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The reduction of body size with warming has been proposed as the third universal response to global warming, besides geographical and phenological shifts. Observed body size shifts in ectotherms are mostly attributed to the temperature size rule (TSR) stating that warming speeds up initial growth rate but leads to smaller size when food availability does not limit growth. Nevertheless, climate warming can decrease food availability by modifying biochemical cycles and primary production. Food availability can also influence growth, fecundity and survival and thus potentially modulate the effect of temperature on life history strategies and fitness. However, the interactive effects of temperature and food availability on life history traits have been mostly studied in small invertebrate species where life history traits have been mainly considered in isolation. In contrast, we have limited information on (1) how temperature and food availability jointly influence life history traits in vertebrate predators and (2) how changes in different life history traits combines to influence fitness and population growth. To fill this gap, we investigated under laboratory conditions the independent and interactive effects of temperature (20 or 30 °C) and food availability (restricted or ad libitum) on the growth, fecundity and survival of the medaka fish Oryzias latipes. We next used our empirical estimates of vital rates as input parameters of an Integral Projection model (IPM) to predict how modifications in vital rates translate into generation time and population growth rate (i.e. mean fitness). Our results confirm that warming leads to a higher initial growth rate and lower size leading to crossed growth curves between the two temperatures. Food-restricted fish were smaller than ad libitum fed fish throughout the experiment, leading to nested growth curves. Fish reared at 30 °C matured younger, had smaller size at maturity, had a higher fecundity but had a shorter life span than fish reared at 20 °C. Food restriction increased survival probabilities under both temperature conditions corresponding to a "eat little die old" strategy. According to the IPM, warming reduces generation time and increases mean fitness in comparison to the cold treatments. Food restriction increased generation time and fitness in the cold treatment but had no effect in the warm treatment. Our results highlight the importance of accounting for the interaction between temperature and food availability to understand how body size shifts can affects vital rates and population demography. This is of importance in the context of global warming as resources (e.g., phytoplankton and zooplankton communities in aquatic ecosystems) are predicted to change in size structure and total abundance with increasing temperatures. Interestingly, our results suggest that food restriction has a weaker effect on fish mean fitness under warming.

Introduction

Body size reduction has been proposed as a third universal species response to global warming [START_REF] Daufresne | Global Warming Benefits the Small in Aquatic Ecosystems[END_REF][START_REF] Gardner | Declining Body Size: A Third Universal Response to Warming?[END_REF][START_REF] Sheridan | Shrinking Body Size as an Ecological Response to Climate Change[END_REF], in addition to changes in phenology [START_REF] Visser | Shifts in Phenology Due to Global Climate Change: The Need for a Yardstick[END_REF] and geographic distribution [START_REF] Parmesan | A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems[END_REF]. While the first two responses have been studied extensively [START_REF] Meyer | Impacts of Climate Change on Aquatic Ecosystem Functioning and Health1[END_REF]), the third one has received less attention despite its high prevalence and magnitude. For instance, body size can reduce up to -4 % per °C in terrestrial species and up to -8 % per °C in aquatic ectotherms [START_REF] Forster | Warming-Induced Reductions in Body Size Are Greater in Aquatic than Terrestrial Species[END_REF]. Previous studies focused on proximal mechanisms, (i.e. how environmental factors influence life history traits by impacting physiological and developmental processes [START_REF] Thierry | Integrating Proximate and Ultimate Causation: Just One More Go![END_REF]) and ultimate mechanisms related to the evolution and adaptive value of body size changes [START_REF] Zuo | A General Model for Effects of Temperature on Ectotherm Ontogenetic Growth and Development[END_REF][START_REF] Atkinson | Why Are Organisms Usually Bigger in Colder Environments? Making Sense of a Life History Puzzle[END_REF][START_REF] Frazier | Interactive Effects of Rearing Temperature and Oxygen on the Development of Drosophila Melanogaster[END_REF][START_REF] Hoefnagel | What sets the limit? How thermal limits, performance and preference in ectotherms are influenced by water or energy balance[END_REF][START_REF] Walczyńska | The Temperature-Size Rule in Lecane Inermis (Rotifera) Is Adaptive and Driven by Nuclei Size Adjustment to Temperature and Oxygen Combinations[END_REF][START_REF] Verberk | Shrinking Body Sizes in Response to Warming: Explanations for the Temperature-Size Rule with Special Emphasis on the Role of Oxygen[END_REF] and their variability among species and habitats [START_REF] Horne | Temperature-Size Responses Match Latitudinal-Size Clines in Arthropods, Revealing Critical Differences between Aquatic and Terrestrial Species[END_REF][START_REF] Forster | Warming-Induced Reductions in Body Size Are Greater in Aquatic than Terrestrial Species[END_REF][START_REF] Atkinson | Temperature and Organism Size-A Biological Law for Ectotherms?[END_REF]. In aquatic systems, warming decreases oxygen concentration and hypoxia tends to amplify TS responses, which has been interpreted as a response to limited oxygen resource [START_REF] Frazier | Interactive Effects of Rearing Temperature and Oxygen on the Development of Drosophila Melanogaster[END_REF][START_REF] Hoefnagel | What sets the limit? How thermal limits, performance and preference in ectotherms are influenced by water or energy balance[END_REF][START_REF] Verberk | Shrinking Body Sizes in Response to Warming: Explanations for the Temperature-Size Rule with Special Emphasis on the Role of Oxygen[END_REF]. In contrast, in terrestrial system, oxygen is less limiting and other factors may be more important than oxygen concentration. For instance, the risks of not completing juvenile development in time before the onset of winter strongly determine growth pattern in terrestrial organisms whereas it has less influence in the growth of aquatic organisms [START_REF] Verberk | Shrinking Body Sizes in Response to Warming: Explanations for the Temperature-Size Rule with Special Emphasis on the Role of Oxygen[END_REF]). These differences may explain why TS responses are weaker in terrestrial than in aquatic ecosystems [START_REF] Forster | Warming-Induced Reductions in Body Size Are Greater in Aquatic than Terrestrial Species[END_REF]. At the individual level, body size shift can be explained by the "Temperature Size Rule" (TSR, [START_REF] Atkinson | Temperature and Organism Size-A Biological Law for Ectotherms?[END_REF][START_REF] Atkinson | Why Are Organisms Usually Bigger in Colder Environments? Making Sense of a Life History Puzzle[END_REF][START_REF] Angilletta | Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle1[END_REF][START_REF] Berrigan | Reaction Norms for Age and Size at Maturity in Response to Temperature: A Puzzle for Life Historians[END_REF][START_REF] Perrin | About Berrigan and Charnov's Life-History Puzzle[END_REF][START_REF] Arendt | Ecological Correlates of Body Size in Relation to Cell Size and Cell Number: Patterns in Flies, Fish, Fruits and Foliage[END_REF][START_REF] Arendt | Size-Fecundity Relationships, Growth Trajectories, and the Temperature-Size Rule for Ectotherms[END_REF], which states that ectotherms grow faster but reach a smaller size at a given stage of development (e.g. size at maturity or adult size) under warm environment compared to colder ones, resulting in "crossed" growth curves (Figure 1). This pattern of TSR remains an evolutionary puzzle [START_REF] Atkinson | Why Are Organisms Usually Bigger in Colder Environments? Making Sense of a Life History Puzzle[END_REF] and body size shifts could be the result of different developmental strategies. For example, a recent study showed that warming accelerates growth and reproduction leading to a rapid life cycle but also a decrease in adult survival in a temperate lizard species [START_REF] Bestion | Live Fast, Die Young: Experimental Evidence of Population Extinction Risk Due to Climate Change[END_REF]. This study and others [START_REF] Marn | Environmental Effects on Growth, Reproduction, and Life-History Traits of Loggerhead Turtles[END_REF][START_REF] Jones | Long-Term Changes in Food Availability Mediate the Effects of Temperature on Growth, Development and Survival in Striped Marsh Frog Larvae: Implications for Captive Breeding Programmes[END_REF][START_REF] Corrêa | Life History Trait Response to Ambient Temperature and Food Availability Variations in the Bean Weevil Zabrotes Subfasciatus[END_REF][START_REF] Clissold | Temperature, Food Quality and Life History Traits of Herbivorous Insects[END_REF][START_REF] Kingsolver | Thermal Reaction Norms for Caterpillar Growth Depend on Diet[END_REF][START_REF] Rohner | Critical Weight Mediates Sex-Specific Body Size Plasticity and Sexual Dimorphism in the Yellow Dung Fly Scathophaga Stercoraria (Diptera: Scathophagidae)[END_REF] suggest that it is important to investigate the links between growth trajectories and fitness related traits (survival and fecundity) to better understand the underlying trade-offs and how the combination of these traits may influence individual fitness and population demographic parameters. However, most studies on TSR did not investigate these links (but see [START_REF] Marn | Environmental Effects on Growth, Reproduction, and Life-History Traits of Loggerhead Turtles[END_REF][START_REF] Corrêa | Life History Trait Response to Ambient Temperature and Food Availability Variations in the Bean Weevil Zabrotes Subfasciatus[END_REF][START_REF] Kingsolver | Thermal Reaction Norms for Caterpillar Growth Depend on Diet[END_REF]) which limits our ability to detect situations in which TSR might be adaptive (i.e. increase fitness) or maladaptive.

Besides temperature, another major factor underlying growth, reproduction and survival is food availability [START_REF] Boggs | The Effect of Adult Food Limitation on Life History Traits in Speyeria Mormonia (Lepidoptera: Nymphalidae)[END_REF][START_REF] Giberson | Effects of Temperature, Food Quantity, and Nymphal Rearing Density on Life-History Traits of a Northern Population of Hexagenia (Ephemeroptera:Ephemeridae)[END_REF][START_REF] Boersma | Food Effects on Life History Traits and Seasonal Dynamics of Ceriodaphnia Pulchella[END_REF][START_REF] Corrêa | Life History Trait Response to Ambient Temperature and Food Availability Variations in the Bean Weevil Zabrotes Subfasciatus[END_REF]. Individuals need enough resources, as energy and material inputs, to sustain their metabolic demand and optimize the allocation of energy to growth, reproduction and maintenance [START_REF] Lemoine | Temperature-Induced Mismatches between Consumption and Metabolism Reduce Consumer Fitness[END_REF][START_REF] Brown | Toward a Metabolic Theory of Ecology[END_REF][START_REF] Cross | Interactions between Temperature and Nutrients across Levels of Ecological Organization[END_REF]. There is a long history of researches on the influence of food availability on the growth rate and fecundity of ectothermic species [START_REF] Rasmussen | Influence of Growth Rate on White Muscle Dynamics in Rainbow Trout and Brook Trout[END_REF][START_REF] Johnston | Effects of Dietary Protein Level on Muscle Cellularity and Flesh Quality in Atlantic Salmon with Particular Reference to Gaping[END_REF][START_REF] Giberson | Effects of Temperature, Food Quantity, and Nymphal Rearing Density on Life-History Traits of a Northern Population of Hexagenia (Ephemeroptera:Ephemeridae)[END_REF][START_REF] Boersma | Food Effects on Life History Traits and Seasonal Dynamics of Ceriodaphnia Pulchella[END_REF][START_REF] Corrêa | Life History Trait Response to Ambient Temperature and Food Availability Variations in the Bean Weevil Zabrotes Subfasciatus[END_REF]. In most cases, individuals with a higher food availability have a higher fecundity and have both a higher initial growth rate and a larger size at age compared to individuals under food restriction. In contrast to the pattern of crossed curves driven by temperature, different resource levels lead to a pattern of nested curves where the growth curve under limiting resources is nested below the growth curve under unlimited resources (Figure 1). Interestingly, food restriction may also be beneficial to the lifespan of organisms as this restriction reduces the production of senescence-accelerating oxidizing agents during metabolism [START_REF] Sohal | Oxidative Stress, Caloric Restriction, and Aging[END_REF][START_REF] Gredilla | Caloric Restriction Decreases Mitochondrial Free Radical Generation at Complex I and Lowers Oxidative Damage to Mitochondrial DNA in the Rat Heart[END_REF][START_REF] Speakman | Body Size, Energy Metabolism and Lifespan[END_REF], resulting in a "eat little die old" strategy. The effects of food restriction on fecundity (which decreases) and survival (which increases) are thus opposite and can be explained by a resources distribution to nutrient-limited processes [START_REF] Corrêa | Life History Trait Response to Ambient Temperature and Food Availability Variations in the Bean Weevil Zabrotes Subfasciatus[END_REF]. This indicates that we should consider the effects of food restriction on multiple life history traits to better identify underlying trade-offs, fitness consequences and thus evolutionary strategies.

The interactive effects of temperature and food availability on life history traits have been studied in invertebrates such as daphnia [START_REF] Betini | Food Availability Modulates Temperature-Dependent Effects on Growth, Reproduction, and Survival in Daphnia Magna[END_REF][START_REF] Giebelhausen | Temperature Reaction Norms of Daphnia Magna: The Effect of Food Concentration[END_REF], Wojewodzic et al. 2011[START_REF] Persson | Increased Risk of Phosphorus Limitation at Higher Temperatures for Daphnia Magna[END_REF]), rotifers (Kielbasa et al. 2014), diatoms [START_REF] Walczyńska | The Underestimated Role of Temperature-Oxygen Relationship in Large-Scale Studies on Size-to-Temperature Response[END_REF], aquatic insect larvae [START_REF] Giberson | Effects of Temperature, Food Quantity, and Nymphal Rearing Density on Life-History Traits of a Northern Population of Hexagenia (Ephemeroptera:Ephemeridae)[END_REF], terrestrial insects [START_REF] Clissold | Temperature, Food Quality and Life History Traits of Herbivorous Insects[END_REF][START_REF] Corrêa | Life History Trait Response to Ambient Temperature and Food Availability Variations in the Bean Weevil Zabrotes Subfasciatus[END_REF][START_REF] Kingsolver | Thermal Reaction Norms for Caterpillar Growth Depend on Diet[END_REF][START_REF] Rohner | Critical Weight Mediates Sex-Specific Body Size Plasticity and Sexual Dimorphism in the Yellow Dung Fly Scathophaga Stercoraria (Diptera: Scathophagidae)[END_REF][START_REF] Lee | Temperature-by-Nutrient Interactions Affecting Growth Rate in an Insect Ectotherm[END_REF], fish [START_REF] Mcleod | Climate Change and the Performance of Larval Coral Reef Fishes: The Interaction between Temperature and Food Availability[END_REF] and turtles [START_REF] Marn | Environmental Effects on Growth, Reproduction, and Life-History Traits of Loggerhead Turtles[END_REF]. In these studies, warming generally resulted in a rapid life cycle by increasing growth rates and decreasing age and size at maturity as well as survival probabilities. However, these thermal effects were often modulated by food availability. In particular, temperature and food availability can covary and impact ectotherm life history traits. [START_REF] Koussoroplis | Covariance Modulates the Effect of Joint Temperature and Food Variance on Ectotherm Life-History Traits[END_REF] showed that the effect of food restriction on life history traits is more severe when temperature moves away from the optimal temperature. Nevertheless, these previous studies did not fully investigated how the effects of temperature and food restriction on multiple life history traits combine to influence fitness and population demographic parameters (e.g. generation time and population growth rate). This is an important limitation as we need to determine how the combination of effects on multiple traits influence fitness to understand the adaptive value of plastic and evolutionary responses to environmental factors; the latter being the focus of several studies and intense debates in the literature on TSR (see [START_REF] Kingsolver | Size, Temperature, and Fitness: Three Rules[END_REF], Fryxell et al. 2020[START_REF] Walters | The Temperature-Size Rule in Ectotherms: May a General Explanation Exist after All?[END_REF][START_REF] Zamudio | Bigger Isn't Always Better: Body Size, Developmental and Parental Temperature and Male Territorial Success in Drosophila Melanogaster[END_REF]. In addition, almost all the studies mentioned above were conducted on small invertebrate species (but see [START_REF] Mcleod | Climate Change and the Performance of Larval Coral Reef Fishes: The Interaction between Temperature and Food Availability[END_REF][START_REF] Marn | Environmental Effects on Growth, Reproduction, and Life-History Traits of Loggerhead Turtles[END_REF]. As a result, we have very limited information on how temperature and food availability jointly influence life history traits of vertebrate predators. This is of importance as body size changes in predatory species can alter population structure and influence trophic interaction strength and food webs stability [START_REF] Emmerson | Predator-Prey Body Size, Interaction Strength and the Stability of a Real Food Web[END_REF][START_REF] Sentis | Temperature-Size Responses Alter Food Chain Persistence across Environmental Gradients[END_REF][START_REF] Osmond | Warming-Induced Changes to Body Size Stabilize Consumer-Resource Dynamics[END_REF], Uzsko et al. 2022).

In this study, we address this gap by experimentally investigating growth, reproduction and survival probability of a vertebrate predatory species, the medaka fish (Oryzias latipes, Temminck & schlegel), raised at two temperatures (20 and 30 °C) with and without food restriction. Our objectives were to investigate whether (1) TSR is maintained under food-restricted conditions, (2) food restriction modulates the effects of temperature on the growth, fecundity and survival of a vertebrate predatory species and (3) the effects of temperature and food on individual traits affect fitness and demographic parameters. To this end, we implemented our empirical measurements of life history traits into Integral Projection Models (IPMs) to understand and predict how their combined effects determine mean fitness and generation time across our different treatments of temperature and food restriction. We hypothesized that warming would increase growth and fecundity but lower survival, leading to rapid life cycle (short generation time). Moreover, we hypothesized that these thermal effect would be modulated by food restriction, the latter would increase survival and selects for late maturation at larger body size. We therefore expected that food restriction would increase the population generation time. Overall, our aim was to better understand to which extent investigating growth, reproduction and survival patterns could help disentangling the relative impacts of temperature and resource availability on body size shifts under global warming as well as understanding the adaptive values of these phenotypic responses. 

Material and methods

Biological system and rearing conditions

The medaka is a small iteroparous freshwater fish native to East Asia [START_REF] Hirshfield | An Experimental Analysis of Reproductive Effort and Cost in the Japanese Medaka, Oryzias Latipes[END_REF]. The life span of a medaka is about 2 years and its adult size varies between 30 and 50 mm (Ding et al. 2010, Egami and[START_REF] Egami | Life Span Data for the Small Fish, Oryzias Latipes[END_REF]. This is an eurythermal species (5 °C -35 °C) with an optimum temperature of 25 °C [START_REF] Dhillon | Growth-Independent Effects of Temperature on Age and Size at Maturity in Japanese Medaka (Oryzias Latipes)[END_REF]. At this temperature, the medaka requires only 10 to 12 weeks to reach sexual maturity. Fish were maintained in the laboratory using an open water system with water supply controlled by drip emitters (1 L.h -1 ). Input water quality was maintained with mechanical, biological and UV filtration with a pH of 7.5 at 16 °GH. Each tank (25 x 40 x 20 cm) was equipped with an air filter to prevent high nitrite concentrations and maintain oxygen at saturation. The parental F0 generation consisted in a total of 76 fish (approximately 120 days old) of the CAB strain provided by Carolina Biological Supply Company (Burlington, NC, USA ; from AMAGEN, Gifsur-Yvette, France) and WatchFrog (Evry, France). At reception, fish were kept for 5 days at 25 °C. Then, half of the fish were placed into five 20 L tanks for the "cold" thermal regime and the other half were placed into five 20 L tanks for the "warm" thermal regime. The female to male sex ratio per tank ranged from 1.33 to 1.66. The tank temperatures were increased or decreased by 0.5 °C every days until they reached 30 °C or 20 °C. During this acclimation period, the photoperiod was 12h: 12h (day: night) and, after acclimation, it was then adjusted to 16h: 8h (day: night) which is optimal for medaka reproduction [START_REF] Hirshfield | An Experimental Analysis of Reproductive Effort and Cost in the Japanese Medaka, Oryzias Latipes[END_REF].

From this F0 generation, about 300 eggs were collected in each tank. Eggs were placed in small nurseries (2.5 L) made of fine mesh and each nursery was placed in the tank where the eggs were collected from (see [START_REF] Hemmer-Brepson | Non-Stressful Temperature Effect on Oxidative Balance and Life History Traits in Adult Fish (Oryzias Latipes)[END_REF][START_REF] Loisel | Variation of Thermal Plasticity in Growth and Reproduction Patterns: Importance of Ancestral and Developmental Temperatures[END_REF] for more details). After 30 days of growth, the parents were removed and the F1 fish larvae were reared under four different treatment: ad_20 (ad libitum and 20 °C), res_20 (restriction and 20 °C), ad_30 (ad libitum and 30 °C) and res_30 (restriction and 30 °C). For each treatment, the growth of approximately 80 fish was monitored, except for res_20 where only 54 fish could be maintained. Fish were maintained in 20 L aquaria with 20 -30 fish of a single treatment. This density (less than 2 -3 fish per liter) does not cause any stress or agonistic behaviour in this species [START_REF] Denny | Guidelines for Culturing the Japanese Medaka, 'Oryzias Latipes[END_REF]. The fish were fed with TetraMin © (composition: 47 % protein, 10 % fat content, 3 % cellulose and 6 % water) every morning (for the ad libitum condition) or every two mornings (for the restriction condition). On each feeding days, TetraMin © was provided to each tank until the fish no longer went up to the surface to get food. Excess food was systematically removed after feeding to prevent feeding between two meals. Apart from temperature and food, all the experimental parameters were similar in the four treatments.

The species-specific optimal thermal range for TSR is the range between the temperature at which the population growth rate becomes positive, and the temperature at which population growth rate is maximal [START_REF] Walczyńska | Optimal Thermal Range' in Ectotherms: Defining Criteria for Tests of the Temperature-Size-Rule[END_REF]. Outside of this thermal range, the TSR pattern may not be observed, although the TSR can be maintained for temperatures slightly above the optimal temperature [START_REF] Walczyńska | Optimal Thermal Range' in Ectotherms: Defining Criteria for Tests of the Temperature-Size-Rule[END_REF]. [START_REF] Yamamoto | Medaka (Killifish)[END_REF] and [START_REF] Hirshfield | An Experimental Analysis of Reproductive Effort and Cost in the Japanese Medaka, Oryzias Latipes[END_REF] reported that the optimal temperature for medaka reproduction is 27 °C, suggesting that the population growth rate is maximal at this temperature. Furthermore, [START_REF] Dhillon | Growth-Independent Effects of a Fluctuating Thermal Regime on the Life-History Traits of the Japanese Medaka (Oryzias Latipes)[END_REF] showed that individual growth rate did not differ for medakas reared at 27 °C or 30 °C, suggesting that our experimental temperatures are within the "optimal thermal range" for TSR and that our results are not the product of a response to a thermal stress.

Growth, fecundity and survival

The total length (from the head to the tip of the caudal fin, TL) of each fish was measured with a precision of 0.5 mm at 30, 45, 60, 100, 150, 200, 300 and 350 days. Fish were measured after placing them on a 5 cm diameter Petri dish layered with a millimeter graph paper and filled with water. They were then immediately released into their respective tank. An average of 150.6 ± 18.1 fish were measured per age (see Fig. S 1 for more details). As fish were not identified individually, the growth curves applies to the experimental population (i.e. one curve per treatment) and not to individuals. The investment in reproduction was quantified from sexual maturity by counting the number of eggs laid per female per day in each tank. The survival probability from 60 days (age of first sexually mature fish), referred to as survival in this study, was monitored daily until the end of the experiment.

Statistical analysis

TL measurements and ages were used to fit von Bertalanffy growth curve model (Von Bertalanffy 1938):

𝐿 𝑡 = 𝐿 ∞ (1 -𝑒 -𝐾(𝑡-𝑡 0 ) )(eq. 1)
Where Lt is the estimated total length at time t, L∞ the maximum asymptotic size (i.e. the total length for fish with an ∞ age), K the initial growth rate, and t0 the theoretical age at which body size is null.

Von Bertallanfy growth curves parameters (L∞, K, t0) were estimated by Bayesian inference using the Bayesian software JAGS and the "R2jags" package [START_REF] Su | Package 'R2jags'. R package version 0[END_REF] in R software (version 4.0.2; R development Core Team). We assumed that the asymptotic size L∞, the initial growth rate K, and the theoretical age at null size t0 could vary between temperature (T) and resource (C) condition. Consequently, four values of L∞, K and t0 (one for each combination (CT) of temperature and resource condition) were fitted. For each parameter, we used a normal uninformative prior with a mean of 0 and a precision parameter (inverse of the variance) of 0.001:

𝐿 ∞𝐶𝑇 ~ 𝑁(0,0.001) 𝐾 𝐶𝑇 ~ 𝑁(0,0001) 𝑡 0𝐶𝑇 ~𝑁(0,0.001) (eq. 2)
To account for tanks (t) variability, we estimated random effects ε for each parameter using a multivariate normal distribution, ε ~ N(0, Σ). The covariance matrix Σ(3,3) was defined as:

| 𝜎 𝐿 ∞ 2 𝑟 1 ⋅ 𝜎 𝐿 ∞ ⋅ 𝜎 𝐾 𝑟 2 ⋅ 𝜎 𝐿 ∞ ⋅ 𝜎 𝑡 0 𝑟 1 ⋅ 𝜎 𝐿 ∞ ⋅ 𝜎 𝐾 𝜎 𝐾 2 𝑟 3 ⋅ 𝜎 𝐾 ⋅ 𝜎 𝑡 0 𝑟 2 ⋅ 𝜎 𝐿 ∞ ⋅ 𝜎 𝑡 0 𝑟 3 ⋅ 𝜎 𝐾 ⋅ 𝜎 𝑡 0 𝜎 𝑡 0 2 | (eq. 3)
With 𝜎 𝐿 ∞ , 𝜎 𝐾 , 𝜎 𝑡 0 the standard deviations of each random vector, one per parameter, and r1, r2, r3 the correlations between these vectors. We used uninformative priors with a uniform distribution for each parameter of Σ, adapting the limits to the parameters (e.g between -1 and 1 for a correlation).

𝐿 ∞𝐶𝑇 , 𝐾 𝐶𝑇 and 𝑡 0𝐶𝑇 are thus hyperpriors (population parameters) that serve to assess parameters for each tank (t) when associated with the random effects. For instance for the 𝐿 ∞ parameter:

𝐿 ∞𝑡 = 𝐿 ∞𝐶𝑇 + 𝜀 𝐿 ∞ 𝑡 (eq. 4)
We then used (eq. 1) to estimate the expected mean total length 𝐿 𝑡𝑗 for each tank (t), and each age (j):

𝐿 𝑡𝑗 = 𝐿 ∞𝑡 (1 -𝑒 -𝐾 𝑡 (𝑡 𝑗 -𝑡 0𝑡 ) ) (eq. 5)

Finally, we hypothesized that the observed total length of each fish (f), L, was normally distributed:

𝐿 𝑓𝑡𝑗 ~𝑁(𝐿 𝑡𝑗 , 𝜎) 𝜎 ~𝑈(0,10) (eq. 6)

To compare the growth patterns among temperature and resource conditions, we plotted the average growth curves for each treatment (combination of food condition and temperature), and their credibility interval (CI) using the posterior distributions of the parameters (L∞CT, KCT, t0CT) that were obtained from five independent Monte-Carlo Markov Chains (see Fig. S 2 for more details on the estimated parameter values). For each chain, after an initial burning of 50 000 values, 400 000 iterations were computed and we conserved one value every 200 iterations to limit autocorrelation between estimations. The posterior distributions for each average total length at age (L) were thus constituted of 10,000 values. The quantiles 2.5 % and 97.5 % were used to estimate credibility intervals CIs. We compared the growth curves among our four experimental treatments by investigating the overlap among their CIs. Curves were considered as significantly different when their CIs do not overlap [START_REF] Pritchard | Frair: An R Package for Fitting and Comparing Consumer Functional Responses[END_REF].

We investigated the effects of temperature, food restriction and their interaction (fixed effects) on mean daily clutch size per female (log transformed) and survival probabilities using a linear mixed effects model (lmer function in the "lme4" package [START_REF] Bates | Fitting Linear Mixed-Effects Models Using Lme4[END_REF]) and a mixed effects Cox proportional hazards model (coxme function in the "coxme" package (Therneau et al. 2022)), respectively, with tank as random factor. For both models, analyses of deviance using Wald tests were provided to test the significance of fixed parameters. We tested the assumptions of the mixed effects Cox proportional hazards model using the cox.zph function ("survival" package (Therneau et al. 2022)) which correlates the corresponding set of scaled Schoenfeld residuals with time to test for independence between residuals and time (see 

Integral Projection Modelling

Integral Projection Models are discrete-time, structured population models that estimate the asymptotic behaviour of populations by combining life history traits that can be discrete or continuous [START_REF] Levin | Ipmr: Flexible Implementation of Integral Projection Models in R[END_REF]. We used our empirical measurement of life history traits to quantify the fitness of populations simulated by IPMs for our four experimental treatments of temperature and food restriction. To build an IPM, the first step is to represent the life cycle of the focal species. At each time step, an individual medaka has a probability s to survive. If it survives, it grows according to a growth function g. This individual has a chance to reproduce according to the function f_p, and if it reproduces, it produces a number of eggs according to the fecundity function f_n. In the model, the vital rates (s, g, f_p, f_n) are functions of the fish body size at time t. The eggs have hatching and survival probabilities according to the function f_g, and the resulting juvenile fish have a size distribution f_d. Egg hatching rate, survival of juvenile and their size distribution are independent from the size of their parents.

We used a similar IPM structure as in [START_REF] Bogdan | Demographic Analysis of an Israeli Carpobrotus Population[END_REF]: 𝑛(𝑧 ′ , 𝑡 + 1) = ∫ 𝐾(𝑧 ′ , 𝑧)𝑛(𝑧, 𝑡)𝑑𝑧 (eq. 7)

𝑈

𝐿

Where n(z', t+1) is the size of the population at time t+1, z' is the state variable describing the population (i.e. body size in our model). n(z', t+1) is obtained by integrating the product of K(z',z) and n(z,t) over the domain [L, U]. In our model, the lower bound L is the minimum fish size and the upper bound U is the maximum size. K(z',z) is a bivariate kernel function that describes the transitions to state z' given the initial state of an individual z at time t. K(z',z) consists of two sub-kernels P and F. P describes the survival and growth of fish at time t (P = s • g) and F describes the number and body size of juveniles at time t+1 according to reproduction probability, hatching rate, juvenile survival and body size distribution (F = f_p • f_n • f_g • f_d).

This yields to:

𝑛(𝑧 ′ , 𝑡 + 1) = ∫ [𝑃(𝑧 ′ , 𝑧) + 𝐹(𝑧 ′ , 𝑧)]𝑛(𝑧, 𝑡)𝑑𝑧 𝑈 𝐿 (eq. 8)

The analytical solutions of IPMs are very resource expensive. An alternative method to solve eq. 8 is to use the integration rule of the midpoint of the meshes along the domain [L,U] [START_REF] Ellner | Data-Driven Modelling of Structured Populations: A Practical Guide to the Integral Projection Model[END_REF]). In our model, the domain extends from the predicted size in log of a fish after 30 days (L) to the maximum observed size in log (U). The number of meshes along this domain was set to 400.

To obtain the survival function s, we used Kaplan-Meier estimate to compute the survival probability for each sampled age. We then associated survival probabilities to fish body size using the estimated age-size relationship from the fitted Von Bertalanffy model. Survival probability (s) in function of body size was estimated using a logistic equation for each experimental treatment of temperature and food restriction.

To obtain the growth function g, we predicted the size at t (Lt) (from 0 to 350 days) of 10,000 fish from the 10,000 combinations of Von Bertallanfy parameters from the Bayesian model posterior distributions. We then calculated the size at t+1 (Lt+1) from Lt following the formula:

𝐿 𝑡+1 = 𝐿 𝑡 • 𝑒 -𝐾 + 𝐿 ∞ • (1 -𝑒 -K ) (eq. 9)
For each age, we computed the standard deviation of the sizes at t+1 (10,000 values), and then considered the average value of the standard deviations to implement residual variation around growth (g).

For the reproduction probability (f_p), we used a logistic equation considering that all fish reproduce once they reach their treatment-dependent age at maturity. For the fecundity function (f_n), we used a Poisson regression model to describe the link between fish size and egg number. Egg hatching rate and survival probability (f_g) and the body size distribution of juveniles (f_d) were estimated from unpublished data from the same experimental populations. We used the "ipmr" R package functions to define the kernels (define_kernel), the domain (define_domains), and the initial state of the population (define_pop_state), and to compute the IPMs (make_ipm). The number of iterations of the IPMs was fixed per treatment to achieve asymptotic dynamics according to the is_conv_to_asymptotic function. We used the gen_time and lambda functions from the "Rage" and "ipmr" R packages to quantify the generation time T and the asymptotic per capita population growth rate λ. We quantified the uncertainty of T and λ by bootstrapping 1000 combinations of L∞, K and t0 from the Bayesian model posterior distributions (with replacement) and by using 1000 random sample of each vital rate data set (survival, reproduction and fecundity) and refitting all demographic functions s, g, f_p, f_n . For each new iteration, we ran an IPM and estimated T and λ. This yielded 1000 estimates of T and λ for each experimental treatments. We next calculated the 95 % confidence intervals of T and λ and compared their mean values across experimental treatments based on the overlap of their 95 % confidence intervals. We also performed a sensitivity analysis to investigate the sensitivity of T and λ to small changes in the vital rate estimates (see Fig. S 5). Data and scripts used to build the IPMs and perform the sensitivity analysis are available online.

Results

We found that, under ad libitum conditions, warming leads to crossed growth curves by increasing initial growth rate and decreasing adult size (Figure 2). The same pattern was observed under food restriction, although the curves crossed later for the food-restricted fish compared to ad libitum fish. Food restriction in the cold treatment leads to nested growth curves throughout the experiment by decreasing the initial growth rate and adult size. Growth curves also tended to be nested in the warm treatment although the credibility intervals overlapped until day 149 and the curves were only significantly different toward the end of the experiment (from day 149 to day 316, Figure 2). Black and red colors represent the cold and warm treatments (i.e. 20 and 30 °C), respectively. Solid and dotted lines represent the ad libitum and the food restriction treatments, respectively. Areas represent the 95 % credibility intervals.

Vertical bars represent age at maturity. As fish were not identified individually, jittered points represent experimentally measured sizes (in mm) at age (in days) of fish from different replicates (i.e.tanks).

In the warm treatment, the fish were sexually mature at 67.3 ± 2.3 days (body length: 16.8 ± 0.1 mm) under ad libitum condition and at 60 days for all replicates (body length: 17.2 ± 0.7 mm) under food restriction. In the cold treatment, they were sexually mature at 169.7 ± 0.6 days (body length: 26.3 ± 0.6 mm) and 186.5 ± 0.7 days (body length: 25.7 ± 0.4 mm) under ad libitum and food restriction conditions, respectively (Figure 3). We found that warming increased mean daily clutch size per female (df = 1, Chi² = 13.26, p < 0.001) and food restriction decreased it (df = 1, Chi² = 10.58, p = 0.001). Mean daily clutch size per female was not dependent on the interaction between temperature and food conditions (df = 1, chi² = 0.79, p = 0.37). The fish survival was not significantly affected by the interaction between warming and food restriction (Chi² = 0.70, df = 1, p = 0.40, n = 292). In contrast, warming significantly reduced the fish survival (Chi² = 6.96, df = 1, p = 0.01, n = 292). Moreover, food restriction significantly increased survival (Chi² = 15.04, df = 1, p < 0.001, n = 292) (Figure 4). We found that warming decreased generation time T and increased the asymptotic per capita population growth rate λ (Figure 5). In the cold treatment, food restriction significantly increased T and λ. Food restriction had no significant effect on T and λ in the warm treatment as their 95 % confidence intervals overlapped. 

Discussion

Shrinking body size with increasing temperature has been proposed as a third universal response to global warming [START_REF] Daufresne | Global Warming Benefits the Small in Aquatic Ecosystems[END_REF][START_REF] Gardner | Declining Body Size: A Third Universal Response to Warming?[END_REF]). In addition, resources are expected to change with global warming [START_REF] De | Community Stoichiometry in a Changing World: Combined Effects of Warming and Eutrophication on Phytoplankton Dynamics[END_REF], in response to changes in physicochemical, phenological [START_REF] Visser | Shifts in Phenology Due to Global Climate Change: The Need for a Yardstick[END_REF] and geographical parameters [START_REF] Parmesan | A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems[END_REF]. The independent and interactive effects of temperature and food availability on life history traits have been mainly studied in small aquatic [START_REF] Betini | Food Availability Modulates Temperature-Dependent Effects on Growth, Reproduction, and Survival in Daphnia Magna[END_REF][START_REF] Giebelhausen | Temperature Reaction Norms of Daphnia Magna: The Effect of Food Concentration[END_REF], Wojewodzic et al. 2011[START_REF] Persson | Increased Risk of Phosphorus Limitation at Higher Temperatures for Daphnia Magna[END_REF][START_REF] Giberson | Effects of Temperature, Food Quantity, and Nymphal Rearing Density on Life-History Traits of a Northern Population of Hexagenia (Ephemeroptera:Ephemeridae)[END_REF] and terrestrial [START_REF] Clissold | Temperature, Food Quality and Life History Traits of Herbivorous Insects[END_REF][START_REF] Corrêa | Life History Trait Response to Ambient Temperature and Food Availability Variations in the Bean Weevil Zabrotes Subfasciatus[END_REF][START_REF] Rohner | Critical Weight Mediates Sex-Specific Body Size Plasticity and Sexual Dimorphism in the Yellow Dung Fly Scathophaga Stercoraria (Diptera: Scathophagidae)[END_REF][START_REF] Lee | Temperature-by-Nutrient Interactions Affecting Growth Rate in an Insect Ectotherm[END_REF] invertebrate species. However, we have limited information on how temperature and food availability jointly influence life history traits in vertebrate predators and how the integration of these traits may influence population fitness. Our objective was thus to test whether food availability can modulate the effects of temperature on size at age and life history traits of a vertebrate predator species, the medaka fish, and to investigate how these traits can affect population demographic parameters and life history strategies.

The results of our laboratory experiment indicate that, in agreement with the TSR rule [START_REF] Atkinson | Why Are Organisms Usually Bigger in Colder Environments? Making Sense of a Life History Puzzle[END_REF][START_REF] Berrigan | Reaction Norms for Age and Size at Maturity in Response to Temperature: A Puzzle for Life Historians[END_REF][START_REF] Arendt | Size-Fecundity Relationships, Growth Trajectories, and the Temperature-Size Rule for Ectotherms[END_REF]), warming leads to crossed growth curves with individuals growing faster but reaching a smaller size at maturity and adult size compared to the cold condition. We conducted a short synthesis of the results of previous experimental studies investigating the responses in size at maturity or adult size to warming and food conditions (see Table S 1). This synthesis shows the important variability in the responses of size at maturity or adult size to temperature and food and the complexity of understanding the mechanisms underlying the control of body size in ectotherms. In line with our results, warming generally leads to a decrease in size at maturity and adult size in experimental studies (Table S 1). Nevertheless, some studies reported that temperature does not affect size at maturity or adult size, or can even increase body size (Table S 1). We found that food restriction does not affect size at maturity but leads to nested curves where restricted fish are smaller than non-restricted fish for each given age. These results are consistent with other experimental studies reporting that food restriction decreases adult size but does not affect size at maturity (Table S 1). In contrast, [START_REF] Giebelhausen | Temperature Reaction Norms of Daphnia Magna: The Effect of Food Concentration[END_REF], Courtney [START_REF] Jones | Long-Term Changes in Food Availability Mediate the Effects of Temperature on Growth, Development and Survival in Striped Marsh Frog Larvae: Implications for Captive Breeding Programmes[END_REF], and [START_REF] Rohner | Critical Weight Mediates Sex-Specific Body Size Plasticity and Sexual Dimorphism in the Yellow Dung Fly Scathophaga Stercoraria (Diptera: Scathophagidae)[END_REF] found a decrease in size at maturity under food restriction. Furthermore, the food restriction effects appeared to be greater at 20 °C where the growth curve for the restricted fish was more nested (i.e. below the curves for non-restricted fish) than at 30 °C. This is surprising because we expected food restriction to have more effect in warm treatment (as reported in [START_REF] Mcleod | Climate Change and the Performance of Larval Coral Reef Fishes: The Interaction between Temperature and Food Availability[END_REF], Wojewodzic et al. 2011[START_REF] Persson | Increased Risk of Phosphorus Limitation at Higher Temperatures for Daphnia Magna[END_REF][START_REF] Giberson | Effects of Temperature, Food Quantity, and Nymphal Rearing Density on Life-History Traits of a Northern Population of Hexagenia (Ephemeroptera:Ephemeridae)[END_REF] because warming increases metabolic rates which implies higher energy demand and feeding rate to sustain high metabolic costs [START_REF] Brown | Toward a Metabolic Theory of Ecology[END_REF]). For instance, [START_REF] Betini | Food Availability Modulates Temperature-Dependent Effects on Growth, Reproduction, and Survival in Daphnia Magna[END_REF] found a TSR amplification under food restriction with a body size reduction under warming five time stronger under food restriction than under unlimited food conditions. [START_REF] Wojewodzic | Joint Effect of Phosphorus Limitation and Temperature on Alkaline Phosphatase Activity and Somatic Growth in Daphnia Magna[END_REF] and [START_REF] Persson | Increased Risk of Phosphorus Limitation at Higher Temperatures for Daphnia Magna[END_REF] also reported that warming further amplifies the decrease in somatic growth rates of Daphnia under low nutritional quality (high C:P ratio) compared to Daphnia under high nutritional quality (low C:P ratio). These results suggest that temperature-induced body size shifts depend on the quantity but also the quality of resources with lower resource quality amplifying the detrimental effect of warming as reported in a recent study [START_REF] Sentis | Stoichiometric Constraints Modulate Temperature and Nutrient Effects on Biomass Distribution and Community Stability[END_REF]. In addition to temperature and food, oxygen also appears to be a key factor controlling body size. In particular, TSR tends to be amplified under oxygen limitation [START_REF] Frazier | Interactive Effects of Rearing Temperature and Oxygen on the Development of Drosophila Melanogaster[END_REF][START_REF] Hoefnagel | What sets the limit? How thermal limits, performance and preference in ectotherms are influenced by water or energy balance[END_REF][START_REF] Verberk | Shrinking Body Sizes in Response to Warming: Explanations for the Temperature-Size Rule with Special Emphasis on the Role of Oxygen[END_REF]. One of the most important differences between oxygen and food availability is that the former generally decreases with increasing temperature, while the latter may increase or decrease with warming. [START_REF] Walczyńska | The Underestimated Role of Temperature-Oxygen Relationship in Large-Scale Studies on Size-to-Temperature Response[END_REF] suggested that TSR is a plastic response to temperature-dependent oxygen availability, but that food conditions should be controlled as a factor that shapes the strength of TSR.

For several species, warming leads to early maturation and increased fecundity [START_REF] Betini | Food Availability Modulates Temperature-Dependent Effects on Growth, Reproduction, and Survival in Daphnia Magna[END_REF][START_REF] Marn | Environmental Effects on Growth, Reproduction, and Life-History Traits of Loggerhead Turtles[END_REF][START_REF] Giebelhausen | Temperature Reaction Norms of Daphnia Magna: The Effect of Food Concentration[END_REF]. Our results are in line with these studies as we found that fish reared at 30 °C were sexually mature at a younger age and produced a larger mean daily clutch size per female. In contrast, less is known about the responses of developmental rates and fecundity to covariation between temperature and food. Our results did not suggest any effect of food restriction on age at maturity, in contrast to [START_REF] Betini | Food Availability Modulates Temperature-Dependent Effects on Growth, Reproduction, and Survival in Daphnia Magna[END_REF] and [START_REF] Marn | Environmental Effects on Growth, Reproduction, and Life-History Traits of Loggerhead Turtles[END_REF], who found that increased food availability resulted in earlier maturation. However, we found that food restriction decreased mean daily clutch size at both temperature conditions. Several studies have also found that increased food availability increased fecundity in both aquatic (Betini et al. 2020, Giberson and[START_REF] Giberson | Effects of Temperature, Food Quantity, and Nymphal Rearing Density on Life-History Traits of a Northern Population of Hexagenia (Ephemeroptera:Ephemeridae)[END_REF] and terrestrial [START_REF] Corrêa | Life History Trait Response to Ambient Temperature and Food Availability Variations in the Bean Weevil Zabrotes Subfasciatus[END_REF] organisms. This can be explained by an increase in the amount of energy to be allocated to reproduction under unlimited food conditions.

In addition, the survival probability in our experiment was influenced by both temperature and food restriction. Indeed, fish reared at 30 °C had a lower survival than fish reared at 20 °C while food restriction increased the survival under both temperature conditions. This beneficial effect of food restriction on survival was also observed in frog larvae [START_REF] Jones | Long-Term Changes in Food Availability Mediate the Effects of Temperature on Growth, Development and Survival in Striped Marsh Frog Larvae: Implications for Captive Breeding Programmes[END_REF] and daphnia [START_REF] Betini | Food Availability Modulates Temperature-Dependent Effects on Growth, Reproduction, and Survival in Daphnia Magna[END_REF]. Lower food availability implies a decrease in metabolism and thus a lower production of oxidizing agents which contributes to slow down scenescence and increase survival, resulting in a "eat little die old" strategy [START_REF] Sohal | Oxidative Stress, Caloric Restriction, and Aging[END_REF][START_REF] Gredilla | Caloric Restriction Decreases Mitochondrial Free Radical Generation at Complex I and Lowers Oxidative Damage to Mitochondrial DNA in the Rat Heart[END_REF][START_REF] Speakman | Body Size, Energy Metabolism and Lifespan[END_REF][START_REF] Pifferi | Caloric Restriction Increases Lifespan but Affects Brain Integrity in Grey Mouse Lemur Primates[END_REF]. Our results potentially illustrates different developmental strategies. For example, at 30 °C, fish may have maintained a high growth rate despite food restriction in order to maintain a rapid life cycle, at the expense of lower survival. This hypothesis is supported by the fact that mortality was higher and sexual maturity was reached at a younger age and smaller size at 30 °C compared to 20 °C. Ultimately, measuring the fitness of the fish under the different conditions would help understanding if these strategies are adaptive or results from physiological constraints than are difficulty overpassed by evolutionary adaptations.

Although food restriction decreased the mean daily clutch size, these effects were relatively weak compared to the increase in survival. This may be explained by potential acclimation of medaka to rearing temperatures or by food restriction being not sever enough. Reducing feeding events by half (1 out of 2 mornings) was considered restrictive although we cannot exclude compensatory mechanisms were restricted fish would feed more when they have access to food. Although this remains to be investigated in more details, our results highlight the importance of considering the interactions between temperature, body size and food to understand how larger predatory species respond to global changes in terms of developmental and life history strategies. When we integrated our experimentally measured traits into integral projection models (IPM), we found a reduction in generation time and an increase in the population growth rate under warming. Although survival probability was lower under warming, fish reached sexual maturity much faster and had higher fecundity. The earlier sexual maturity of fish enabled them to reproduce for a longer time. Therefore, each female could produce a higher number of juveniles, which leads to a higher population growth rate compared to cold-acclimated populations. Consistent with our experimental data, the IPMs revealed that food restriction had a greater impact on the generation time and growth rate of coldacclimated populations compared to warm-acclimated populations. Specifically, food restriction increased generation time and asymptotic per capita population growth rate at 20 °C, whereas it had no significant effect on demographic parameters of the populations at 30 °C. Our experimental results showed that food restriction slightly decreased fecundity but strongly increased fish survival probability, resulting in longer individual lifespans and the production of more juveniles. Ultimately, food restriction proved evolutionarily advantageous in the cold treatment, leading to a population growth rate equals to unity (λ = 1). This indicates that the population moves from a declining dynamic (λ < 1) when food is not limiting to an increasing dynamic (λ > 1) under food restriction. Our sensitivity analyses revealed that the demographic parameters were mainly sensitive to the reproduction and survival probabilities (see Fig. S 5). These parameters determine the lifespan of the fish and the duration of their reproduction. The high sensitivity of the model to the reproduction probability can be explained by our assumption that, in the model, all females reproduce once they reach maturity (because lacked information on which female reproduces when) which lead to a steep reproduction function. Nevertheless, this assumption was similar for the four treatment and should not influence the qualitative comparison of our four treatments. Overall, IPMs allowed for the combination of traits and confirmed that population mean fitness increases with temperature, and that food restriction increases mean fitness at low temperature.

The ecological consequences of temperature-induced changes in body size are multiple. For instance, it can alter predator-prey size ratio which has important implications for the occurrence and strength of predator-prey interactions and thus for community dynamics and food web structure [START_REF] Sentis | Temperature-Size Responses Alter Food Chain Persistence across Environmental Gradients[END_REF][START_REF] Yodzis | Body Size and Consumer-Resource Dynamics[END_REF][START_REF] Kalinkat | Body Masses, Functional Responses and Predator-Prey Stability[END_REF][START_REF] Vagnon | An Allometric Niche Model for Species Interactions in Temperate Freshwater Ecosystems[END_REF][START_REF] Emmerson | Predator-Prey Body Size, Interaction Strength and the Stability of a Real Food Web[END_REF][START_REF] Williams | Simple Rules Yield Complex Food Webs[END_REF]. Size interacts with temperature because temperature alters the energetic demands of organisms. For example, higher temperatures can increase short-term predator-prey interaction strength and predator energetic efficiency [START_REF] Sentis | Using Functional Response Modeling to Investigate the Effect of Temperature on Predator Feeding Rate and Energetic Efficiency[END_REF]. To date, studies examining the consequences of temperature-induced body size shifts on trophic interactions, community dynamics, and food web structure, only considered the reduction in adult size [START_REF] Sentis | Temperature-Size Responses Alter Food Chain Persistence across Environmental Gradients[END_REF][START_REF] Osmond | Warming-Induced Changes to Body Size Stabilize Consumer-Resource Dynamics[END_REF], Bideault et al. 2019). However, our results emphasize the importance of considering ontogeny in future studies as the temperature effect on growth are dependent on life stages. In addition, we expect phenological and geographic changes to alter the quantity and quality of resources [START_REF] Winder | Climate Change Uncouples Trophic Interactions in an Aquatic Ecosystem[END_REF][START_REF] Paerl | Blooms Like It Hot[END_REF][START_REF] Paerl | Mitigating Harmful Cyanobacterial Blooms in a Human-and Climatically-Impacted World[END_REF][START_REF] Ekvall | Synergistic and Species-Specific Effects of Climate Change and Water Colour on Cyanobacterial Toxicity and Bloom Formation[END_REF][START_REF] Urrutia-Cordero | Phytoplankton Diversity Loss along a Gradient of Future Warming and Brownification in Freshwater Mesocosms[END_REF], for example in predator-prey relationships by inducing temporal or spatial mismatches where the predator is left with reduced food availability [START_REF] Boukal | Species Interactions under Climate Change: Connecting Kinetic Effects of Temperature on Individuals to Community Dynamics[END_REF][START_REF] Twining | Climate Change Creates Nutritional Phenological Mismatches[END_REF]. Along the same line, [START_REF] Visser | Shifts in Caterpillar Biomass Phenology Due to Climate Change and Its Impact on the Breeding Biology of an Insectivorous Bird[END_REF] showed that asynchrony between caterpillar biomass and the offspring feeding requirements of an insectivorous bird affected the number and weight of fledged birds. These phenological asynchronies can alter the structure and dynamics of food webs and modify ecosystem processes [START_REF] Damien | Prey-Predator Phenological Mismatch under Climate Change[END_REF]Tougeron 2019, Renner and[START_REF] Renner | Climate Change and Phenological Mismatch in Trophic Interactions Among Plants, Insects, and Vertebrates[END_REF]. Altogether, these studies indicate that it is important to investigate the direct effects of temperature as well as indirect effects such as altered food quality and availability to better understand the impact of climate change on growth, survival and fecundity. Consistent with the experimental curves and TSR, warming significantly increased the initial growth rate K and decreased the maximum asymptotic size L∞. Food restriction had no effect on the initial growth rate K for fish reared at 30 °C, but significantly reduced K for fish reared at 20 °C. At the end of our experiment, the adult size of food restricted fish was smaller than that of ad libitum fed fish, especially at 20 °C. Yet, food restriction had no significant effect on the maximum asymptotic size L∞, indicating that beyond 350 days, fish should reach the same size regardless of their food condition. Extrapolating to 700 days (life span of a medaka) from our experimental curves, restricted fish should reach the same adult size as ad libitum fed fish at approximately 400 and 300 days under cold and warm conditions, respectively (Fig. S 4). The theoretical age at which body size is zero t0 was not significantly different between temperature conditions. [START_REF] Persson | Increased Risk of Phosphorus Limitation at Higher Temperatures for Daphnia Magna[END_REF] and [START_REF] Wojewodzic | Joint Effect of Phosphorus Limitation and Temperature on Alkaline Phosphatase Activity and Somatic Growth in Daphnia Magna[END_REF] were not included in this table as they looked at the individual somatic growth rate SGR (which differs from the size at maturity or adult size). They found that SGR of daphnia increased with temperature, but that this effect depended on the C:P ratio of the food. The higher the temperature, the more phosphorus limitation decreased the SGR. Black and red colors correspond to the cold and warm treatments, respectively. Filled and empty circles correspond to the median of ad libitum and food restriction treatments, respectively.

We performed sensitivity analyses to investigate the sensitivity of generation time T and the asymptotic per capita population growth rate λ to small changes in the values of vital rates. To do so, we added or substracted 1 % to the slope of the relationships between survival, reproductive probability or fecundity and body size. For the parameters that are independent of body size, we added or subtracted 1 % to the mean value. For the growth function, we also modified K and L∞ by adding or subtracting 1% to their mean values. We then investigated the sensitivity of T and λ by calculating the log ratio of the parameter (λ or T) estimated by the model with a change of 1 % in a single variable to the parameter estimated by the baseline IPM model. The further the log of this ratio is away from 0, the more sensitive the demographic parameter is to the vital rate.

Demographic parameters are most sensitive to variability in reproductive probability (Fig. S 5). Since we consider all fish to reproduce with probability = 1 from sexual maturity, adding or substracting 1 % to the slope of the regression is equivalent to increasing or decreasing age at sexual maturity by 13.7, 10.3, 2.4, and 1.8 days for conditions ad_20, res_20, ad_30, and res_30, respectively. Not surprisingly, this input strongly influences the demographic parameters since in the model the length of time a fish is fertile depends directly on age at maturity. Demographic parameters are also sensitive to the probability of survival. As with the probability of reproduction, this survival probability also determines the length of time a fish can produce eggs before it dies. Finally, the generation time is somewhat sensitive to the K and L∞ parameters of the Von Bertallanfy model. By influencing growth, these parameters will determine the rate at which a fish reaches size at sexual maturity in the model, and thus the rate at which a fish can reproduce, directly impacting generation time.
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 1 Figure 1: Patterns of crossed vs. nested growth curves driven by (a) temperature and (b) food availability (after Berrigan and Charnov 1994).

  Fig. S 3 for more details).

Figure 2 :

 2 Figure 2: Fitted von Bertalanffy growth curve for each combination of temperature and food conditions.

Figure 3 :

 3 Figure 3: Temperature and food restriction effects on mean daily clutch size per female. Black and red colors represent the cold and warm treatments (i.e. 20 and 30 °C), respectively.Filled and empty points and boxplot represent the ad libitum and food restriction treatments, respectively.

Figure 4 :

 4 Figure 4: Kaplan-Meier survival curves from 60 days for each combination of temperature and food conditions. Black and red colors represent the cold and warm treatments (i.e. 20 and 30 °C), respectively. Solid and dashed lines represent the ad libitum and the food restriction treatments, respectively. Shaded areas around the lines represent the 95 % confident intervals.

Figure 5 :

 5 Figure 5: Estimated (a) generation time T and (b) asymptotic per capita population growth rate λ for each combination of temperature and food conditions.Black and red colors correspond to the cold and warm treatments, respectively. Filled and empty circles correspond to the median of ad libitum and food restriction treatments, respectively. Bars represent 95 % confident intervals.

Fig. S 2 :

 2 Fig. S 2 : Estimated Von Bertallanfy parameters for each treatment.Black and red colors correspond to the cold and warm treatments, respectively. Filled and empty circles correspond to the median of ad libitum and food restriction treatments, respectively. Bars represent 95 % credibility intervals.

Fig. S 3 :

 3 Fig. S 3: Cox model assumption of proportionality for temperature and food condition. The cox.zph function correlates the scaled Schoenfeld residuals with time for each covariate to test for independence between residuals and time. Additionally, it performs a global test for the model as a whole. From our model output, this test was not statistically significant for temperature (chi² = 0.20, df = 1, p = 0.65), food (chi² = 0.00, df = 1, p = 0.97) and the global test (chi² = 0.20, df = 2, p = 0.90), indicating a proportional hazards.

Fig. S 4 :

 4 Fig. S 4: Extrapolation of Von Bertalanffy growth curve for each combination of temperature and food conditions.Black and red colors represent the cold and warm treatments, respectively. Solid and dotted lines represent the ad libitum and the food restriction treatments, respectively. Areas represent the 95 % credibility intervals.Points represent experimentally measured sizes at age.

Fig. S 5 :

 5 Fig. S 5: Sensitivity analysis of (a) generation time T and (b) asymptotic per capita population growth rate λ.
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