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Abstract 
Genomic predicted breeding values (GPBV) to select animals in breeding programs are 
nowadays routinely adopted by most commercial livestock production systems. Accuracy of 
the GPBV (defined here as their correlation with the true phenotypes) has a theoretical limit of 
√ℎ2 that is achieved when, among other factors, available SNPs are in sufficient LD with the 
QTL. However, even under such assumptions, realized accuracies of GPBV remain generally 
below √ℎ2, because allele frequencies and LD patterns differ between reference and target 
populations (particularly noticeable across generations), resulting in the so-called erosion of 
SNP effects and consequently, erosion of the accuracy of the GPBV. We present here a measure 
to quantify the erosion of the GPBV’s accuracy through the genomic correlation between 
reference and target populations and validate this measure through simulations. 
 
Introduction 
Nowadays, GPBV are routinely used for the selection of animals in many commercial livestock 
breeding programs. The accuracy of GPBV is therefore a very important factor for the success 
of a breeding program. However, realized accuracies of GPBV remain below the theoretical 
maximum (√ℎ2), even when the reference population is sufficiently large, and SNPs included 
in the model are in sufficient LD with the QTL. That is particularly noticeable over generations, 
as we observe the so-called erosion of SNP effects accompanied by the erosion of the GPBV’s 
accuracy. Erosion occurs mostly due to differences in LD patterns and allele frequencies 
between reference and target populations; for example, if in the reference population a SNP is 
in strong LD with the QTL, a large effect will be assigned to it. However, if due to segregation 
over the generations, the LD between this SNP and the QTL becomes weaker in the target 
population, an effect closer to zero should be assigned to this SNP. The decay in prediction 
accuracy due to differences in allele frequencies and LD patterns, specially over generations, is 
a topic widely known and discussed by animal breeders and quantitative geneticists (Daetwyler 
et al., 2008; Habier et al. 2013; Wientjes et al., 2015, 2016; Pszczola and Calus, 2016; van den 
Berg et al., 2019; Dekkers et al., 2021). Quantifying the erosion at the individual SNP level is 
in fact, a difficult and unresolved task. It is, however, more tractable to quantify the erosion of 
the accuracy of the GPBV through a metric based on the genomic correlation between reference 
and target populations, which we present in this paper and validate through simulations. 
 
Materials & Methods 
Consider the genomic model 𝒚𝒚1 = 𝑿𝑿1𝜷𝜷 + 𝑴𝑴1𝜶𝜶 +  𝜺𝜺1, in which 𝒚𝒚1 are the phenotypes measured 
in the reference population, 𝜷𝜷 are the fixed effects and 𝑿𝑿1 their design matrix in the reference 
population, 𝑴𝑴1 is the (centred) SNP-genotypes matrix of the reference population, 
𝜶𝜶~𝑁𝑁(𝟎𝟎, 𝑰𝑰𝑚𝑚𝜎𝜎𝛼𝛼2) are the SNP effects, and 𝜺𝜺1~𝑁𝑁(𝟎𝟎, 𝑰𝑰𝑛𝑛𝜎𝜎𝜀𝜀2) are the random residuals. Solving 
Henderson’s mixed model equations (HMME) (Henderson et al., 1959), we have the estimates 
𝜷𝜷� = [𝑿𝑿1′ (𝑴𝑴1𝑴𝑴1

′ 𝜎𝜎𝛼𝛼2 + 𝑰𝑰𝑛𝑛𝜎𝜎𝜀𝜀2)−1𝑿𝑿1]−1𝑿𝑿1′ (𝑴𝑴1𝑴𝑴1
′ 𝜎𝜎𝛼𝛼2 + 𝑰𝑰𝑛𝑛𝜎𝜎𝜀𝜀2)−1𝒚𝒚1 and 𝜶𝜶� = 𝑴𝑴1

′ (𝑴𝑴1𝑴𝑴1
′ 𝜎𝜎𝛼𝛼2 +
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𝑰𝑰𝑛𝑛𝜎𝜎𝜀𝜀2)−1𝒚𝒚1∗𝜎𝜎𝛼𝛼2, such that 𝒚𝒚1∗ =  𝒚𝒚1 − 𝑿𝑿1𝜷𝜷�. Finally, the fitted breeding values for the 𝑛𝑛1 animals 
in the reference population are 𝒈𝒈�1 = 𝑴𝑴1𝜶𝜶�, and let 𝑴𝑴2 be the (centred) SNP-genotypes matrix 
of the target population, the GPBV for the 𝑛𝑛2 animals in the target population are 𝒈𝒈�2 = 𝑴𝑴2𝜶𝜶�. 
 
Theoretical limit of GPBV’s accuracy without accounting for erosion. Our interest lies on the 
accuracy of the GPBV, i.e. on 𝑅𝑅 = 𝑐𝑐𝑐𝑐𝑐𝑐� (𝒈𝒈�2,𝒚𝒚2∗), such that 𝒚𝒚2∗ = 𝒚𝒚2 − 𝑿𝑿2𝜷𝜷�. Using Fisher’s z-
transformation on 𝑅𝑅, we have that 𝑍𝑍 = 𝑙𝑙𝑐𝑐𝑙𝑙 �1+𝑅𝑅

1−𝑅𝑅
�~𝑁𝑁 �𝑙𝑙𝑐𝑐𝑙𝑙 �1+𝜌𝜌

1−𝜌𝜌
� , 4

𝑛𝑛2−3
�, with 𝜌𝜌 being the true 

accuracy, i.e. 𝜌𝜌 = √ℎ2. By reversing Fisher’s z-transformation 𝑅𝑅 = 𝜑𝜑(𝑍𝑍) = 𝑒𝑒𝑍𝑍−1
𝑒𝑒𝑍𝑍+1

 is a function 
of 𝑍𝑍, and using Jensen’s inequality we show that 𝐸𝐸[𝑅𝑅|no erosion] = 𝐸𝐸[𝜑𝜑(𝑍𝑍)|no erosion] ≤

𝜑𝜑(𝐸𝐸[𝑍𝑍]|no erosion) = 𝑒𝑒𝐸𝐸[𝑍𝑍]−1
𝑒𝑒𝐸𝐸[𝑍𝑍]+1

= �𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙�
1+𝜌𝜌
1−𝜌𝜌� − 1� �𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙�

1+𝜌𝜌
1−𝜌𝜌� + 1�� = 𝜌𝜌 = √ℎ2. 

 
Theoretical limit of GPBV’s accuracy accounting for erosion. We hypothesized that the 
genomic correlation between reference and target populations (𝑐𝑐) affects linearly the mean of 
the z-transformed correlations, resulting in 𝑍𝑍 = 𝑙𝑙𝑐𝑐𝑙𝑙 �1+𝑅𝑅

1−𝑅𝑅
�~𝑁𝑁 �𝑐𝑐 𝑙𝑙𝑐𝑐𝑙𝑙 �1+𝜌𝜌

1−𝜌𝜌
� , 4

𝑛𝑛2−3
�. Using 

Jensen’s inequality again we show that, under our hypothesis, 𝐸𝐸[𝑅𝑅|erosion] ≤
�1+√ℎ2�

𝑟𝑟
−�1−√ℎ2�

𝑟𝑟

�1+√ℎ2�
𝑟𝑟
+�1−√ℎ2�

𝑟𝑟
𝑟𝑟→1
�⎯�√ℎ2. 

 
Erosion of the GPBV. We consider the erosion of the GPBV (𝛿𝛿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) as the difference between 
√ℎ2 and the theoretical limit of GPBV’s accuracy accounting for erosion, scaled by √ℎ2, 
𝛿𝛿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1 − 𝐸𝐸[𝑅𝑅|erosion]

√ℎ2
.           (1) 

 
Genomic correlation between populations. Let 𝑴𝑴 be a (centred) SNP-genotypes matrix 
(𝑛𝑛 × 𝑚𝑚), with singular-value decomposition (SVD) �∑ 2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)𝑚𝑚

𝑗𝑗=1 �
−1/2

𝑴𝑴 = 𝑼𝑼𝑼𝑼𝑼𝑼′, such 
that 𝑝𝑝𝑗𝑗′𝑠𝑠 are the alleles frequencies. In this SVD, 𝑼𝑼 is a diagonal matrix of the 𝑘𝑘 = 𝑐𝑐𝑟𝑟𝑛𝑛𝑘𝑘(𝑴𝑴) 
singular-values, and 𝑼𝑼𝑛𝑛×𝑘𝑘 and 𝑼𝑼𝑚𝑚×𝑘𝑘 are matrices of unitary eigen-vectors relative to the 
individuals and to the SNPs, respectively. Knowing that components in 𝑼𝑼2 explain the variation 
of the whole system 𝑴𝑴, each 𝑈𝑈𝑖𝑖𝑘𝑘 explains the contribution of the 𝑖𝑖 − 𝑡𝑡ℎ individual to the 𝑘𝑘 −
𝑡𝑡ℎ component, and each 𝑉𝑉𝑗𝑗𝑘𝑘 explains the contribution of the 𝑗𝑗 − 𝑡𝑡ℎ SNP to the 𝑘𝑘 − 𝑡𝑡ℎ 
component. To obtain the genomic correlation between reference and target populations (𝑐𝑐), we 
need to quantify the different contribution of the SNPs to the system’s variation in the two 
populations. To do so, we perform the aforementioned SVD on 𝑴𝑴1 and 𝑴𝑴2, then build a matrix 
𝑻𝑻 = �(𝑛𝑛2 𝑛𝑛1⁄ )𝑼𝑼2′ 𝑼𝑼1𝑼𝑼1 which correlates the contributions of the SNPs in both populations, 
while correcting for the different population sizes, weighting these correlations by the singular-
values on the reference population. Next, we obtain the SVD 𝑻𝑻 = 𝑼𝑼𝑇𝑇𝑼𝑼𝑇𝑇𝑼𝑼𝑇𝑇, and perform the 
linear regression 𝑼𝑼𝑇𝑇~𝑼𝑼2 with a quadratic term, i.e., we fit 𝑑𝑑𝑇𝑇𝑖𝑖 = 𝑟𝑟 + 𝑏𝑏𝑑𝑑2𝑖𝑖 + 𝑐𝑐𝑑𝑑2𝑖𝑖2 . Finally, we 
obtain the genomic correlation between reference and target populations as 𝑐𝑐 =  𝑟𝑟 + 𝑏𝑏 + 𝑐𝑐. 
 
Simulation study. We simulated 50K SNPs and additive phenotypes for ℎ2 = 0.05,0.15,
… ,0.9, 0.95, using 2K SNPs as QTL. A base reference population of 5,000 individuals was used 
to estimate variance components using REML (Patterson and Thompson, 1971) and SNP effects 
𝜶𝜶� (solving HMME). Using 𝜶𝜶� we obtained the GPBV for three different target populations 
(1,000 individuals each) with increasing generation distances (one, five, and ten) from the 



reference population. Then we compared our theoretical measures 𝐸𝐸[𝑅𝑅|erosion] and 𝛿𝛿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 
with the realized prediction accuracies (𝑅𝑅 = 𝑐𝑐𝑐𝑐𝑐𝑐� (𝒈𝒈�2,𝒚𝒚2∗)) and erosion (𝛿𝛿 = 1 − 𝑅𝑅 √ℎ2⁄ ). 
 
Results 
In Figure 1 we observe that as the generation distance between reference and target populations 
increases, the relationship 𝑑𝑑2𝑖𝑖 × 𝑑𝑑𝑇𝑇𝑖𝑖 moves further from the identity line and becomes more 
quadratic, resulting in decreasing genomic correlations as the generation distances increase: 𝑐𝑐 =
0.49, 𝑐𝑐 = 0.42 and 𝑐𝑐 = 0.33 for target populations respectively one, five and ten generations 
apart from the reference population. 
 

 
Figure 1. Singular values of the scaled 𝑴𝑴𝟐𝟐 (𝒅𝒅𝟐𝟐𝟐𝟐) vs. singular values of 𝑻𝑻 =
�(𝒏𝒏𝟐𝟐 𝒏𝒏𝟏𝟏⁄ )𝑼𝑼𝟐𝟐′ 𝑼𝑼𝟏𝟏𝑼𝑼𝟏𝟏 (𝒅𝒅𝑻𝑻𝟐𝟐), and estimated coefficients fitting the model 𝒅𝒅𝑻𝑻𝟐𝟐 = 𝒂𝒂 + 𝒃𝒃𝒅𝒅𝟐𝟐𝟐𝟐 +
𝒄𝒄𝒅𝒅𝟐𝟐𝟐𝟐𝟐𝟐  for the target populations (a) one, (b) five, and (c) ten generations apart from the 
reference population. 
 
In Figures 2 and 3 we observe that our theoretical curve 𝐸𝐸[𝑅𝑅|erosion] accurately fits the 
realized ℎ�2 and 𝑅𝑅 = 𝑐𝑐𝑐𝑐𝑐𝑐� (𝒈𝒈�2,𝒚𝒚2∗), and that 𝛿𝛿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is quite accurate to assess the erosion. For 
extreme ℎ2 (<0.1 and >0.85) however, there is still a small over expectation for 𝑅𝑅, which results 
in 𝛿𝛿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 being lower than the observed 𝛿𝛿. Low heritability traits (ℎ2 < 0.2) also present a large 
𝑉𝑉𝑟𝑟𝑐𝑐(�̂�𝛿), indicating that precise assessment of erosion may be difficult for such traits. 
 

 
Figure 2. Theoretical 𝑬𝑬[𝑹𝑹|𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞] (full coloured line) and 𝑬𝑬[𝑹𝑹|𝐞𝐞𝐞𝐞 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞] (dashed 
line), and the realized results for the target populations (a) one, (b) five, and (c) ten 
generations apart from the reference population. 



 
Figure 3. Theoretical erosion (𝜹𝜹𝑮𝑮𝑮𝑮𝑮𝑮𝑼𝑼) and realized results for the target populations (a) 
one, (b) five, and (c) ten generations apart from the reference population. 
 
Discussion 
We hypothesized that once we know the genomic correlation between reference and target 
populations (𝑐𝑐), we can define the maximum accuracy of the GPBV as 𝐸𝐸[𝑅𝑅|erosion] ≤
�1+√ℎ2�

𝑟𝑟
−�1−√ℎ2�

𝑟𝑟

�1+√ℎ2�
𝑟𝑟
+�1−√ℎ2�

𝑟𝑟
𝑟𝑟→1
�⎯�√ℎ2, and the results obtained with our simulations support this 

hypothesis. The measure we defined to quantify the erosion of the accuracy of the GPBV 
(𝛿𝛿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1 − 𝐸𝐸[𝑅𝑅|erosion]/√ℎ2) was also quite accurate, although it may be imprecise or 
underestimated for low heritability traits (ℎ2 < 0.2). One important element for calculating 
𝐸𝐸[𝑅𝑅|erosion] and 𝛿𝛿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is the genomic correlation 𝑐𝑐, a single value capable to summarize all 
the information about the differences in allele frequencies and LD patterns observed in both the 
reference and target populations. Although computationally costly for large populations and 
dense genotype data, our results indicate that the genomic correlation 𝑐𝑐 obtained with the SVDs 
of genomic matrices is trustworthy. This work focused on the calculus of 𝐸𝐸[𝑅𝑅|erosion] and 
𝛿𝛿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, and did not explore the underlying meaning of the values of the coefficients 𝑟𝑟, 𝑏𝑏, and 𝑐𝑐 
that compose 𝑐𝑐, i.e. how allele frequencies, LD patterns, number of SNPs and population sizes 
affect each of these coefficients, but we do understand that such a study is relevant. 
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