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Parameter estimation

Applications



Systems Biology and Networks



Regulatory Motifs  Metabolic Pathways
e E'r - . -
1 T L

DNA RNA Protein
Genetic * i Pathways

<>

%ﬂ Oltvai and Barabasi, Science 25 :763-764, 2002.



What is a network ? Which network are we talking about ?

A Gene regulatory network B Protein-protein interaction network
. = transcription factor O = gene . = protein/peptide
— = regulatory interactions —— = protein-protein interaction

-

%@ Vandereyken et al., Front. Plant Sci., 2018.



What is a network ? Which network are we talking about ?

Small motifs Large networks

Gene Co-expression 6

Gene Regulation




What is a network ? Which network are we talking about ?

Signaling pathways
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What is a network ? Which network are we talking about ?

Network, graph and reaction network

[oday : We will deal with a specific kind of network,
that have a higher degree of structure :

> Petri Nets, Species-Reaction graph, Reaction Network...
> It contains entities (proteins, genes, metabolites...) and
processes that modifies the entities abundances through

time



The following couples of slides contain some abstract notions...
Why that?




Binding (nm)

Reactions networks applications ! !‘

range from —
> Chemistry
+ molecular biology Covid-19 models
> epidemiology e
» and beyond ! i: /
R B I -




Reaction network formalism



Reaction Network, vocabulary

Definition
A reaction network is given by three sets (S,C,R) :

e Species, S := {51, , 54} : molecules that undergo a serie of
chemical reactions.

e Reactant / Product, C := {y',---y"} : Linear combination of
species, that represent either 'what is consumed’, or 'what is
produced’, in any reaction.

e Reaction, R := {y* — y¥ yk yK € C} : ensemble of
reactions between species or combination of species (directed
graph between Reactant / Product).




Reaction Network, vocabulary

Definition
A reaction network is given by three sets (S,C,R) :

e Species, S := {51, -+, Sq} : molecules that undergo a serie of
chemical reactions.

e Reactant / Product, C := {y!,---y"} : Linear combination of
species, that represent either 'what is consumed’, or 'what is
produced’, in any reaction.

e Reaction, R := {yk — y¥' ,y¥ yK € C} : ensemble of
reactions between species or combination of species (directed
graph between Reactant / Product).

e Mass-action law, & : a list of positive parameter (kinetic rate)
for each reaction in R




Chemical Reaction Network, vocabulary

A=—B
—

bpecies &€ := {A, B}

R/PC:={A B}

Rgaction R := {A— B,B — A}

Rate {k*,k™}




Reaction Network, vocabulary

Example (small cAMP production model)

kon

LR

L+ R
koff

ATP + LR X5 cAMP + LR

cAMP X AmP
bpecies &€ := {L, R, LR, ATP, cAMP, AMP}
R/P C:={L+R,LR,ATP + LR, cAMP + LR, cAMP, AMP}

Rgaction R:={L+ R —> LR, LR —> L+ R,ATP + LR —
cAMP + LR, cAMP — AMP}

Rate {kon; koff, k+, kf}




Examples of Reaction Networks at different scales

Small networks in Population dynamics
(Interactions between populations, Epidemiology)

Lotka-Volterra model S.I.R model
RN [ B N
A+B . 2B |k, R
B kB

\<
/
{
(
4
7
— S
] >‘\
Poop)




Examples of Reaction Networks at different scales

Small networks in molecular biology
("Toy' molecular models with isolated components)

Enzymatic kinetics Pharmacology model
Ri Ra
kit Kk . .
E+S——ES=E+P A+ R AR;

AR,

AR;

N
=

Ky ky A+ R, 2 AR,
—
—

AV




Examples of Reaction Networks at different scales

(Single) Gene Expression

<>

G % G+ M & Eldar and Elowitz (Nature 2010)
M 22 M+P

M g

P 2 o

G =L G

Target mRNA



Viewing reaction network and Databases



» List of species and reactions are not very fancy...

» We may of course use software for visualizing reaction network



Reaction Network Visualization

L+R <= R

Koff

LR+ GRK — LRGRK
ATP+ IR 5 cAMP 4+ LR T
AMP X AMP e




Cell Designer

About diagrams and layout... ...with well-defined conventions
NFxB Pathway )
. “':. T = w0
) I ]
© ) O ED
o 9% -
Coprisee Nhe ‘1 = —
:
[ 3 -8 ofr—o—p
e =
conventional diagram CellDesigner's diagram

="
%ﬂ Funahashi, A., Tanimura, N., Morohashi, M., and Kitano, H.,
CellDesigner : a process diagram editor for gene-regulatory and
biochemical networks, BIOSILICO, 1 :159-162, 2003



Summary so far

We have seen
» Examples of network and reaction network models
» The formalism of reaction network models

» How to build a reaction network within Cell Designer



Summary so far

We have seen
» Examples of network and reaction network models
» The formalism of reaction network models
» How to build a reaction network within Cell Designer

NB : there exists public databases of (reaction) network models.

7 BioModels Pathguide) e paway resouree s @ -



Summary so far

We have seen
» Examples of network and reaction network models
» The formalism of reaction network models
» How to build a reaction network within Cell Designer

NB : there exists public databases of (reaction) network models.

¥ BioModels

Pathguidesue

But ! Extracting reaction network from database require some care
-

(See %@ Fearnley et al. Brief Bioinform. 2014)



Summary so far

We have seen
» Examples of network and reaction network models
» The formalism of reaction network models
» How to build a reaction network within Cell Designer

NB : there exists public databases of (reaction) network models.

¥ BioModels Pathguide) e pimay owce s @

NB (bis) : A reaction network is a network... but a network is
NOT a reaction network !



K[“ cAMP signaling pathway - Reference pathway
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Summary so far

We have seen

v

Examples of network and reaction network models

v

The formalism of reaction network models

v

How to build a reaction network within Cell Designer
What about dynamics?

v



Dynamics model with reaction network



Possible applications of Dynamics modeling

» Understand non-trivial behavior of a biological system (by
reproducing this behavior with an understandable model,
starting from 'first principles')

» Help to identify key regulatory process in signaling cascades

» Quantify some non-observables quantities, in particular :
molecules concentrations, reaction rates.



Possible applications of Dynamics modeling

Now : Understand the mathematical formalism of dynamical
reactions network

> Build and simulate a dynamical model from a reaction network
[Cell Designer]

> Parameter calibration with kinetic data [GraphPad Prism /
Copasi]



The following couples of slides contain some abstract notions...let’s
try to catch the meaning!




Chemical Reaction Network and Dynamical models

We build a model that
e Keep track of concentration of species along time.

e Satisfy Law of Mass action : The velocity of a reaction is
proportional to the concentrations of its reactants.

e Is a system of Ordinary Differential Equations, in which
reactions are "added” on top of each other, e.g. they happens
continuously and simultaneously (Rate equations).



Chemical Reaction Network and Dynamical models

A=B
0.1
dXA
T(t) = —0.1xa(t) +2xg(t), xa(t=0)= Aot
d
% —  +0.1xa(t) — 2x5(t), xg(t=0)=0
xa(t) = time dependent concentration of species A




Chemical Reaction Network and Dynamical models

L+R= (R
Koff

dXL

CF t = —ko,,XL(t)XR(t) -+ koffXLR(t), XL(O) = Dose

X

() = —konx ()R (1) + korxir(t),  xr(0) = Reot
dx
#(t} = konxe()XRr(t) — korxer(t), x.r(0) = 0.




Chemical Reaction Network and Dynamical models

Example (minimal cAMP production model)

L+R 2 R

Koff

ATP+ LR — CcAMP + LR
cAMP — AMP

L’? = —konXLXR + korfxtr, x1(0) = Dose
% = —konXLXR + koffxLR;  XR(0) = Riot
% = konXtXR — koftxLr,  XxLr(0) =0
dX(:lthP = k' xarpxtr — k™ xcamp, Xcamp(0) =0
dxatp

el —k*xarpxir  xaTP(0) = ATPiot .




But what is an "Ordinary Differential Equation”? A math

theory in one slide !

The equation

dx

— = v(x

=00,
is numerically solved by successive time-step iteration, of small
length At « 1:

1) Start at a given initial condition xp at time ty = 0



But what is an "Ordinary Differential Equation”? A math

theory in one slide !

The equation
dx v(x)
dt ’

is numerically solved by successive time-step iteration, of small
length At < 1:

1) Start at a given initial condition xg at time ty =0

2) To calculate the value of x at the first time step, remember
that (assuming constant speed)

Final Position = Initial Position + velocity * Time,
which becomes, in mathematical notations,

x(At) = xp + v(xg) * At



But what is an "Ordinary Differential Equation”? A math

theory in one slide !

The equation

d
= = v,

is numerically solved by successive time-step iteration, of small
length At « 1:
1) Start at a given initial condition xp at time ty = 0
2) To calculate the value of x at the first time step, remember
that (assuming constant speed)

Final Position = Initial Position + velocity * Time,
which becomes, in mathematical notations,
x(At) = xo + v(xo) * At
Iterate : To calculate the value of x at the next time step, use

x((i+ 1) At) = x(i = At) + v (x(i = At)) = At



But what is an "Ordinary Differential Equation”? A math

theory in one slide...and a figure !

Concentration

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
—-0.1

- + + Numerical solution of ODE

0 5 10 15 20 25
Time

Figure — Solving an ODE

30



But what is an "Ordinary Differential Equation”? A math

theory in one slide...and a figure !

08 I I I I 1 1

0.7 | E
0.6 |- E
0.5 | i
0.4 | i
0.3 | i
0.2 | +=+ Numerical solution of ODE ]
0.1 | i
0.0 |- i

_p.1 L I I I L L
0 5 10 15 20 25 30

Time

Concentration

Figure — Solving an ODE



But what is an "Ordinary Differential Equation”? A math

theory in one slide...and a figure !

0.8 T T T T T
0.7 |-
0.6 |
0.5 F
0.4 |
0.3 |

0.2 | === True (usually unknown) solution of ODE B
01l +=+ Numerical solution of ODE

Concentration

0.0 |- ]

_0.1 I I I I I
0 5 10 15 20 25 30

Time

Figure — Solving an ODE



Solving an ODE in practice : no need to code!

ODE solver within Cell Designer

T
ke '
- - "_‘.l b e _— = - -
== = = -
Simulation Control Interface L . _[=
T —— =

e
51133
FFI

Simulation Engine

<>

%@ Funahashi, A., Tanimura, N., Morohashi, M., and Kitano, H.,
CellDesigner : a process diagram editor for gene-regulatory and
biochemical networks, BIOSILICO, 1 :159-162, 2003



Summary so far

We have seen
» Examples of network and reaction network models
» The formalism of reaction network models

» How to build and simulate a reaction network within Cell
Designer



Summary so far

We have seen
» Examples of network and reaction network models
» The formalism of reaction network models

» How to build and simulate a reaction network within Cell
Designer

NB : You don't need to code, but you need to specify kinetic rate
and initial condition values to simulate a reaction network.



Summary so far

We have seen
» Examples of network and reaction network models
» The formalism of reaction network models

» How to build and simulate a reaction network within Cell
Designer

NB : You don't need to code, but you need to specify kinetic rate
and initial condition values to simulate a reaction network.

NB (bis) : You can play with this tools to "explore” the behavior of
a model. But that can be time consuming and inefficient...



Summary so far

We have seen
» Examples of network and reaction network models
» The formalism of reaction network models

» How to build and simulate a reaction network within Cell
Designer

What about inferring those values from data?



Parameter estimation



Parameter and network inference in Chemical Reaction

Network

Goal : Given some time series data, find the minimal (biologically
plausible) reaction network with its parameter (=reaction
rates and initial conditions) that fits consistently the data.



Parameter and network inference in Chemical Reaction

Network

Goal :

Given some time series data, find the minimal (biologically
plausible) reaction network with its parameter (=reaction
rates and initial conditions) that fits consistently the data.

08 T T T T 1 1
[0 S B e A o
0.6 4
g 0.5 :
2 .
T ° 8 !
= 04 _
a 0.3 i
S 0.2 === Unknown solution of ODE e
© 0.1 =+ Numerical solution of ODE i
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Parameter and network inference in Chemical Reaction

Network

Goal :

Given some time series data, find the minimal (biologically
plausible) reaction network with its parameter (=reaction
rates and initial conditions) that fits consistently the data.

0.8 T T T T T T
0.7 | ]
0.6 | ]
c
__g 0.5 |-
S o4l
@
g 03r @
S 0.2 | === optimized solution of ODE -
© 0.1 | +=+ numerical sol. of optimized ODE i
@ @ data
0.0 |- ]
—0.1 L= ] ] ] ]
0 5 10 15 20 25 30

Time



Regression analysis and Parameter estimation with time

series : What is difficult ?

> In linear models, there exists a unique optimal solution

» Yet in practice, (generalized) linear models do not perform
well on biochemical data due to Heteroscedasticity and highly
dependent time point data.



Regression analysis and Parameter estimation with time

series : What is difficult ?

» For most of (nonlinear) reaction network, there is no
guarantee to find a unique optimal solution.

» Reaction network models allows to perform multifactorial
analysis ("Anova-like")



Regression analysis and Parameter estimation with time

series : What is difficult ?

» For most of (nonlinear) reaction network, there is no
guarantee to find a unique optimal solution.

» Reaction network models allows to perform multifactorial
analysis ("Anova-like")

» Many other tools exists from the statistical field of time series
analysis.



The following couples of slides contain some abstract notions...but
that the last ones!




Parameter and network optimization in Chemical Reaction

Network

Goal : Given some time series data, find the minimal (biologically
plausible) reaction network with its parameter (=reaction
rates and initial conditions) that fits consistently the data.

Strategy 1) From a given network (S,C,R), with given parameter
values, solve the ODEs,

dx

=k, x(0) =

and compute a distance between the solution and the data.



Parameter and network optimization in Chemical Reaction

Network

Goal : Given some time series data, find the minimal (biologically
plausible) reaction network with its parameter (=reaction
rates and initial conditions) that fits consistently the data.

Strategy 1) From a given network (S,C,R), with given parameter
values, solve the ODEs,

dx
pri vix, k), x(0)=xo,

and compute a distance between the solution and the data.

Strategy 2) Using optimization algorithms, find the best parameter
values k, xg, to minimize the distance



Parameter and network optimization in Chemical Reaction

Network

Goal : Given some time series data, find the minimal (biologically
plausible) reaction network with its parameter (=reaction
rates and initial conditions) that fits consistently the data.

Strategy 1) From a given network (S,C,R), with given parameter
values, solve the ODEs,

dx

— =v(x, k), x(0)=xp,

= vx k), x(0) = x
and compute a distance between the solution and the data.

Strategy 2) Using optimization algorithms, find the best parameter
values k, xp, to minimize the distance

Strategy 3) If needed, change the reaction network (add or delete
species/reactions)



Parameter and network optimization in Chemical Reaction

Network

Goal : Given some time series data, find the minimal (biologically
plausible) reaction network with its parameter (=reaction
rates and initial conditions) that fits consistently the data.

Statistics There exists a well developed statistical theory to assess the
quality of a fit and to give confidence interval on parameter
values (-> See Likelihood maximization or Bayesian statistics).



Predefined or user-defined

Parameter estimation in
time-dependent equations

=" GraphPad

Model

Radioligand=HotNM*1e-9
Kob=[Radioligand]*Kon+Koff

Kd=Koft/Kon

Egq=Bmax‘radicligand/(radioligand + Kd}
Association=Eq*(1-exp(-1*Kob*X))

YatTime0 = Eq*(1-exp(-1"Kob*Time0))
Dissociation= YatTime0™exp(-1"Koff"(X-Time0))
Y=IF(X<Time0, Association, Dissociation) + NS

CPM Bound

Time0
Minutes




Parameter estimation in Predefined or user-defined

time-dependent equations
=" GraphPzd

4) Entyme mechanism

e s () = e 1]
» Limited to solvable models ® /
» Adapted to analyze one i ,
single output at a time, —— m — :»;/
assuming excess of Ligand. —

( i : Pharmacology Data Analysis .
Pharmechanics et S e - —_ s

%ﬂ T e ’ Emwif\ “

Hoare et al., Analyzing kinetic signaling data for G-protein-coupled
receptors, Scientific Reports 10(1) :12263 2020



Parameter estimation in Copasi

» Models can be imported from Cell Designer.

» Supports both graphical interface and command line.
-

%ﬁ Bergman et al. COPASI and its applications in biotechnology,
Journal of Biotechnology 261 :215-220, 2017.

Hoops et al. COPASI : a COmplex PAthway Slimulator. Bioinformatics
22 :3067-74, 2006.



Remember! it's an iterative and interdisciplinary workflow !

Initial kO, k1

Changer KO, k1 oma.pralso.n au_x val. exp.
Fonction objectif

Terminé !



Remember! it's an iterative and interdisciplinary workflow !

4 W

E"Pe”ences O ———

[\"1

Medeéle dynamique n, n+1, n+2...




Is the monkey who typed Hamlet actually a good writer ?

> There is a trade-off between
toy minimal models and
detailed biochemistry
pathways.

Overfitting

> Overfitting leads to
unreliable prediction and
meaningless model /
parameter value.

» (Advanced) statistical tools
exist to sort this out : model
selection (especially for
hierarchical models) and
parameter identifiability.




Summary so far

We have seen
» Many examples of dynamical system biology models
» The formalism of dynamical reaction network models

» How to build and simulate a reaction network model within
Cell Designer.

» How to calibrate parameters of a dynamical reaction network
model with GraphPad Prism and/or Copasi.



Summary so far

We have seen

» Many examples of dynamical system biology models

v

The formalism of dynamical reaction network models

v

How to build and simulate a reaction network model within
Cell Designer.

v

How to calibrate parameters of a dynamical reaction network
model with GraphPad Prism and/or Copasi.

NB : The full workflow can be long and require collaboration with
statistician / applied mathematician.



Summary so far

We have seen

» Many examples of dynamical system biology models

v

The formalism of dynamical reaction network models

v

How to build and simulate a reaction network model within
Cell Designer.

v

How to calibrate parameters of a dynamical reaction network
model with GraphPad Prism and/or Copasi.

NB bis : What about applications ?



Applications



Motivations and Case study

Use reaction network modeling (kinetic pathway) to
e Fully exploit kinetic data

e Give more mechanistic insight of signaling bias

e Develop a parsimonious and statistically significant framework
to characterize pharmacological ligand properties



Motivations and Case study

Use reaction network modeling (kinetic pathway) to
e Fully exploit kinetic data

e Give more mechanistic insight of signaling bias

e Develop a parsimonious and statistically significant framework
to characterize pharmacological ligand properties

Case study on FSHR

» 5 BRET sensors : NES-Venus mG, yPET- (-arrestin 2, Camyel

*x FSH + 6 LMW compounds (Benzamides, Thiazolidinone,
Chromenopyrazole, Imidazole) (TocopheRx, Burlington, VT, USA).
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cAMP production
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Operational model with A.U.C
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Operational model with A.U.C
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Reaction network : multiple Pathways modeling




e Dynamic reaction
Generate all pathways at once networks (ODE) keep
track of concentration
of each molecule
along time.
e Parameters : initial
quantity of molecules
and kinetic rates (13).




Mechanistic link with data

. =FSI‘ Bi\ BZ\ 53\ Tl\ Cl\ Ii‘

&

We hypothesize that

e Kinetic rate values
reflects
pharmacological
ligand properties.

e Measurements are
performed in a same
cellular context.

e Measurements are
proportional to
concentration of
molecules.



We hypothesize that

e Kinetic rate values
reflects
pharmacological
ligand properties.

Mechanistic link with data

e Measurements are
performed in a same
cellular context.

e Measurements are
proportional to

) concentration of

molecules.




e The model is
"minimal” (model
selection criteria)

e We generalize recent
attempts to define a
"kinetic operational
model” (Watch Nicola Dijon's

flash presentation)

Signaling profile diversity

e

signaling data for G-protein-coupled receptors,

Hoare et al., Analyzing kinetic

e Recepordsensvtion f recusor deletion Scientific Reports 2020

d Response recycling. & response degradation & response degradation
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Global fitting enforcing sparsity

e Our method is a
global fitting
approach (all
pathways, all ligand).

e We enforce Ligand
specific parameters
through penalization.

e

modeling environment tailored to parameter

Raue et al., Data2Dynamics : a

estimation in dynamical systems,

Bioinformatics 2015

facilitates detection of cell type-specific

Steiert et al., L1 regularization

parameters in dynamical systems,
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Can we really infer parameter from kinetic data?

e Initial rate
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Can we really infer parameter from kinetic data?

e |nitial rate
% Riot Grotkonk T[L] 2
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— In practice the global fitting

e Equilibrium

improves parameter
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— Low doses and long time
2] signal are important.
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Conclusions

» Dynamical reaction network framework has many different
applications.

> |Its a powerful framework to reveal comprehensive
spatio-temporal patterns behind signaling pathways
complexities.

» Its a powerful framework to analyze quantitatively time series
data in signaling pathways.

» Adequate tools foster necessary interdisciplinary collaborations
by providing a common language.



Some applications : Understanding G protein activation
cycle
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Some applications : Shedding light on GPCR-induced
Calcium oscillations in Astrocytes

<>

%@ De Pitta, Ben-Jacob, Berry, G protein-coupled
receptor-mediated calcium signaling in astrocytes, in
Computational Glioscience, Springer 2019.
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