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Abstract 
The objective of this study was to account for environmental variables to model non-genetic 
random effects for carcass traits in Hanwoo beef cattle. This model was compared to the traditional 
model that uses farms as an independent component to model non-genetic random effects. 
Heritability estimates for all carcass traits in our study ranged from 0.33 to 0.39 when using 
independent farm effects, whereas with the use of environmental variables, estimated heritabilities 
dropped and ranged from 0.11 to 0.31. In addition, prediction accuracy increased from a range of 
0.39 to 0.45 to a range of 0.50 to 0.58 for all traits when modelling farm effects with environmental 
variables. This result suggests that environmental variables explain a considerable amount of the 
observed phenotypic variance, and that not accounting for such environmental variation could 
upwardly bias heritability estimates. Furthermore, an improvement in the model prediction 
accuracy was observed when accounting for environmental variables. 
 
Introduction 
The impact of climate change resulting from increasing fluctuations in environmental variables and 
rising temperatures is a major concern for livestock production. Adverse effects of rising 
temperatures are observed in the form of reduced productivity, performance, growth, and 
development of animals exposed to such challenging environments (Collier and Gebremedhin, 
2015). Traditionally, environmental effects are accounted for by fitting the herd as an effect in 
genetic evaluation models. With this model, it is traditionally assumed that different herds are 
completely independent from each other with no similarities. However, herds in closer proximity 
could be more similar in terms of climatic and geographic factors when compared to more 
geographically distant herds. Therefore, accounting for relationships of environmental variables 
between production sites in genetic evaluation models could improve the estimates of genetic 
components in economically important traits. Improvement in the genetic evaluation of 
smallholder breeding programs using spatial relationships between herds has already been reported 
(Selle et al., 2020). In addition, Cuyabano et al. (2021) recently showed that using GPS coordinates 
to create relationships between herds led to an increase in the reliability of the predicted genomic 
breeding values for carcass traits in beef cattle, when compared to fitting herd effects as 
independent. Nowadays, public weather stations regularly collect environmental variables and the 
data is easily accessible for general use. This source of information has been shown to be more 
accurate than on-farm weather information (Freitas et al., 2006) and can be used to develop a 
relationship structure between herds based on their weather conditions. Furthermore, temperature-
humidity index (THI) as environmental descriptor has been successful in modelling genotype-by-
environment interactions with reaction norms (Chen et al., 2021). This present study aimed to: (1) 
use environmental variables obtained from public weather stations to create a climate relationship 
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matrix between herds; (2) evaluate the impact on estimated variance components by modelling 
herd effects through the climate relationship structure and (3) assess prediction accuracy for the 
predicted genomic breeding values. 
 
Materials & Methods 
Animal and phenotypic data. Data from a total of 4,168 Korean Hanwoo beef cattle was used in 
this study. There were 3,810 steers and 358 bulls born in 2014 and 2015, all slaughtered in 2017. 
For this study, four carcass traits were analysed: carcass weight (CWT), backfat thickness (BFT), 
eye muscle area (EMA) and marbling score (MS). Measurements were taken 24h after refrigeration 
following slaughter. For BFT and EMA, records were measured at the 12-13th rib junction in 
millimeters and squared centimeters, respectively. MS was measured visually by a trained 
evaluator on an ordinal scale that ranged for 1 to 9. The 4,168 animals were raised on a total of 124 
finishing farms, which were spread across South Korea. 
 
Genotypes and weather data. All animals used in this study were genotyped with the 50K Illumina 
(San Diego, CA, USA) Bovine SNP50V2BeadChip array. Quality control measures were 
performed to retain only SNP present on the autosomal chromosomes with a call rate > 90% and 
minor allele frequency > 1%. After quality control, a total of 43,749 SNP genotypes were retained 
for further analyses. Weather information was available from 78 public weather stations that were 
close to the farms. To each farm, weather information from the nearest weather station was 
assigned. The distances between the farms and the weather stations ranged from 0 to 30 km with 
approximately 45% of the farms sharing the same location as the weather station. The 
environmental variables used for this study were monthly averages of the maximum temperature 
(Tmax) and of the relative humidity (RHmin), spanning from 2013 to 2018. Temperature and relative 
humidity were then combined into THI using the following formula (NRC, 1971): 
THI = (1.8Tmax + 32) – [(0.55 – 0.0055RHmin) x (1.8Tmax – 26)]            (1) 
THI was considered a suitable environmental variable to use because a previous study already 
reported that THI influences the modulation of the genetic components of these traits in Hanwoo 
(Chung et al., 2020). 
 
Genomic evaluation. Genetic parameters were estimated for all traits using both of the following 
linear mixed models: 
y=Xb+Zg+Wfarm+e,                  (2) 
y=Xb+Zg+Wst+e,                   (3) 
where y is a vector of phenotypic records for CWT, BFT, EMA and MS; b is a vector of fixed 
effects that included the effects of sex, age at slaughter, herd size and slaughter date; g is a vector 
of random additive genetic effects; farm is a vector of non-genetic and independent random effects 
of farm; st is a vector of non-genetic and correlated random effects of farm; e is a vector of random 
residuals. X, Z and W are incidence matrices that link respectively the fixed effects, random 
additive genetic effects and non-genetic random farm effects to the phenotypes. The assumptions 
posed to the random effects were: g ~ N(0, G𝜎𝜎𝑔𝑔2), farm ~ N(0, I𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2 ) and st ~ N(0, E𝜎𝜎𝑠𝑠𝑠𝑠2 ). 𝜎𝜎𝑔𝑔2 is 
the additive genetic variance; 𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2  and 𝜎𝜎𝑠𝑠𝑠𝑠2  are the non-genetic variance of the herd effect 
assuming the farms as independent and correlated, respectively. G is the genomic relationship 
matrix (VanRaden, 2008), I is an identity matrix, and E is the covariance matrix of the farms using 
the closest weather station information. E was created using the standardized differences between 
THI values of the farms. First, a matrix D was calculated using the differences between THI values, 



and the matrix was then scaled by dividing the values by the maximum absolute THI difference, to 
ensure that the elements of the matrix ranged within the [-1,1] interval (i.e. 𝑫𝑫∗ =
𝑫𝑫/max {|𝐷𝐷𝑖𝑖𝑖𝑖|: 𝑖𝑖, 𝑗𝑗 = 1, … . , 𝑠𝑠𝑠𝑠}. Finally, the covariance matrix E was rescaled to have a diagonal 
of ones and defined as 𝐸𝐸𝑖𝑖𝑖𝑖 = 1 − 𝐷𝐷𝑖𝑖𝑖𝑖 with values ranging from −1 ≤ 𝐸𝐸𝑖𝑖𝑖𝑖 ≤ 1. With this 
parameterization, stations that are more similar to each other have values closer to one and the 
more dissimilar stations will have values closer to minus one. All variance components estimation 
and genomic predictions were performed using WOMBAT software (Meyer, 2007). 
 
Model predictive accuracy. The predictive accuracy of the different models in predicting the 
genomic breeding values was performed using a 5-fold cross validation. To evaluate accuracy, the 
whole data was randomly divided into five subsets of approximately equal size. For each fold of 
the cross validation, four out of the five subsets (i.e. 80% of data) were assigned as the training set 
and the remaining subset (i.e. 20% of the data) was used as the testing set. Replication of the 5-
fold cross validation procedure was performed 20 times and resulted in a total of 100 estimates. 
Prediction accuracy in the testing set was calculated as the Pearson correlation between predicted 
genomic breeding values of the test group and observed phenotypes adjusted for fixed effects (𝑟𝑟 =
𝑐𝑐𝑐𝑐𝑟𝑟(𝑔𝑔�𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠,𝑦𝑦𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑏𝑏�)). 
 
Results 
Table 1 presents a summary of the phenotypic records, with descriptive statistics for each trait. 
 
Table 1. Descriptive statistics of analysed traits including the number of records (N), mean, 
standard deviation, minimum and maximum of the observations. 

Trait N Mean Standard deviation Minimum Maximum 
BFT 4168 14.33 5.09 2 47 
EMA 4168 96.74 12.05 34 155 
CWT 4168 442.02 54.95 159 682 
MS 4168 6.44 1.76 1 9 

 
The proportions of variance explained by each random effect using the two different models for 
each trait are presented in Table 2, along with the prediction accuracy of the predicted genomic 
breeding values. Heritability estimates for BFT, EMA, CWT and MS were 0.34, 0.35, 0.39 and 
0.38, respectively, when fitting the farm as independent effects. These estimates are in line with 
other studies that used similar models with heritability estimates that ranged from 0.33 to 0.42 
(Chung et al., 2020; Cuyabano et al., 2021). Conversely, using the THI to model the farm effects 
as correlated resulted in a drop in heritability estimates to 0.31, 0.11, 0.29 and 0.18 for BFT, EMA, 
CWT and MS, respectively. To the best of our knowledge, no study has reported using a covariance 
matrix created from THI values from public weather stations. Nevertheless, our results are in 
accordance with those from a study that used GPS coordinates to create a covariance matrix 
between farms (Cuyabano et al., 2021). These results suggest that environmental variables and 
geographic location explain a substantial proportion of the phenotypic variation observed. 
Prediction accuracies obtained were 0.39, 0.40, 0.45 and 0.40 for BFT, EMA, CWT and MS, 
respectively, when farm was fitted as an independent effect, and increased to 0.50, 0.54, 0.58 and 
0.56 for BFT, EMA, CWT and MS, respectively, when fitting farms with a covariance matrix based 
on environmental variables, described in this study by the THI.  
 



Table 2. Estimates of variance proportions explained by additive genetics (h2), non-genetic 
effects of farm or weather station ((farm/st)2) and residual (e2) and predictive accuracy (r) 
with their respective standard errors (se). 

Trait Model h2 ± se (farm/st)2 ± se e2 ± se r 

BFT (mm) g + farm 0.34 ± 0.03 0.03 ± 0.01 0.63 ± 0.03 0.39 
g + st 0.31 ± 0.04 0.13 ± 0.08 0.57 ± 0.06 0.50 

EMA (cm2) g + farm 0.35 ± 0.03 0.07 ±0.02 0.58 ± 0.03 0.40 
g + st 0.11 ± 0.03 0.69 ± 0.08 0.19 ± 0.05 0.54 

CWT (kg) g + farm 0.39 ± 0.03 0.04 ± 0.01 0.58 ±0.03 0.45 
g + st 0.29 ± 0.05 0.29 ± 0.12 0.43 ± 0.07 0.58 

MS g + farm 0.38 ± 0.03 0.05 ±0.01 0.57 ± 0.03 0.40 
g + st 0.18 ± 0.02 0.54 ± 0.01 0.27 ± 0.01 0.56 

 
Discussion 
Our study compared modelling herd effects considering farms as correlated or independent. A 
similar study has already been performed for Hanwoo beef cattle, using GPS coordinates to build 
correlation between farms (Cuyabano et al., 2021). We innovate with our study by using 
environmental information from public weather stations, in the form of THI, to build this 
correlation between farms. Our results showed that a considerable proportion of the phenotypic 
variation can be explained by correlated environment, in agreement to what was reported by 
Cuyabano et al. (2021), and that this leads to a reduction in the additive genetic variance, and 
consequently to lower heritability estimates. This finding may suggest that not accounting for 
environmental variation could be upwardly biasing heritability estimates. Additionally, the highest 
prediction accuracy for all traits was obtained when using the model that accounted for the THI 
covariances between farms. Such improvement was not observed by Cuyabano et al. (2021), 
suggesting that actual weather information may be more accurate to estimate the random effects 
than GPS coordinates. Further research is warranted to demonstrate that environmental variables 
can be used to improve models in another independent population. 
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