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A critical issue in climate change impact studies is the assessment of uncertainties associated with future projections. Various methods have been proposed for partitioning uncertainty sources, usually based on an Analysis of Variance (ANOVA). In this paper, we show how Smoothing-Spline ANOVA approaches (SS-ANOVA) can be used to estimate the total uncertainty and its partition in climate projection ensembles. A Bayesian framework is proposed to handle heteroscedastic and autocorrelated residual errors between the climate change responses and the main additive effects modelled with cubic smoothing splines.

INTRODUCTION

A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty, and internal variability (see, e.g., [START_REF] Hawkins | The Potential to Narrow Uncertainty in Regional Climate Predictions[END_REF]. Scenario uncertainty is related to the possible evolution of greenhouse gas emissions, which is usually accounted for using Representative Concentration Pathways (RCP) scenarios [START_REF] Van Vuuren | The representative concentration pathways: an overview[END_REF]. Model uncertainty corresponds to the dispersion between the different climate responses obtained with different models for the same forcing configuration. Model uncertainty can concern Global Climate Models (GCMs), regional downscaling models such as regional climate models (RCMs) and/or statistical downscaling methods, and impact models (e.g. agricultural or hydrological models). Internal variability is due to the chaotic variability of the climate [START_REF] Deser | Uncertainty in climate change projections: the role of internal variability[END_REF]. Estimating and partitioning uncertainties in future climate projections is first intended to help evaluating the significance of estimated changes for adaptation purposes. Besides, it highlights the most important uncertainty sources for a better allocation of future research efforts.

Over the recent years, uncertainty in climate projections has been mostly explored and partitioned based on Multiscenarios Multimodel Multimember Ensembles (MMEs) of transient climate projections. Various methods have been proposed for this, most of them based on an Analysis of Variance (ANOVA) of projections available for the future time window considered [START_REF] Hingray | Development of probability distributions for regional climate change from uncertain global mean warming and an uncertain scaling relationship[END_REF][START_REF] Yip | A Simple, Coherent Framework for Partitioning Uncertainty in Climate Predictions[END_REF][START_REF] Paeth | Quantifying the evidence of climate change in the light of uncertainty exemplified by the Mediterranean hot spot region[END_REF]. Available methods are usually applied to different future time windows in turn [START_REF] Jacob | EURO-CORDEX: new high-resolution climate change projections for European impact research[END_REF][START_REF] Northrop | Quantifying Sources of Uncertainty in Projections of Future Climate[END_REF][START_REF] Reintges | Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models[END_REF] which may lead to temporal fluctuations of uncertainty estimates. As reported by [START_REF] Hingray | Uncertainty component estimates in transient climate projections[END_REF], such variations are likely to be due to a lack of robustness of the analysis. In most cases, the climate response of each simulation chain is indeed expected to evolve gradually with time. As a consequence, the different uncertainty components of a given MME should also be smooth signals. A robust estimation of all uncertainty components can thus be proposed by assuming a gradual evolution of climate responses. This is considered by [START_REF] Geinitz | Bayesian multilevel analysis of variance for relative comparison across sources of global climate model variability[END_REF], who introduce an explicit model of the signals (climate responses and ANOVA effects) using simple trend models. The analysis framework described in the present study follows the same direction and extends the Bayesian approach of [START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF]. More specifically, it promotes the use of a Bayesian Smoothing-spline ANOVA (SS-ANOVA, see, e.g. [START_REF] Cheng | Bayesian smoothing spline analysis of variance[END_REF] to partition the different sources of uncertainty. The Bayesian framework handles heteroscedastic and autocorrelated residual errors between the climate change responses and the main additive effects modelled with cubic smoothing splines.

Section 2 details the methodology proposed for partitioning climate change uncertainties. Section 4 illustrates the SS-ANOVA approach with an application to a MME of regional temperature projections obtained from the CMIP5-EUROCORDEX experiment [START_REF] Jacob | EURO-CORDEX: new high-resolution climate change projections for European impact research[END_REF][START_REF] Vautard | Evaluation of the Large EURO-CORDEX Regional Climate Model Ensemble[END_REF]. Section 5 concludes.

METHODOLOGICAL FRAMEWORK

We consider that a multi-model ensemble of climate projections y i where i = 1, . . . , n indicates a specific simulation chain. Each chain spans a period of T years, this vector of years being denoted as x year = {x year 1 , . . . , x year T }.

Climate response and climate change response

The proposed methodology assumes that a climate response φ i represents the forced response of each simulation chain, as a result of climate change. Polynomial trend models or cubic splines have been used to obtain φ i in past studies [START_REF] Hawkins | The Potential to Narrow Uncertainty in Regional Climate Predictions[END_REF][START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF][START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF]. In this study, the smooth climate response φ i is modeled as a cubic smoothing spline [START_REF] Green | Nonparametric Regression and Generalized Linear Models: A roughness penalty approach[END_REF] capable of representing a great variety of possible evolution, including non-monotonic trends (see, e.g. [START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF].

Most climate impact studies quantify uncertainty sources from change variables, obtained as differences between a future and a reference period. The rationale behind this transformation is that changes provided by climate projections with respect to a reference period are deemed to be more informative that raw projected values which are subject to various biases. Here, we consider a change variable defined in terms of absolute differences with respect to a reference year, i.e.

φ * i = φ * i -φ * c
, where c indicates the reference year, which can be for example representative of the pre-industrial climate (e.g. 1850) or, as done in this study, of the current climate (c = 1999).

SS-ANOVA of climate change responses

Let us denote φ * the concatenated vector of n climate change responses φ * i , i = 1, . . . , n of length n × T . Following [START_REF] Cheng | Bayesian smoothing spline analysis of variance[END_REF], we consider the following smoothing-spline analysis of variance (SS-ANOVA) decomposition:

φ * = E ∑ e=1 θ e + ξ RV , (1) 
where θ e , e = 1, . . . , E are the main effects of the ANOVA, i.e. the evolution of the grand mean change response, shared by all simulation chains, and the effects considered as major sources of uncertainty, e.g. the evolution of the climate model (GCM/RCM) effects, main effects related to the emission scenarios.

In this study, the SS-ANOVA approach is applied within a Bayesian framework and considers that the main effects are represented with cubic smoothing splines which minimize the residual error ξ RV , their "smoothness" being introduced via Gaussian priors including smoothing parameters λ e > 0, e = 1, . . . , E, which control the trade-off between small residual errors and smoothness of the main effects.

Because the climate change responses are themselves smooth functions of the year, the residual variability ξ RV is considerably autocorrelated. Moreover, it also usually increases as a function of the horizon, due to the greater variability of the climate projections for larger horizons. Smoothing spline models with correlated errors have been investigated in [START_REF] Wang | Smoothing Spline Models with Correlated Random Errors[END_REF] who proposes to consider the following model for the ANOVA errors:

ξ RV ∼ N(0, δ RV W ρ ), (2) 
where δ RV is a parameter representing the variance of ξ RV and W ρ = VC ρ V is the variance-covariance matrix of ξ RV , decomposed into a diagonal matrix V specifying the weights that represent the heteroscedasticity, and C ρ is the matrix of correlations between error terms. [START_REF] Wang | Spline Smoothing with Heteroscedastic and/or Correlated Errors[END_REF] discusses possible parametric
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choices for V and C ρ . In this study, in a simple manner, we prescribe the choice of V in order to introduce a linear evolution of the standard deviation of ξ RV with the horizon:

V = 1 n diag( 1/T , 2/T , . . . , 1), (3) 
where denotes the kronecker product and diag( 1/T , 2/T , . . . , 1) is a diagonal matrix specifying the weights given to the horizons x year , such that the variance of residual errors for the horizon x year 1 is δ RV /T , and δ RV for the last horizon x year T . A simple autoregressive model of order 1 is considered for the errors corresponding to one climate change response, and are considered independent otherwise, such that:

C ρ = 1 n C KMS ρ , (4) 
where C KMS ρ is the Kac-Murdock-Szegö matrix [START_REF] Kac | On the Eigen-values of Certain Hermitian Forms[END_REF]) of size T . This symmetric Toeplitz matrix defines the cross-correlations between the error terms corresponding to a climate projection, and can be written as follows:

C KMS ρ =         1 ρ ρ 2 • • • ρ T -1 ρ 1 ρ . . . ρ T -2 ρ 2 ρ 1 . . . . . . • • • • • • . . . . . . ρ ρ T -1 ρ T -2 • • • ρ 1        
.

BAYESIAN INFERENCE

The different unknown quantities {φ 1 , . . . , φ n , δ IV,1 , . . . , δ IV,n , θ 1 , . . . , θ E , λ 1 , . . . , λ E , δ RV , ρ} are estimated within a Bayesian framework for the following reasons. First, several contributions show that natural Bayesian interpretations can be obtained for the application of smoothing splines [START_REF] Kimeldorf | Some results on Tchebycheffian spline functions[END_REF][START_REF] Wahba | Spline Models for Observational Data[END_REF][START_REF] Speckman | Fully Bayesian Spline Smoothing and Intrinsic Autoregressive Priors[END_REF] or SS-ANOVA models [START_REF] Reich | Variable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes[END_REF][START_REF] Cheng | Bayesian smoothing spline analysis of variance[END_REF]. Moreover, the methods often applied to select the smoothing parameters (generalized maximum likelihood, generalized cross-validation, and unbiased risk) generally assume independent observations [START_REF] Wang | Smoothing Spline Models with Correlated Random Errors[END_REF]. In the context of autocorrelated and heteroscedastic errors, the application of these methods [START_REF] Wang | Spline Smoothing with Heteroscedastic and/or Correlated Errors[END_REF] can become unstable and our attempts with the R package assist failed (i.e. the estimates did not converge). Finally, one important advantage is that data augmentation [START_REF] Tanner | The Calculation of Posterior Distributions by Data Augmentation[END_REF] is easily implemented within a Bayesian framework, which can be used to treat incomplete designs of climate experiments [START_REF] Déqué | An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections[END_REF][START_REF] Evin | Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation[END_REF][START_REF] Christensen | Filling the matrix: an ANOVA-based method to emulate regional climate model simulations for equally-weighted properties of ensembles of opportunity[END_REF].

Priors

Without loss of generality, and in agreement with the application shown in Section 4, let us consider here a MME obtained for one emission scenario, and several GCMs and RCMs. For each element j = 1, . . . , n × T of φ * , the concatenated vector of n climate change responses φ * i , the corresponding "horizon" x year j , type of GCM x GCM j or RCM x RCM j can be used to partition the different sources of uncertainties. We aim at decomposing the different climate change response using the SS-ANOVA framework given in Eq. (1) where:

• θ 1 is the main effect corresponding to the grand mean change response, shared by all simulation chains,

• θ 2 and θ 3 are the main effects corresponding to the evolution of the GCM and RCM as a function of the horizon, with the corresponding priors:

θ e |δ RV , λ e ∼ N(0, ξ RV λ e Σ e ), (5) 

3/12

where the covariance matrices Σ e are referred to as "reproducing kernels", i.e. specific covariance matrices which respect the properties of reproducing kernel Hilbert space [START_REF] Wahba | Spline Models for Observational Data[END_REF][START_REF] Gu | Smoothing Spline ANOVA Models[END_REF] and are obtained from the possible values of the predictors. Each element of Σ e , e = 1, 2, 3 corresponds to the pairs { j, k} of indices in φ * and are obtained as:

• k C (x year j , x year k ) for θ 1 , • k C (x year j , x year k ) × k D (x GCM j , x GCM k ) for θ 2 , • k C (x year j , x year k ) × k D (x RCM j , x RCM k ) for θ 3 .
where k C and k D are functions specifying the reproducing kernels for continuous and discrete predictors, respectively. Many choices are possible for the reproducing kernels, depending on the nature of the predictors (continuous or discrete) but do not seem to have an important impact on the results in this study. Following [START_REF] Cheng | Bayesian smoothing spline analysis of variance[END_REF], for a discrete predictor x which can take J different values, we consider the following reproducing kernel function k D between two elements x i an x j of x:

k D (x i , x j ) = J -1 J 1 x i =x j - 1 J 1 x i =x j ,
where 1 is the indicator function. For a continuous predictor which has been scaled in [0, 1], we consider the following reproducing kernel function k C :

k C (x i , x j ) = min(x i , x j ) 2 {3 max(x i , x j ) -min(x i , x j )}/6.
Since the reproducing kernel Σ CR,i is not necessarily positive definite, Cheng and Speckman (2012) advise to take the following spectral decomposition:

Σ e = Q e D e Q e ,
where Q e is the nT × r e matrix of eigenvectors corresponding to the r e nonzero eigenvalues of Σ e and D e is the diagonal matrix of r e nonzero eigenvalues. Let us consider the following vector:

ν e |δ RV , λ e ∼ N (0, δ RV λ e D e
), e = 1, . . . , E, such that θ e = Q e ν e has the prior (5). Gamma priors are considered for the smoothing parameters λ e , e = 1, . . . , E:

λ e ∼ Gamma(1/2, 2b λ ),
the corresponding mean being a fixed hyperparameter b λ and the variance is b 2 λ /2 (i.e. shape parameter equals to 1/2 and scale parameter equals to 2b λ ).

Finally, noninformative priors for δ RV and ρ are chosen:

δ RV ∼ 1/δ RV , (6) 
ρ ∼ Uni f [-0.999, 0.999], (7) 
where |ρ| < 1 constraints errors ξ RV to follow a stationary process.

Conditional distributions and Gibbs sampling

The Bayesian framework proposed in this study is implemented with the Gibbs sampling strategy. Indeed, the conditional distributions are easily expressed for all quantities. However, one remaining issue is that the estimation of the smoothing parameters λ e and the autocorrelation parameter ρ are strongly dependent, as discussed in [START_REF] Wang | Spline Smoothing with Heteroscedastic and/or Correlated Errors[END_REF]. Moreover, the full conditional distributions are numerically intractable and would require multiple numerical matrix inversions for each step of the Markov chain Monte Carlo (MCMC) sampling. We rely here on a pragmatic multi-step approach, where we first infer all unknown quantities ignoring the heteroscedasticity and autocorrelation of the residual errors by taking W ρ = 1 n×T in Eq. 2. We then infer the heteroscedasticity / autocorrelation parameters δ RV and ρ conditionnally on the parameters estimated in the first step. Finally, in a third step, we reestimate the SS-ANOVA effects with these heteroscedasticity / autocorrelation parameters.
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Step 1

In this first step, we first estimate {θ 1 (1) , . . . , θ E

(1) , λ 1 , . . . , λ E , δ RV } assuming that W ρ = 1 n×T . As indicated above, we actually infer ν e and use the equality θ

(1) e = Q e ν e . The full conditional distributions are obtained as follows:

δ (1) RV |φ * , θ 1 , ., θ E , λ 1 , ., λ E ∼ IGa n × T + ∑ e r e 2 , 1 2 
θ (1) e θ (1) e + 1 2 ∑ e λ e ν e D -1 e ν e , (8) 
λ e |δ

(1)

RV , ν 1 , . . . , ν E ∼ Ga r e + 1 2 , 1 2δ (1) RV ν e D -1 e ν e + 1 2b e , (9) 
ν e |φ * , λ e , θ 1 , . . . , θ E , δ (1) 
RV ∼ N λ e C

(1) e θ (1) e , δ

RV C

(1) e ,

where

θ (1) e = Q e ν e , (11) 
θ (1)

e = φ * -∑ k θ (1) k , (12) 
θ (1)

e = φ * -∑ k =e θ (1) k , (13) 

C

(1)

e = (1 r e + λ e D -1 e ) -1 . ( 14 
)
We remind that we first obtain the climate change response φ * using cubic smoothing splines. Following the Gibbs sampling strategy, we sample iteratively 6000 draws from these conditional distributions, the first iteration being sampled from the prior distribution if the quantity has not been sample yet. The averages of the last M = 5000 draws are retained as point estimates for θ

e , e = 1, . . . , E and denoted as θ (1)

e , e = 1, . . . , E. Similarly, we obtain estimates λe , e = 1, . . . , E for the smoothing parameters.

Step 2

In the second step, we estimate δ RV and ρ by taking into account the autocorrelation and heteroscedasticity of the residual errors:

δ (2) RV | • • • ∼ IGa n × T 2 , 1 2 
(φ * -∑ k θ (1) k ) W -1 ρ (φ * -∑ k θ (1) k ) , ( 15 
) log p(ρ| • • • ∝ - n × T 2 log δ (2) RV - 1 2 log |W ρ | - 1 2δ (2) RV (φ * -∑ k θ (1) k ) W -1 ρ (φ * -∑ k θ (1) k ). (16) 
where [START_REF] Kac | On the Eigen-values of Certain Hermitian Forms[END_REF]. We rely on the Metropolis-Hastings algorithm to sample the full conditional distribution of ρ. Similarly than in the first step, the full conditional distributions are sampled iteratively and the last M = 5000 draws are retained in order to obtain point estimates ρ and δ (2)

|W ρ | = (1-ρ 2 ) (n-1 ×T

RV

as the average of these M draws.

Step 3

Finally, we re-estimate the SS-ANOVA effects taking into account heteroscedastic and autocorrelated errors. The full conditional distribution is:

θ (3) e | • • • ∼ N λe C (3) e W -1 ρ θ (3) e , δ (2) RV C (3) e , ( 17 
) with θ (3) e = φ * -∑ k =e θ (3) k , (18) 
C (3) e = (W -1 ρ + λe Σ -1 e ) -1 . (19) 

C

(3) e is obtained using a spectral decomposition of W -1 ρ + λe Σ -1 e , where W -1 ρ is obtained analytically, and where Σ -1 e has already been obtained in step 1 using a spectral decomposition.
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4 APPLICATION TO AN ENSEMBLE OF REGIONAL CLIMATE PROJEC-TIONS

Climate projections

For illustration, the SS-ANOVA approach is applied to transient climate simulations of regional winter temperature. The MME used in this study is composed of n = 20 simulations obtained from the CMIP5-EUROCORDEX experiment [START_REF] Jacob | EURO-CORDEX: new high-resolution climate change projections for European impact research[END_REF][START_REF] Vautard | Evaluation of the Large EURO-CORDEX Regional Climate Model Ensemble[END_REF] for all combinations of 4 GCMs and 5 RCMs (see Table 1). Simulation chains are composed of historical runs for the periods 1971-2005, and of future runs for the period 2006-2099 obtained with the emission scenario RCP8.5 [START_REF] Van Vuuren | The representative concentration pathways: an overview[END_REF]. Our application focuses on mean temperature in winter averaged over the large Central Europe (CEU) region (land and sea points) considered in the IPCC SREX report [START_REF] Seneviratne | Changes in climate extremes and their impacts on the natural physical environment[END_REF] which cover most of European countries above the 45th parallel north at the exception of Norway, Sweden, Finland, Denmark and United Kingdom. 

Climate change responses

Climate change responses φ * i , i = 1, . . . , n = 20 are obtained using cubic smoothing splines (implemented by the function smooth.spline in R software, R, 2017) to each simulation chain i. A high smoothing parameter (spar argument of smooth.spline equals to 1) is chosen in order to avoid including decennial variability into these fitted forced responses. In this study, the year c = 1999 is retained as the reference year and absolute changes are considered.

Figure 1 illustrates the climate change responses φ * i for this MME. The absolute temperature changes are equal to 0 in 1999 by construction, and gradually increase up to between 4 • C and 6 • C in 2099. The different simulations for each GCM clearly show that some GCMs lead to higher temperature changes (CNRM-CM5 and HadGEM2-ES) than the other (EC-EARTH, MPI-ESM-LR).

ANOVA and SS-ANOVA decompositions

The Bayesian SS-ANOVA approach is applied by sampling 6, 000 MCMC draws of all unknown quantities, i.e. the smoothing spline effects θ * e , the residual variability δ RV , the autocorrelation of the residual errors ρ and the smoothing parameters λ e . Informative priors are used for the smoothing parameters, the hyperparameter b λ being fixed to 10 -6 . Convergence is reached quickly, and a burn-in period composed of the first 1,000 draws appears to be reasonable. The last 5,000 draws are retained as representative draws from the different posterior distributions.

The SS-ANOVA approach is compared to a simple ANOVA approach where the following linear model can be expressed as follows for a simulation chain i:

φ * i (t) = µ(t) + α r (t) + β g (t) + ξ RV (t), (20) 
where µ(t) is mean climate change response, α r (t) is the main RCM effect for the RCM model r used in the simulation chain i, and β g (t) is the main GCM effect for the GCM model g used in the simulation chain i. The residual terms ξ RV (t) are assumed to be independent and identically distributed (i.i.d.) over all GCMs and RCMs, and to follow normal distributions, with mean 0 and variance σ 2 RV (t). This linear model is applied to each time step in turn and does not exploit the time dependency of the climate change response between consecutive time steps. This simple ANOVA approach is close to the methodology proposed by [START_REF] Hawkins | The Potential to Narrow Uncertainty in Regional Climate Predictions[END_REF], the only difference being a cubic spline used here instead of 4-order polynomial function in [START_REF] Hawkins | The Potential to Narrow Uncertainty in Regional Climate Predictions[END_REF]. It is implemented here with the function lm in R software and is referred to as ANOVA-TI hereafter to indicate the time independence of this approach.

Main effects

Figure 2 compares the GCM and RCM main effects for the ANOVA-TI and SS-ANOVA approaches. Concerning the SS-ANOVA approach, median estimated effects are indicated by thick lines. The uncertainty related to the estimation of each individual effect is indicated by 95% credible intervals obtained from the corresponding posterior distributions. Mean estimated effects obtained with the two approaches are very similar. These results highlight the discrepancies between two groups of GCMs CNRM-CM5 and HadGEM2-ES versus EC-EARTH and MPI-ESM-LR, the former leading to higher temperature changes than the latter.

Smoothing parameters and parameters related to the residual variability

Figure 3 shows the posterior distributions of the smoothing parameters λ e and of the parameters δ RV and ρ of the residual variability. The posterior distributions of the smoothing parameters indicated well-identified parameters, the smoothing parameter λ 3 related to the grand ensemble mean being clearly lower than λ 1 and λ 2 , indicating that the smooth effect theta 3 for the grand mean is clearly smoother than the two other main effects. The autocorrelation of the residual parameters is rather high, with a mode 

Residual variance

Figure 4 shows the standard deviation of the residual errors obtained with benchmark approach ANOVA-TI and the SS-ANOVA approach proposed in this study. The ANOVA-TI approach applies a linear model for each year and does not assume a particular form of evolution for the standard deviation of the residual errors, whereas this evolution is linear for the SS-ANOVA approach. The residual variability obtained with ANOVA-TI seems to increase linearly until 2060 and becomes constant, which creates a discrepancy with the SS-ANOVA approach. 

DISCUSSION AND CONCLUSION

In this study, we follow the "time-series" approach [START_REF] Hingray | Partitioning Internal Variability and Model Uncertainty Components in a Multimember Multimodel Ensemble of Climate Projections[END_REF] which consists in extracting the climate response using a prescribed trend model. The climate responses are estimated using flexible cubic smoothing splines, the degree of smoothing being fixed a priori in order to obtain smooth and gradual climate responses. The climate responses are used to compute anomalies between future and reference climate periods, so-called climate change responses. This study aims at developing a statistical framework based on a smoothing spline analysis of variance (SS-ANOVA) to estimate mean expected changes and main climate change effects from an ensemble of climate change responses. We do not discuss here the assumptions concerning the extraction of the climate response, the degree of flexibility for this climate trend being highly subjective. Another aspect which is not discussed here is the internal variability resulting from the natural variability of the climate, often defined as the difference between the climate response and the raw climate projections. This source of uncertainty is irreducible and can be dominant for some indicators (e.g. seasonal precipitation, see Evin et al., 2021, in Europe).

Our Bayesian analysis considers noninformative priors for most inferred quantities (see Section 2). Informative priors are used for the smoothing parameters λ e using a Gamma distribution parametrized with the hyperparameter b λ = 10 -6 . Larger hyperparameter values lead to constrained estimates, and the advantage of using flexible smoothing splines is lost (results not shown). More advanced elicitation methods could be considered, for example using an "effective degrees of freedom" [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition[END_REF][START_REF] Cheng | Bayesian smoothing spline analysis of variance[END_REF].

The "time-series" approach applied here can be applied to any climate ensemble and does not require multiple members for each element of the simulation chain (e.g. scenario/GCM/RCM). As such, 9/12 it has often been applied to large MMEs which embrace all available climate models with only one realization is available for some scenario/model combinations, typically CORDEX ensembles [START_REF] Evin | Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble[END_REF] or some CMIP ensembles [START_REF] Lehner | Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6[END_REF]. Because the climate change responses evolve smoothly, the climate change responses are highly autocorrelated. The SS-ANOVA framework proposed in this study formalize the representation of the autocorrelation of the residual errors, together with their heteroscedasticity. However, the proposed framework has several limitations:

• We rely on the three-step inference procedure in order to infer the different parameters of the statistical framework, the dependence between some of the parameters is thus ignored,

• Simple forms are taken for the representation of the autocorrelation (AR1 model) and heteroscedasticity (linear evolution of the standard deviation of the residual errors). The linear form for the heteroscedasticity might not be adapted for other applications.

The added complexity of the SS-ANOVA model in comparison of a simple linear model (ANOVA-TI) puts into question the relevance of this framework.

Figure 1 .

 1 Figure 1. Absolute temperature change (climate change responses φ * i ) for the n = 20 simulation chains of the MME between each year of the period 2000-2099 and the reference year c = 1999, with one color by GCM.

Figure 2 .Figure 3 .

 23 Figure2. Comparison of the GCM (top plots) and RCM (bottom plots) effects for the ANOVA-TI (left plots) and SS-ANOVA (right plots) approaches. These main effects can be interpreted as absolute temperature changes ( • C) attributable to each individual climate model, compared to the year 1999. For the SS-ANOVA approach, the uncertainty related to the estimation of each individual effect is represented by colored intervals (95% credible intervals) around median values (thick lines), obtained from the posterior distributions.

Figure 4 .

 4 Figure 4. Standard deviation of the residual errors obtained from the approaches ANOVA-TI (linear ANOVA model, time independence) and SS-ANOVA.

Table 1 .

 1 Characteristics of the scenarios of the EURO-CORDEX climate projection ensemble.

	GCM	Member	RCM	Version
	CNRM-CM5 r1i1p1 RACMO22E	v2
	CNRM-CM5 r1i1p1 CCLM4-8-17 v1
	CNRM-CM5 r1i1p1 HIRHAM5	v2
	CNRM-CM5 r1i1p1	RCA4	v1
	CNRM-CM5 r1i1p1	REMO	v1
	EC-EARTH r12i1p1 RACMO22E	v1
	EC-EARTH r12i1p1 CCLM4-8-17 v1
	EC-EARTH r12i1p1 HIRHAM5	v1
	EC-EARTH r12i1p1	RCA4	v1
	EC-EARTH r12i1p1	REMO	v1
	HadGEM2-ES r1i1p1 RACMO22E	v2
	HadGEM2-ES r1i1p1 CCLM4-8-17 v1
	HadGEM2-ES r1i1p1 HIRHAM5	v2
	HadGEM2-ES r1i1p1	RCA4	v1
	HadGEM2-ES r1i1p1	REMO	v1
	MPI-ESM-LR r1i1p1 RACMO22E	v1
	MPI-ESM-LR r1i1p1 CCLM4-8-17 v1
	MPI-ESM-LR r1i1p1 HIRHAM5	v1
	MPI-ESM-LR r1i1p1	RCA4	v1a
	MPI-ESM-LR r1i1p1	REMO	v1

CODE AND DATA AVAILABILITY

The code used for this paper is available through the R-package qualypsoss, which can be downloaded from https://CRAN.R-project.org/package=qualypsoss. The results shown in this study are obtained with the script available at https://github.com/guillaumeevin/ QUALYPSOSS/blob/master/demo/appli_CEU_DJF_tas.r. The code used to apply the approach "ANOVA / TI" is available through the R-package QUALYPSO, which can be downloaded from https://CRAN.R-project.org/package=QUALYPSO. The ensemble of climate projections exploited in this study is attached to both packages.