Paying Forest Owners for Environmental Services: Potential and Challenges BIOECOSYS, Lisbon, December 6 2021
Jens Abildtrup

To cite this version:
Jens Abildtrup. Paying Forest Owners for Environmental Services: Potential and Challenges BIOECOSYS, Lisbon, December 6 2021. BIOECOSYS, Dec 2021, Lisbon, Portugal. hal-03721838

HAL Id: hal-03721838
https://hal.inrae.fr/hal-03721838
Submitted on 13 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Paying Forest Owners for Environmental Services: Potential and Challenges

BIOECOSYS, Lisbon, December 6 2021

Jens ABILDTRUP
BETA, INRAE, France
jens.abildtrup@inrae.fr
Introduction: Paying forest owners for environmental services

- **Why an important issue?**
 1. Increasing demand for non-marketed services provided by forests:
 - Forest role in climate change mitigation
 - Habitats for plant and animal species
 - Recreational use
 - Etc.
 2. Creating new markets for non-marketed services
 - Increase profitability of forest management
 - An instrument to ensure a socially optimal provision of services from our forests

Water protection forest, Elmelund, Odense, Denmark

Valatin et al. (2022)
Introduction: Paying forest owners for environmental services

A growing market! - an example

Average annual payments for forest based-ecosystem services in the US 2010 - 2019 (Frey et al. 2021):

- Carbon: $176 million
- Water: $889 million
- Wildlife: $1,529 million
- Bundled: $754 million

Types of payment included:
- Public funding: $605 million
- Compliance (e.g. offsets): $1,077 million
- Voluntary (including hunting licenses): $1,667 million
- Total annually: $3,140 million

Total annually per ha: $17,69/ha

(Frey et al. 2021)
Introduction: The social demand for non-market ecosystem services

- French forest
 - Public access to public forest
 - 85% of private forest owners does not close their forest for public access (72% private forest)

- Average adult French citizen: 22 visits in the forest /year

- No entry fee, but an economic value of **16-35 billion Euros/year** (private and public forests). The French populations willingness to pay for having access to forests (Abildtrup et al. 2021a)
Introduction: Paying forest owners for environmental services - the economics

- Why is “paying forest owners for environmental services” an issue - the economist perspective

- Because markets are missing
 - Many environmental services can be considered public goods (or positive externalities)
 - Lacking property rights or costly to enforce property rights.
 - In Sweden forest owners don’t own the recreational service
 - In France, it is, in general, too costly to enforce their property rights
 - Services are often non-consumptive (that I enjoy a service does not exclude other from enjoying the same service)
 - Missing markets => forest owners are not remunerated for their service provision and have no economic incentive to provide these services

- This talk will be about how can we establish markets or other mechanisms to pay forest owners for provision of environmental services.
The potential: Who buys?

examples

- Public funding
 - subsidy schemes (typical afforestation programs)

- France 2021: new scheme to help forest owners to restore degraded forest and adapt to climate change - with the objective to:
 - “perpetuate the services it provides and increase its contribution to climate change mitigation”

- 150 million euros 2021-2024 to forest regeneration
The potential: Who buys?

Examples

- Private donations
 - The Danish Nature Foundation (naturfonden.dk)
 - 4 years: 8460 donations to new forests

Number of private donations to the Danish nature foundation for establishing forests

![Graph showing number of donations from 2017 to 2020](image)
The potential: Who buys?

Examples

- **Private donations**
 - Start-ups - intermediaries between consumers/firms and forest owners

- **Example France:**
 - www.reforestaction.com
 - For example the project Dormans
 - Regeneration of a dying ash forest (31 ha): 3 euros per tree
The potential: Who buys?

examples

- **Public-private partnerships**
- The Danish climate-forest fund (2021):
 - 13 Million Euros from the stat
 - Donations from individuals
 - Donations from firms
 - For example contribute to firms’ climate neutrality (but not counting in EU ETS), CSR audits, reporting to, for example, “Carbon disclosure Project”
 - Carbon storage count in national reductions
 - Private owners keep ownership but forest management by the fund

(https://mim.dk/natur/faq-den-danske-klimaskovfond/)
Are there sellers?

- Survey of 220 private forest owners in Northeast of France (NOBEL 2020)
 - “I am open to innovations and new markets“

- “I’m attentive to the expectations of the industry”
Are there sellers?

- CNPF (public forest extension service) platform

- Carbon project in private or municipality forest in France

- 25 realized forest projects: Carbon label “label bas carbon”

- Afforestation, reforestation, restoration, conversion from coppice to high forest

https://www.cnpf.fr/n/nos-partenariats-carbone/n:2493
New institutions supporting payment

- **Label Bas Carbone** (France):
 - A label of carbon emission reduction projects
 - Supported by the French ministry of the environment
 - Development of “methodologies” for documentation and auditing of projects
 - Not exclusively, but first methodologies were forest related:
 - Conversion of coppice forest
 - Afforestation
 - Restoration of degraded forests
 - Defines how carbon is calculated, time horizon (30 years), how risk is treated etc.
 - Documentation of additionality, qualitative description of co-benefits (biodiversity, water,...)
- 152 projects labelled (not all have got funding yet)

https://www.ecologie.gouv.fr/label-bas-carbone
The potential - Forests are competitive!

- The value of forest for drinking water quality protection in Denmark (against agricultural pollution)

- Results based on 50 case study areas (DOERS (2015), in Valatin et al. (2022))

<table>
<thead>
<tr>
<th></th>
<th>Afforestation (Euros/ha/year)</th>
<th>Nature areas (Euros/ha/year)</th>
<th>Agriculture without pesticides (Euros/ha/year)</th>
<th>Organic farming (Euros/ha/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total direct cost</td>
<td>507</td>
<td>320</td>
<td>80</td>
<td>227</td>
</tr>
<tr>
<td>Co-benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 reduction</td>
<td>333</td>
<td>120</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(189-468)</td>
<td>(90-150)</td>
<td>(30-50)</td>
<td></td>
</tr>
<tr>
<td>Recreative benefits</td>
<td>1,493</td>
<td>1,387</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(133-4,667)</td>
<td>(124-4,340)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate reduction to surface water</td>
<td>173</td>
<td>173</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(16-902)</td>
<td>(16-902)</td>
<td>(0-255)</td>
<td></td>
</tr>
<tr>
<td>Total co-benefits</td>
<td>2,000</td>
<td>1,680</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>(338-6,037)</td>
<td>(230-5,392)</td>
<td></td>
<td>(30-305)</td>
</tr>
</tbody>
</table>

Account for the multiple services from forest!
Challenges

Here focus on three challenges:

- Asymmetric information
- Quantification of services
- Additionality - or economic efficiency versus fairness?

Other challenges: important recent reviews and discussions:

- Simple versus complex (Wunder et al. 2018, Wells et al 2020)
- Performance (Wunder et al. 2020 not many evaluations of European cases)
Challenges: Asymmetric information

- Based on a survey in 2010 of 45 water utilities (Abildtrup et al. 2012):
- **Background:**
 - Danish Water Supply Act in 1998: Water utilities could increase water fees to pay land owners to change land management

Overview of negotiation types.

<table>
<thead>
<tr>
<th>Negotiation type</th>
<th>Number of waterworks</th>
<th>Number of negotiation successes</th>
<th>Number of negotiations failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voluntary individual negotiation</td>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>First voluntary individual negotiation, later standard agreement</td>
<td>1</td>
<td>Individual: 5</td>
<td>Individual: 31</td>
</tr>
<tr>
<td>Standard agreements</td>
<td>3</td>
<td>8<sup>b</sup></td>
<td>3</td>
</tr>
<tr>
<td>Agreement without compensation</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Individual negotiation with threat of expropriation</td>
<td>1</td>
<td>3—5<sup>c</sup></td>
<td>0</td>
</tr>
</tbody>
</table>
Challenges: Asymmetric information

- Based on a survey in 2010 of 45 water utilities (Abildtrup et al. 2012):
 - Why often failed negotiations with landowners

 - Asymmetric information - How is the gain going to be shared between seller and buyer?
 - Spatial targeting - local monopoly
 - Non-profit-maximising farmers - non-economic reasons for not making a contract

 - Water services were not cost-minimising

 - High transaction costs including enforcement costs
Challenges: Asymmetric information

- Remedies to asymmetric information
 - Flat rate schemes - (but does not work if narrow spatially targeting)
 - Mechanisms design (offering different contract types where forest owners can self-select into (e.g. Jensen et al. 2022)
 - Auctions - with agglomeration bonuses if spatial targeting (Bingham et al. 2021)
Challenges: Bundles (co-benefits)

- Payment for forest environmental services are multi-dimensional
 - Often a payment targeted one type of environmental service but changes in management influence provision of other services (Robert and Stenger 2013)
 - and often different users of different services

- Solutions:
 - Paying the marginal willingness-to-pay for each service (several schemes)
 - But not realistic in practice (potential “over compensation”, difficult to assess functions for marginal willingness-to-pay
 - Partnerships between beneficiaries
Elmelund case - a partnership

- Groundwater protection of Bolbro and Eksercermarken wellfields against pesticide leaking
 - Approximately 380 ha acquired for afforestation through land consolidation
 - Voluntary participation of landowners

- Partnership
 - VCS Denmark (water utility) : water quality
 - Odense Municipality : important recreation value
 - The Nature Agency : carbon sequestration, biodiversity

- Costly : Direct cost 1316 Euros/year/ha (annuity)

Source: Valatin et al. 2022, Hartvigsen (2014) and T. Baekgaard, workshop Odense 2019
Challenges: Quantifying services

- The missing link between complex ecosystem models and market reality
- => payment for forest management actions and not services

- The “methodologies” of Label Bas Carbon:
 - Carbon is estimated based on production tables, standard conversion factors or average numbers.
 - To account for risk, lack of data or models: standard discounts on carbon included in credit applies
 - The time horizon: 30 year?
 - Companies ask documentation of impact on other services - afraid of having negative impact on biodiversity as carbon credit is used in marketing

- Source: CNPF (2020)
Challenges: Quantifying services

- Not all crowdfunding companies are that ambitious:
 - Reforest’action
 - Services are important in communication
 - But rather symbolic…
Challenges: Additionality

- If payment does not make a change in provision then not additional and not cost-effective

- However, some forest owners provide (high level of) services without being paid
 - Soil, climate, or other circumstances make high level of service provision optimal
 - The forest owner is benefiting from environmental services
 - Some forest owners have prosocial preferences: They provide environmental services based on intrinsic motivation or social norms (Abildtrup et al. 2021b)

- Risk of crowding out. That introducing a payment will undermine intrinsic motivations (Primmer et al. 2014)

- Fairness: only paying forest owners changing management would punish owners who already manage their forest according to public preferences?
Challenges: Additionality

- Survey of French forest owners participation in an hypothetic PES scheme (keeping deadwood and old trees) (Abildtrup et al. 2021b)
- Example of hypothetical choice task in the survey:

<table>
<thead>
<tr>
<th>Choice 9</th>
<th>No engagement</th>
<th>Engagement 1</th>
<th>Engagement 2</th>
<th>Engagement 3</th>
<th>Engagement 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation/person to make engagement with</td>
<td>Engagement with forest professionals</td>
<td>Engagement with administration</td>
<td>Engagement with local collectives</td>
<td>Engagement with family/civil society</td>
<td></td>
</tr>
<tr>
<td>Engagements is public or private</td>
<td>Your engagement is public</td>
<td>Your engagement is private</td>
<td>Your engagement is private</td>
<td>Your engagement is private</td>
<td></td>
</tr>
<tr>
<td>Compensation</td>
<td>free inventory</td>
<td>free inventory</td>
<td>free inventory</td>
<td>free inventory</td>
<td></td>
</tr>
<tr>
<td>Monetary compensation</td>
<td>75 Euros/ha/Yr</td>
<td>100 Euros/ha/Yr</td>
<td>50 Euros/ha/Yr</td>
<td>0 Euros/ha/Yr</td>
<td></td>
</tr>
</tbody>
</table>

Testing factors influencing the Willingness to accept participating in a contract:

- Institutions are the most important.
 - Many will not need a compensation if contract is with forest professionals
- If forest owners were told that they were the first in municipality to have a contract they prefer the contract is public
- Value of non-monetary compensation decreases with introduction of monetary compensation
Conclusion

- Paying forest owners for environmental services

- Potential
 - Many new initiatives are developed - often public private partnerships and linked to climate mitigation
 - Forest owners are positive to participate in new markets

- Challenges
 - The complexity and multi-dimensionality of forest management increase the transaction costs - could institutional innovations reduce transaction costs? Online trade, auctions?
 - Operationalize ecosystem service provision models - or standard values - to be used as market support
 - Acceptability of payments - additionality versus fairness - should be addressed
Used literature

CNPF (2020). Méthode reconstitution de peuplements forestiers dégradés. https://www.ecologie.gouv.fr/sites/default/files/2019-10/M%C3%A9thode%20reconstitution%20de%20peuplements%20forestiers%20d%C3%A9grad%C3%A9es.pdf

Thanks for your attention!

Contact
Jens.abildtrup@inrae.fr

Site Web :
beta-economics.fr/annuaire/303/abildtrup_jens
beta-economics.fr/en