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Partitioning uncertainty components in
climate projections using smoothing
splines
Guillaume Evin1

1Univ. Grenoble Alpes, INRAE, UR ETGR, Grenoble, France

ABSTRACT

A critical issue in climate change impact studies is the assessment of uncertainties associated with future
projections. Various methods have been proposed for partitioning uncertainty sources, usually based on
an Analysis of Variance (ANOVA). In this paper, we show how Smoothing-Spline ANOVA approaches
(SS-ANOVA) can be used to estimate the total uncertainty and its partition in climate projection ensembles.
A Bayesian framework is proposed to handle heteroscedastic and autocorrelated residual errors between
the climate change responses and the main additive effects modelled with cubic smoothing splines.
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1 INTRODUCTION
A critical issue in climate change studies is the estimation of uncertainties in projections along with the
contribution of the different uncertainty sources, including scenario uncertainty, the different components
of model uncertainty, and internal variability (see, e.g., Hawkins and Sutton, 2009). Scenario uncertainty
is related to the possible evolution of greenhouse gas emissions, which is usually accounted for using
Representative Concentration Pathways (RCP) scenarios (van Vuuren et al., 2011). Model uncertainty
corresponds to the dispersion between the different climate responses obtained with different models
for the same forcing configuration. Model uncertainty can concern Global Climate Models (GCMs),
regional downscaling models such as regional climate models (RCMs) and/or statistical downscaling
methods, and impact models (e.g. agricultural or hydrological models). Internal variability is due to the
chaotic variability of the climate (Deser et al., 2012). Estimating and partitioning uncertainties in future
climate projections is first intended to help evaluating the significance of estimated changes for adaptation
purposes. Besides, it highlights the most important uncertainty sources for a better allocation of future
research efforts.

Over the recent years, uncertainty in climate projections has been mostly explored and partitioned
based on Multiscenarios Multimodel Multimember Ensembles (MMEs) of transient climate projections.
Various methods have been proposed for this, most of them based on an Analysis of Variance (ANOVA)
of projections available for the future time window considered (Hingray et al., 2007; Yip et al., 2011;
Paeth et al., 2017). Available methods are usually applied to different future time windows in turn (Jacob
et al., 2014; Northrop and Chandler, 2014; Reintges et al., 2017) which may lead to temporal fluctuations
of uncertainty estimates. As reported by Hingray et al. (2019), such variations are likely to be due to a
lack of robustness of the analysis. In most cases, the climate response of each simulation chain is indeed
expected to evolve gradually with time. As a consequence, the different uncertainty components of a
given MME should also be smooth signals. A robust estimation of all uncertainty components can thus
be proposed by assuming a gradual evolution of climate responses. This is considered by Geinitz et al.
(2015), who introduce an explicit model of the signals (climate responses and ANOVA effects) using
simple trend models. The analysis framework described in the present study follows the same direction
and extends the Bayesian approach of Evin et al. (2019). More specifically, it promotes the use of a
Bayesian Smoothing-spline ANOVA (SS-ANOVA, see, e.g. Cheng and Speckman, 2012) to partition the
different sources of uncertainty. The Bayesian framework handles heteroscedastic and autocorrelated
residual errors between the climate change responses and the main additive effects modelled with cubic



smoothing splines.
Section 2 details the methodology proposed for partitioning climate change uncertainties. Section 4

illustrates the SS-ANOVA approach with an application to a MME of regional temperature projections
obtained from the CMIP5-EUROCORDEX experiment (Jacob et al., 2014; Vautard et al., 2021). Section
5 concludes.

2 METHODOLOGICAL FRAMEWORK
We consider that a multi-model ensemble of climate projections yi where i = 1, . . . ,n indicates a specific
simulation chain. Each chain spans a period of T years, this vector of years being denoted as xyear =
{xyear

1 , . . . ,xyear
T }.

2.1 Climate response and climate change response
The proposed methodology assumes that a climate response φi represents the forced response of each
simulation chain, as a result of climate change. Polynomial trend models or cubic splines have been used
to obtain φi in past studies (Hawkins and Sutton, 2009; Hingray and Saı̈d, 2014; Evin et al., 2019). In
this study, the smooth climate response φi is modeled as a cubic smoothing spline (Green and Silverman,
1993) capable of representing a great variety of possible evolution, including non-monotonic trends (see,
e.g. Evin et al., 2019).

Most climate impact studies quantify uncertainty sources from change variables, obtained as differ-
ences between a future and a reference period. The rationale behind this transformation is that changes
provided by climate projections with respect to a reference period are deemed to be more informative that
raw projected values which are subject to various biases. Here, we consider a change variable defined in
terms of absolute differences with respect to a reference year, i.e. φ ∗i = φ ∗i −φ ∗c , where c indicates the
reference year, which can be for example representative of the pre-industrial climate (e.g. 1850) or, as
done in this study, of the current climate (c = 1999).

2.2 SS-ANOVA of climate change responses
Let us denote φ ∗ the concatenated vector of n climate change responses φ ∗i , i = 1, . . . ,n of length n×T .
Following Cheng and Speckman (2012), we consider the following smoothing-spline analysis of variance
(SS-ANOVA) decomposition:

φ
∗ =

E

∑
e=1

θe +ξRV , (1)

where θe, e = 1, . . . ,E are the main effects of the ANOVA, i.e. the evolution of the grand mean change
response, shared by all simulation chains, and the effects considered as major sources of uncertainty, e.g.
the evolution of the climate model (GCM/RCM) effects, main effects related to the emission scenarios.
In this study, the SS-ANOVA approach is applied within a Bayesian framework and considers that the
main effects are represented with cubic smoothing splines which minimize the residual error ξRV , their
“smoothness” being introduced via Gaussian priors including smoothing parameters λe > 0, e = 1, . . . ,E,
which control the trade-off between small residual errors and smoothness of the main effects.

Because the climate change responses are themselves smooth functions of the year, the residual
variability ξRV is considerably autocorrelated. Moreover, it also usually increases as a function of the
horizon, due to the greater variability of the climate projections for larger horizons. Smoothing spline
models with correlated errors have been investigated in Wang (1998) who proposes to consider the
following model for the ANOVA errors:

ξRV ∼ N(0,δRV Wρ), (2)

where δRV is a parameter representing the variance of ξRV and Wρ = VCρ V is the variance-covariance
matrix of ξRV , decomposed into a diagonal matrix V specifying the weights that represent the heteroscedas-
ticity, and Cρ is the matrix of correlations between error terms. Wang (2011) discusses possible parametric
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choices for V and Cρ . In this study, in a simple manner, we prescribe the choice of V in order to introduce
a linear evolution of the standard deviation of ξRV with the horizon:

V = 1n
⊗

diag(
√

1/T ,
√

2/T , . . . ,1), (3)

where
⊗

denotes the kronecker product and diag(
√

1/T ,
√

2/T , . . . ,1) is a diagonal matrix specifying
the weights given to the horizons xyear, such that the variance of residual errors for the horizon xyear

1 is
δRV/T , and δRV for the last horizon xyear

T .
A simple autoregressive model of order 1 is considered for the errors corresponding to one climate

change response, and are considered independent otherwise, such that:

Cρ = 1n
⊗

CKMS
ρ , (4)

where CKMS
ρ is the Kac-Murdock-Szegö matrix (Kac et al., 1953) of size T . This symmetric Toeplitz

matrix defines the cross-correlations between the error terms corresponding to a climate projection, and
can be written as follows:

CKMS
ρ =



1 ρ ρ2 · · · ρT−1

ρ 1 ρ . . . ρT−2

ρ2 ρ 1
. . .

...

· · · · · ·
. . . . . . ρ

ρT−1 ρT−2 · · · ρ 1

 .

3 BAYESIAN INFERENCE
The different unknown quantities {φ 1, . . . ,φ n,δIV,1, . . . ,δIV,n,θ1, . . . ,θE ,λ1, . . . ,λE ,δRV ,ρ} are estimated
within a Bayesian framework for the following reasons. First, several contributions show that natural
Bayesian interpretations can be obtained for the application of smoothing splines (Kimeldorf and Wahba,
1971; Wahba, 1990; Speckman and Sun, 2003) or SS-ANOVA models (Reich et al., 2009; Cheng and
Speckman, 2012). Moreover, the methods often applied to select the smoothing parameters (generalized
maximum likelihood, generalized cross-validation, and unbiased risk) generally assume independent
observations (Wang, 1998). In the context of autocorrelated and heteroscedastic errors, the application
of these methods (Wang, 2011) can become unstable and our attempts with the R package assist
failed (i.e. the estimates did not converge). Finally, one important advantage is that data augmentation
(Tanner and Wong, 1987) is easily implemented within a Bayesian framework, which can be used to
treat incomplete designs of climate experiments (Déqué et al., 2007; Evin et al., 2019; Christensen and
Kjellström, 2021).

3.1 Priors
Without loss of generality, and in agreement with the application shown in Section 4, let us consider
here a MME obtained for one emission scenario, and several GCMs and RCMs. For each element
j = 1, . . . ,n×T of φ ∗, the concatenated vector of n climate change responses φ ∗i , the corresponding

“horizon” xyear
j , type of GCM xGCM

j or RCM xRCM
j can be used to partition the different sources of

uncertainties. We aim at decomposing the different climate change response using the SS-ANOVA
framework given in Eq. (1) where:

• θ1 is the main effect corresponding to the grand mean change response, shared by all simulation
chains,

• θ2 and θ3 are the main effects corresponding to the evolution of the GCM and RCM as a function
of the horizon,

with the corresponding priors:

θ e|δRV ,λe ∼ N(0,
ξRV

λe
Σe), (5)
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where the covariance matrices Σe are referred to as “reproducing kernels”, i.e. specific covariance matrices
which respect the properties of reproducing kernel Hilbert space (Wahba, 1990; Gu, 2013) and are obtained
from the possible values of the predictors. Each element of Σe, e = 1,2,3 corresponds to the pairs { j,k}
of indices in φ ∗ and are obtained as:

• kC(x
year
j ,xyear

k ) for θ 1,

• kC(x
year
j ,xyear

k )× kD(xGCM
j ,xGCM

k ) for θ 2,

• kC(x
year
j ,xyear

k )× kD(xRCM
j ,xRCM

k ) for θ 3.

where kC and kD are functions specifying the reproducing kernels for continuous and discrete predictors,
respectively. Many choices are possible for the reproducing kernels, depending on the nature of the
predictors (continuous or discrete) but do not seem to have an important impact on the results in this study.
Following Cheng and Speckman (2012), for a discrete predictor x which can take J different values, we
consider the following reproducing kernel function kD between two elements xi an x j of x:

kD(xi,x j) =
J−1

J
1xi=x j −

1
J
1xi 6=x j ,

where 1 is the indicator function. For a continuous predictor which has been scaled in [0,1], we consider
the following reproducing kernel function kC:

kC(xi,x j) = min(xi,x j)
2{3max(xi,x j)−min(xi,x j)}/6.

Since the reproducing kernel ΣCR,i is not necessarily positive definite, Cheng and Speckman (2012)
advise to take the following spectral decomposition:

Σe = QeDeQ
′
e,

where Qe is the nT × re matrix of eigenvectors corresponding to the re nonzero eigenvalues of Σe and De
is the diagonal matrix of re nonzero eigenvalues. Let us consider the following vector:

νe|δRV ,λe ∼N (0,
δRV

λe
De), e = 1, . . . ,E,

such that θ e = Qeνe has the prior (5).
Gamma priors are considered for the smoothing parameters λe, e = 1, . . . ,E:

λe ∼ Gamma(1/2,2bλ ),

the corresponding mean being a fixed hyperparameter bλ and the variance is b2
λ
/2 (i.e. shape parameter

equals to 1/2 and scale parameter equals to 2bλ ).
Finally, noninformative priors for δRV and ρ are chosen:

δRV ∼ 1/δRV , (6)
ρ ∼Uni f [−0.999,0.999], (7)

where |ρ|< 1 constraints errors ξRV to follow a stationary process.

3.2 Conditional distributions and Gibbs sampling
The Bayesian framework proposed in this study is implemented with the Gibbs sampling strategy. Indeed,
the conditional distributions are easily expressed for all quantities. However, one remaining issue is that
the estimation of the smoothing parameters λe and the autocorrelation parameter ρ are strongly dependent,
as discussed in Wang (2011). Moreover, the full conditional distributions are numerically intractable
and would require multiple numerical matrix inversions for each step of the Markov chain Monte Carlo
(MCMC) sampling. We rely here on a pragmatic multi-step approach, where we first infer all unknown
quantities ignoring the heteroscedasticity and autocorrelation of the residual errors by taking Wρ = 1n×T
in Eq. 2. We then infer the heteroscedasticity / autocorrelation parameters δRV and ρ conditionnally on
the parameters estimated in the first step. Finally, in a third step, we reestimate the SS-ANOVA effects
with these heteroscedasticity / autocorrelation parameters.
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3.2.1 Step 1
In this first step, we first estimate {θ1

(1), . . . ,θE
(1),λ1, . . . ,λE ,δRV} assuming that Wρ = 1n×T . As

indicated above, we actually infer νe and use the equality θ
(1)
e = Qeνe. The full conditional distributions

are obtained as follows:

δ
(1)
RV |φ

∗,θ1, .,θE ,λ1, .,λE ∼ IGa
(n×T +∑e re

2
,

1
2

θ̄
(1)′
e θ̄

(1)
e +

1
2 ∑

e
λeν

′
eD−1

e νe

)
, (8)

λe|δ (1)
RV ,ν1, . . . ,νE ∼ Ga

( re +1
2

,
1

2δ
(1)
RV

ν
′
eD−1

e νe +
1

2be

)
, (9)

νe|φ ∗,λe,θ1, . . . ,θE ,δ
(1)
RV ∼ N

(
λeC(1)

e θ̃
(1)
e ,δ

(1)
RV C(1)

e

)
, (10)

where

θ
(1)
e = Qeνe, (11)

θ̄
(1)
e = φ

∗−∑
k

θ
(1)
k , (12)

θ̃
(1)
e = φ

∗−∑
k 6=e

θ
(1)
k , (13)

C(1)
e = (1re +λeD−1

e )−1. (14)

We remind that we first obtain the climate change response φ
∗ using cubic smoothing splines. Following

the Gibbs sampling strategy, we sample iteratively 6000 draws from these conditional distributions, the
first iteration being sampled from the prior distribution if the quantity has not been sample yet. The
averages of the last M = 5000 draws are retained as point estimates for θ

(1)
e ,e = 1, . . . ,E and denoted as

θ̂
(1)
e ,e = 1, . . . ,E. Similarly, we obtain estimates λ̂e,e = 1, . . . ,E for the smoothing parameters.

3.2.2 Step 2
In the second step, we estimate δRV and ρ by taking into account the autocorrelation and heteroscedasticity
of the residual errors:

δ
(2)
RV | · · · ∼ IGa

(n×T
2

,
1
2
(φ ∗−∑

k
θ̂
(1)
k )

′
W−1

ρ (φ ∗−∑
k

θ̂
(1)
k )
)
, (15)

log p(ρ| · · · ∝−n×T
2

logδ
(2)
RV −

1
2

log |Wρ |−
1

2δ
(2)
RV

(φ ∗−∑
k

θ̂
(1)
k )

′
W−1

ρ (φ ∗−∑
k

θ̂
(1)
k ). (16)

where |Wρ |=(1−ρ2)(n−1×T (Kac et al., 1953). We rely on the Metropolis-Hastings algorithm to sample
the full conditional distribution of ρ . Similarly than in the first step, the full conditional distributions are
sampled iteratively and the last M = 5000 draws are retained in order to obtain point estimates ρ̂ and δ̂

(2)
RV

as the average of these M draws.

3.2.3 Step 3
Finally, we re-estimate the SS-ANOVA effects taking into account heteroscedastic and autocorrelated
errors. The full conditional distribution is:

θ
(3)
e | · · · ∼ N

(
λ̂eC

(3)
e W−1

ρ̂
θ̃
(3)
e , δ̂

(2)
RV C(3)

e

)
, (17)

with

θ̃
(3)
e = φ

∗−∑
k 6=e

θ
(3)
k , (18)

C(3)
e = (W−1

ρ̂
+ λ̂eΣ

−1
e )−1. (19)

C(3)
e is obtained using a spectral decomposition of W−1

ρ̂
+ λ̂eΣ

−1
e , where W−1

ρ̂
is obtained analytically,

and where Σ
−1
e has already been obtained in step 1 using a spectral decomposition.
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4 APPLICATION TO AN ENSEMBLE OF REGIONAL CLIMATE PROJEC-
TIONS

4.1 Climate projections
For illustration, the SS-ANOVA approach is applied to transient climate simulations of regional winter
temperature. The MME used in this study is composed of n = 20 simulations obtained from the CMIP5-
EUROCORDEX experiment (Jacob et al., 2014; Vautard et al., 2021) for all combinations of 4 GCMs and
5 RCMs (see Table 1). Simulation chains are composed of historical runs for the periods 1971-2005, and
of future runs for the period 2006-2099 obtained with the emission scenario RCP8.5 (van Vuuren et al.,
2011). Our application focuses on mean temperature in winter averaged over the large Central Europe
(CEU) region (land and sea points) considered in the IPCC SREX report (Seneviratne et al., 2012) which
cover most of European countries above the 45th parallel north at the exception of Norway, Sweden,
Finland, Denmark and United Kingdom.

Table 1. Characteristics of the scenarios of the EURO-CORDEX climate projection ensemble.

GCM Member RCM Version
CNRM-CM5 r1i1p1 RACMO22E v2
CNRM-CM5 r1i1p1 CCLM4-8-17 v1
CNRM-CM5 r1i1p1 HIRHAM5 v2
CNRM-CM5 r1i1p1 RCA4 v1
CNRM-CM5 r1i1p1 REMO v1
EC-EARTH r12i1p1 RACMO22E v1
EC-EARTH r12i1p1 CCLM4-8-17 v1
EC-EARTH r12i1p1 HIRHAM5 v1
EC-EARTH r12i1p1 RCA4 v1
EC-EARTH r12i1p1 REMO v1

HadGEM2-ES r1i1p1 RACMO22E v2
HadGEM2-ES r1i1p1 CCLM4-8-17 v1
HadGEM2-ES r1i1p1 HIRHAM5 v2
HadGEM2-ES r1i1p1 RCA4 v1
HadGEM2-ES r1i1p1 REMO v1
MPI-ESM-LR r1i1p1 RACMO22E v1
MPI-ESM-LR r1i1p1 CCLM4-8-17 v1
MPI-ESM-LR r1i1p1 HIRHAM5 v1
MPI-ESM-LR r1i1p1 RCA4 v1a
MPI-ESM-LR r1i1p1 REMO v1

4.2 Climate change responses
Climate change responses φ ∗i , i = 1, . . . ,n = 20 are obtained using cubic smoothing splines (implemented
by the function smooth.spline in R software, R, 2017) to each simulation chain i. A high smoothing
parameter (spar argument of smooth.spline equals to 1) is chosen in order to avoid including
decennial variability into these fitted forced responses. In this study, the year c = 1999 is retained as the
reference year and absolute changes are considered.

Figure 1 illustrates the climate change responses φ ∗i for this MME. The absolute temperature changes
are equal to 0 in 1999 by construction, and gradually increase up to between 4◦C and 6◦C in 2099. The
different simulations for each GCM clearly show that some GCMs lead to higher temperature changes
(CNRM-CM5 and HadGEM2-ES) than the other (EC-EARTH, MPI-ESM-LR).

4.3 ANOVA and SS-ANOVA decompositions
The Bayesian SS-ANOVA approach is applied by sampling 6,000 MCMC draws of all unknown quantities,
i.e. the smoothing spline effects θ ∗e , the residual variability δRV , the autocorrelation of the residual errors
ρ and the smoothing parameters λe. Informative priors are used for the smoothing parameters, the
hyperparameter bλ being fixed to 10−6. Convergence is reached quickly, and a burn-in period composed
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Figure 1. Absolute temperature change (climate change responses φ ∗i ) for the n = 20 simulation chains
of the MME between each year of the period 2000-2099 and the reference year c = 1999, with one color
by GCM.

of the first 1,000 draws appears to be reasonable. The last 5,000 draws are retained as representative
draws from the different posterior distributions.

The SS-ANOVA approach is compared to a simple ANOVA approach where the following linear
model can be expressed as follows for a simulation chain i:

φ
∗
i (t) = µ(t)+αr(t)+βg(t)+ξRV (t), (20)

where µ(t) is mean climate change response, αr(t) is the main RCM effect for the RCM model r used in
the simulation chain i, and βg(t) is the main GCM effect for the GCM model g used in the simulation
chain i. The residual terms ξRV (t) are assumed to be independent and identically distributed (i.i.d.) over
all GCMs and RCMs, and to follow normal distributions, with mean 0 and variance σ2

RV (t). This linear
model is applied to each time step in turn and does not exploit the time dependency of the climate change
response between consecutive time steps. This simple ANOVA approach is close to the methodology
proposed by Hawkins and Sutton (2009), the only difference being a cubic spline used here instead of
4-order polynomial function in (Hawkins and Sutton, 2009). It is implemented here with the function
lm in R software and is referred to as ANOVA-TI hereafter to indicate the time independence of this
approach.

4.4 Main effects
Figure 2 compares the GCM and RCM main effects for the ANOVA-TI and SS-ANOVA approaches.
Concerning the SS-ANOVA approach, median estimated effects are indicated by thick lines. The
uncertainty related to the estimation of each individual effect is indicated by 95% credible intervals
obtained from the corresponding posterior distributions. Mean estimated effects obtained with the two
approaches are very similar. These results highlight the discrepancies between two groups of GCMs
CNRM-CM5 and HadGEM2-ES versus EC-EARTH and MPI-ESM-LR, the former leading to higher
temperature changes than the latter.

4.5 Smoothing parameters and parameters related to the residual variability
Figure 3 shows the posterior distributions of the smoothing parameters λe and of the parameters δRV
and ρ of the residual variability. The posterior distributions of the smoothing parameters indicated
well-identified parameters, the smoothing parameter λ3 related to the grand ensemble mean being clearly
lower than λ1 and λ2, indicating that the smooth effect theta3 for the grand mean is clearly smoother than
the two other main effects. The autocorrelation of the residual parameters is rather high, with a mode
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Figure 2. Comparison of the GCM (top plots) and RCM (bottom plots) effects for the ANOVA-TI (left
plots) and SS-ANOVA (right plots) approaches. These main effects can be interpreted as absolute
temperature changes (◦C) attributable to each individual climate model, compared to the year 1999. For
the SS-ANOVA approach, the uncertainty related to the estimation of each individual effect is represented
by colored intervals (95% credible intervals) around median values (thick lines), obtained from the
posterior distributions.

around 0.9, indicating as expected very autocorrelated residual errors due to the autocorrelation in climate
change responses phi∗
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Figure 3. Posterior distributions of (a) the smoothing parameters λe, e = 1, . . . ,3, (b) the variance of the
residual variability at time T , δRV and (c) the autocorrelation parameter ρ of the residual errors.
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4.6 Residual variance
Figure 4 shows the standard deviation of the residual errors obtained with benchmark approach ANOVA-
TI and the SS-ANOVA approach proposed in this study. The ANOVA-TI approach applies a linear model
for each year and does not assume a particular form of evolution for the standard deviation of the residual
errors, whereas this evolution is linear for the SS-ANOVA approach. The residual variability obtained
with ANOVA-TI seems to increase linearly until 2060 and becomes constant, which creates a discrepancy
with the SS-ANOVA approach.
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Figure 4. Standard deviation of the residual errors obtained from the approaches ANOVA-TI (linear
ANOVA model, time independence) and SS-ANOVA.

5 DISCUSSION AND CONCLUSION
In this study, we follow the “time-series” approach (Hingray and Saı̈d, 2014) which consists in extracting
the climate response using a prescribed trend model. The climate responses are estimated using flexible
cubic smoothing splines, the degree of smoothing being fixed a priori in order to obtain smooth and
gradual climate responses. The climate responses are used to compute anomalies between future and
reference climate periods, so-called climate change responses. This study aims at developing a statistical
framework based on a smoothing spline analysis of variance (SS-ANOVA) to estimate mean expected
changes and main climate change effects from an ensemble of climate change responses. We do not
discuss here the assumptions concerning the extraction of the climate response, the degree of flexibility
for this climate trend being highly subjective. Another aspect which is not discussed here is the internal
variability resulting from the natural variability of the climate, often defined as the difference between the
climate response and the raw climate projections. This source of uncertainty is irreducible and can be
dominant for some indicators (e.g. seasonal precipitation, see Evin et al., 2021, in Europe).

Our Bayesian analysis considers noninformative priors for most inferred quantities (see Section 2).
Informative priors are used for the smoothing parameters λe using a Gamma distribution parametrized
with the hyperparameter bλ = 10−6. Larger hyperparameter values lead to constrained estimates, and
the advantage of using flexible smoothing splines is lost (results not shown). More advanced elicitation
methods could be considered, for example using an “effective degrees of freedom” (Hastie et al., 2009;
Cheng and Speckman, 2012).

The “time-series” approach applied here can be applied to any climate ensemble and does not
require multiple members for each element of the simulation chain (e.g. scenario/GCM/RCM). As such,
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it has often been applied to large MMEs which embrace all available climate models with only one
realization is available for some scenario/model combinations, typically CORDEX ensembles (Evin et al.,
2021) or some CMIP ensembles (Lehner et al., 2020). Because the climate change responses evolve
smoothly, the climate change responses are highly autocorrelated. The SS-ANOVA framework proposed
in this study formalize the representation of the autocorrelation of the residual errors, together with their
heteroscedasticity. However, the proposed framework has several limitations:

• We rely on the three-step inference procedure in order to infer the different parameters of the
statistical framework, the dependence between some of the parameters is thus ignored,

• Simple forms are taken for the representation of the autocorrelation (AR1 model) and heteroscedas-
ticity (linear evolution of the standard deviation of the residual errors). The linear form for the
heteroscedasticity might not be adapted for other applications.

The added complexity of the SS-ANOVA model in comparison of a simple linear model (ANOVA-TI)
puts into question the relevance of this framework.

CODE AND DATA AVAILABILITY
The code used for this paper is available through the R-package qualypsoss, which can be down-
loaded from https://CRAN.R-project.org/package=qualypsoss. The results shown in
this study are obtained with the script available at https://github.com/guillaumeevin/
QUALYPSOSS/blob/master/demo/appli_CEU_DJF_tas.r. The code used to apply the ap-
proach “ANOVA / TI” is available through the R-package QUALYPSO, which can be downloaded from
https://CRAN.R-project.org/package=QUALYPSO. The ensemble of climate projections
exploited in this study is attached to both packages.
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