Essential amino acid profile of supplemental metabolizable protein affects mammary gland metabolism and whole-body glucose kinetics in dairy cattle - Archive ouverte HAL Access content directly
Journal Articles Journal of Dairy Science Year : 2022

Essential amino acid profile of supplemental metabolizable protein affects mammary gland metabolism and whole-body glucose kinetics in dairy cattle

(1) , (1) , (1) , (2) , (1) , (1)
1
2

Abstract

This study investigated mammary gland metabolism and whole-body (WB) rate of appearance (Ra) of glucose in dairy cattle in response to a constant supplemental level of metabolizable protein (MP) composed of different essential AA (EAA) profiles. Five multiparous rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were abomasally infused according to a 5 × 5 Latin square design with saline (SAL) or 562 g/d of EAA delivered in different profiles where individual AA content corresponded to their relative content in casein. The profiles consisted of (1) a complete EAA mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). A total mixed ration (58% corn silage, 16% alfalfa hay, and 26% concentrate on a dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake on an individual cow basis. Each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of no infusion. Arterial and venous blood samples were collected on d 4 of each period for determination of mammary gland AA and glucose metabolism. On d 5 of each period, D-[U-13C]glucose (13 mmol priming dose; continuous 3.5 mmol/h for 520 min) was infused into a jugular vein and arterial blood samples were collected before and during infusion to determine WB Ra of glucose. Milk protein yield did not differ between EAAC, GR1+ILV, and GR1+ALT, or between SAL and ILV, and increased over SAL and ILV with EAAC and GR1+ILV. Mammary plasma flow increased with ILV infusion compared with EAAC and GR1+ILV. Infusion of EAAC tended to increase mammary gland net uptake of total EAA and decreased the mammary uptake to milk protein output ratio (U:O) of non-EAA compared with SAL. Infusion of ILV increased mammary net uptake and U:O of Ile, Leu, and Val markedly over all treatments. The U:O of total Ile, Leu, and Val increased numerically (25%) with GR1+ILV infusion compared with EAAC, and the U:O of total Arg, Lys, and Thr tended to decrease, primarily from decreased U:O of Lys. During GR1+ALT infusion, U:O of total Arg, Lys, and Thr was greater than that during EAAC infusion, whereas U:O of Ile, Leu, and Val did not differ from EAAC. Glucose WB Ra increased 16% with GR1+ALT over SAL, and increased numerically 8 and 12% over SAL with EAAC and GR1+ILV, respectively. The average proportion of lactose yield relative to glucose WB Ra did not differ across treatments and averaged 0.53. On average, 28% of milk galactose arose from nonglucose precursors, regardless of treatment. In conclusion, intramammary catabolism of group 2 AA increased to support milk component synthesis when the EAA profile of MP was incomplete with respect to casein. Further, WB and mammary gland glucose metabolism was flexible in support of milk component synthesis, regardless of absorptive EAA profile.

Dates and versions

hal-03736731 , version 1 (22-07-2022)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Kelly Nichols, Jan Dijkstra, M. J. H. Breuer, Sophie Lemosquet, Walter J.J. Gerrits, et al.. Essential amino acid profile of supplemental metabolizable protein affects mammary gland metabolism and whole-body glucose kinetics in dairy cattle. Journal of Dairy Science, 2022, 105 (9), pp.7354-7372. ⟨10.3168/jds.2021-21576⟩. ⟨hal-03736731⟩

Collections

INRAE PHASE
10 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More