Keywords: interval variables, specialized constraints, control Global constraints interval variables, specialized constraints, control Digital circuit verification, scheduling and other resource management

problems, planning, so ware verification, theorem proving,. . .

A multidimensional table with a number for every tuple in D S

Global functions

Names for specific (useful) functions So di erence (3 values)

  1 0 0 0 1 0 0 0 1   A useful one
E : M CUT Graph G = (V , E) with edge weight function w A Boolean variable X i per vertex i ∈ V A cost function per edge e = (i, j) ∈ E : ϕ ij = w(i, j) × 1[x i = x j] A simple graph vertices {1, 2, 3, 4} cut weight 1 or 1.5 (1, 3) edge (1, 2) hard 7 54 E : M CUT Graph G = (V , E) with edge weight function w A Boolean variable X i per vertex i ∈ V A cost function per edge e = (i, j) ∈ E : ϕ ij = w(i, j) × 1[x i = x j]
A simple graph vertices {1, 2, 3, 4}

cut weight 1 or 1.5 (1, 3)

edge (1, 2) hard 7 54 E : M CUT Graph G = (V , E) with edge weight function w A Boolean variable X i per vertex i ∈ V A cost function per edge e = (i, j) ∈ E : ϕ ij = w(i, j) × 1[x i = x j]
A simple graph vertices {1, 2, 3, 4}

cut weight 1 or 1.5 (1, 3)

edge (1, 2) hard 7 54 2 :// . / 2/ 2
Min-CUT on 4 variables { "problem" :{"name": "MinCut", "mustbe": "<100.0"}, variables: {"x1": ["l"], "x2": ["l","r"], "x3": ["l","r"], "x4": ["r"]} "functions": { "cut12": {"scope": ["x1","x2"], "costs": [0.0, 100.0, 100.0, 0.0]}, "cut13": {"scope": ["x1","x3"], "costs": [0.0,1.5,1.5,0.0]}, "cut23": {"scope": ["x2","x3"], "costs": [0.0,1.0,1.0,0.0]}, "cut34": {"scope": ["x3","x4"], "costs": [0.0,1.0,1.0,0.0]} } T P pip install pytoulbar2

Min-CUT on 4 variables import pytoulbar2 myCFN = pytoulbar2.CFN(100,1) # ub, resolution (optional) for i in range(4): myCFN.AddVariable("x"+str(i+1),["l", "r"]) # returns an index myCFN.AddFunction(["x1"],[0,100]) myCFN.AddFunction(["x4"],[100,0]) myCFN.AddFunction(["x1","x3"], [0,1.5,1.5,0]) ... sol = myCFN.Solve() # returns a triple (sol, cost, _) for i in range(9): for j in range(9): vIdx = myCFN.AddVariable("X"+str(i+1)+"."+str(j+1

T 9 × 9 S Definition Variables X ij for cell (i, j) has domain {1, • • • , 9} Set R i (resp. C j)
U : k = ∞ + 01LP
The "local polytope" [Sch76; Kos99; Wer07] (without eq. (1)

) Minimize i,a ϕ i (a) • x ia + ϕ ij ∈Φ a∈D i ,b∈D j ϕ ij (a, b) • y iajb such that a∈D i x ia = 1 ∀i ∈ {1, . . . , n} b∈D j y iajb = x ia ∀ϕ ij ∈ Φ, ∀a ∈ D i a∈D i y iajb = x jb ∀ϕ ij ∈ Φ, ∀b ∈ D j x ia ∈ {0, 1} ∀i ∈ {1, . . . , n} (
(α -k β) ≡ ((α = k) ? k : α -β)
Add the projection to ϕ j with + k Subtract it from its source using -

k 22 E k > 1 X 1 X 2 (Loss of) properties
Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54 E k > 1 m 1 2 → X 1 X 2 (Loss of) properties
Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54 E k > 1 m 1 2 → X 1 X 2 ← -m 1 2 (Loss of) properties
Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54 E k > 1 m 2 1 ← X 1 X 2 (Loss of) properties
Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54 E k > 1 m 2 1 ← X 1 X 2 ⇓ m 1 ∅ ϕ ∅ = 1 (Loss of) properties
Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)

23 54 E k > 1 m 2 1 ← X 1 X 2 ⇓ m 1 ∅ ϕ ∅ = 1 (Loss of) properties
Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist) Supports provide value ordering heuristics EAC: ϕ i (u) = 0 can be extended for free on X i 's star VAC: ϕ i (u) = 0 can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10] NC provides reduced cost-based pruning (back-propagation)

If (ϕ ∅ + k ϕ i (u)) = k, NC deletes u M ()
The many "so ACs" One paper to read: Supports provide value ordering heuristics EAC: ϕ i (u) = 0 can be extended for free on X i 's star VAC: ϕ i (u) = 0 can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10] NC provides reduced cost-based pruning (back-propagation)

If (ϕ ∅ + k ϕ i (u)) = k, NC deletes u M ()
The many "so ACs" One paper to read:

u i subject to ϕ i (a) -u i + (ϕ ij ∈C) p ija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i ϕ ij (a, b) -p ija -p jib ≥ 0 ∀ϕ ij ∈ C, ∀(a, b) ∈ D ij O S A C ()
Variables for a binary CFN,no constraints [Sch76;Kos99;[START_REF] Cooper | Optimal so arc consistency[END_REF]Wer07;Coo+10] 1. u i : amount of cost shi ed from ϕ i to ϕ ∅ 2. p ija : amount of cost shi ed from ϕ ij to ϕ i (a)

3. p jib : amount of cost shi ed from ϕ ij to ϕ j (b) T !

OSAC Maximize n i=1 u i subject to ϕ i (a) -u i + (ϕ ij ∈C) p ija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i ϕ ij (a, b) -p ija -p jib ≥ 0 ∀ϕ ij ∈ C, ∀(a, b) ∈ D ij

 Boolean tables (tensors) for domains and constraints Constraint Programming: interval variables, specialized constraints, control Tables (or tensors) for ϕ S A multidimensional table with a Boolean for every tuple in D S Says if it is authorized (t) or not (f) Pairwise di erence (3 values) V , Φ, k a sequence of discrete domain variables V a set Φ of e integer cost functions Each ϕ S ∈ Φ is a numerical function bounded by k (finite or infinite) Joint cost function using a + k b = min(a + b, k) Satisfaction Problem (decision NP-complete) What is the minimum of Φ M ? M B Cost Function Network V , Φ, k a sequence of discrete domain variables V a set Φ of e integer cost functions Each ϕ S ∈ Φ is a numerical function bounded by k (finite or infinite) Joint cost function using a + k b = min(a + b, k) Satisfaction Problem (decision NP-complete) What is the minimum of Φ M ? M B Cost Function Network V , Φ, k a sequence of discrete domain variables V a set Φ of e integer cost functions Each ϕ S ∈ Φ is a numerical function bounded by k (finite or infinite) Joint cost function using a + k b = min(a + b, k) Satisfaction Problem (decision NP-complete) What is the minimum of Φ M ? M B Cost Function Network V , Φ, k a sequence of discrete domain variables V a set Φ of e integer cost functions Each ϕ S ∈ Φ is a numerical function bounded by k (finite or infinite) Joint cost function using a + k b = min(a + b, k) Satisfaction Problem (decision NP-complete) What is the minimum of Φ M ? M B Cost Function Network V , Φ, k a sequence of discrete domain variables V a set Φ of e integer cost functions Each ϕ S ∈ Φ is a numerical function bounded by k (finite or infinite) Joint cost function using a + k b = min(a + b, k) Satisfaction Problem (decision NP-complete) What is the minimum of Φ M ? R Tables (or tensors) for ϕ S A multidimensional table with a number for every tuple in D S Global functions Names for specific (useful) functions So di erence (3 values) tensors) for ϕ S

 Gun for the picture above 1. Assign the cell variable with the prediction 2. LeNet has 99.2% accuracy, SAT-Net dataset 36.2 hints (avg): 74.7% max. accuracy The Numbers way 1. Add LeNet output tensor (negated) as a cost function 2. (min -log) ≡ (max) probabilities . >99% acc. Gun for the picture above 1. Assign the cell variable with the prediction 2. LeNet has 99.2% accuracy, SAT-Net dataset 36.2 hints (avg): 74.7% max. accuracy The Numbers way 1. Add LeNet output tensor (negated) as a cost function 2. (min -log) ≡ (max) probabilities . >99% acc.

 .read_csv(path, sep='\t', header=None) r, c = m.shape model = pytoulbar2.CFN(100000, 10, True) for i in range(r):model.AddVariable("R"+str(i), ["out", "in"]) for j in range(c): model.AddVariable("C"+str(j), ["out", "in"]) for i in range(r):for j in range(c):model.AddFunction(["R"+str(i), "C"+str(j)], [0.0, 0.0, 0.0, -m[j][i]]) return model (solution,, cost, _) = generate_model(sys.argv[1]).Solve() Each with |D i | × |D j | costs in R (di erentiability) 81For the Sudoku, 262, 440 parameters to learn. of i.i.d. assignments of VInterpret costs as energies (∝ -log(probabilities))Maximize the probability of observing the samples inE Maximum loglikelihood M on M L(M, E) = log(v∈E P M (v)) = v∈E log(P M (v)) = v∈E log(Φ M (v)) -log(Z M of i.i.d. assignments of VInterpret costs as energies (∝ -log(probabilities))Maximize the probability of observing the samples inE Maximum loglikelihood M on M L(M, E) = log(v∈E P M (v)) = v∈E log(P M (v)) = v∈E log(Φ M (v)) -log(Z M [Par+17] with L1-norm RegularizationValidation set from the SAT-Net paper 5 (36.2 hints)Validation set from the RRN paper 6 with 17-34 hints.

 contains all variables of row i (resp. column j)

	myCFN = pytoulbar2.CFN(1) # k = 1, so CSP
	for i in range(9):	
	for j in range(9):	
	vIdx = myCFN.AddVariable("X"+str(i+1)+".
	Set S i contains all variables in sub-cell i
	There is an A D	constraint on each of these
	or a clique of pairwise	constraints
	Example	
	Let's have a look at the pytoulbar2 code.

"+str(j+1),range(1,10)) columns[j].append(vIdx) rows[i].append(vIdx) cells[(i//3)*3+(j//3)].append(vIdx) for scope in rows+columns+cells: addCliqueAllDiff(myCFN,scope) # Adds a clique of pairwise difference for v,h in enumerate(grid): if h: myCFN.AddFunction([v],[0 if i == h else 1 for i in range(1,10)]) 11 54

 If all |DX | = 1 obvious minimum update k to Φ M (v) Else choose X ∈ V s.t. |D X | > 1 and u ∈ D X and reduce to 1. one query where we set X = u 2. one where u is removed from D X If all |D X | = 1 obvious minimum update k to Φ M (v) Else choose X ∈ V s.t. |D X | > 1 and u ∈ D Xand reduce to 1. one query where we set X = u 2. one where u is removed from D X value u ∈ D i with no value v ∈ D j such that ϕ ij (u, v) = 0 can be deleted, leaving the problem equivalent. value u ∈ D i with no value v ∈ D j such that ϕ ij (u, v) = 0 can be deleted, leaving the problem equivalent. value u ∈ D i with no value v ∈ D j such that ϕ ij (u, v) = 0 can be deleted, leaving the problem equivalent.Add the projection to ϕ j with + k

	15 Systematic search and local search O Pruning and Bounds All Toulbar2 bells and whistles WCSP solving has made huge progress Learning CFN from data 16 Systematic tree search P T Return the minimum Optimization If the local lower bound ϕ∅ reaches the global upper bound k 17 T Systematic tree search Return the minimum Optimization If the local lower bound ϕ∅ reaches the global upper bound k 17 D F (CP) B F (ILP)? Hybrid Best First Search [All+15] Uses Depth-First Search for a bounded amount of backtracks Time O(d n), linear space Branch and Bound [LW66] Prune! Time O(d n), linear space Branch and Bound [LW66] Prune! Anyspace Pending nodes are pushed onto a list of Open nodes The next DFS starts from the best Open node Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09]) Nice properties Good upper bounds quickly (DFS) A constantly improving global lower bound (optimality gap) Implicit restarts, easy parallelization 18 F (CP) B F (ILP)? Hybrid Best First Search [All+15] Anyspace Uses Depth-First Search for a bounded amount of backtracks Pending nodes are pushed onto a list of Open nodes The next DFS starts from the best Open node Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09]) Nice properties Good upper bounds quickly (DFS) A constantly improving global lower bound (optimality gap) Implicit restarts, easy parallelization 18 F (CP) B F (ILP)? Hybrid Best First Search [All+15] Anyspace Uses Depth-First Search for a bounded amount of backtracks Pending nodes are pushed onto a list of Open nodes The next DFS starts from the best Open node Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09]) Nice properties Good upper bounds quickly (DFS) A constantly improving global lower bound (optimality gap) Implicit restarts, easy parallelization 18 F (CP) B F (ILP)? Hybrid Best First Search [All+15] Anyspace Uses Depth-First Search for a bounded amount of backtracks Pending nodes are pushed onto a list of Open nodes The next DFS starts from the best Open node Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09]) Nice properties Good upper bounds quickly (DFS) A constantly improving global lower bound (optimality gap) Implicit restarts, easy parallelization 18 F (CP) B F (ILP)? Hybrid Best First Search [All+15] Anyspace Uses Depth-First Search for a bounded amount of backtracks Pending nodes are pushed onto a list of Open nodes The next DFS starts from the best Open node Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09]) Nice properties Good upper bounds quickly (DFS) A constantly improving global lower bound (optimality gap) Implicit restarts, easy parallelization 18 A (VNS) 19 P O Systematic search and local search Pruning and Bounds All Toulbar2 bells and whistles WCSP solving has made huge progress Learning CFN from data 20 G A (C N) Filtering by Arc Consistency (support) x Properties Combine ϕ ij and ϕ j Project on X i Combine with ϕ i Unique fixpoint (monotonic), polynomial time (inconsistency detection) 21 G A (C N) Filtering by Arc Consistency (support) x x Properties Combine ϕ ij and ϕ j Project on X i Combine with ϕ i Unique fixpoint (monotonic), polynomial time (inconsistency detection) 21 G A (C N) Filtering by Arc Consistency (support) Properties Combine ϕ ij and ϕ j Project on X i Combine with ϕ i Unique fixpoint (monotonic), polynomial time (inconsistency detection) 21 G CFN [S 00; LS03; LS04; CS04; C +10] Obvious issue Subtract it from its source using -k CFN [S 00; LS03; LS04; CS04; C +10] 22 G Obvious issue	54 54 54 54 54 54 54 54 54 54 54 54 54 54

1) nd + ed 2 variables, n + 2ed constraints: a strong but expensive bound A A A One cannot add functions to the CFN: loss of equivalence, meaningless result Equivalence Preserving Transformations with -k (α -k β) ≡ ((α = k) ? k : α -β) One cannot add functions to the CFN: loss of equivalence, meaningless result Equivalence Preserving Transformations with -k

 : amount of cost shi ed from ϕ i to ϕ ∅ 2. p ija : amount of cost shi ed from ϕ ij to ϕ i (a)3. p jib : amount of cost shi ed from ϕ ij to ϕ j (b)

	P P O	S	A C	()
	Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]	[Coo+10]
	NC+AC+DAC (FDAC): binary & unary (+ direction)[Sch00; Lar02; Coo03] +Existential AC: EDAC, a star (variable incident functions) [Lar+05] +Virtual AC: any spanning tree [Coo+08; Coo+10] Supports provide value ordering heuristics Properties Proper extension of classical NC/DAC or AC respectively Polynomial time, O(ed) space Incremental, strengthens ϕ ∅ (NC ≤ AC ≤ FDAC ≤ EDAC≤ VAC) Full Supports EAC supports VAC supports (k = 1) (Generalized ACs) Stronger bounds than AC in COP [LL12] Properties Proper extension of classical NC/DAC or AC respectively (k = 1) Polynomial time, O(ed) space (Generalized ACs) Incremental, strengthens ϕ ∅ (NC ≤ AC ≤ FDAC ≤ EDAC≤ VAC) Stronger bounds than AC in COP [LL12] 1. u OSAC
		n EAC: ϕ i (u) = 0 can be extended for free on X i 's star Maximize VAC: ϕ i (u) = 0 can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10] i=1
	NC provides reduced cost-based pruning (back-propagation) Set of rational EPTs OSAC [Sch76; Coo07; Wer07; Coo+10] Set of rational EPTs OSAC [Sch76; Coo07; Wer07; Coo+10]
	If (ϕ ∅ + k ϕ i (u)) = k, NC deletes u Maximizing ϕ ∅ is in P (local polytope dual + AC for k) Maximizing ϕ ∅ is in P (local polytope dual + AC for k)	
			25			54

i

 Given a matrix of arbitrary real numbers, find a subset C of columns and R of rows such that the sum of numbers in the submatrix is maximized.Given a matrix of arbitrary real numbers, find a subset C of columns and R of rows such that the sum of numbers in the submatrix is maximized.

	T T T M S S M S S	VAC VAC VAC	P P	OSAC OSAC OSAC
	Problems solved [Coo+10; KZ17] Problems solved [Coo+10; KZ17] Problems solved [Coo+10; KZ17]	
	Tree-structured problems Permutated submodular problems Tree-structured problems Permutated submodular problems Tree-structured problems Permutated submodular problems Data mining, bioinformatics Data mining, bioinformatics	(e.g. Min-Cut) (e.g. Min-Cut) (e.g. Min-Cut)
	OSAC empirically too expensive compared to VAC OSAC empirically too expensive compared to VAC OSAC empirically too expensive compared to VAC
	CFN Arc consistencies provide fast approximate LP bounds CFN Arc consistencies provide fast approximate LP bounds CFN Arc consistencies provide fast approximate LP bounds
	and deal with constraints seamlessly and deal with constraints seamlessly and deal with constraints seamlessly
	Dedicated global constraint Dedicated global constraint	
	Presented in [BSD17; Der+19], dominates MILP and MIQCP. Presented in [BSD17; Der+19], dominates MILP and MIQCP.
	CFN Local Consistencies CFN Local Consistencies CFN Local Consistencies	
	Enhance CP with fast incremental approximate Linear Programming dual bounds Enhance CP with fast incremental approximate Linear Programming dual bounds Enhance CP with fast incremental approximate Linear Programming dual bounds
				27 27	35	54 54 54

Maxime Mulamba et al. "Hybrid Classification and Reasoning for Image-based Constraint Solving". In: Proc. of CPAIOR'20, also in arXiv preprint arXiv:2003.11001.

2020, pp. 364-380. 14

Mark A Hallen and Bruce R Donald. "Protein design by provable algorithms". In: Communications of the ACM 62.10 (2019), pp. 76-84.

Stefan Haller, Paul Swoboda, and Bogdan Savchynskyy. "Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation". In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018. 34

Po-Wei Wang et al. "SATNet: Bridging deep learning and logical reasoning using a di erentiable satisfiability solver". In: ICML'19 proceedings, arXiv preprint arXiv:1905.12149. 2019.

Rasmus Palm, Ulrich Paquet, and Ole Winther. "Recurrent relational networks". In: Advances in Neural Information Processing Systems. 2018, pp. 3368-3378. 48

Céline Brouard, Simon de Givry, and Thomas Schiex. "Pushing data into CP models using Graphical Model Learning and Solving". In: Principles and Practice of Constraint Programming-CP 2020. Springer, 2020. 51

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [START_REF] Trösser | VAC integrality based variable heuristics and initial upper-bounding (vacint and rasps): Relaxation-Aware Heuristics for Exact Optimization in Graphical Models[END_REF] (On the fly) variable elimination [Lar00] Dominance analysis (substitutability/DEE) [Fre91; Des+92; DPO13; All+14]

Function decomposition [Fav+11] Some global cost functions (weighted Regular, All-Di , Among. . .) [START_REF] Ho | Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction[END_REF]All+16] Incremental solving, guaranteed diverse solutions