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Abstract 
In multiple-trait animal models, variance components are frequently estimated using Restricted 
Maximum Likelihood method (REML). Such an approach assumes the multivariate normality 
for the phenotype even if, in practice, this hypothesis is not always realistic. We assessed, using 
simulation, the impact of a non-Gaussian distribution for the residual term of the mixed model, 
on the REML estimations. The non-Gaussian distributions were simulated using a copula-based 
approach. Large populations over 8 generations were simulated using random selection for the 
3 first generations and using a truncation selection for the following. Results obtained 
highlighted the robustness of REML when random selection is performed. On the contrary with 
a truncation selection process, we observed significant differences with the true parameters, 
particularly with asymmetric bivariate distributions on the residual part. 
 
 
Introduction  
In a genetic animal context, mixed models are widely used to dissociate the genetic and 
environmental variance part on the studied phenotypes and perform selection. Extension to the 
multiple trait model permits to consider the correlations between traits (Meyer (1991), Mrode 
(2014)).  
 
The principal assumption of this model is the multi normality for the observed phenotype 
vectors. Since Henderson (1975), the variance-covariance parameters of the model are 
frequently estimated by REstricted Maximum Likelihood (REML) method, that, under the 
Gaussian assumption, provides unbiased estimators. However, even if the marginal 
distributions are Gaussian, the distribution of the multivariate phenotype can be non-Gaussian 
due to a non-Gaussian dependence structure between the components of the residual vectors of 
the mixed model.  
 
More precisely let 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2) be a random vector with cumulative distribution function 
(c.d.f.) 𝐹𝐹 and marginal c.d.f.s 𝐹𝐹1 and 𝐹𝐹2 assumed to be continuous. According to Sklar’s 
theorem (Sklar, 1959), it exists a unique function 𝐶𝐶: [0,1]𝑑𝑑 → [0,1] such that 
 

𝐹𝐹(𝒙𝒙) = 𝐶𝐶{𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2)}, 𝒙𝒙 = (𝑥𝑥1,𝑥𝑥2) ∈ ℝ2. 
 
The function 𝐶𝐶 is called the copula of the random vector 𝑿𝑿  and characterizes the dependence 
structure of the vector 𝑿𝑿. Typical examples of copulas are normal copula (𝐶𝐶𝑁𝑁), Clayton copula 
(𝐶𝐶𝐶𝐶), Frank copula (𝐶𝐶𝐹𝐹) or Joe copula (𝐶𝐶𝐽𝐽), see Nelson (2007). The contour plot of the bivariate 
distributions with  𝐶𝐶𝐶𝐶 , 𝐶𝐶𝐹𝐹 and 𝐶𝐶𝐽𝐽 copula and Gaussian margins are given in Figure 1. Clayton 
and Joe distribution are asymmetric (radial sense), and have high dependence in the tail (resp. 
lower and upper) of the distribution. Frank distribution (with Gaussian margins) is symmetric 
with slightly more variation in the tails than the Gaussian distribution.  
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Figure 1. Contour plot of bivariate distributions with Gaussian margins and for copula, the 
normal copula, Frank’s copula, Clayton’s copula and Joe’s Copula with Kendall’s correlation 
𝜏𝜏 = 0.7  
 
The aim of this paper is to assess the effect of a Gaussian misspecification for the residual part 
on the REML estimations of the heritabilities and correlations (genetic and residual), when the 
copula is 𝐶𝐶𝐶𝐶 , 𝐶𝐶𝐹𝐹or 𝐶𝐶𝐽𝐽 but the margins remain Gaussian. 
 
Materials & Methods 
We simulated simplified pig breeding schemes, following Gonzales et al. (2020). The total 
number of animal animals over 8 generations, including founders was 19 800. In the first 3 
generations, choice of reproducers was carried out at random. In the following 5, reproducers 
were chosen by truncation selection (intra-family selection) from a combination of their 2 
breeding values (BVs) estimated by BLUP, with equal weight for each trait, that is to say, from 
the 3rd generation to the 8th, REML estimation of the variance components and BLUP of the 
BVs were performed using ASReml software (Gilmour et al., 2015). All the progeny had 2 
observed phenotypes and were candidates for selection. Selection rate of 2.9% for the males 
and 10% for the females were considered (204 breeder females and 10 breeder males by 
generation including founders). Full-sibs and half-sibs were never mated to limit the inbreeding. 
 
For the founders, the BVs 𝑎𝑎𝑖𝑖,1, 𝑎𝑎𝑖𝑖,2 for the 𝑖𝑖th animal were simulated according to a bivariate 
Gaussian distribution with fixed covariance matrix 𝐺𝐺. For the other generations, the BVs were 
simulated through a Mendelian sampling term: 𝑎𝑎𝑖𝑖,𝑗𝑗 = 0.5 �𝑎𝑎𝑖𝑖𝑓𝑓,𝑗𝑗 + 𝑎𝑎𝑖𝑖𝑚𝑚,𝑗𝑗� + 𝑀𝑀𝑖𝑖𝑗𝑗, 𝑗𝑗 = 1,2 where 𝑖𝑖𝑓𝑓 and 

𝑖𝑖𝑚𝑚 were respectively the indices of the sire and dam of the 𝑖𝑖th animal, and (𝑀𝑀𝑖𝑖1,𝑀𝑀𝑖𝑖2) followed a 
bivariate Gaussian distribution with covariance matrix 𝐺𝐺/2. The residual vectors (𝜀𝜀𝑖𝑖,1, 𝜀𝜀𝑖𝑖,2) 
were sampled from a bivariate distribution with standard Gaussian margins and 𝐶𝐶𝑁𝑁 ,𝐶𝐶𝐶𝐶 , 𝐶𝐶𝐹𝐹or 
𝐶𝐶𝐽𝐽 copula whose Kendall’s correlation was 0.7 (corresponding Pearson’s correlations 
respectively were 0.891, 0.846, 0.852 and 0.850). 
 
We carried out 1 000 Monte Carlo simulations and estimated the heritabilities for the two traits 
and the genetic and residual correlations. The true genetic variances were 0.18 or 0.67 leading 
to low and medium heritabilities of 0.153 or 0.401. The true genetic correlations 𝜌𝜌𝑎𝑎 were 0.309 
or 0.588. 
 
Results 
At the end of the 3rd generation (where reproducers were carried out at random), the absolute 
bias for the heritabilities ranged between 6.77 ×  10−6 and 1.43 ×  10−3  with SEs between 
0.020 and 0.030. The absolute bias for the correlations ranged between 2.4 ×  10−7 and 0.010  
with SEs between 0.004 and 0.093. No differences were significant (for the t-test at level 5%). 
  



The average estimation biases and SEs for the heritabilities evaluated at the end of the 8th 
generation are shown in Table 1.  
 
Table 1. Table of bias and SE of estimated heritabilities 

 
 
When the residual terms followed a bivariate distribution with  𝐶𝐶𝐶𝐶  or 𝐶𝐶𝐽𝐽 copula, we observed 
significant difference with the true heritability on the trait with medium heritability as soon as 
the heritability for the two traits are different. In this case, REML over-estimated the heritability 
for 𝐶𝐶𝐽𝐽 copula and under-estimated the heritability for 𝐶𝐶𝐶𝐶  copula. For 𝐶𝐶𝐹𝐹 copula, we did not 
observe any significant difference with the theoretical values. The average estimation biases 
and SEs for the correlations evaluated at the end of the 8th generation are shown in Table 2.  
 
Table 2. Table of bias and SE of estimated correlations 

 



 
Concerning the residual correlations, as soon as at least one of the heritability was medium 
(0.401), all the non-normal copulas led to significant differences with the true residual 
correlation. In theses case, 𝐶𝐶𝐹𝐹 and 𝐶𝐶𝐶𝐶  copula led to an under-estimation of the residual 
correlations and 𝐶𝐶𝐽𝐽 led to an over-estimation. Concerning the genetic correlation, as soon as the 
theoretical heritabilities were equal, we observed significant under-estimation with 𝐶𝐶𝐽𝐽 copula 
and over-estimation with 𝐶𝐶𝐶𝐶  copula. Using 𝐶𝐶𝐹𝐹 copula, the difference with the theoretical values 
appeared significant (over-estimation) for medium heritability only.  
 
Discussion 
To qualify the robustness of the REML facing deviation from normality in the bivariate case, 
we look for symmetric (𝐶𝐶𝐹𝐹), and asymmetric bivariate distributions (𝐶𝐶𝐶𝐶and 𝐶𝐶𝐽𝐽) for the residual 
term.  
With random selection, the robustness of the REML was remarkable despite the non-Gaussian 
distribution on the residuals; neither the asymmetry nor the heaviness of the distributions 
affected the REML estimations. 
At the end of the 8th generation (truncation selection from the 3rd generation), we observed 
systematic bias for the variance-covariance parameters using asymmetric distribution: for the 
estimated heritability when the true heritabilities for the 2 traits were different and for the 
estimated correlation, when the true heritabilities were the same and medium. Even for the 
symmetric non-Gaussian distribution (𝐶𝐶𝐹𝐹), we observed significant differences with the true 
parameter for the estimated correlations. Hence, with truncation selection based on EBVs of 2 
observed phenotypes, the asymmetry of the residual part but also the heaviness of the upper tail 
affects the REML estimations. Clearly, the estimation biases are caused in particular, by the 
selection process carried out in the upper right tail of the distribution. In the case of same 
heritability for the 2 traits, high (resp. low) dependences in the upper right tail of the residual 
distribution (using 𝐶𝐶𝐽𝐽 resp. 𝐶𝐶𝐶𝐶) will lead to an overestimation (resp. underestimation) of the 
residual correlations and consequently an underestimation (resp. overestimation) of the genetic 
correlations. In the case of different heritability for the 2 traits, presumably the selection alters 
the variance of the BV for the trait with medium heritability which causes under or over 
estimation of the heritability using 𝐶𝐶𝐽𝐽and 𝐶𝐶𝐶𝐶 . 
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