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Like aboveground herbivores, belowground herbivores are confronted with multiple plant
defense mechanisms including complex chemical cocktails in plant tissue. Roots and
shoots of Brassicaceae plants contain the two-component glucosinolate (GSL)-
myrosinase defense system. Upon cell damage, for example by herbivore feeding,
toxic and pungent isothiocyanates (ITCs) can be formed. Several aboveground-feeding
herbivores have developed biochemical adaptation strategies to overcome the GSL-ITC
defenses of their host plant. Whether belowground herbivores feeding on Brassica roots
possess similar mechanisms has received little attention. Here, we analyze how two related
belowground specialist herbivores detoxify the GSL-ITC defenses of their host plants. The
larvae of the fly species Delia radicum and D. floralis are common pests and specialized
herbivores on the roots of Brassicaceae. We used chemical analyses (HPLC-MS/MS and
HPLC-UV) to examine how the GSL-ITC defense system is metabolized by these
congeneric larvae. In addition, we screened for candidate genes involved in the
detoxification process using RNAseq and qPCR. The chemical analyses yielded
glutathione conjugates and amines. This indicates that both species detoxify ITCs
using potentially the general mercapturic acid pathway, which is also found in
aboveground herbivores, and an ITC-specific hydrolytic pathway previously
characterized in microbes. Performance assays confirmed that ITCs negatively affect
the survival of both species, in spite of their known specialization to ITC-producing plants
and tissues, whereas ITC breakdown products are less toxic. Interestingly, the RNAseq
analyses showed that the two congeneric species activate different sets of genes upon ITC
exposure, which was supported by qPCR data. Based on our findings, we conclude that
these specialist larvae use combinations of general and compound-specific detoxification
mechanisms with differing efficacies and substrate preferences. This indicates that
combining detoxification mechanisms can be an evolutionarily successful strategy to
handle plant defenses in herbivores.
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1 INTRODUCTION

Feeding on plants is a great challenge, as plants have evolved a
large diversity of morphological and chemical defense strategies.
Most plants produce complex chemical cocktails to prevent or
reduce feeding damage (Büchel et al., 2016; Lackus et al., 2018).
These compounds can act as repellents through their bitter taste
and pungent aromas, be poisonous, or reduce the digestibility of
plant tissues (Wittstock and Gershenzon 2002; Biere et al., 2004;
Rehman et al., 2012). Plants of the Brassicaceae family defend
themselves chemically with a two-component system consisting
of glucosinolates (GSLs) and the myrosinase (β-thioglucosidase)
enzyme family. GSLs themselves are non-toxic to herbivores.
However, once hydrolyzed by myrosinases, for example upon
attack by a herbivore, they form an unstable aglycone that
rearranges to form toxic isothiocyanates (ITCs), next to other
biologically active compounds such as nitriles (Wittstock et al.,
2003).

Nevertheless, many herbivores have adapted to chemical
defenses and can feed with near impunity on well-defended
plant tissues. Mirroring the great diversity of plant defensive
compounds, herbivorous adaptation mechanisms are also highly
diverse, but how these strategies contribute to the success and
survival of herbivores are often not well understood (Wittstock
and Gershenzon 2002; Heidel-Fischer and Vogel 2015). To adapt
to the GSL-myrosinase defense system, insect herbivores have
evolved different mechanisms. These include, for instance, the
prevention of plant cell disruption, modification of the substrate
(GSL) to generate non-hydrolyzable derivatives, or the diversion
of the enzymatic conversion towards less toxic hydrolysis
products (Ratzka et al., 2002; Wittstock et al., 2004; Kim et al.,
2008; Malka et al., 2020). Most herbivores, including generalist
caterpillars with a broad host plant range, possess mechanisms to
detoxify the hydrolysis products (ITCs). Two ITC detoxification
pathways have been described so far. Several insects use the
mercapturic acid pathway, which is a general detoxification
pathway employing glutathione-S-transferase (GST) activities
to metabolize ITCs into non-toxic glutathione conjugates and
derivatives that can be excreted with the feces (Yu 1982; Schramm
et al., 2012). The second pathway is the hydrolysis of ITCs to form
amines followed by further metabolism into acetamides (Beran
et al., 2018). These products are less toxic and more easily
excretable. This pathway has been found in insects and
microbes (Beran et al., 2018; Chen et al., 2020; Fan et al.,
2011). Commonly, the expression of genes coding for
detoxification enzymes, e.g. specific glutathione-S-transferases
or P450s, is upregulated only upon exposure to ITCs (Halon
et al., 2015). It has been hypothesized that the specific
upregulation of enzyme production reduces the energetic costs
of detoxification (Fürstenberg-Hägg et al., 2013).

So far, all of the known GSL/ITC detoxification mechanisms
have been described in aboveground herbivores. Even though
belowground herbivores feeding on Brassica roots are exposed to

similar or even higher levels of GSLs and ITCs (Crespo et al.,
2012; Tsunoda et al., 2017), it is largely unknown which
biochemical adaptations they possess towards the GSL-ITC
system. Therefore, we examined the biochemical mechanisms
of GSL and ITC metabolism in two closely related belowground
herbivores, the larvae of the cabbage root fly (Delia radicum,
Linné, Diptera: Anthomyiidae) and the turnip root fly (D. floralis,
Fallén). The adults live aboveground where they consume pollen
and nectar. Females oviposit on the soil near the root-shoot
interface of brassicaceous plants. After hatching, the neonate
larvae crawl into the soil, where they feed on the roots (Birch et al.,
1992; Klingen et al., 2000). Considering that several crops, such as
cabbages, radishes, and rapeseed belong to the Brassicaceae, the
larvae of the two fly species are notorious agricultural pests,
causing millions of dollars of crop losses annually in Europe and
Northern America (Wang et al., 2016).

Both species share many biological and behavioral traits.
Besides being close relatives, having a similar morphology,
feeding mode and host plant range, they also overlap in their
geographic distribution, namely the northern hemisphere
(Coaker and Finch 1970; Darvas and Szappanos 2003).
Therefore, we hypothesized that D. radicum and D. floralis
larvae handle the GSL-ITC defense system similarly. Because
herbivores may interfere with the GSL-ITC system at multiple
points, we first studied at which position of the activation
pathway (GSL substrates or ITC hydrolysis products) the
larvae might divert or modify these chemical defenses. To
test this, we first examined whether D. radicum and D. floralis
larvae catabolize GSLs or ITCs. We incubated larval gut
extracts with different GSLs or ITCs, after which we
analyzed the breakdown products by liquid chromatography
with tandem mass spectrometry (LC-MS/MS) and high-
performance liquid chromatography-ultraviolet (HPLC-UV).
We focused mostly on 2-phenylethyl glucosinolate (2PE-GSL)
and 2-phenylethyl isothiocyanate (2PE-ITC), as these are the
most common GSLs and ITCs in Brassica roots (van Dam
et al., 2009; van Dam et al., 2012). We also tested how the
aliphatic GSL 4-(methylsulfinyl)butyl glucosinolate (4MSOB-
GSL) and its corresponding ITC (4-(methylsulfinyl)butyl
isothiocyanate, 4MSOB-ITC) was catabolized. This is the
predominant GSL/ITC in the model plant Arabidopsis
thaliana Col-0 and also occurs in the roots of several
Brassica species (Bhandari et al., 2015). In addition, we
identified candidate detoxification genes that may be
involved in the detoxification of 2PE-ITC in the larvae of
both species, using transcriptomic data. We thereby used an
assembled and annotated genome of D. radicum as the
reference genome (Sontowski et al., 2022). After selecting
these candidate genes, we used qPCR analyses to study their
response to different levels of 2PE- and 4MSOB-ITCs. Finally,
we examined the effects of 2PE- and 4MSOB-ITCs and the
larval breakdown products on D. radicum and D. floralis
development using a performance assay. By combining
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these different approaches, we could assess similarities and
differences in the underlying mechanisms as well as the
biological effects of ITC detoxification in both root herbivores.

2 MATERIAL AND METHODS

2.1 Insect Rearing
D. radicum and D. floralis samples derived from a laboratory
culture at the German Centre for Integrative Biodiversity
Research in Leipzig, Germany which was established 7 years
ago. The D. radicum rearing started with collected pupae from
a cabbage field in Brittany, France, kindly provided by Dr. Anne-
Marie Cortesero (University of Rennes, France) and theD. floralis
rearing with pupae from a laboratory culture which were kindly
provided by Dr. Maria Björkman (Bioforsk–Norwegian Institute
of Agricultural and Environmental Research, Norway). The
colonies have been maintained under controlled
environmental conditions as described in Sontowski et al.
(2019). We collected eggs and larvae for all following
experiments from these cultures and performed the
experiments at constant temperature of 20°C, 16:8 h light:dark
and relative humidity of 70 ± 5% in a Percival Reach-In chamber
(CLF Plant climatic, Wertingen, Germany).

2.2 Glucosinolate Breakdown by Gut
Extracts ofD. radicum andD. floralis Larvae
In the first experiment, we tested whether gut extracts from D.
radicum and D. floralis larvae, which include also their gut
microbiome, contain enzymes to catabolize GSLs. Larvae were
fed on turnip and at the end of the 2nd larval developmental stage
(instar), the larvae were frozen at −20°C for 45 min, surface-
sterilized (2 min in 0.2% bleach, neutralized by 1 min in
potassium thiosulfate and rinsed three times with 70%
ethanol) and had their guts dissected. We pooled 10 guts per
replicate and manually homogenized them in 100 µl autoclaved
ddH2O using a pestle. To exclude effects of different protein
concentrations in the extracted samples between the different
species, we measured the protein concentration in a 1:500
dilution of the samples using the Micro BSA protein assay kit
(Thermo Scientific, Rockford, IL, United States) according to the
supplier’s recommendations. Protein concentration was
measured on a Jasco V-630 spectrophotometer (Jasco, Groß-
Umstadt, Germany), and determined from three replicates.
Extracts prepared from both species contained the same range
of protein concentrations. For this experiment, we used the
following treatments: 1) gut extracts of D. radicum larvae or
2)D. floralis larvae incubated at room temperature. 3) gut extracts
of D. radicum larvae or 4) D. floralis larvae heated for 7 min at
95°C to reduce the microbial activity and to denature proteins.
Each treatment contained three biological replicates. To test
whether GSLs were degraded by the larval gut extracts, we
added 67 µl of 2PE-GSL solution (300 μg/ml in H2O, 2-
phenylethyl glucosinolate, also called gluconasturtiin; class:
benzenic GSL, Phytoplan, Heidelberg, Germany, >97.0%
purity) and 70 µl 4MSOB-GSL solution (300 μg/ml in H2O, 4-

(methylsulfinyl)butyl GSL, also called glucoraphanin; class:
aliphatic GSL, Phytoplan, Heidelberg, Germany, >97.0%
purity) to all samples and incubated them for 1 h at 25°C. In
addition, we analyzed three replicates of 10 normal gut extracts
treated as described previously, but without adding external GSLs
to consider GSL residues from the food in the gut. All reactions
were stopped by adding 85% methanol and boiling the samples
for 5 min at 92°C. The GSLs were extracted and analyzed
according to Grosser and van Dam (2017). Briefly, GSLs were
desulphated and analyzed with reverse phase Ultra High
Performance Liquid Chromatography (UHPLC) equipped with
a photodiode array detector (PDA; Thermo Scientific Ultimate
3000 Series, Thermo Fisher Scientific, Waltham, MA,
United States) at 229 nm. We injected 50 µl per sample.
Desulphated GSLs were separated with a reverse-phase C18

column (4.6 × 150 mm, 3 μm, Thermo Fisher Scientific,
Schwerte, Germany) connected with a C18 pre-column (10 ×
4.6 mm, 5 μm particle size) using the parameters described in
Grosser and van Dam (2017). After separation, the identification
of desulphated GSLs was carried out based on retention time and
UV spectra compared to commercially available reference
standards (Phytoplan, Heidelberg, Germany). Desulphated
GSLs were quantified using sinigrin as an external standard
and response factors as described in Grosser and van Dam
(2017). Data were processed using Thermo Scientific
Chromeleon Chromatography Data System software vs 7.2
SR5 MUa (Thermo Fisher Scientific, Waltham, MA,
United States).

2.3 Isothiocyanates Detoxification by Gut
Extracts ofD. radicum andD. floralis Larvae
To test whether ITCs were degraded by the larval gut extracts,
which includes also their gut microbiome, we repeated the
experiment above (GSL-breakdown experiment) regarding the
preparation of larvae, treatments and replicates. Again, we pooled
the extracted guts of 10 larvae and mashed them in 80 µl
potassium phosphate buffer (0.1 M, pH 7). Before adding ITCs
instead of GSLs, we added 10 µl ZnSO4 (0.001 M) to each sample.
Thereafter, 10 µl of 4MSOB-ITC (1 mg/ml in ethanol, MCE,
Sollentuna, Sweden, purity >98%) or 10 µl of 2PE-ITC
solutions (0.5 mg/ml in DMSO, Sigma-Aldrich, St. Louis,
Missouri, United States, purity 99%) were added to the
samples (n = 3 per condition group and ITC). To detect
possible 4MSOB-ITC or 2PE-ITC from the food residues in
the extracted guts, three additional replicates of larval guts
from both species were tested without adding external ITCs.
These samples were treated as described previously but instead of
ITC, only the corresponding solvents were added (10 µl of 96%
ethanol or 10 µl of 100%DMSO). All reactions were incubated for
1 h at 25°C. To stop the reactions, we added 10 µl of glacial acetic
acid and vortexed quickly. All samples were subsequently
centrifuged for 10 min at 10°C at 12.000 rpm (adapted from
Schramm et al. (2012) and Jeschke et al. (2016)). The
supernatant was transferred to a new vial and stored at −20°C
until measurement. An aliquot of 1 µl was injected on an Agilent
1260 series HPLC system (Agilent Technologies, Boeblingen,
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Germany) coupled with an API5000 tandem mass spectrometer
(Applied Biosciences, Darmstadt, Germany) using the HPLC
parameters described in Chen et al. (2020). Separation of
compounds was performed using a Zorbax Eclipse XDB-C-18
column (50 × 4.6 mm, 1.8 μm; Agilent) with chromatographic
signals compared to authentic standards where available.
4MSOB-glutathione, 4MSOB-cysteine and 4MSOB-N-
acetylcysteine were obtained from Santa Cruz Biotechnology
(Dallas, TX, United States). 4MSOB-amine was obtained from
Enamine (Monmouth Junction, NJ, United States). 4MSOB-
cysteinylglycine was synthesized as described in Schramm
et al. (2012). The cyclic 4MSOB-cysteine derivative (2-(4-
(methylsulfinyl)butylamino)-4,5-dihydrothiazole-4-carboxylic
acid, (Falk et al., 2014), was synthesized as described in Beran
et al. (2018) (as “cyclic-Cys conjugate A”). 2PE-amine was
obtained from Acros (Geel, Belgium), and raphanusamic acid
was purchased from Sigma-Aldrich (St. Louis, Missouri,
United States). MRM parameters for parent ion to product ion
fragmentation were set as follows (includes parameters used in
Gloss et al., 2014; Beran et al., 2018; Chen et al., 2020), and gave
the corresponding retention times: m/z 178.11 →114 (CE, 13 V;
DP, 56 V; RT 2.62 min) for 4MSOB-ITC; m/z 485.11 →179.1
(CE, 29 V; DP, 81 V; RT 2.04 min) for 4MSOB-glutathione; m/z
356.07 →136.1 (CE, 15 V; DP, 51 V; RT 1.93 min) for 4MSOB-
cysteinylglycine; m/z 299.06 →136.1 (CE, 15 V; DP, 56 V; RT
1.90 min) for 4MSOB-cysteine; m/z 341.07 →178.1 (CE, 17 V;
DP, 56 V; RT 2.22 min) for 4MSOB-N-acetylcysteine; m/z 265.1
→201 (CE, 25 V; DP, 56 V; RT 1.04 min) for 4MSOB-cyclic Cys;
m/z 136 →72 (CE, 17 V; DP, 56 V; RT 0.45 min) for 4MSOB-
amine;m/z 122→105 (CE, 15 V; DP, 56 V; RT 1.21 min) for 2PE-
amine, and m/z 164 →117.8 (CE, 17 V; DP, 61 V; RT 2.08 min)
for raphanusamic acid.

2.4 Transcriptional Response of D. radicum
and D. floralis Larvae to 2-Phenylethyl
Isothiocyanate
To identify the genes expressed upon ITC exposure, and
potentially involved in detoxification of ITC, total RNA was
extracted from D. radicum and D. floralis larvae at the 2nd
instar. The larvae were reared on a semi-artificial diet
containing milk powder, yeast, freeze-dried turnip, agar (2:2:2:
1) and 90% water. The diet of ITC exposed larvae was spiked with
2PE-ITC (0.35 µl of a 6 mmol/ml solution DMSO per g diet,
Sigma-Aldrich, St. Louis, Missouri, United States, purity 99%).
The larvae, 15 per treatment group and species, were reared on
control or ITC diets for 7 days. Diets were refreshed every other
day to ensure that the concentration of the ITCs and amines
would not decrease too much (Muller et al., 2015). The
experiment was set up in a climate cabinet (Percival Scientific,
Perry, Iowa, United States) at constant conditions (see above).
After 7 days, the remaining larvae were shock frozen at −80°C for
45 min. Then the larval surface was rinsed with autoclaved
distilled water before the whole larva was manually crushed in
lysis buffer from the ReliaPrep RNA Tissue Miniprep kit
(Promega, Madison, United States). Total RNA was extracted
from single larvae following the supplier’s recommended

protocol. Qualitative and quantitative RNA analyses were
performed using gel electrophoresis (1% agarose), a
NanoPhotometer® P330 (Implen, Munich, Germany) and a
Qubit 2.0 (Invitrogen, Carlsbad, CA/United States, BR RNA
kit). We pooled three samples and used three replicates per
species and condition (with or without 2PE-ITC). Poly(A)-
enriched strand-specific library preparation and RNA
sequencing were performed by the Deep Sequencing group of
Biotech TU Dresden, Germany on an Illumina NextSeq next-
generation sequencer. In total, approximately 570 Mio read pairs
having a length of 75 bp were generated.

The recently published reference genome of D. radicum (of
iDiv_Dra_1.0, GenBank accession number GCA_021234595.1,
(Sontowski et al., 2022) was used as a starting point for the
expression analysis in both species. To obtain a reference
sequence suitable to analyze D. floralis expression, we first
used Illumina RNAseq reads (NCBI BioSamples:
SAMN25131701 and SAMN25131702) of D. floralis
transcriptomes to polish the existing D. radicum reference
genome. Reads were first mapped on the iDiv_Dra_1.0 D.
radicum genome using the Burrows-Wheeler Alignment tool
with the BWA MEM algorithm version 0.7.17 (Li and Durbin
2009). The bam file was then passed to Pilon v1.23 (Walker et al.,
2014) with default settings, in order to obtain an edited version of
the genome more compatible with D. floralis (e.g. SNPs and
indels with regard to the D. radicum genome have been
corrected). The existing annotation of iDiv_Dra_1.0 was
transferred to this new sequence using the tool liftoff in
version 1.6.1 (Shumate and Salzberg 2021). In a second round,
and in order to recover larger missing regions in the D. radicum
reference, all D. floralis RNA-seq reads were mapped on the
iDiv_Dra_1.0 reference using STAR v2.7.8a (Dobin et al., 2012).
All unmapped reads were pulled together and assembled into
contigs using Trinity v2.9.1 (Henschel et al., 2012). Those new
contigs were annotated with coding regions and UTRs using
TransDecoder (version 5.5.0, https://github.com/TransDecoder/
TransDecoder). Annotations were filtered for a proper start and
end of protein-coding transcripts by applying the
GeMoMaAnnotationFilter (GAF, GeMoMa version 1.7.2,
Keilwagen et al., 2016; Keilwagen et al., 2018) according to the
workflow applied for the annotation of the genome of D. radicum
(Sontowski et al., 2022). The resulting gene annotations were
appended to the liftoff-derived gene annotation file of D. floralis
(iDiv_DFl_1.0. gff) and accordingly, sequences of the new contigs
containing these annotations were added to the set of pilon-
derived genome sequences of D. floralis (iDiv_DFl_1.0. fasta).

Gene expression was assessed for both species using the nf-
core/rnaseq pipeline in version 3.0 (Ewels et al., 2020), which is a
standard nextflow pipeline for RNA-seq analysis, relying on
STAR v2.6.1d (Dobin et al., 2012) for the alignment and
Salmon 1.4.0 (Patro et al., 2017) for the quantification. Gene
expression raw counts were used for differential gene expression
analysis.

Differential gene expression analysis was performed using
DESeq2 v1.3.0 (Love et al., 2014) and both species were
treated separately. First, only genes with sufficient counts (e.g.
at least 2 samples with more than 5 normalized counts) were
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retained. Differential expression analysis was then performed
using a simple “~ treatment” design, with 3 replicates for each
condition (control and exposed to ITC). Differentially expressed
genes were selected based on Benjamini–Hochberg (BH) false
discovery rate (FDR) procedure; with a 5% significance threshold.
Total number of differentially expressed genes in response to
2PE-ITC containing diet inD. radicum andD. floralis larvae were
presented with a Venn diagram using jvenn (Bardou et al., 2014).

All genes were functionally annotated using PANNZER2
(Protein ANNotation with Z-scoRE, Törönen et al., 2018).
Enrichment of GO terms of differentially expressed genes with
regard to all expressed genes was tested using the topGO R
package in version 2.44.0 (Aibar et al., 2015). Significantly
enriched terms within the “Biological Process” and “Molecular
Function” families were selected using a Kolmogorov-Smirnov
test and a 5% significance threshold.

2.5 Validation of Detoxification Candidate
Genes in Response to Isothiocyanates
Using a Quantitative Gene Expression
Approach
From the gene expression data, we performed a targeted
screening of differentially expressed genes between the
2PE-ITC and the control group with an adjusted p-value
<0.05. In the next step, we focused on genes associated
with the mercapturic acid conjugation pathway (GSTs, γ-
glutamyltransferases, dipeptidases, N-acetyltransferases)
and general detoxification genes (cytochrome P450s,
Danielson et al., 1997). From the mercapturic acid
pathway, we selected one candidate gene, coding for
enzymes from each enzyme class, that was significantly
upregulated as a gene of interest. If more candidates
fulfilled these expectations, we selected the most reliable
candidate gene based on a high number of mapped
RNAseq reads and a high log-fold change. Following this
procedure, we selected the CYP6A1 gene as a gene of interest
representing the cytochrome P450s, although it did not
achieve the targeted p-value. To prove that these genes
responded specifically to ITCs, we designed qPCR primers
for the selected genes (Supplementary Table S1) using the
online version of Prime3 v. 4.1.0 (Untergasser et al., 2012). In
addition, two primer sets were designed for the housekeeping
genes GAPDH and EF-1α (Supplementary Table S1). We
verified that these genes were stable in their expression over
different ITCs and concentrations. We set up an experiment,
in which 2nd instar of D. radicum and D. floralis were fed with
a semi-artificial diet containing 0, 1 or 2 µmol 2PE-ITC (0.02,
0.2 or 0.4 µl of a 6 mmol/ml solution in DMSO per g diet) or
4MSOB-ITC (0.2, 2 or 4 µl of a 0.5 mmol/ml solution in
ethanol per g diet). To the control diets, either 0.4 µl
DMSO or 4 µl ethanol per g diet was added. After 6, 24
and 48 h, we collected 4-5 larvae from each diet condition
and each fly species (in total 2 species x 6 conditions x 3 time
points x 4-5 replicates per ITC = 150 samples in total). Due to
low replicate numbers of D. floralis larvae on 2PE-ITC after
48 h, this time point was excluded from the analysis. Larvae

were shortly rinsed with tap water to remove soil and diet
particles, shock frozen at -80°C, and stored until further use.
Single individuals were manually crushed in 500 µl TRIzol™
Reagent (Thermo Fisher Scientific, Schwerte, Germany) and
total RNA was extracted following the supplier’s protocol.
RNA quantity and quality were assessed using a
NanoPhotometer® P330 (Implen, Munich, Germany) and a
gel electrophoreses (1% agarose). DNA was digested using
DNAse I (Thermo Scientific, Waltham, MA, United States)
according to the supplier’s instructions. The quality and
quantity of the DNA-free RNA was assessed as described
before. This RNA was translated into cDNA using RevertAid
H Minus Reverse Transcriptase (Thermo Fisher Scientific,
Waltham, MA, United States) according to the supplier’s
instructions. Gene expression of candidate genes was
examined using qPCR. The qPCR reactions were performed
on a CFX384 Touch Real-Time PCR detection system (Bio-
Rad, Feldkirchen, Germany) using 5 µl PerfeCTa SYBR Green
Supermix (Quantabio, Beverly, MA, United States), 0.5 µl of
10 µM forward and reverse primer (Supplementary Table
S1), 3.5 µl water and 1 µl cDNA. The qPCR program was as
follows: initial incubation at 95°C for 5 min, followed by 40
cycles at 95°C for 30 s, 58°C for 30 s and 72°C for 30 s, followed
by a 0.2°C increment melt curve from 60° to 95°C to confirm
that there was a single amplified product representing high
specificity. Individual samples were run in triplicate and a
negative control with no DNA template was examined for
each primer set on each plate. Housekeeping genes and target
genes of the same sample were run on the same plate. To
compare the expression levels after larval feeding at different
ITC concentrations, we calculated the 2−ΔΔCt values.

2.6 Effects of Isothiocyanates and Amine
Breakdown Products on D. radicum and D.
floralis Performance
To test the effect of ITCs and their breakdown products on the
performance of both fly species, we collected 500 eggs from
each Delia species (D. radicum and D. floralis) and used 100
eggs per treatment. Eggs from each condition were placed in a
plastic box (10 × 10 × 6 cm) filled with autoclaved and
moistened sand (Gerhard Rösl GmbH, Jesewitz, Germany).
The boxes were closed with a transparent lid and covered with
Parafilm. The experiment was set up in a climate cabinet
(Percival Scientific, Perry, Iowa, United States) at constant
conditions (see section 2.1). After hatching, larvae of the
control groups were fed with a semi-artificial diet (see
section 2.4) and the ITC groups with the same diet spiked
with 2PE-ITC (0.4 µl of a 6 mmol/ml solution in DMSO per g
diet, Sigma-Aldrich, St. Louis, Missouri, United States, purity
99%), 4MSOB-ITC (4 µl of a 0.5 mmol/ml solution in ethanol
per g of diet, MCE, Sollentuna, Sweden, 98% purity), 2PE-
amine (24 µl of a 0.08 mmol/ml solution in DMSO per g diet,
99% purity) or 4MSOB-amine (3.8 µl of a 0.5 mmol/ml
solution in ethanol per g diet, 95% purity). In total, we
prepared 10 boxes (2 species x 5 conditions with 100 eggs
each) including the following conditions: larvae fed on 1) diet
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without ITC as a control, 2) diet with 2PE-ITC, 3) diet with
4MSOB-ITC, 4) diet with 2PE-amine, and 5) diet with
4MSOB-amine. The diet was replaced with fresh diet every
other day and the sand was moistened when needed. The
number of larvae and pupae were recorded, and insects
were weighed on the 11th, 18th and 25th day after starting
the experiment for D. radicum and on the 14th, 21st and
31st day for D. floralis. Temporal differences between

species are based on differences in developmental times. In
addition, the number and sex of the emerged adults were
determined.

2.7 Statistical Analyses Other Than for
RNAseq Data
Statistical analyses of data obtained from the GSL-breakdown,
ITC-detoxification, performance experiments and qPCR analyses
were run on R version 4.03 (R Core Team 2020). Homogeneity of
variance across groups was tested using Levene’s test in the “car”
package (Fox and Weisberg 2019). Normal distribution of the
residuals was assessed visually andwith the Shapiro-Wilk test. Data
of the ITC breakdown experiment and qPCR data were normalized
by log2 transformation before analyses. Measured GSL values were
statistically compared using a Student’s t-Test. The LC-MS/MS
peak areas of ITCs, amines and conjugates retrieved in the ITC
breakdown experiments were compared using a one-way ANOVA
on each compound separately followed by a Tukey post-hoc test.
For qPCR data, differences between groups were determined using
a two-way ANOVA within each species and gene using time and

FIGURE 1 |Glucosinolate concentration degraded by gut extracts from Delia radicum (left) and D. floralis larvae (right). Guts of 2nd instar were extracted and either
heated or incubated at room temperature (intact) before adding 2-phenylethyl glucosinolate (2PE-GSL) or 4-(methylsulfinyl)butyl glucosinolate (4MSOB-GSL). (A) 2PE-
GSL amount in assays containing extracted guts from D. radicum and (B) from D. floralis larvae. (C) 4MSOB-GSL amount in assays containing extracted guts from D.
radicum and (D) from D. floralis larvae. Each condition was replicated three times with a pool of 10 larval guts.

TABLE 1 | Comparison of the glucosinolate content in gut extracts of Delia
radicum or D. floralis larvae at room temperature or heated for 7 min at 95°C
and thereafter incubated with 4-(methylsulfinyl)butyl or 2-phenylethyl
glucosinolates. Each condition was represented by three replicates consisting a
pool of 10 larval guts each. p-values after t-test comparing GSL content in
heated versus normal gut extracts.

Species Glucosinolate t Df p-value

D. radicum 4-(methylsulfinyl)butyl 1.454 4 0.220
D. radicum 2-phenylethyl 1.172 4 0.306
D. floralis 4-(methylsulfinyl)butyl 1.279 4 0.270
D. floralis 2-phenylethyl -1.052 4 0.352
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ITC concentration as independent variables, in combination.
Significant differences among conditions within time were
identified using Tukey’s “Honest Significant Difference” method
as post-hoc test. In the performance experiment, differences
between treatments were compared using a log-rank test with
the “survival” package 3.2-7 in R (Therneau and Lumley 2015). To
test differences in the female-male distribution when larvae fed on
different diets, we used a one-proportion z-test. The weight of the
larvae and pupae were compared within single species and among
conditions using a Mann-Whitney test with a Bonferroni
correction of the resulting p-value.

3 RESULTS

3.1 Glucosinolates Were Not Degraded by
Gut Extracts of D. radicum and D. floralis
Larvae
Neither 2PE-GSL nor 4MSOB-GSL levels differed significantly
between incubations with normal and heated larval gut extracts of
D. radicum and D. floralis (Figure 1; Table 1; Supplementary
Table S3). We did not detect GSLs in the negative controls
containing only extracted guts from D. radicum or D. floralis,

FIGURE 2 | Isothiocyanates (ITCs) and products formed after metabolism by gut extracts from Delia radicum (left) and D. floralis (right) larvae. (A) Blank corrected
peak areas of 2-phenylethylamine (PE-amine) formed as a product of 2PE-ITC added to gut extracts of D. radicum and (B) D. floralis larvae. (C) Blank corrected peak
areas of 4-(methylsulfinyl)butyl-ITC (4MSOB-ITC) and products formed after 4MSOB-ITC was added to gut extracts from D. radicum and (D) D. floralis larvae. (E)
Structures of compounds detected in D. radicum and D. floralis gut extracts exposed to ITCs. Guts were extracted and incubated at room temperature (normal) or
heated before adding 50 µMol 4MSOB-ITC or 2PE-ITC and incubated for 1 h at room temperature. Each condition was represented by three biological replicates
consisting of 10 larval guts. The blank corrected peak areas of each compound were compared between conditions using one-way ANOVA and Tukey post-hoc.
Different letters indicate significant differences for each compound (same color for same compound) between the groups within one species (p < 0.05).
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confirming that no residual GSLs were stored in the gut from the
diet (Supplementary Table S3).

3.2 Isothiocyanate Was Degraded by Gut
Extracts From D. radicum and D. floralis
Larvae
After incubation with 2PE-ITC, we detected a high proportion of
2PE-amine in the normal gut extracts of both D. radicum and D.
floralis larvae (Figures 2A,B; Table 2; Supplementary Tables S3,
S4). Very low levels of this breakdown product were detected in
the heated gut extracts of both species. No 2PE-amines were
detected in gut extracts without 2PE-ITC (Supplementary Table
S3). 2PE-ITC itself does not produce a signal under LC-MS
conditions utilized, and 2PE-ITC breakdown products of the
mercapturic acid conjugation pathway (PE-glutathione, PE-

TABLE 2 | One-way ANOVA followed by Tukey post-hoc of the contents of
isothiocyanate (ITC) and derived products in normal and heated gut extracts
from Delia radicum or D. floralis larvae incubated with 4-(methylsulfinyl)butyl
(4MSOB) or 2-phenylethyl (2PE) isothiocyanate. Each condition was presented by
three replicates consisting of a pool of 10 larval guts.

Species Chemical Product Heated-Normal Gut Extracts

D. radicum 4MSOB-amine p < 0.001 ***
4MSOB-cysteine p < 0.001 ***
4MSOB-cyclicCysteine p < 0.001 ***
4MSOB-ITC p = 0.004 **
2PE-amine p < 0.001 ***

D. floralis 4MSOB-amine p = 0.008 **
4MSOB-cysteine p < 0.001 ***
4MSOB-cyclicCysteine p < 0.001***
4MSOB-ITC p = 0.028 *
2PE-amine p < 0.001 ***

FIGURE 3 | Differentially expressed gene counts in Delia radicum and D. floralis larvae in response to 2-phenylethyl isothiocyanate (2PE-ITC) in their diet. Larvae
were reared on a semi-artificial diet with zero or 2 µmol 2PE-ITC/g diet for 7 days. Genes were counted as up- or downregulated with a p-value < 0.05 after FDR. (A)
Venn-diagram representing the differentially expressed gene counts between both species. (B) Barplot of gene counts of up- and downregulated genes per species. (C)
Number of genes responding to 2PE-ITC in one group (dark purple, right bar) or differentially expressed shared by two species-response-direction combinations
(light purple, left bar).
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cysteinylglycine, PE-cysteine, PE-N-acetylcysteine) could not be
identified due to the lack of authentic standards for these
compounds.

When incubated with 4MSOB-ITC, normal gut extracts of
both species showed reduced levels of this substrate, whereas the
ITC breakdown products 4MSOB-amine, 4MSOB-cysteine and
cyclic 4MSOB-cysteine (2-(4-(methylsulfinyl)butylamino)-4,5-
dihydrothiazole-4-carboxylic acid) were observed in these
samples (Figure 2C, D; Table 2; Supplementary Tables S3,
S4). In the heated gut samples of both species, 4MSOB-ITC
stayed high and only very low levels of 4MSOB-amine and
4MSOB-cysteine were detected, probably as a result of non-
enzymatic reactions. Other 4MSOB-conjugates commonly
found as products of the mercapturic acid conjugation
pathway (4MSOB-glutathione, 4MSOB-cysteinylglycine,
4MSOB-N-acetylcysteine), as well as the potential breakdown
product of ITC-cysteine conjugates raphanusamic acid, were not
detected. Combined these results indicate that Delia larval guts
possess the enzymatic machinery necessary to break down
dietary ITCs.

3.3 Gene Expression After Isothiocyanate
Exposure Differed Among Isothiocyanates
and Delia Species
Using both sequence polishing and de novo assembly, the
reference genome for D. radicum was edited to be used as a
reference forD. floralis. Pilon detected and corrected 81,723 SNPs

and indels after aligning 28.5 M of D. floralis Illumina RNAseq
reads on the D. radicum reference genome. De novo assembly of
the unmapped reads allowed us to reconstruct 36,573 transcripts
clustered in 25,064 clusters. In total, 1,948 of those contigs were
annotated to contain 2160 protein-coding open reading frames
and were added to the edited genome of D. radicum to yield a
comprehensive genome for D. floralis (https://doi.org/10.5281/
zenodo.6044094).

RNAseq sequencing yielded on average 46.8 M read pairs for
D. floralis (min: 41.0 M, median: 47.5 M, max: 52.0 M) and
48.2 M read pairs for D. radicum (min: 40.9M, median: 49.8M,
max: 53.0 M) per sample. On average, 87.63% of the reads were
correctly aligned for D. floralis (min: 86.23%, median: 87.68%,
max: 88.93%) and 94.44% for D. radicum (min: 93.91%, median:
94.52%, max: 94.64%). After filtering of genes with low expression
levels, 18,646 genes were considered for differential expression in
D. floralis, and 26,351 for D. radicum.

We found 592 upregulated and 349 downregulated genes inD.
radicum larvae when exposed to 2PE-ITC (Figure 3). The reverse
was found in D. floralis larvae, where more genes were
downregulated (504) than upregulated (291). Only four genes
were up- and six downregulated in both species. More genes (in
total 73) were upregulated in one species and downregulated in
the other. Overall, genes of the same gene ontology (GO) term
classes responded to ITCs in the larvae of both species, but in
different directions (Figure 4, Supplementary Figure S1). While
upregulated genes in D. radicum corresponding to 22 GO term
classes, only six corresponding classes were observed to respond

FIGURE 4 | Gene ontology analyses of biological processes based on differently expressed GO terms in Delia radicum and D. floralis larvae exposed to 2-
phenylethyl isothiocyanate (2PE- ITC) in their diet. Box plots show the distribution of Log2 fold-changes. Results are presented by medians (horizontal bar), interquartile
ranges (IQRs; boxes), and data ranges (whiskers) excluding outliers (defined as > 1.5 x IQR). Rows (boxes) are labeled by GO terms. Only GO terms that were significantly
differentially observed between control and 2PE-ITC in a GO-enrichment analysis (p < 0.05) are considered. Red colors: upregulated, blue colors: downregulated,
Intensity of color: strength of up- or downregulation, grey color: GO terms of interest.
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in D. floralis. Upregulated GO-classes and genes in D. radicum
were mainly involved in glutathione, amino acid, peptide, sulfur
compound and amine metabolic processes as well as sulfur
compound binding (Figure 4; Supplementary Figure S1). The
gene expression in D. floralis larvae comprised metamorphosis-
related terms and whereas the glutathione, amino acid and sulfur
compound metabolic processes were downregulated (Figure 4).
Zooming in to the genes connected to the mercapturic acid
conjugation pathway in D. radicum larvae revealed eight
significantly upregulated genes encoding for GSTs, one for γ-
glutamyltransferases, two for dipeptidases and five for
N-acetyltransferases (Supplementary Table S1). We identified
one significantly downregulated gene encoding for a GST and one
for an N-acetyltransferase. In D. floralis larvae we found no
significantly upregulated genes from any of these enzyme
classes; actually, we found three downregulated GSTs and four
N-acetyltransferases in this species.

The qPCR analyses showed that the selected candidate genes
of the GST, γ-glutamyltransferase and cytochrome P450
(CYP6A1) family were upregulated in D. radicum larvae that
were exposed to 2 µmol 2PE-ITC for 48 h (Figure 5A,B,E;

Table 3; Supplementary Table S4). The expression of the
selected genes for dipeptidase and N-acetyltransferase did not
change upon ITC exposure (Figure 5C,D; Table 3;
Supplementary Table S4). We found no differential
expression of any selected detoxification genes in D. floralis
feeding on 2PE-ITC containing diets (Supplementary Figure
S2; Table 3; Supplementary Table S4). None of the selected
candidate genes responded to 4MSOB-ITC in either species at
any concentration or time point, (Supplementary Figures S3,S4,
Table 3; Supplementary Table S4).

3.4 Isothiocyanates in the Diet Reduce D.
radicum and D. floralis Performance More
Than Their Breakdown Products
In order to determine the possible advantages of metabolizing
2PE- and 4MSOB-ITCs to Delia larvae, we fed ITCs and their
major amine detoxification products to the insects in a semi-
artificial diet. In general, consuming 4MSOB-ITC, 2PE-ITC,
4MSOB-amine or 2PE-amine all negatively affected the
survival rate of D. radicum (Figure 6A; Table 4). Among

FIGURE 5 | Expression of selected candidate genes related to the mercapturic acid pathway (A–D) and cytochrome P450 (CYP6A1, E) responding to 2-
phenylethyl isothiocyanate (2PE-ITC) in D. radicum larvae measured by qPCR. Larvae were fed on 0, 1 or 2 µmol 2PE-ITC/g diet for 6, 24 and 48 h and the response of
transcripts of a candidate gene coding for glutathione-S-transferase (A), γ-glutamyltransferase (B), dipeptidase (C), N-acetyltransferase (D) and CYP6A1 (E) compared
relative to the control sample using 2−ΔΔCt. Mean values were presented as dark lines, standard deviation as grey lines and individual values as dots. Different letters
indicate significant differences between the treatments of one timepoint with a p-value < 0.05 using two-way ANOVA followed by Tukey post-hoc test.
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these conditions, larvae performed markedly better when feeding
on a diet containing the detoxification product 2PE-amine than
on those with the toxin 2PE-ITC. A similar trend (p > 0.05) was
detected in the 4MSOB-ITC and 4MSOB-amine treatments.
Additionally, D. radicum larvae survived better when feeding
on 4MSOB-ITC than on 2PE-ITC-containing diet; in fact, none
of the larvae reached the second instar when fed on 2PE-ITC
containing diets.

While larval weight gain was not affected by exposure to the
different compounds, D. radicum pupae were slightly heavier
when the larvae had been raised on diet containing 4MSOB-
amine (Supplementary Figure S5). Additionally, the
consumption of 4MSOB-amine and 2PE-amine affected the
sex ratio of the emerging adults; diets with amines shifted the
female-male ratio towards an increased proportion of females
(Figure 6C; Supplementary Table S5).

D. floralis performed similarly to D. radicum when exposed to
2PE-ITC; none of the D. floralis larvae reached the 3rd instar
when fed 2PE-ITC containing diet. We also found a higher
survival of larvae fed on diets with amine compare to those
fed on ITC (Figure 6B; Table 4). Surprisingly, the presence of
4MSOB-ITC or 4MSOB-amine resulted in a more than two-fold
larger survival rate for D. floralis larvae relative to the larvae fed
on control diet.

Although several of the growth effects of ITCs and amines
were similar between both fly species, we observed species-
specific effects on larval and pupal weights. While the larval
weight of D. floralis decreased during the consumption of
4MSOB-amines, the pupal weight increased when consuming
4MSOB-ITCs (Supplementary Figure S5). Species-specific

effects were also detected in the female-male ratio: contrary to
D. radicum, no effect of these chemicals was detected on the sex
ratio of emerging D. floralis (Figure 6D; Supplementary
Table S5).

4 DISCUSSION

Herbivores have to overcome several challenges to thrive on
chemically-defended plant tissues. Here, we examined how two
herbivores specialized on Brassica roots, the larvae of D. radicum
and D. floralis, have adapted to the chemical defense system of
their host plants. We found that larvae from both species possess
the enzymatic machinery necessary to neutralize the toxic
hydrolysis product (ITCs), rather than transforming GSLs
which are their precursors. Previous studies have reported that
Brassica plants release ITCs upon D. radicum feeding (Crespo
et al., 2012) which corroborates our observation that these insects
cannot prevent ITCs from being formed. Despite the fact that D.
floralis and D. radicum are closely related, share a similar host
plant range and feeding mode, and elicit similar responses in their
host plants (Sontowski et al., 2019), they seem to use different
mechanisms to overcome the ITCs. Our experiments showed that
gut extracts from both species produced 2PE-amine when
incubated with 2PE-ITC. After adding 4MSOB-ITCs to gut
extracts, we detected three breakdown products, the 4MSOB-
ITC-cysteine conjugate, a cyclic 4MSOB-ITC-cysteine product
formed by intramolecular cyclization of the linear 4MSOB-ITC-
cysteine conjugate (Falk et al., 2014), and 4MSOB-amine. The
latter amine appears to be formed directly via hydrolysis of the

TABLE 3 | Two-way ANOVA and Tukey post-hoc of transcripts in Delia radicum or D. floralis larvae treated with different ITCs at different time points (6, 24, 48 h), relative to
untreated controls. Each condition and time point were represented by 4 till 5 replicates, depending on the survival of the larvae. 2PE-ITC (2-phenylethyl isothiocyanate),
4MSOB-ITC (4-(methylsulfinyl)butyl isothiocyanate).

Gene glutathione-S-transferase γ-glutamyl-transferase dipeptidase N-acetyl-transferase CYP6A1

D. radicum
2PE-ITC

Time p < 0.001 *** p < 0.001 *** p = 0.117 p < 0.001 *** p = 0.108
Condition p < 0.001 *** p = 0.218 p < 0.001 *** p = 0.443 p < 0.001 ***
Time: Condition p < 0.001 *** p = 0.003 ** p = 0.238 p = 0.052 p = 0.022 *

4MSOB-ITC

Time p = 0.034 * p = 0.881 p = 0.064 p = 0.070 p = 0.046 *
Condition p = 0.207 p = 0.030 * p = 0.225 p = 0.284 p = 0.061
Time: Condition p = 0.056 p = 0.794 p = 0.453 p = 0.287 p = 0.538

D. floralis
2PE-ITC

Time p = 0.546 p = 0.708 p = 0.358 p = 0.203 p < 0.001 ***
Condition p = 0.509 p = 0.528 p = 0.014 * p = 0.155 p < 0.001 ***
Time: Condition p = 0.829 p = 0.408 p = 0.889 p = 0.791 p < 0.001 ***

4MSOB-ITC

Time p = 0.015 * p = 0.001 ** p < 0.001 *** p = 0.002 ** p < 0.001 ***
Treatment p = 0.007 ** p = 0.714 p = 0.076 p = 0.247 p < 0.001 ***
Time: Condition p = 0.382 p = 0.146 p = 0.228 p = 0.038 * p < 0.001 ***
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corresponding ITC, and not through metabolism of 4MSOB-
cysteine, as raphanusamic acid could not be detected as a co-
occurring product. The formation of cysteine conjugates
indicated that the mercapturic acid pathway is activated for
ITC detoxification in both insect species (Figure 7). Indeed,
the expression of two potential mercapturic acid pathway
related genes was upregulated in D. radicum feeding on 2PE-
ITC enriched diet (Figure 7). In addition, we identified one

candidate, the cytochrome CYP6A1, representing a more general
detoxification gene family, which was also upregulated in D.
radicum larvae exposed to 2PE-ITC, but not in those fed with
4MSOB-ITC. Neither of these genes was upregulated in D.
floralis. This led to the conclusion that the regulation of
detoxification genes in these closely related congeneric root
herbivores is controlled in an ITC-specific and potentially in a
species-specific fashion. Lastly, we tested whether the amines are
true detoxification products, i.e. have fewer negative effects on
Delia performance relative to their parent compounds. Larvae
performed significantly better when consuming amines than
ITCs for both 4MSOB- and 2PE-ITC. This means that the
amines indeed are less toxic than ITCs and thus can be
considered detoxification products. Interestingly, amine
exposure caused a species-specific shift in sex ratios of D.
radicum to more females whereas no such effect was detected
in D. floralis.

In general, there are three points in theGSL-myrosinase system at
which insects can interfere to reduce its defensive effect: structural
changes to the GSL precursor, shifting the myrosinase reaction
towards less toxic products, or dealing with the ITCs after they
have been formed (Wittstock et al., 2003). Our study shows that
belowground feeding Delia larvae follow the third strategy. Enzyme
preparations from both fly species D. radicum and D. floralis
metabolize ITCs via the mercapturic acid conjugation pathway to
form ITC-cysteine conjugates. This detoxification mechanism is

FIGURE 6 | Effects of isothiocyanates (ITCs) and amines on Delia radicum and D. floralis performance. Larvae were fed on a semi-artificial diet (control) or the same
diet spiked with 2 μmol/g diet of 2-phenylethyl isothiocyanate (2PE-ITC), 2PE-amine, 4-(methylsulfinyl)butyl isothiocyanate (4MSOB-ITC), or 4MSOB-amine per g diet.
(A) Survival of D. radicum and (B) D. floralis over 40 days are presented as Kaplan-Meier curves. (C) Male-female ratios in the resulting D. radicum and (D) D. floralis
adults compared using a one-proportion z-test. Significant p-values below 0.05 are included in figure. N = number of males and females.

TABLE 4 | Log-rank-test of the survival in D. radicum and D. floralis feeding on a
semiartificial diet with 2-phenylethyl isothiocyanate (2PE-ITC), 2-
phenylethylamine (2PE-amine), 4-(methylsulfinyl)butyl isothiocyanate (4MSOB-
ITC), 4-(methylsulfinyl)butylamine (4MSOB-amine) or without ITCs or amines
(control) using.

D. radicum D. floralisCondition

p-value χ2 p-value χ2

Control–2PE-amine <0.001 *** 48.4 0.4 0.6
Control–2PE-ITC <0.001 *** 115 <0.001 *** 15.2
2PE-amine–2PE-ITC <0.001 *** 28.2 <0.001 *** 20.6

Control–4MSOB-amine <0.001 *** 35.3 <0.001 *** 65.9
Control–4MSOB-ITC <0.001 *** 44.4 <0.001 *** 38.5
4MSOB-amine–4MSOB-ITC 0.3 0.9 0.002 ** 9.6

2PE-amine–4MSOB-amine 0.2 1.7 <0.001 *** 56.9
2PE-ITC–4MSOB-ITC <0.001 *** 31.4 <0.001 *** 82.4
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commonly found in a wide range of insect herbivores and mammals
(Wadleigh and Yu 1988; Schramm et al., 2012; Beran et al., 2018),
including flies where it was found in several Drosophila species
(Gloss et al., 2014). In addition, we found a second breakdown
product, 4MSOB-/2PE-amine. ITC-derived amines and/or the
enzymes responsible for their formation have also been detected
in the flea beetle P. chrysocephala (Beran et al., 2018). In addition,
they can be produced by microbes, such as the phytopathogenic
fungus Sclerotinia sclerotiorum, pathovars of the bacterium
Pseudomonas syringae, and microbial isolates from the gut of D.
radicum (Fan et al., 2011; Welte et al., 2016; Beran et al., 2018; van
Den Bosch et al., 2018; Chen et al., 2020). However, it is still unclear
whether the ITC-derived amines excreted by insects are the result of
ITC hydrolysis by the insect’s enzymes or are produced by their
associated (gut) microbiota. Since Delia larvae feed on roots, they
may take up bacteria or fungi carrying ITC hydrolases from the
rhizosphere. These microbes are may be enriched in the rhizosphere
of Brassica species, because ITC and GSL breakdown products are
excreted in root exudates (van Dam and Bouwmeester 2016). The
presence of ITCs in the rhizosphere may select for microbes with
ITC detoxification enzymes. Whether the larvae benefit from the
presence of such microbes and may “split the costs” associated with
detoxifying ITCs remains an open question.

Based on the production of 4MSOB-ITC derivatives, we found
that both fly species (including their associated microbiomes)
produced similar ITC breakdown products but tend to be in
different proportions. Based on HPLC-MS/MS peak areas alone,
gut extracts of D. radicum produced larger signals for 4MSOB-
amine than those detected for 4MSOB-cysteine conjugates,
whereas the corresponding signals detected for these conversion
products had similar intensities in assays using D. floralis gut
extracts. Species-specific results were observed in 2PE-ITC
metabolism in gut extracts. In these samples, the formation of
2PE-amine was higher in larval gut extracts from D. floralis
compared to D. radicum. This indicates that both species use
the same pathways (mercapturic acid and hydrolytic), but might
prioritize these differently, possibly caused partly by different gut
microbial communities in both species. Unfortunately, due to the
lack of ionization of the 2PE-ITC under LC-MS conditions and the

lack of appropriate authentic chromatographic/mass spectrometric
standards for its conjugates, we could not investigate the formation
of mercapturic acid products derived from 2PE-ITC via HPLC-
MS/MS. Therefore, further studies are necessary to conclude
whether the formation of breakdown products is ITC-specific
and whether the proportion of metabolism through the direct
hydrolyzation or conjugation differs.

Using comparative RNAseq analysis, we identified several
gene families and gene candidates coding for
detoxification-related enzymes that are regulated upon ITC
exposure. Based on our metabolite results, we directed
particular interest to gene families encoding enzyme
classes associated with the mercapturic acid conjugation
pathway. GSTs are the starting point of the mercapturic
acid pathway, conjugating ITCs to glutathione. This step is
followed by stepwise hydrolysis of the amino acids of which
glutathione is composed (Habig et al., 1974). These amino
acids are potentially reabsorbed by the herbivore. This
conjugation increases the water solubility of the ITCs and
other xenobiotics and facilitates their excretion (Field and
Thurman 1996). This pathway has been described in several
Brassicaceae-feeding herbivores which deploy this pathway
to degrade ITCs (Schramm et al., 2012; Gloss et al., 2014;
Beran et al., 2018). In more detail, GSTs conjugate ITCs to
glutathione, followed by a conversion into ITC-CysGly by γ-
glutamyltransferases. In the next step, ITC-cysteine
conjugates are formed thanks to the activity of
dipeptidases. These ITC-cysteine conjugates are further
N-acetylated in some species (Figure 7) (Higdon et al.,
2007). We found that cysteine conjugates of 4MSOB-ITC
were formed in gut extracts of both fly species after externally
adding 4MSOB-ITCs. In parallel, we found an upregulation
of genes encoding for GST and γ-glutamyltransferases in D.
radicum larvae, which were fed on 2PE-ITC-containing diet
after 48 h. In D. floralis the expression of these particular
genes was not upregulated by any tested ITCs at the two
tested time points (6 and 24 h). The putative detoxification
gene CYP6A1, belonging to the large gene family of
cytochrome P450 monooxygenases (P450s), was strongly

FIGURE 7 | Schematic illustration of the observed detoxification of isothiocyanates (ITCs) in the larvae of Delia radicum and D. floralis combined with the regulation
of genes in the mercapturic acid conjugation pathway as assessed with targeted metabolomic and transcriptomic data. Arrows indicate an up- or downregulation with a
p-value < 0.05 unless otherwise noted in the figure. Pathway was modified after Higdon et al. (2007). Abbreviations: GST, glutathione-S-transferase; γGT, gamma-
glutamyltransferase; DP, dipeptidase; NAcT, N-acetyltransferase.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 87452713

Sontowski et al. Isothiocyanate Detoxification in Delia Species

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


upregulated in D. radicum feeding on 2PE-ITCs as well.
P450s are generally involved in the adaptation of insects to
synthetic insecticides and host plant allelochemicals (Rose
et al., 1991; Feyereisen 1999; Chiu et al., 2008; Smith et al.,
2016). This suggests that CYP6A1 might be involved in a
more general GSL/ITC detoxification process in D. radicum.
Although the RNAseq data revealed changes in the
expression profile of the CYP6A1 gene in D. floralis
(Supplementary Table S1), we detected no expression in
the qPCR analysis. Despite the qPCR primer sequences of the
other selected detoxification genes were expressed in both
species, the CYP6A1 primer sequence was not expressed in D.
floralis (Supplementary Figure S6). Selecting new primer
regions may result in qPCR signals. These findings suggest
that the expression of potential detoxification gene fragments
seems to be species-specifically regulated in Delia species.

The RNAseq data also revealed more global differential gene
expression patterns in response to ITC exposure. Whereas D.
radicum upregulated many genes when exposed to ITCs, D.
floralis downregulated a large number of genes involved in
primary metabolic and detoxification processes. The systematic
downregulation of genes in D. floralis may be caused by a lower
tolerance level of these larvae to 2PE-ITC resulting in broader
toxicity effects of ITCs that affect metabolismmore generally than
in D. radicum. Whether D. radicum larvae prefer plant roots with
high 2PE-GSL levels and D. floralis larvae roots with a different
GSL profile can only be hypothesized. Species- and even
population-specific preferences to different host plants within
Brassicaceae have been described in herbivores including D.
radicum and Pieridae (Van Leur et al., 2008; Newton et al.,
2010; Lamy et al., 2018; Okamura et al., 2019).

An explanation for the lack of putative gene expression response
to 4MSOB-ITC in both species may be that we selected gene
candidates based on their expression in response to 2PE-ITC.
In case of ITC-specific gene activation, which is suggested by
our data, we may have thus missed 4MSOB-ITC specifically
expressed genes. A second explanation might be that
4MSOB-ITC is simply less poisonous than 2PE-ITC to the
larvae of both Delia species. Our performance data indeed
showed that the larval performance is less affected by
4MSOB-ITC than by 2PE-ITC, and in case of D. floralis,
the former may even enhance survival. This may mean that
the larvae do not need to express their detoxification
machinery to neutralize this compound. While this
assumption would contradict our detection of 4MSOB-
cysteine in both Delia species, it would be supported by
the relatively higher survival of both species when feeding
on 4MSOB-ITC/amine than on 2PE-ITC/amine. A third
explanation is that under natural conditions the larvae are
rarely confronted with 4MSOB-ITC. The precursor of
4MSOB-ITC is 4MSOB-GSL. This is the major leaf GSL in
Arabidopsis thaliana ecotype Columbia-0, as well as in some
varieties of cultivated Brassicas such as broccoli and Brussels
sprouts, and therefore well studied and commercially
available (Gross et al., 2000). In the main host plants of D.
radicum and D. floralis, 4MSOB-GSL is present at high
concentrations in seeds, sprouts and leaves, but only in

low concentrations in their roots (Guo et al., 2014;
Bhandari et al., 2015). The precursor of 2PE-ITC is 2PE-
GSL, which is one of the main GSLs in the roots of many
Brassica species (Van Dam et al., 2009). This may mean that
the larvae are more adapted to deal with 2PE-ITC.

On the organismal level it is known that ITCs can impair the
survival and development of specialist herbivores (Agrawal and
Kurashige 2003; Sun et al., 2019). For instance, allyl-ITC reduced
the survival and growth of the cabbage white, Pieris rapae (Agrawal
and Kurashige 2003). We also found a negative effect of 2PE-ITC on
the survival rate of both D. radicum and D. floralis. In addition, 2PE-
ITC can successfully defend roots against nematodes, in particular
Pratylenchus penetrans (Potter et al., 1998; Kabouw et al., 2010) and
wireworms (Limonius infuscatus; Brown et al., 1991). Here we found
that it can also defend plants againstD. radicum andD. floralis larvae.
The second ITC tested, 4MSOB-ITC, had a much weaker negative
effect, if at all. Interestingly, 4MSOB-ITC and in particular its amine
even increased the performance ofD. floralis. Compared to ITCs, both
species performed better on the corresponding amines. This finding
suggests that ITCs were properly detoxified by the ITC hydrolysis
reactions, and thus may be an adaptative mechanism by which the
larvae of Delia spp. overcome their host plant’s defense system.

In conclusion,we could successfully characterize how gut extracts
from two belowground Brassica specialists, D. radicum and
D. floralis, detoxify their host plant’s defense system. Both
species (including their microbiomes) detoxify ITCs to ITC-
cysteine conjugates and amines using the mercapturic acid
conjugation pathway and a hydrolytic pathway, respectively.
In spite of producing similar detoxification products, their
close phylogenetic relationship, and overlapping host plant
range, the two species do not deploy the same enzymatic
mechanisms in the detoxification process. Especially on the
level of gene expression and performance, D. radicum and D.
floralis respond differently to ITC exposure. Along with
species-specific effects, the two herbivores also responded
differently to ITCs with different side-chains: D. radicum and
D. floralis both were most susceptible to 2PE-ITCs. Such
differences might also explain different host plant preferences
within the Brassicaceae family (Lamy et al., 2018). This
knowledge might be considered in the selection of lines to
breed more resistant or less attractive crops using natural
variation for GSL and ITC production in Brassica accessions
and species (van Dam et al., 2012; Sontowski et al., 2019). The
putative detoxification genes/gene families we identified may also
serve as a starting point for further studies aiming to develop
RNAi-based pest management strategies.
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