a 
habitat of good quality (i.e. supporting a large and stable population of 
bank voles; Gliwicz, 1989 and van Apeldoorn et al., 1992), while both 
sites B and C were habitats of poorer quality. Out of ten years of data, 
captures were more regular at site A (out of 50 trapping sessions, site A 
had more captures than the two others site for 26 trapping sessions, site 
B for 10 and site C for 13) and overall, site A also had more captures than 
any other site (respectively +42% and +57% compared to sites B and C, 
see Results). Keeping this in mind, most small mammal ecologists would 
agree that demographic exchanges among sites may be described ac
cording to either a source-sink (Pulliam, 1988) or a metapopulation 
(Levins, 1970) demographic model. In an extensive study encompassing 
51 woodlots in The Netherlands, van Apeldoorn et al. (1992) presented 
compelling arguments in favor of the source-sink model for bank voles. 
The additional observation reported by Khalil et al. (2017) that none of 
the 58 trapping 1-ha plots they monitored in northern Sweden “harbored 
infected bank voles throughout the 10-year study period” confirmed that 
movements between sites and stochasticity play an important role in the 
PUUV-bank vole pathosystem. Thus, according to the source-sink 
theoretical model, we would expect an influx of individuals from sites 
with a reproductive surplus (sites of high quality, i.e. site A) toward sites 
of poorer quality (sites B and C). As a matter of fact, the number of ju
veniles trapped was larger and more regular at site A than at sites B and 
C. Now, given that the virus is known to survive outside its host in the 
environment (Kallio et al., 2006a) and that the distribution of PUUV in 
the landscape must show considerable spatial variation (as does the 
distribution of PUUV-infected bank voles, see Khalil et al., 2017), the 
individuals moving between sites likely have a higher probability of 

exposure than those staying at their site of birth. Consequently, sites B 
and C may receive more (infected) immigrants than site A. Two lines of 
empirical evidence strengthen this scenario. For voles of the genus 
Microtus, more amenable to experimentation than bank voles (Gliwicz 
and Ims, 2000), Gundersen et al. (2001) by manipulating density in 
enclosures, have shown that individuals immigrated to habitat patches 
with lower density than the patch they came from and Gundersen et al. 
(2002) have further reported that the probability of settlement of im
migrants decreased with the density of the immigration patch. For bank 
voles, evidence is less clear-cut; we are aware of a single experiment that 
is unfortunately inconclusive (Glorvigen et al., 2012) but Gliwicz 
(1989), in a comparison of three habitats based on small trapping grids 
and therefore small numbers of capture has described the successful 
immigration of young (settlement and breeding) from optimal to sub
optimal habitats, likely because of better prospects of maturation in low 
density patches (maturation of young females is known to be suppressed 
at high densities, see Prevot-Julliard et al., 1999). Thus, in this 
perspective, site A displayed lower incidence and seroprevalence than 
site B and site C because its larger and more stable population made it 
more difficult for potential (infected) immigrants to settle in (the 
so-called “social resistance hypothesis”, Armansin et al., 2020) and to 
bring the virus back into the population’s site. 

4.4. Study limitations 

In our study, the numbers of incident and seroprevalent rodents were 
estimated several times per season at each site, and these counts were 
thus correlated. GEE models are designed to deal with correlated data 
and to yield a robust estimate of the variance/covariance matrix, using 
the modified sandwich variance estimator that has the advantage of 
being consistent even if the working correlation matrix has been mis
specified (Liang and Zeger, 1986; Hardin and Hilbe, 2003). Unfortu
nately, this estimator has been shown to underestimate the variance in 
analyses based on small data sets and thus to lead to liberal Wald-type 
test results (Feng et al., 1996; Lu et al., 2007; Paik, 1988). As a conse
quence, corrections of the modified sandwich variance estimator or 
other estimators (e.g. jackknife or clustered bootstrap) have been pro
posed to improve the performances of GEE with small samples (e.g. 
Cheng et al., 2013; Gosho, 2014; Kauermann and Carroll, 2001; Lipsitz 
et al., 1990; Mancl and DeRouen, 2001; McNeish and Stapleton, 2016; 
Morel et al., 2003; Paik, 1988; Pan, 2001; Paul and Zhang, 2014; Wang 
and Long, 2011). Unfortunately, the performance of all these estimators 
has not been investigated concurrently and compared (McNeish and 
Stapleton, 2016). Importantly, most studies presented numeric simula
tions to compare a handful of corrections of the modified sandwich 
variance estimator (Li and Redden, 2015; Lu et al., 2007; McNeish and 
Harring, 2017; Pan and Wall, 2002; Teerenstra et al., 2010; but see 
Wang et al., 2016 who compared eight of these corrections). These 
comparisons have also shown that many factors could impact the per
formances of GEE in small samples which hampers the choice of a 
correction for a specific data set: number of panels, number of param
eters in the model, variation in panel sample sizes, and nature of 
response and predictor variables. 

In this context, we decided to make use of the correction proposed by 
Kauermann and Carroll (2001), for two reasons. First, this correction has 
been extensively used in simulations and, for clustered randomized tri
als, it has been recommended in small samples for covariates varying at 
the cluster level with a moderate cluster sample size variation (Li and 
Redden, 2015; Lu et al., 2007; Teerenstra et al., 2010). These are 
characteristics shared by our three data sets. Second, the results of an 
admittedly limited simulation with a Poisson response variable and the 
second example presented in the study by Wang et al. (2016) about 
longitudinal data also showed that the Kauermann and Carroll (2001) 
correction performed satisfactorily with t-tests (see their Figs. 3 and 4). 
On the contrary, the corrections from Gosho (2014) or Morel et al. 
(2003) turned out to be conservative in Wang et al. (2016), which is in 
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agreement, for the latter at least, with the results of McNeish and Har
ring (2017) for binary predictor variables. The correction from Mancl 
and DeRouen (2001) also appeared to overcorrect in a number of sim
ulations (Fay and Graubard, 2001; Li and Redden, 2015; Wang and 
Long, 2011). Finally, we discarded other corrections, e.g. the one from 
Pan (2001) or (Wang and Long, 2011) that require further assumptions 
difficult to test with the sparse data sets at hand. 

Three other modeling choices are worth briefly commenting on. 
First, factor year was not included as such in the models because of the 
sparseness of data. However, the between-year variability was included 
somehow in the models through the offset variable and the principal 
components whose coordinates were computed from environmental 
variables with annual variability. Second, factor site was included as a 
fixed factor in the models because we do not believe that it is sensible to 
try to estimate a variance component from only three levels of a factor 
(sites A, B and C). In a different context, that is, capture-mark-recapture 
modeling, Burnham and White (2002: 259) run simulations and 
concluded that a minimum number of ten levels was to be used to es
timate correctly a variance component. Third, it is intuitively appealing 
to use these data of seroprevalence and incidence in some epidemio
logical SIR models to gain more insight into the viral transmission. Yet 
the high heterogeneity observed in natural populations of small mam
mals makes the parameterization of such models from field data diffi
cult. Further work is needed to bridge the gap between the requirements 
of such epidemiological SIR models and the amount of data that is 
reasonably possible to collect in the field. 

In conclusion, our study highlighted the effects of bank vole 
demography and environmental characteristics on seasonal PUUV 
infection, using two epidemiological measures: incidence and seropre
valence. Biological interpretation still remained complicated as several 
mechanisms can be envisioned to explain the observed relationships 
between environment and epidemiological measures. Incidence is more 
precise than seroprevalence to evaluate the moment of rodent infection, 
but an accurate assessment of incidence requires longitudinal moni
toring of individuals with repeated trapping sessions, which implies a 
heavy investment in both human and financial resources. It still remains 
unclear whether models including rodent incidence instead of rodent 
seroprevalence, should be used in addition to environmental risk factors 
to make decisions to help prevent human disease burden. Thus, we 
encourage other researchers working with wild host populations of 
pathogens to use both seroprevalence and incidence measures to 
enhance our understanding of the impact of environment and reservoir 
demography on the epidemiology of pathogens. 
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Yoccoz, N.G., Mesnager, Séverine, Mesnager, Severine, 1998. Are alpine bank voles 
larger and more sexually dimorphic because adults survive better? Oikos 82, 85. 
https://doi.org/10.2307/3546919. 

E. Monchatre-Leroy et al.                                                                                                                                                                                                                     

https://doi.org/10.1186/s12898-017-0118-z
https://doi.org/10.1186/s12898-017-0118-z
https://doi.org/10.3201/eid2501.180270
https://doi.org/10.3201/eid2501.180270
https://doi.org/10.1177/0962280219873005
https://doi.org/10.3201/eid1507.081413
https://doi.org/10.1080/20008686.2017.1287986
https://doi.org/10.1111/j.1541-0420.2009.01374.x
https://doi.org/10.1089/vbz.2007.0160
https://doi.org/10.1017/S0950268810000956
https://doi.org/10.1017/S0950268810000956
https://doi.org/10.7589/0090-3558-48.1.148
https://doi.org/10.3390/v6103944
http://refhub.elsevier.com/S1755-4365(22)00045-7/sbref85
http://refhub.elsevier.com/S1755-4365(22)00045-7/sbref85
https://doi.org/10.2307/3545018
https://doi.org/10.1038/s41598-019-38802-5
https://doi.org/10.1038/s41598-019-38802-5
https://doi.org/10.1016/j.prevetmed.2014.01.011
https://doi.org/10.1016/j.prevetmed.2014.01.011
https://doi.org/10.1017/S0950268810002062
https://doi.org/10.1017/S0950268810002062
https://doi.org/10.1099/vir.0.000076
https://doi.org/10.1038/srep21323
https://doi.org/10.1002/sim.4150
https://doi.org/10.1002/sim.6817
https://doi.org/10.2307/3544325
https://doi.org/10.1128/JVI.55.1.34-38.1985
https://doi.org/10.2307/3546919

	Seroprevalence and incidence of Puumala orthohantavirus in its bank vole (Myodes glareolus) host population in northeastern ...
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 PUUV seroprevalence and incidence data
	2.3 Environmental data
	2.4 Statistical analyses
	2.4.1 Environmental variables
	2.4.2 Generalized estimating equation and Poisson regression models


	3 Results
	3.1 Seroprevalent and incident rodents
	3.2 Model selection and estimates from best model
	3.2.1 Spring models
	3.2.1.1 Seroprevalence
	3.2.1.2 Incidence


	3.3 Autumn models
	3.3.1 Seroprevalence
	3.3.2 Incidence


	4 Discussion
	4.1 Environmental variables
	4.2 Seasonnal patterns of seroprevalence and incidence
	4.3 Site effect
	4.4 Study limitations

	Funding
	Conflict of interest statement
	Acknowledgments
	Appendix A Supplementary material
	References


