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Abstract

We revisit recent results about optimal periodic control for scalar dynamics with input integral constraint,
under lack of convexity and concavity. We show that in this more general framework, the optimal solutions
are bang-singular-bang and generalize the bang-bang solutions for the convex case and purely singular for
the concave one. We introduce a non-local slope condition to characterize the singular arcs. The results are
illustrated on a class of bioprocesses models.
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1 Introduction

Periodic optimal control has received relatively few attention in the literature, apart the well-known π-criterion
[8]. This later one consists in a linear-quadratic approximation about a steady state with constant control, and
studying frequencies of a sinusoidal control that could improve the average performance index over a neighboring
periodic solution. Extensions to other shapes of periodic controls have also been considered. However, the global
optimal periodic optimal control has been very rarely investigated, apart from [17] for the characterization of
the value function under quite strong assumptions. The two boundaries condition that periodic solutions have
to satisfy might explain the difficulties in extending the usual approaches. Indeed, most of the existing works
deal with local necessary conditions ([10, 14]), second order conditions ([9, 23, 15]) or approximations techniques
([13, 2, 6]).

Recently, a class of scalar dynamics with integral input constraint has been investigated [5], and it has been
shown that under convexity and monotonicity assumptions, the global optimal periodic solution is bang-bang
and therefore improves the averaged criterion over constant controls. For the concave case, it has been shown
that constant controls remain the best ones. These results have been in particular motivated by bioprocesses
applications, for which a kind of duality has been derived [4].

However, situations for which neither the convex nor the concave conditions are fulfilled have not been yet
considered, which is the purpose of the present work. This allows to solve the problem of optimal periodic
operations of bioprocesses with growth functions that are neither convex nor concave, which has been an open
problem up to now.

The paper is organized as follows. In Section 2, the main results of [5] are recalled, and the setting of the present
contribution is specified. Then, in Section 3, we propose and prove a geometric optimality necessary condition in
terms of slopes, which is central to our approach. In Section 4, further results on the optimal trajectories under
the eventual lack of monotonicity in our assumptions are proved. Section 5 gives then the complete synthesis
of the optimal control. Finally, our results are illustrated on a bioprocess model in Section 6, which shows the
quantitative benefits of having singular arcs.
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2 Some preliminaries

Let us consider two functions f, g : R→ R of class C1 and the controlled dynamics

ẋ = f(x) + ug(x) (1)

where u takes values in [−1, 1]. Let us assume the following hypotheses:

(H1) There exists (a, b) ∈ R2 with a < b such that g is positive on the interval I := (a, b) with

f(a)− g(a) = 0 and f(b) + g(b) = 0

(H2) One has f − g < 0 and f + g > 0 on I.

One can straightforwardly check that the interval I is invariant by (1) under Hypothesis H1. Hypothesis H2
implies the controllability of (1) on I. In the following, we shall consider solutions on the interval I only. For
convenience, we define the function

ψ(x) := −f(x)

g(x)
, x ∈ I

Hypotheses H1-H2 imply ψ(I) ⊂ [−1, 1] and then for any x̄ ∈ I, the control ū := ψ(x̄), which allows the system
to stay at steady-state x̄, is admissible i.e. ū ∈ [−1, 1]. Let us stress that we do not impose f and g to be non null
on the boundary of I. Therefore ψ(I) is not necessary [−1, 1] and ψ is not necessarily non decreasing. Examples
1 and 2 below show that ψ can be non monotonic on I.

Let us fix ū ∈ ψ(I) as a nominal constant control, and consider for T > 0 solutions x(·) in I that are T -periodic
with a T -periodic control u satisfying the integral constraint

1

T

∫ T

0

u(t) dt = ū (2)

We denote by UT the set of admissible controls, that is

UT := {u : [0,+∞)→ [−1, 1] s.t. u is meas., T -periodic and fulfills (2)} (3)

Let us now consider a function ` : R→ R of class C1 and associate the criterion

JT (u) := min

{
1

T

∫ T

0

`(xu(t)) dt ; xu is T -periodic

}
(4)

to be minimized over controls u ∈ UT , where xu denotes the solutions of (1) in I associated to u.

In the former work [5], it has been shown that convexity is playing an important role in the possibility of having
JT (u) lower than the cost with constant control JT (ū) under the following additional condition on the dynamics.

(H3) The function ` : I → R is increasing and the function γ = ψ ◦ `−1 is strictly convex increasing over `(I).

Under H3, the exists an unique x̄ in I with ψ(x̄) = ū and one has the following result.

Proposition 1. If H1 and H3 hold true, any non-constant T -periodic solution x of (1) with x(0) = x̄ and u ∈ UT
satisfies JT (u) < JT (ū).

In the opposite way, it has been shown in [5] that concavity prevents improving the cost JT (ū) with non-constant
controls, under the following condition on the dynamics:

(H4) There exists a continuous function ψ̄ such that

(i) ψ̄ ≥ ψ on I with ψ̄(x̄) = ψ(x̄),

(ii) the function γ̄ = ψ̄ ◦ `−1 is concave increasing on `(I).

Under H4 one has also the uniqueness of x̄ in I with ψ(x̄) = ū and the following result holds.

2



Proposition 2. If H1 and H4 hold true, any non-constant T -periodic solution x of (1) with x(0) = x̄ and u ∈ UT
satisfies JT (u) > JT (ū).

In the present work, we assume that Hypotheses H1-H2 are satisfied and aim at relaxing Hypothesis (H3) or
(H4) by allowing a change of convexity as well as a change of monotonicity of the function γ := ψ ◦ `−1 on the
interval I, while keeping ` increasing. Note that under Hypotheses H1-H2, there does not necessarily exist an
unique x̄ such that ψ(x̄) = ū. However, we shall assume that there is an unique stable one, which is guaranteed
by the following hypothesis.

(H̄) The function ` is increasing on I, and for any ŭ ∈ int (ψ(I)), there exists an unique x̆ ∈ I, such that{
ψ(x̆) = ŭ,

there exists a neighborhood V ⊂ I of x̆ such that (ψ(x)− ψ(x̆))(x− x̆) > 0, ∀x ∈ V \ {x̆}

Then, as ` is increasing, the steady-state x̄ that gives the best cost JT (ū) is clearly the smallest one. Note that
Hypothesis H̄ amounts to ψ having at most one change of monotonicity on I. Under Hypotheses H1-H2, if ψ is
non monotonic on I, it must be increasing first and then decreasing. Therefore, we can define values x̄ and x̂ as
follows.

Definition 1. Under H1-H2-H̄, let
x̄ := min{x ∈ I, s.t. ψ(x) = ū}

and
x̂ := arg max

x∈Ī
ψ(x)

Remark 1. Under H1-H2-H̄, one has necessarily x̄ ≤ x̂, with x̄ being the only value fulfilling H̄. Moreover, having
ψ non monotonic with at most one change of monotonicty implies that the function f and g are null at a or b.

Let us first give a preliminary result about periodic solutions, in the spirit of the former work [5].

Lemma 1. Under Hypotheses H1-H2-H̄, any T -periodic solution x of (1) in I with u ∈ UT fulfills the property∫ T

0

(ψ(x(t))− ū) dt = 0 (5)

and any optimal trajectory x takes the value x̄.

Proof. On the interval I, the function g is positive and from equation (1), one can write∫ T

0

ẋ(t)

g(x(t))
dt = −

∫ T

0

ψ(x(t)) dt+

∫ T

0

u(t) dt

Consider then the function t 7→ y(t) := h(x(t)) for t ∈ [0, T ], where h is defined as follows.

h(x) :=

∫ x

x̄

dξ

g(ξ)
, x ∈ I

For any control function u that fulfills the constraint (2), one gets

y(T )− y(0) = −
∫ T

0

(ψ(x(t))− ū) dt

where ū = ψ(x̄). Therefore, for any T -periodic solution x in I, y is also T -periodic and one obtains property (5).

According to the above, for any T -periodic solution x, the map t 7→ ψ(x(t)) − ū has to take the value 0 on
[0, T ). Therefore, there exists t̄ ∈ [0, T ) such that x(t̄) = x̆ with ψ(x̆) = ū. If x̆ = x̄, then we have proved that x
takes the value x̄. If not, one has necessarily x̆ > x̄ because of Definition 1. Therefore, if the solution x does not
take the value x̄, one should have x(t) > x̄ for any t ∈ [0, T ). The function ` being increasing on I, it comes that∫ T

0

`(x(t))dt > `(x̄) = JT (ū)

which shows that x cannot be optimal. We conclude that one has x̆ = x̄.
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This Lemma allows to look for optimal solutions with x(0) = x(T ) = x̄ without any loss generality, as we
shall do now. Note that when x̄ = x̂, the single T−periodic solution of (1) with the constraint (2) is the constant
solution x = x̄, and there is no optimization to be made. Therefore, we shall assume in the following that ū is
taken in int(ψ(I)), which implies x̄ < x̂.

We introduce now the Hypotheses H5a and H5b that generalize Hypotheses H3 or H4, keeping ` increasing.

(H5a) The function ` : I → R is increasing and there exists xc ∈ (a, b] such that the function γ := ψ ◦ `−1 is strictly
convex over `((a, xc)) and strictly concave over `((xc, b)).

(H5b) The function ` : I → R is increasing and there exists xc ∈ (a, b] such that the function γ := ψ ◦ `−1 is strictly
concave over `((a, xc)) and strictly convex over `((xc, b)).

Remark 2. When xc = b, Hypotheses H5a and H3 are equivalent, as well as H5b and H4. Indeed, if xc > x̂, then
H3 or H4 are also recovered, as it will be seen later in Proposition 5 of Section 4.

We provide now examples that fulfill H5a or H5b.

Example 1. Let a = 0, b = 3 and functions f , g defined as follows

f(x) = −3

2
x3 + x4 − 1

6
x5, g(x) = 3x− x2

Hypotheses H1 and H2 are fulfilled (see Figure 1). We take the identify function for `. One can straightforwardly
check that the function ψ is given by the expression

ψ(x) =
x2

2
− x3

6

One can then easily check that Hypotheses H̄ and H5a are fulfilled (see also Figure 1).

a b
x

0

f
g

a b
x

0

f g
f + g

a b
x

1

0

1

Figure 1: Example 1 fulfills Hypothesis H5a.

Example 2. Let a = 0, b = 6 and functions f , g defined as follows

f(x) =
4x3 − 24x2

4 + x+ x2
, g(x) = 6x− x2
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Hypotheses H1 and H2 are fulfilled (see Figure 2). We take the identify function for `. One can straightforwardly
check that the function ψ is given by the expression

ψ(x) =
4x

4 + x+ x2

One can then easily check that Hypotheses H̄ and H5b are fulfilled (see also Figure 2).

a b
x

0

f
g

a b
x

0

f g
f + g

a b
x

1

0

1

Figure 2: Example 2 fulfills Hypothesis H5b.

3 A slope condition

In this section, we derive as a ”slope condition” a geometric necessary condition for optimality, which links the
switching points of an optimal trajectory through the function ψ.

We first reformulate the constraint (2) by considering the augmented dynamics{
ẋ = f(x) + ug(x)
ẏ = u

(6)

with the boundary conditions:

(x(0), y(0)) = (x̄, 0) and (x(T ), y(T )) = (x̄, ūT ) (7)

The optimal control problem can then be stated as

inf
u∈U

∫ T

0

`(x(t)) dt s.t. (x, y) satisfies (6)− (7) (8)

where U denotes the set of measurable control functions u over [0, T ] taking values in [−1, 1]. Note that Problem
(8) in R2 admits a solution by classical existence results. Indeed, the set of trajectories that satisfy the boundary
conditions (7) is non empty (it contains the steady state x̄ with constant control ū), and since the system is affine
w.r.t. the control and ` is continuous, the existence of an optimal control follows by Filippov’s existence theorem
[11]. We define the Hamiltonian H : R2 × R2 × R× R→ R as

H = H(x, y, λx, λy, λ0, u) = λ0`(x) + λxf(x) + u(λxg(x) + λy)
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where λ := (λx, λy) is the adjoint vector. From the Pontryagin Maximum Principle [19], we know that for any
optimal control u ∈ U and (x, y) the associated solution of (6)-(7), there exists a scalar λ0 ≤ 0 and an absolutely
continuous map λ : [0, T ]→ R2 solution of the adjoint dynamics{

λ̇x = −λ0`
′(x(t))− λx(f ′(x(t)) + u(t)g′(x(t)))

λ̇y = 0
(9)

for a.e. t ∈ [0, T ]. Moreover one has (λ0, λ) 6= 0 and the Hamiltonian condition writes

u(t) ∈ arg max
v∈[−1,1]

H(x(t), λ(t), λ0, v) a.e. t ∈ [0, T ]. (10)

A solution x satisfying (6)-(7) for a control u ∈ U and such that there exists (λ0, λ) 6= 0 verifying (9)-(10) is called
an extremal. Since the dynamics is affine w.r.t. u, the switching function

t 7→ φ(t) := λx(t)g(x(t)) + λy,

provides the following property of the optimal control u for almost any t ∈ [0, T ]: φ(t) > 0 ⇒ u(t) = 1
φ(t) < 0 ⇒ u(t) = −1
φ(t) = 0 ⇒ u(t) ∈ [−1, 1]

(11)

We recall that a singular arc occurs if φ vanishes on some time interval [t1, t2] with t1 < t2, and a switching time
ts ∈ (0, T ) is such that an extremal control u is non-constant in any neighborhood of ts (which implies φ(ts) = 0).
Let us mention that from Hypothesis H2, when φ > 0, resp. φ < 0, then x is increasing, resp. decreasing.

For convenience, we shall define the following numbers.

Definition 2. For a solution x(·) of (1) with x(0) = x̄, let us denote by xm, respectively xM , the minimum,
respectively the maximum, of x(·) on [0, T ].

Let us first analyze the case of abnormal extremals i.e. with λ0 = 0.

Proposition 3. Assume that hypotheses H1-H2-H̄ are fulfilled.

• If ψ is increasing on I, there is no abnormal extremal.

• If ψ is not increasing on whole I, abnormal extremals are non constant with xm ≤ x̂ ≤ xM and switches
occur only at x = xm or x = xM , without singular arc.

Proof. If λ0 = 0, then λx cannot vanish from the adjoint equation (9). Otherwise λx would be null over [0, T ] and
the switching function would be constant equal to λy. Since λy cannot be simultaneously equal to 0, φ would be
of constant sign over [0, T ] implying that u = 1 or u = −1 over [0, T ]. This is a contradiction with the periodicity
of x(·) (recall that one has f + g > 0 and f − g < 0 over I). Consequently, λx has constant non null sign.

Since λ0 = 0, one has from the adjoint equations (9)

φ̇(t) = λx(t)g(x(t))2ψ′(x(t)), a.e. t ∈ [0, T ] (12)

If ψ is increasing on I, φ is monotonic and has at most one switching point, implying that x is either entirely
above or entirely below x̄. But then the equality (5) of Lemma 1 cannot be verified when ψ is increasing.

Consider now the case when ψ is non increasing on I. One has then x̂ ∈ I. For any extremal x, we know
from Lemma 1 that one has xm ≤ x̄ ≤ xM . Remind, as already mentioned in Section 2, that one has necessarily
x̂ > x̄. If x̂ > xM , then ψ is increasing on [0, T ] and we conclude as previously that this is not possible. Therefore
an abnormal extremal should verify xm ≤ x̂ ≤ xM . Note that the constant solution x̄ cannot be an abnormal
extremal when x̂ 6= x̄. The extreme values of x having necessarily to be a switching locus, one should have
φ(tm) = φ(tM ) = 0 for some tm, tM ∈ (0, T ) with x(tm) = xm and x(tM ) = xM . Since the Hamiltonian is
conserved along extremal trajectories, it comes with λ0 = 0

H(tm) = λx(tm)f(xm) = −λyψ(xm) = H(tM ) = λx(tM )f(xM ) = −λyψ(xM )

Since λx is non null and φ is null lat tm and tM , λy cannot be null. We conclude that the equality ψ(xm) = ψ(xM )
is necessarily satisfied. Finally if a switch occurs at xs /∈ {xm, xM} one should have ψ(xs) = ψ(xm) = ψ(xM ),
which is in contradiction with Hypothesis H̄. Finally, note from equation (12) that a singular arc on a time
interval [t1, t2] with t1 < t2 (i.e. such that φ(t) = 0, t ∈ [t1, t2]) could occur only for x(t) = x̂, t ∈ [t1, t2] but then
φ(t) = λx(t)g(x(t)) + λy could not be constant for t ∈ [t1, t2].
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We focus now on regular extremals, i.e. with λ0 = −1. We begin by a lemma that characterizes the singular
arcs as constant values of x.

Lemma 2. Assume that hypotheses H1-H2-H̄ and H5a or H5b are fulfilled, and let x be a regular extremal. If
there exists a time interval [t1, t2] with t1 < t2 such that φ vanishes on [t1, t2], then there exists x̃ ∈ I such that
x(t) = x̃ and λ−1

y = γ′(`(x̃)) for any t ∈ [t1, t2] with u(t) = ψ(x̃) for a.e. t ∈ [t1, t2].

Proof. Assume φ(t) = 0 for t ∈ [t1, t2], which yields

λx(t) = − λy
g(x(t))

, t ∈ [t1, t2]

If λy = 0, then λx = 0 on [t1, t2] and from (9), it comes that λ0 = 0. The extremal cannot be regular. So, one has
λy 6= 0.

It comes from the adjoint equations (9) with λ0 = −1 that

φ̇(t) = `′(x(t))g(x(t)) + λx(t)g(x(t))2ψ′(x(t)), a.e. t ∈ [t1, t2]

As g > 0 on I and φ = 0 on [t1, t2], one has then

0 = 1− λyγ′(`(x(t))), a.e. t ∈ [t1, t2] ⇒ 1/λy = γ′(`(x(t))), a.e. t ∈ [t1, t2]

Note that under hypothesis H5a or H5b, the function γ′ is almost everywhere increasing or decreasing and ` is
increasing. Therefore, the function γ′ ◦ ` cannot be constant on any interval of non null length. The result follows
with x̃ solution of γ′(`(x)) = 1/λy.

We give now our optimality ”slope condition”, that shall play an important role in the derivation of an optimal
synthesis.

Proposition 4. Assume that hypotheses H1-H2-H̄ and H5a or H5b are fulfilled. Let x be a non constant regular
extremal. Then λy 6= 0 and the switching set S := {x(ts); ts ∈ [0, T ], φ(ts) = 0} is equal to {xm, xM} or
{xm, xI , xM} with xm < xI < xM , satisfying the so-called slope condition

(x1, x2) ∈ S2, x1 6= x2 ⇒
γ(`(x1))− γ(`(x2))

`(x1)− `(x2)
=

1

λy
(13)

Moreover, if x is optimal with a singular arc at x̃, then S = {xm, xM}, x̃ < x̂ with

• x̃ = xM under Hypothesis H5a, satisfying the slope condition

γ(`(xM ))− γ(`(xm))

`(xM )− `(xm)
= γ′(`(xM )) (14)

• x̃ = xm under Hypothesis H5b, satisfying the slope condition

γ(`(xM ))− γ(`(xm))

`(xM )− `(xm)
= γ′(`(xm)) (15)

Proof. Consider t1, t2 ∈ [0, T ] and distinct x1, x2 in I such that x(ti) = xi and φ(ti) = 0 for i = 1, 2. Since the
Hamiltonian H is conserved along any extremal, one has (for a regular extremal)

H = −l(xi)− λy
f(xi)

g(xi)
= −`(xi) + λyψ(xi) for i = 1, 2

which shows that λy 6= 0, using the fact that l is increasing on I. Then it comes the following ”slope condition”

1

λy
=
ψ(x1)− ψ(x2)

`(x1)− `(x2)
=
γ(`(x1))− γ(`(x2))

`(x1)− `(x2)

As extreme values of x are necessarily switching locus, one has then

1

λy
=
γ(`(xM ))− γ(`(xm))

`(xM )− `(xm)

7



Since γ change convexity only once on l(I) under Hypothesis H5a or H5b, there can only exist at most one other
value xI ∈ (xm, xM ) such that the slope constraint (13) is satisfied.

Consider now the case when x admits a singular arc x̃ under Hypothesis H5a (the proof for the case with
Hypothesis H5b is similar and left to the reader). Let us first show that having x̃ < xc cannot be optimal.
Otherwise, considering any interval [t1, t1 + δ] ⊂ [t1, t2] with δ > 0, the constant solution x = x̃ has be optimal

for the periodic optimal problem (4) with period δ, initial condition x(0) = x̃ and input constraint 1
δ

∫ δ
0
u(t)dt =

ũ = ψ(x̃). But γ being increasing and strictly convex at x̃, any admissible solution on [0, δ] with x(0) = x̃ lies on
a domain where γ is increasing and strictly convex, provided that δ is small. Then, Proposition 1 applies, which
proves that x = x̃ cannot be optimal. We have thus x̃ ≥ xc. If x̃ 6= xM , then the slope condition (13) gives

1

λy
=
ψ(xM )− ψ(x̃)

`(xM )− `(x̃)
=
γ(`(xM ))− γ(`(x̃))

`(xM )− `(x̃)

With 1
λy

= γ′(`(x̃)) given by Lemma 2, it comes the following equality

γ′(`(x̃)) =
γ(`(xM ))− γ(`(x̃))

`(xM )− `(x̃)

which contradicts the function γ being strictly concave on (x̃, xM ). We conclude that x̃ has to be equal to xM .
Now, let us show that S = {xm, x̃}. Suppose by contradiction that S = {xm, xI , xM}. Using the same concavity
argument as before, it comes that xI < xc. Consider now the function γ̂ : `(I)→ R defined as

γ̂(`(x)) =

{
γ(`(x)) if x ≤ xc
γ′(`(xc))(`(x)− `(xc)) + γ(`(xc)) otherwise

which implies that γ̂ is convex and above γ on `(I), with γ̂ = γ on `([a, xc]).
Now let us consider the point xi ∈ (xc, x̃) such that

γ′(`(xc))(`(xi)− `(xc)) + γ(`(xc)) = γ′(`(x̃))(`(xi)− `(x̃)) + γ(`(x̃))

implying that xm < xI < xi.
By convexity of γ̂ ◦ `, γ(`(xI)) is strictly under the straight line that passes through (xm, γ(`(xm))) and

(xi, γ(`(xi))) which is by construction the line x 7−→ γ′(`(x̃))(`(x)− `(x̃)) +γ(`(x̃)), hence showing that xI cannot
satisfy the slope condition (13).

Finally, the slope condition (13) with x1 = xM , x2 = xm and 1
λy

= γ′(`(xM )) gives the condition (14). Now,

let us show that one has necessarily xM < x̂. If xM ≥ x̂, then `(xM ) has to be in the concave part of γ with
γ′(`(xM )) < 0 (and γ is necessarily concave on (`(x̂), `(b)). This implies the inequality

γ(`(x̂)) ≤ γ(`(xM )) + γ′(`(xM ))(`(x̂)− `(xM ))

Recall from Lemma 1 that one has xm < x̄ (and x̄ ≤ x̂ from Remark 1). As γ is increasing on (`(a), `(x̂)) (and `
is an increasing function), one gets

γ(`(xm)) < γ(`(xM )) + γ′(`(xM ))(`(xm)− `(xM ))

which contradicts the condition (14).

The slope condition is a necessary condition for optimality, which states that two cases can exist : either there
are two switching points (the maximum and the minimum), and one of them might correspond to a singular arc
(i.e. a constant portion of the trajectory), or there are three switching points without any singular arc.

4 Restriction to the increasing part of the function ψ

In this section, we show that when the function ψ is not increasing on the whole interval I, an optimal trajectory
remains necessarily in the domain I ∩ {x < x̂} where the function ψ is increasing (or equivalently that one has
xM < x̂). The main idea of the proof of Proposition 5 below is to show that if it is not the case, one can exhibit a
piece of the trajectory which is increasing up to xM and decreasing so that replacing it by a constant state remains
admissible and gives a better cost (see Fig. 3).
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Figure 3: An illustration of the truncation in the proof of Proposition 5: the blue part is replaced by the red one

For convenience, we first introduce the following function, as in [5],

η(x) :=
1

f(x) + g(x)
− 1

f(x)− g(x)
, x ∈ I

which is positive and C1 on I thanks to H2. This function possesses the following property related to bang-bang
controls.

Lemma 3. Under H1 and H2, consider a piece of trajectory x(·) in I on an interval [t0, t0 + T0] (with T0 > 0)
generated by a ”bang-bang” control u(·) equal to u−BB(·) or u+

BB(·) defined as

u−BB(t) =

 −1 t ∈ [t0, t
′
1)

1 t ∈ [t′1, t
′
2)

−1 t ∈ [t′2, t0 + T0)
, u+

BB(t) =

 1 t ∈ [t0, t
′
1)

−1 t ∈ [t′1, t
′
2)

1 t ∈ [t′2, t0 + T0)

for some t′1 < t′2 in [t0, t0 + T0], that satisfies

x(t0 + T0) = x(t0) and
1

T0

∫ t0+T

t0

u(t)dt = ψ(x(t0)) (16)

Then, one has ∫ x′M

x′m

η(ξ)dξ = T0 and

∫ x′M

x′m

η(ξ)ψ(ξ)dξ = ψ(x(t0))T0 (17)

where x′m = mint∈[t0,t0+T0] x(t), x′M = maxt∈[t0,t0+T0] x(t).

Proof. Let us consider u(·) = u−BB(·) (the case u(·) = u+
BB(·) is analogous). For t ∈ [t0, t

′
1) ∪ [t′2, t0 + T0), one

has ẋ = f(x) − g(x) < 0. Therefore ξ : t 7→ x(t) defines a diffeomorphism from [t0, t
′
1] to its image, and from

[t′2, t0 + T0] to its image as well. Then, one can write

t′1 − t0 = −
∫ x(t0)

x(t′1)

dξ

f(ξ)− g(ξ)
, T0 + t0 − t′2 = −

∫ x(t′2)

x(T+t0)

dξ

f(ξ)− g(ξ)

Similarly, for t ∈ [t′1, t
′
2), one has ẋ = f(x) + g(x) > 0 and can write

t′2 − t′1 =

∫ x(t′2)

x(t′1)

dξ

f(ξ) + g(ξ)

Then x(t0 + T0) = x(t0) gives

T0 =

∫ x(t′2)

x(t′1)

dξ

f(ξ) + g(ξ)
−
∫ x(t′2)

x(t′1)

dξ

f(ξ)− g(ξ)
=

∫ x(t′2)

x(t′1)

η(ξ)dξ

9



Proceeding with the same decomposition of the interval [t0, t0 + T0], one obtains∫ t0+T

t0

u(t)dt =

∫ x(t0)

x(t′1)

dξ

f(ξ)− g(ξ)
+

∫ x(t′2)

x(t′1)

dξ

f(ξ) + g(ξ)
+

∫ x(t′2)

x(T+t0)

dξ

f(ξ) + g(ξ)

and with conditions (16) the equality

ψ(x(t0))T0 =

∫ x(t′2)

x(t′1)

(
1

f(ξ) + g(ξ)
+

1

f(ξ)− g(ξ)

)
dξ =

∫ x(t′2)

x(t′1)

η(ξ)ψ(ξ)dξ

is fulfilled. Clearly, one has x′m = x(t′1) and x′M = x(t′2), which give the expressions (17).

Proposition 5. Suppose that hypotheses H1-H2-H̄ and H5a or H5b are verified. A non constant optimal trajectory
x(·) for Problem (8) verifies x(t) < x̂ for any t ∈ [0, T ].

Proof. Let u(·) be an optimal solution of Problem (8) and x(·) its associated trajectory. Let us remind the notation
xm, xM given by Definition 2, that we shall use below. If it is a regular extremal, the slope condition (13) of
Proposition 4 gives

1

λy
=
ψ(xM )− ψ(xm)

`(xM )− `(xm)

(since ψ = γ ◦ `). Recall that ` is increasing. Therefore one has ψ(xM ) 6= ψ(xm). We distinguish two cases.

1. ψ(xM ) < ψ(xm). One has λy < 0 and a switching at xI such that xm < xI < xM imposes to have
ψ(xI) < ψ(xm) and ψ(xI) < ψ(xM ) from the slope condition (13). Since ψ is increasing on (xm, x̂) and
decreasing on (x̂, xM ), it comes that xI must satisfy xI > xM , which is a contradiction. Now suppose that
x(·) admits a singular arc. The inequality ψ(xM ) < ψ(xm) yields γ′(`(x̃)) < 0 with x̃ = xM under H5a and
x̃ = xm under H5b. This contradicts x̃ < x̂ as it was proved in Proposition 4. Therefore, x(·) has switching
only at xm and xM and no singular arc.

2. ψ(xM ) > ψ(xm). Under Hypotheses H1-H2-H̄, we define x′m as the unique value in I different from xM
such that ψ(x′m) = ψ(xM ). One has necessarily x′m < x̂. The slope condition (13) allows the existence of
intermediate switch at xI ∈ (xm, xM ) but one has xI < x′m. The case of a singular arc at x̃ = xM is ruled
out as Proposition 4 states that inequality x̃ < x̂ is satisfied.

If it is an abnormal extremal, one has ψ(xM ) = ψ(xm) and from Proposition 3, x(·) has switching only at xm and
xM and no singular arc, as for case 1. above. Now, we posit

x̃m =

{
xm if ψ(xM ) ≤ ψ(xm)
x′m if ψ(xM ) > ψ(xm)

(which satisfies x̃m < x̂) and define the functions

g(x̃) := ψ(x̃)

∫ xM

x̃

η(ξ)dξ, h(x̃) :=

∫ xM

x̃

η(ξ)ψ(ξ)dξ, x̃ ∈ [x̃m, x̂]

Clearly, one has

h(x̂) =

∫ xM

x̂

η(ξ)ψ(ξ)dξ < ψ(x̂)

∫ xM

x̂

η(ξ)dξ = g(x̂)

When ψ(xM ) ≤ ψ(xm), the trajectory x(·) has switches only at xm and xM and no singular arc, according to what
has been shown previously. If it has only two switches, one can apply Lemma 3 on the interval [0, T ] and write

h(xm) =

∫ xM

xm

η(ξ)ψ(ξ)dξ = ψ(x̄)T > ψ(xm)T = g(xm)

In the case where x(·) commutes more than once at xm or xM on the interval [0, T ], say n times, the trajectory
x(·) is T/n periodic and we can apply Lemma 3 on the interval [0, T/n] to obtain the same inequality. When
ψ(xM ) > ψ(xm), one has

h(x′m) =

∫ xM

x′m

η(ξ)ψ(ξ)dξ > ψ(x′m)

∫ xM

x′m

η(ξ)dξ = g(xm)
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Since the functions g and h are continuous, we deduce the existence of a number xd ∈ (x̃m, x̂) such that g(xd) =
h(xd). From what precedes, xd is not a switching point of x(·), and by periodicity of the trajectory, x(·) has to
pass by xd alternatively by increasing and by decreasing or vice-versa. We can then define

td := inf{t > 0 ; x(t) = xd, x(·) is increasing at t} and Td := inf{T > 0 ; x(td + T ) = xd}

which are such that [td, td+Td] ⊂ [0, T ]. On the time interval (td, td+Td), x(·) is above xd and from what precedes,
switching occurs only at xM with no singular arc. Therefore one has

Td =

∫ td+Td

td

dt =

∫ xM

xd

dξ

f(ξ) + g(ξ)
+

∫ xd

xM

dξ

f(ξ)− g(ξ)
=

∫ xM

xd

η(ξ)dξ =
g(xd)

ψ(xd)

and ∫ td+Td

td

u(t)dt =

∫ xM

xd

dξ

f(ξ) + g(ξ)
−
∫ xd

xM

dξ

f(ξ)− g(ξ)
=

∫ xM

xd

η(ξ)ψ(ξ)dξ = h(xd)

The equality g(xd) = h(xd) gives then ∫ td+Td

td

u(t)dt = ψ(xd)Td

Therefore, the control u#(·) defined on [0, T ] by

u#(t) =

{
ψ(xd) if t ∈ [td, td + Td],

u(t) if t ∈ [0, T ] \ [td, td + Td]

verifies ∫ T

0

u#(t)dt =

∫ T

0

u(t)dt

and its associated trajectory x#(·) on [0, T ] is given by

x#(t) =

{
xd if t ∈ [td, td + Td],

x(t) if t ∈ [0, T ] \ [td, td + Td]

which consists in a truncation of the original trajectory x(·) (see Fig. 3). Clearly u#(·) is admissible, and its cost
satisfies

JT (u#) =
1

T

(∫ td

0

`(x(t))dt+ Td`(xd) +

∫ T

td+Td

`(x(t))dt

)
<

1

T

∫ T

0

`(x(t))dt = JT (u)

` being increasing and x(·) > xd on (td, td + Td), which contradicts the optimality of u(·).

From Proposition 3, one obtains immediately the following property.

Corollary 1. Under hypotheses H1-H2-H̄ and H5a or H5b, an abnormal extremal cannot be optimal.

5 Optimal synthesis

Let us recall that the former results in [5] do not cover the case of a change of convexity of the function γ. However,
these results can still be applied when x̄ and T are such that for any admissible solution x(t) remains in one of
the subsets (a, xc) or (xc, b), where γ does not change its convexity. Then, either bang-bang, or constant solutions
are optimal (depending if γ is convex or concave on the subset, as stated in [5]). However, situations for which
solutions x(·) can pass from one subset to another one has not been yet treated. We consider here the class of
BSB (for ”bang-singular-bang”) control strategies with at most one singular arc.

Definition 3. Let t̃ ∈ [0, T ]. For the initial condition x(0) = x̄ of system (1), we call BSB controls any time
function ua(t̃; ·) or ub(t̃; ·) such that

ua(t̃; t) =


−1 if t ∈ [0, t1)

+1 if t ∈ [t1, t2)

ψ(x(t2)) if t ∈ [t2, t2 + t̃)

−1 if t ∈ [t2 + t̃, T )
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where switching times t1, t2 are such that 0 ≤ t1 ≤ t2 ≤ T − t̃, and

ub(t̃; t) =


−1 if t ∈ [0, t1)

ψ(x(t1)) if t ∈ [t1, t1 + t̃)

+1 if t ∈ [t1 + t̃, t2)

−1 if t ∈ [t2, T )

where switching times t1, t2 are such that 0 ≤ t1 ≤ t2 − t̃ ≤ T − t̃.

Note that t̃ represents the duration of the trajectory spent on the singular arc x̃ (with x̃ = x(t2) for the control
ua(t̃; ·), and x̃ = x(t1) for the control ub(t̃; ·)). With the notations introduced in Definition 2, one has xm = x(t2),
xM = x̃ with control ua(t̃; ·), and xm = x̃, xM = x(t2) with control ub(t̃; ·). Note also that the particular case
t̃ = 0 corresponds to pure ”bang-bang” trajectories (i.e. without singular arc) while t̃ = T corresponds to the
constant solution x̄ (for these two particular cases, the definitions of ua and ub coincide). We show now that for
any value of t̃, there exist unique controls ua, ub that are admissible and such that the trajectory is periodic with
xM < x̂. The following proposition is in the spirit of Proposition 3.2 in [5] but extended to the present context
with singular arcs.

Proposition 6. Under Hypotheses H1-H2-H̄, for any t̃ ∈ [0, T ], there exist unique controls u?a(t̃; ·), u?b(t̃; ·) such that
the solution of (6) satisfies the boundaries conditions (7) and belong to I ∩ {x < x̂}. Moreover, the corresponding
xm, xM are the unique solutions in I ∩ {x < x̂} of the equations∫ xM

xm

η(ξ)dξ = T − t̃ (18)

and ∫ xM

xm

η(ξ)ψ(ξ)dξ = T ū− t̃ψ(x̃) (19)

with x̃ = xM for the control ua(t̃; ·), and x̃ = xm for the control ub(t̃; ·).

Proof. We consider controls ua only (the proof for controls ub is analogous).
On the interval [0, t1], one has ẋ = f(x)− g(x) < 0 and thus ξ : t 7→ x(t) defines a diffeomorphism from [0, t1]

to its image, and similarly on the interval [t2 + t̃, T ]. On the interval [t1, t2], one has ẋ = f(x) + g(x) > 0 and
again ξ : t 7→ x(t) defines again a diffeomorphism from [t1, t2] to its image. Then one can write∫ T

0

dt =

∫ x(t1)

x̄

dξ

f(ξ)− g(ξ)
+

∫ x̃

x(t1)

dξ

f(ξ) + g(ξ)
+ t̃+

∫ x(T )

x̃

dξ

f(ξ)− g(ξ)

where x̃ = x(t2). The trajectory x(·) is T -periodic when x(T ) = x̄ and one has then xm = x(t1), xM = x̃, which
amounts to have

T =

∫ xM

xm

(
1

f(ξ) + g(ξ)
− 1

f(ξ)− g(ξ)

)
dξ + t̃ =

∫ xM

xm

η(ξ)dξ + t̃

which is exactly equation (18). In the same way, one can write∫ T

0

u(t)dt = −
∫ xm

x̄

dξ

f(ξ)− g(ξ)
+

∫ xM

xm

dξ

f(ξ) + g(ξ)
+ t̃ψ(x̃)−

∫ x̄

xM

dξ

f(ξ)− g(ξ)

and get for an admissible control u(·)

T ū =

∫ xM

xm

(
1

f(ξ) + g(ξ)
+

1

f(ξ)− g(ξ)

)
dξ + t̃ψ(x̃) =

∫ xM

xm

η(ξ)ψ(ξ)dξ + t̃ψ(x̃)

which is exactly equation (19). We show now that for t̃ in [0, T ], there exists an unique pair (xm, xM ) in I∩{x < x̄}
that satisfy conditions (18) and (19).

For the particular case t̃ = T , condition (18) imposes to have xM = xm = x̃ and condition (19) to have
ψ(x̃) = ū = ψ(x̄). However, under Hypothesis H̄, x̃ = x̄ is the only admissible constant solution in I ∩ {x < x̄}.
We consider now t̃ < T . Let us define the map

χ : (ξ−, ξ+) 7→ χ(ξ−, ξ+) :=

∫ ξ+

ξ−

η(ξ) dξ, (ξ−, ξ+) ∈ I2
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Under Hypotheses H1, H2, η is a positive map on I, and one can easily check that for any α ∈ I, χ(α, ·) is C1

and increasing with χ(α, α) = 0 and χ(α, b) = +∞. By the Implicit Function Theorem, there exists a unique map
β : I 7→ I of class C1, such that χ(α, β(α)) = T − t̃ for any α ∈ I. Moreover, one has β(α) > α for any α ∈ I, and
one can easily check that β(I) = I. Note that one obtains also

β′(α) = −
∂ξ−χ(α, β(α))

∂ξ+χ(α, β(α))
=

η(α)

η(β(α))
> 0, α ∈ I.

Let us then consider the map

F (α) :=

∫ β(α)

α

η(ξ)ψ(ξ)dξ − (T ū− t̃ψ(β(α))), α ∈ I

Condition (18) amounts to have β(xm) = xM and condition (19) to have F (xm) = 0. Let us write equivalently
the function F as follows

F (α) :=

∫ β(α)

α

η(ξ)
(
ψ(ξ)− ψ(x̄)

)
dξ + t̃

(
ψ(β(α))− ψ(x̄)

)
, α ∈ I

Under Hypothesis H̄, one has ψ(ξ) > ψ(x̄) for ξ ∈ (x̄, β−1(x̂)) and ψ(ξ) < ψ(x̄) for ξ ∈ (a, β−1(x̄)). Therefore, one
has

F (α) > 0, α ∈ (x̄, β−1(x̂)) and F (α) < 0, α ∈ (a, β−1(x̄))

By the Intermediate Value Theorem, we deduce that there exists α ∈ (β−1(x̄), x̄) such that F (α) = 0. Moreover,
one has

F ′(α) = η(β(α))
(
ψ(β(α))− ψ(x̄)

)
β′(α)− η(α)

(
ψ(α)− ψ(x̄)

)
+ t̃ψ′(β(α))β′(α)

= η(α)(ψ(β(α))− ψ(α)) + t̃ψ′(β(α))β′(α) > 0, α ∈ (β−1(x̄), x̄)

Therefore, we deduce that there exists an unique xm ∈ I such that F (xm) = 0 with β(xm) < x̂, and xM is then
uniquely defined as xM = β(xm).

Remark 3. Under uniqueness of xm, xM solutions of (18), (19), the controls u?a(t̃; ·), u?b(t̃; ·) can be expressed as
follows

u?a(t̃; t) =


−1 if t < t1 := inf{t > 0, x(t) = xm}
+1 if t1 ≤ t < t2 := inf{t > t1, x(t) = xM}
ψ(xM ) if t2 ≤ t < t2 + t̃

−1 if t2 + t̃ ≤ t < t < T

u?b(t̃; t) =


−1 if t < t1 := inf{t > 0, x(t) = xm}
ψ(xm) if if t1 ≤ t < t1 + t̃

+1 if t1 + t̃ ≤ t < t2 := inf{t > t1 + t̃, x(t) = xM}
−1 if t2 ≤ t < t < T

We state now our main result, which says that optimal trajectories are of the BSB type.

Theorem 1. Under Hypotheses H1-H2-H̄, and H5a, resp. H5b, there exists t̃ ∈ [0, T ] such that the control u?a(t̃; ·),
resp. u?b(t̃; ·) given by Proposition 6 is optimal for Problem (8) and the associated trajectory satisfies the slope
condition (14), resp. (15) when t̃ ∈ (0, T ).

Proof. Let u(·) be an optimal solution for Problem (8) and x(·) the corresponding trajectory. If xM ≤ xc or
xm ≥ xc, then x(·) remains in a domain of I where γ does not change its concavity. One can then apply the
former results of [5] that state that the optimal trajectory on [0, T ] is either constant, or ”bang-bang” with a single
switch at xm and at xM . This amounts to claim that ua(t̃; ·) or ub(t̃; ·) is optimal with t̃ = 0 or t̃ = T . Let us now
consider cases for which xM > xc and xm < xc.

Assume that Hypothesis H5a is fulfilled (the proof under Hypothesis H5b is similar, where ua is replaced by
ub, and is left to the reader). If x(·) does not have a singular arc, let us show that x(·) cannot switch more than
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once at xM on the interval [0, T ]. Otherwise, there exist tM1 < tM2 in (0, T ) such that x(tM1 ) = x(tM2 ) = xM with
x(t) < xM for any t ∈ (tM1 , tM2 ). From Proposition 4, we know that there exists tI ∈ (tM1 , tM2 ) such that one has

u(t) =

{
−1, a.e. t ∈ [tM1 , tI)

1, a.e. t ∈ [tI , t
M
2 ]

One can consider four numbers ti in (0, T ), i ∈ {1, . . . , 4}, such that

(i) t1 < tM1 < t2 < t3 < tM2 < t4

(ii) u(t) = 1 for a.e. t ∈ (t1, t
M
1 ); u(t) = −1 for a.e. t ∈ (tM2 , t4)

(iii) x(ti) = xb, i ∈ {1, 2, 3, 4}, with xb > xc

Then, one has x(t) > xb for t ∈ (t1, t2) ∪ (t3, t4). Now, we swap the pieces of the trajectory x(·) on (t2, t3) and
(t3, t4), defining a new trajectory xθ(t) = x(θ(t)), t ∈ [0, T ], where

θ(t) =


t if t < t2

t+ (t3 − t2) if t2 ≤ t < t2 + t4 − t3
t− (t4 − t3) if t2 + t4 − t3 ≤ t < t4

t if t4 ≤ t ≤ T

so that the successive two peaks are now in the domain {x > xb} (see Figure 4). One can straightforwardly check
that xθ(·) is another admissible solution that satisfies the constraints (7) with the same cost than x(·). Take
x̃ ∈ (xb, xM ) and let t̃ = inf{t > t1, xθ(t) > x̃}, T̃ (x̃) = inf{t > tM2 − (t3 − t2), xθ(t) < x̃} − t̃. On the interval
[t̃, t̃ + T̃ (x̃)], the trajectory xθ(·) is bang-bang with three switches (increasing up to xM , decreasing down to xb,
increasing again up to xM and finally decreasing down to x̃), and one can write

T̃ (x̃) =

∫ xM

x̃

dξ

f(ξ) + g(ξ)
−
∫ xb

xM

dξ

f(ξ)− g(ξ)
+

∫ xM

xb

dξ

f(ξ) + g(ξ)
−
∫ x̃

xM

dξ

f(ξ)− g(ξ)

=

∫ xM

x̃

η(ξ)dξ +

∫ xM

xb

η(ξ)dξ

In a similar way, one obtains

Ũ(x̃) :=

∫ T̃ (x̃)

0

u(θ(τ − t̃))dτ =

∫ xM

x̃

η(ξ)ψ(ξ)dξ +

∫ xM

xb

η(ξ)ψ(ξ)dξ

As η is positive and ψ is increasing on [xm, xM ] (by Proposition 5), one get

Ũ(xb) > T̃ (xb)ψ(xb) and Ũ(xM ) < T̃ (xM )ψ(xM )

Therefore, by the Intermediate Value Theorem, we can choose x̃ ∈ (xb, xM ) such that Ũ(x̃) = T̃ (x̃)ψ(x̃), which
amounts to have the average ũ of the control u ◦ θ(·) on the interval [t̃, t̃+ T̃ (x̃)] equal to ψ(x̃). On this interval,
we can consider the optimal control problem (8) with T = T̃ (x̃), ū = ũ and x̄ = x̃. As γ is concave increasing on
[xb, xM ], we can use the results of [5] that claim that a non-constant trajectory cannot minimize the average of
l ◦ xθ(·) on this interval, leading to a contradiction with the optimality of xθ(·), and thus of x(·).

In a similar way, one can prove that x(·) cannot switch more than once at xm. Indeed, if it is the case one can
consider an analogous construction of an optimal trajectory with a piece in the domain where γ is convex, and
where it switches twice at xm, contradicting the former results of [5] for the convex case.

Thus, if x(·) has no singular arc, it has exactly one switch at xM and one switch at xm, and is synthesized by
the control ua(0; ·), which is uniquely defined according to Proposition 6.

Finally, if x(·) possesses a singular arc at a certain x̃, we know from Proposition 4 that xM and xm are the
only values of x(·) for which switches occur, and that x̃ = xM . As x(·) cannot have more than one switch at xm
we deduce that the set S = {t ∈ [0, T ], x(t) = xM} is connected. Therefore, x(·) has a unique singular arc of
length t̃ = |S| > 0 and is synthesized by a control with a BSB structure, such as ua(t̃; ·) which is uniquely defined
according to Proposition 6.
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Figure 4: Illustration of the swap of piece of trajectory in the proof of Theorem 1: the trajectory x(·) on the left
is replaced by the trajectory xθ(·) on the right

Remark 4. In practice, one has simply to look for the best value JT (u?a(t̃; ·)) resp. JT (u?b(t̃; ·)) among t̃ ∈ [0, T ]
such that the slope condition is verified when t̃ is not 0 or T , as illustrated in Section 6. Accordingly to Proposition
6, one can equivalently look for values x̃ of the singular arc that give the best value of the criterion. For this
purpose, one can first determine the subset XM , resp. Xm, of values xM ∈ (xc, x̂) such that the slope condition
(14) is fulfilled for some xm < xc (with a numerical tolerance), resp. of values xm < xc such that the slope condition
(15) is fulfilled for some xM ∈ (xc, x̂). Then, one has simply to test the performances of the BSB strategy with x̃
in XM , resp. Xm.

6 Illustration on a bioprocess model

In the past decades, periodic operations of biological or chemical processes have been investigated to enhance their
performances [3, 1, 22, 20]. Several contributions have identified situations for which a periodic solution improves
an objective function, such as the productivity, compared to its value at steady state [24, 1, 18, 12], or not [21].
In the recent work [4], an application for the piloting of waste water bioprocesses has been investigated. It has
been shown that depending on the characteristics of the growth function of the micro-organisms, a non constant
periodic flow rate could provide a lower average concentration of pollutant at the output of the process, compared
to a constant flow rate treating the same quantity of contaminated water on a given period of time. However,
when the growth function is neither convex nor concave, such as the Hill growth function (see below), a bang-bang
periodic control is optimal when the nominal steady-state is in a region of local convexity of the growth function
and when the period is small enough. For larger periods, this control strategy could lead the state of the dynamics
to a region of concavity of the growth rate, and the criterion could be even worse than for a constant control. For
these cases, a repetition of bang-bang over the period has been proposed as a sub-optimal strategy. We are now
in position to show that this strategy is indeed not optimal and that the optimal bang-singular-bang does a much
better job.

We recall the chemostat model, traditionally used in waste-water treatment modeling (see, e.g., [16])){
ṡ = −µ(s)b+D(sin − s)
ḃ = µ(s)b−Db

(20)

where s and b denote the concentrations of pollutant and biomass. The control variable is the dilution rate D
(taking values in [D−, D+] with 0 ≤ D− < D+) and sin > 0 is the input pollutant concentration. The function
µ(·) is the specific growth rate of the microbial population (the conversion rate of the bio-reaction has been kept
equal to 1 without loss of generality, by a choice of the unit of b). One can straightforwardly see that non-trivial
equilibria of (20) for constant D = D̄ ∈ [D−, D+] are of the form

(s, b) = (s̄, sin − s̄) with D̄ = µ(s̄)

Given T > 0 and D̄ ∈ (D−, D+), the optimal control problem considered in [4] is

inf
D(·)

{
1

T

∫ T

0

s(t)dt s.t. s(0) = s(T ) ;
1

T

∫ T

0

D(t)dt = D̄

}
(21)
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Note that the system (20) can be reduced to a one-dimensional control dynamics. Indeed, for any periodic solution
(s(·), b(·)) one has ż = −Dz where z = sin − s− b. Since z(·) is also periodic, one has necessarily z(t) = 0 for any
t so that (20) becomes

ṡ = (D(t)− µ(s))(sin − s) (22)

The function µ is assumed to be C1 increasing with µ(0) = 0. The nominal dilution rate D̄ is chosen in (0, µ(sin)),
so that there exists an unique steady-state s̄ ∈ (0, sin) for constant control D = D̄, as the unique solution of
µ(s̄) = D̄, which is globally asymptotically stable on the domain (0, sin).

Let us show that this problem falls exactly in the framework of Section 2. We take for I the largest open
interval containing s̄ that is invariant for (22) with controls in [D−, D+] and posit

u := αD + β ∈ [−1, 1] with α :=
2

D+ −D−
, β := −D+ +D−

D+ −D−

On the interval I, we consider the functions

f(s) := (−µ(s)− β/α)(sin − s), g(s) := (sin − s)/α

and for the criterion (21) one takes `(s) = s. Let us check that Hypotheses H1-H2 are fulfilled. First of all, the
bounds a, b of I are such that µ(a) = D− and µ(b) = D+ or b = sin. Then, one has

f(a) = g(a) =
D+ −D−

2
(sin − a), f(b) = −g(b) = −D+ −D−

2
(sin − b)

and
f(s)− g(s) = (D− − µ(s))(sin − s) < 0, f(s) + g(s) = (D+ − µ(s))(sin − s) > 0, s ∈ (a, b)

From the expression of f and g, we get
ψ(s) = αµ(s)− β

which is increasing. Hypothesis H̄ is thus fulfilled.
Here, we have considered for the function µ the Hill function (as in [4]) which is a monotonic growth function

given by the expression

µ(s) :=
µmaxs

n

Kn
s + sn

, (n > 1)

This function is convex for s lower than

sc = Ks

(
n− 1

n+ 1

) 1
n

and concave for s above this value (see Figure 5). Hypothesis H5a is thus fulfilled.

0 sc sin
x

0

(sc)

 max

Figure 5: Graph of the Hill function for n = 2, Ks =
√

3 and µmax = 2

For the simulations, we have considered the following values of the parameters of the Hill function: n = 2,
Ks =

√
3 and µmax = 2, and for the operating conditions sin = 4, D− = 0, D+ = 1.2µ(sin) with T = 20. For

different values of D̄, we have computed the cost of the periodic solution for the three control laws
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D̄ cost of D = D̄ cost of BB cost of optimal BSB optimal t̃ optimal s̃
0.214 0.6 0.462 0.428 3.57 1.710
0.352 0.8 0.756 0.663 6.38 1.704
0.500 1.0 1.086 0.915 0.46 1.695
0.649 1.2 1.425 1.166 12.7 1.676

Table 1

1. constant control,

2. bang-bang control,

3. optimal bang-singular-bang control, for which the optimal value of t̃ ∈ (0, T ) has been determined numeri-
cally, for which the value s̃ of the singular arc satisfies the slope condition (14) (see Figure 7)

Computations have been performed with the programming language Julia [7]. Results are summed up in Table 1,
and Figure 6 depicts the corresponding trajectories. On Figure 7, one can also verify that the slope condition is

(a) constant control (b) BB control (c) optimal BSB control

Figure 6: Examples of trajectories for the three control laws

verified for the optimal BSB trajectory (given by the optimal t̃), in agreement with Proposition 4.

7 Conclusion

In this work, we have revisited a class of optimal periodic control problems linear with respect to the control,
relaxing the convexity or concavity hypothesis on the dynamics. Based on the adjoint equations of the Maximum
Principle, we have introduced several non-local techniques (slope condition, trajectory truncation, swap of pieces
of trajectory...) to show that the optimal solution admits a single singular arc. This result generalizes former ones
in the sense that a singular arc of null length gives a pure bang-bang solution which is optimal in the convex case,
while a singular arc of full length is a constant solution that is optimal in the concave case. An illustration on a
biological model shows the gains of the optimal strategy over bang-bang or steady-state solutions. More generally,
this result shows the interest of ”bang-singular-bang” periodic controls, compared to patterns considered in other
approaches such as the π-criterion.
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