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Abstract 20 

Choosing a suitable process-oriented eco-hydrological model is essential for obtaining reliable simulations 21 

of hydrological processes. Determining soil hydraulic and solute transport parameters is another 22 

fundamental prerequisite. Research discussing the impact of considering evaporation fractionation on 23 

parameter estimation and practical applications of isotope transport models is limited. In this study, we 24 

analyzed parameter estimation results for two datasets for humid and arid conditions using the isotope 25 

transport model in HYDRUS-1D, in which we either did or did not consider fractionation. The global 26 

sensitivity analysis using the Morris and Sobol' methods and the parameter estimation using the Particle 27 

Swarm Optimization algorithm highlight the significant impact of considering evaporation fractionation on 28 

inverse modeling. The Kling-Gupta efficiency (KGE) index for isotope data can increase by 0.09 and 1.49 29 

for the humid and arid datasets, respectively, when selecting suitable fractionation scenarios. Differences in 30 

estimated parameters propagate into the results of two practical applications of stable isotope tracing: i) the 31 

assessment of root water uptake (RWU) and drainage travel times (i.e., the time elapsed between water 32 

entering the soil profile as precipitation and leaving it as transpiration or drainage) in the lysimeter (humid 33 

conditions) and ii) evaporation estimation in a controlled experimental soil column (arid conditions). The 34 

peak displacement method with optimized longitudinal dispersivity provides much lower travel times than 35 

those obtained using the particle tracking algorithm in HYDRUS-1D. Considering evaporation fractionation 36 

using the Craig-Gordon (CG) and Gonfiantini models is likely to result in estimates of older water ages for 37 

RWU than the no fractionation scenario. The isotope mass balance method that uses the isotopic 38 

composition profile simulated by HYDRUS-1D while considering fractionation using the CG and 39 

Gonfiantini models, or the measured evaporation isotope flux, provides comparable results in evaporation 40 

estimation as the HYDRUS-1D water mass balance method and direct laboratory measurements. In contrast, 41 

https://www.researchgate.net/institution/University_of_Natural_Resources_and_Life_Sciences_Vienna/department/Institut_fuer_Hydraulik_und_landeskulturelle_Wasserwirtschaft
mailto:tzhou035@ucr.edu
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the no fractionation scenario reasonably estimates evaporation only when using the HYDRUS-1D water 42 

mass balance method. The direct use of simulated isotopic compositions in the no fractionation scenario 43 

may result in large biases in practical applications in the arid zone where evaporation fractionation is more 44 

extensive than in humid areas.  45 

 46 

Keywords: HYDRUS-1D, Global sensitivity analysis; Particle swarm optimization; Water travel time, 47 

Temporal origin, Evaporation estimation 48 

1 Introduction  49 

Reliable water balance simulations in the vadose zone are important to understand and forecast the 50 

impact of anthropogenic disturbances such as global warming and land-use change on soil water storage, 51 

groundwater recharge, and evapotranspiration. A detailed mechanistic understanding of water fluxes in the 52 

vadose zone could support optimal and efficient management strategies for promoting the long-term 53 

sustainability of water resources and associated ecosystem functions (Penna et al., 2018). For example, the 54 

exact quantification of evaporation affects water availability for plants (Nelson et al., 2020) and constrains 55 

groundwater recharge (Condon et al., 2020). However, the conventional methods (e.g., pan experiments) 56 

for estimating evaporation fluxes often require extensive field monitoring of water flow, which is often time-57 

consuming, expensive, labor-demanding, and affected by considerable uncertainty (Skrzypek et al., 2015).  58 

Stable isotopes of hydrogen (2H) and oxygen (18O) are widely used to trace water fluxes across the 59 

critical zone and can be expressed as isotopic ratios, 2H/1H and 18O/16O by using the δ notation (i.e., δ2H and 60 

δ18O). The isotopic composition of shallow soil water provides insights into evaporation fractionation 61 

characteristics. This information can be easily used to calculate corresponding evaporation fluxes. For 62 

example, Skrzypek et al. (2015) combined the equations for evaporation estimation based on the revised 63 

Craig-Gordon model (Craig and Gordon, 1965) and developed a software Hydrocalculator. Using this 64 

software, they estimated evaporation losses and validated its results using pan measurements. This method 65 

has been extended to soil evaporation estimation. For example, Sprenger et al. (2017) estimated that 66 

evaporation was about 5 and 10% of infiltrating water in the heath and Scots pine soils, respectively.  67 

While the spatial origin of the water plants use has been widely studied (e.g., Allen et al., 2019), 68 

very little is known about its temporal origin (Brinkmann et al., 2018; Miguez-Macho and Fan, 2021). To 69 
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track water across the critical zone, we need to assess how fast water moves down to the soil profile bottom 70 

and when and how much water returns to the atmosphere through root water uptake (RWU). The premise is 71 

to accurately estimate travel times (TT) of irrigation/precipitation water (i.e., the time between water 72 

entering the soil profile as irrigation/precipitation and leaving it back to the atmosphere as transpiration or 73 

at the soil profile bottom as drainage). 74 

The peak displacement method represents the most widespread technique to estimate travel time 75 

from the time difference between signals in soil water stable isotope time-series directly measured at specific 76 

soil depths (Chesnaux and Stumpp, 2018; Koeniger et al., 2016; Stumpp et al., 2012). However, this method 77 

is unfeasible when there is no pronounced peak correspondence between isotopic compositions of 78 

precipitation and drainage water samples. Another widely-used isotope-transport-based method is to 79 

inversely estimate the parameters for time-invariant TT distributions (TTDs) (e.g., Timbe et al., 2014) or 80 

time-variant StorAge Selection (SAS) functions (Benettin and Bertuzzo, 2018; Harman, 2015; Rinaldo et 81 

al., 2015) implemented in lumped hydrological models. Such oversimplified models are based on few soil 82 

and vegetation parameters but have limitations in describing transient conditions or simulating isotope 83 

transport (Sprenger et al., 2016a).  84 

In contrast, isotope transport can be reliably simulated using the Richards equation-based 85 

hydrological models with appropriate soil and vegetation parameters and known boundary and initial 86 

conditions. However, direct measurements of soil hydraulic and transport parameters required by such 87 

models are time-consuming and labor-demanding. Therefore, such parameters are commonly obtained using 88 

inverse modeling by minimizing the errors between easily-measured state variables and fluxes (e.g., soil 89 

water contents and pressure heads at different soil depths or leachate water volumes) and corresponding 90 

model simulations (Hopmans et al. 2002; Mertens et al., 2006; Vrugt et al., 2008; Wollschläger et al., 2009; 91 

Wöhling and Vrugt, 2011).  92 

Nevertheless, it is not always necessary to account for all model parameters in parameter 93 

optimization since some can be fixed as they can be either determined experimentally or have a minor impact 94 
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on the model output. The latter can be determined using the global sensitivity analysis (GSA). The Sobol' 95 

and Morris methods are among the two most widespread GSA methods (Liu et al., 2020). The Sobol' method 96 

provides the most accurate sensitivity indices, but it requires several model runs and is thus computationally 97 

intensive (Gatel et al., 2019). In contrast, the Morris method cannot yield the order of the most sensitive 98 

parameters as accurately as the Sobol' method, but its computational cost is much lower, and it can still 99 

pinpoint the most influential parameters (Campolongo et al., 2007; Herman et al., 2013).  100 

Many inverse modeling algorithms can be used for parameter estimation. For example, the 101 

Levenberg-Marquardt Optimization (LMO) proved to be very efficient and was, therefore, implemented in 102 

HYDRUS (Šimůnek et al., 2008). However, the LMO is sensitive to the initial parameter values provided 103 

by the user and often falls into local instead of global minimum (Brunetti et al., 2016). Thus, global 104 

optimization algorithms, such as Particle Swarm Optimization (PSO), have become more widespread over 105 

the last decades (e.g., Vrugt and Robinson, 2007). 106 

When optimizing isotope transport parameters via inverse modeling, isotopic compositions from 107 

multiple soil depths must be included in the objective function and combined with other state variables and 108 

fluxes. For example, research shows that the model calibration can be improved by simultaneously 109 

considering stable isotopes and soil moisture information (Sprenger et al., 2015; Groh et al., 2018; Mattei 110 

et al., 2020). However, the correct model structure is a fundamental prerequisite to obtaining successful 111 

simulations. In particular, research discussing the impact of considering evaporation fractionation on 112 

parameter estimation and practical applications of isotope transport models is limited (Penna et al., 2018). 113 

Therefore, we pose two scientific questions. First, how will the consideration of evaporation fractionation 114 

affect the parameter estimation results of the isotope transport model? Second, how will this effect propagate 115 

into practical applications such as water travel times and evaporation estimation? 116 

To answer these questions, we compare the parameter estimation results obtained using the isotope 117 

transport model in HYDRUS-1D (Zhou et al., 2021) that does or does not consider evaporation fractionation 118 

for two available datasets: 1) a 150-cm-thick layered soil profile in a lysimeter under humid climate where 119 
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evaporation fractionation is negligible; 2) a 35-cm-thick soil column subject to evaporation where 120 

evaporation fractionation process is dominant. The accuracy of the parameterization obtained by the PSO 121 

algorithm is assessed based on its ability to reproduce measured water fluxes and isotope transport data. The 122 

parameters estimated while considering (or not) evaporation fractionation are then used to calculate travel 123 

times and evaporation.  124 

2 Materials and Methods 125 

Two experimental datasets are considered in this study. The first dataset is collected using a field 126 

lysimeter (150-cm-thick layered soil profile) located in Austria under humid climate conditions (Stumpp et 127 

al., 2012) (Section 2.1.1). The second dataset is collected using a 35-cm-thick soil column (in France) subject 128 

to evaporation to mimic arid climate conditions (Braud et al., 2009a) (Section 2.1.2). Numerical simulations 129 

of water flow and isotope transport (with and without evaporation fractionation) are implemented in 130 

HYDRUS-1D. The modeling setup is briefly described in Section 2.2 and Method S1 in the Supplementary 131 

Material. The sensitivity analysis based on the Sobol' and Morris methods is performed to evaluate the 132 

interactions between soil hydraulic and solute transport parameters and the impact of multiple measured 133 

data types (Section 2.3, Method S2, and Results S1~S2). The accuracy of the parameterization obtained by 134 

the PSO algorithm is assessed based on its ability to reproduce the observed data (Sections 2.4, 3.1.1, and 135 

3.2.1). The parameters estimated while considering or not considering evaporation fractionation are then 136 

used to calculate travel times and evaporation and quantify the impact of their different estimates (Sections 137 

2.5, 2.6, 3.1.2, and 3.2.2). The effects of varying climate conditions and estimation methods are then 138 

compared and illuminated (Section 4).  139 

The schematic outline of the different methods used is shown in Fig. 1. The description of relevant 140 

symbols and acronyms is given in the Appendix. 141 
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 142 

Figure 1. Schematic outline of methods used. 143 

 144 

2.1 Site description and data availability 145 

2.1.1 Stumpp et al. (2012) dataset 146 

The first dataset is taken from the lysimeter 3 of Stumpp et al. (2012) (available at https://www.pc-147 

progress.com/en/Default.aspx?h1d-lib-isotope). The field experiment was conducted in a humid region 148 

located at the research area of the HBLFA (Höhere Bundeslehr- und Forschungsanstalt für Landwirtschaft) 149 

Raumberg-Gumpenstein, in Gumpenstein, Austria. This area has a mean annual temperature of 6.9 °C and 150 

average annual precipitation (P) of 1035 mm. The annual potential evapotranspiration (ET0) (for grass 151 

reference) during the experiment period (May 2002 to February 2007) calculated by the Penman-Monteith 152 

equation is about 557 mm, and the corresponding aridity index (P/ET0) is about 1.86, corresponding to a 153 

humid climate class (Liang, 1982). The cylindrical lysimeter (with a depth of 150 cm and a surface area of 154 

10000 cm2) was embedded in a rainfed agricultural field (Cambisol) planted with winter rye and fertilized 155 

with liquid cattle slurry. 156 

The observation period was from May 2002 to February 2007 (1736 days). Table S1 shows the 157 

summary of the observed data. The temporal distribution of P, ET0, soil surface temperature (𝑇𝑠), air relative 158 

humidity (RH), and leaf area index (LAI) during the simulation period are shown in Fig. 2. More details 159 

https://www.pc-progress.com/en/Default.aspx?h1d-lib-isotope
https://www.pc-progress.com/en/Default.aspx?h1d-lib-isotope
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about data acquisition, including meteorological parameters and root water uptake information, can be found 160 

in Stumpp et al. (2012). 161 

 162 

Figure 2. The temporal distribution of precipitation (P) (a), potential evapotranspiration (ET0) (b), soil 163 

surface temperature (Ts) (c), air relative humidity (RH) (d), and leaf area index (LAI) (e) during the 164 

simulation period for the Stumpp et al. (2012) dataset (adapted from Stumpp et al., 2012). 165 

 166 

2.1.2 Braud et al. (2009a) dataset   167 

Braud et al. (2009a) designed a RUBIC IV experiment that started on April 11, 2005, corresponding 168 

to Day of the Year (DoY) 101, and lasted 338 days. The experiment consisted of 6 columns, 12 cm in 169 

diameter and 35 cm in height. The soil columns were filled with a silt loam collected at the field station of 170 

Lusignan, France, and wetted using demineralized water of the known isotopic composition. The bottom 171 

was closed by clay marbles. The soil was initially saturated and subject to evaporation only. Dry air was 172 

simultaneously injected over all six columns. The isotopic composition of the air changed due to water vapor 173 

released by evaporation from soil columns. The air was finally trapped in a cryoscopic device, which 174 
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allowed the determination of evaporation fluxes from bare soil columns and the corresponding isotopic 175 

composition of the water vapor under non-steady-state conditions. More details about the experimental setup 176 

can be found in Figs. 1~2 of Braud et al. (2009a). The data collected in Column 2, ending at DoY 264, were 177 

analyzed in this study. 178 

Thirteen variables were measured continuously at a frequency of about 15 minutes to assess the 179 

water balance of the soil column. These variables included the room temperature, the atmospheric pressure, 180 

the absolute pressure of the dry air before it entered the soil column, air mass flow for the humidity control 181 

above the soil column, the mass of the soil column, air temperature and humidity at the outlet of the soil 182 

column, the temperatures of the cryoscopic trapping downstream and upstream of the columns, and the air 183 

temperature and residual air humidity at the outlets of two cold traps. The vapor was trapped twice a day 184 

during the first three months and only once a day after that once evaporation decreased. Soil column 2 was 185 

dismantled on September 21, 2005 (DoY 264) to sample liquid water and measure the gravimetric soil water 186 

content. More details about data acquisition can be found in Braud et al. (2009a). The temporal distributions 187 

of the evaporation flux (E), the isotopic composition of the evaporation flux (𝛿𝐸), outlet air temperature 188 

(𝑇𝑎𝑖𝑟), and outlet air relative humidity (RH) during the simulation period are shown in Fig. 3. 189 
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 190 

Figure 3. Time series of the evaporation flux (E) (a) isotopic composition of the evaporation flux (𝛿𝐸) (b), 191 

outlet air temperature (𝑇𝑎𝑖𝑟) (c), outlet air relative humidity (RH) (d), during the simulation period for the 192 

Braud et al. (2009a) dataset (adapted from Braud et al., 2009a). 193 

 194 

2.2 Model setup 195 

The HYDRUS-1D model modified by Zhou et al. (2021) to simulate the transport of soil water 196 

isotopes while considering evaporation fractionation was used in this study. A brief summary of the model 197 

setup, including the governing equations (without and with vapor flow for the Stumpp et al. (2012) and 198 

Braud et al. (2009a) datasets, respectively), boundary conditions (BCs), and model inputs is shown in Figs. 199 

4~5. More details can be found in Zhou et al. (2021). 200 
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2.2.1 Stumpp et al. (2012) dataset 201 

The soil profile was 150 cm deep and was discretized into 151 nodes. It consisted of three different 202 

soil horizons (0 ~ 29 cm; 30 ~ 89 cm; 90 ~ 150 cm). The initial pressure head profile was assumed to be at 203 

hydrostatic equilibrium with the pressure head h=150 cm at the soil surface. The weighted average 18O 204 

of precipitation (-9.5‰) and estimated temperature (20 ℃) were used as initial conditions. 205 

The atmospheric (with a surface layer) and seepage face boundary conditions (BC) were used for 206 

water flow at the upper and lower boundaries, respectively. The temperature BC was used for heat transport 207 

at both boundaries. In this humid condition example, evaporation fractionation was limited to the soil surface 208 

due to the lack of the vapor phase within the soil. The solute flux and zero concentration gradient BCs were 209 

used for isotope transport at the upper and lower boundaries, respectively. The isotope flux associated with 210 

evaporation was calculated either assuming no fractionation or using the Craig-Gordon or Gonfiantini 211 

fractionation models (hereafter referred to as Non_Frac, CG_Frac, and Gon_Frac, respectively). The 212 

Non_Frac scenario calculated the isotope flux of evaporation by assuming that the isotopic composition of 213 

the evaporation flux was the same as that of surface soil water. The isotopic composition of the atmospheric 214 

water vapor (𝛿𝐴) in the CG_Frac scenario was estimated based on its equilibrium relationship with the 215 

isotopic composition of rainfall (Skrzypek et al., 2015). The Gon_Frac scenario was simplified (without the 216 

need for the isotopic composition of the atmospheric water vapor) to consider fractionation (Zhou et al., 217 

2021). A detailed description of the CG and Gonfiantini models can be found in Method S1. For 218 

simplification, only equilibrium fractionation was considered at the soil surface since kinetic fractionation 219 

could be neglected in this example (Zhou et al., 2021). In other words, the kinetic fractionation coefficient 220 

(𝑛𝑘) in Eq. (11) of Zhou et al. (2021) was set to 0, and thus the kinetic fractionation factor at the soil surface 221 

(𝛼𝑖
𝑘) in the CG_Frac and Gon_Frac scenarios (Eqs. S2, S3) was equal to 1. 222 
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 223 

 224 

Figure 4. Model setup for the Stumpp et al. (2012) dataset. Note that "W," "H," and "I" represent water 225 

flow, heat transport, and isotope transport, respectively. 226 

 227 

2.2.2 Braud et al. (2009a) dataset 228 

The simulated soil profile was 35 cm deep and was discretized into 132 nodes following Braud et 229 

al. (2009a). The soil column was initially almost fully saturated, with the measured initial pressure head 230 

increased linearly from 1 cm at the soil surface to 35 cm at the soil profile bottom. The observed initial 231 

soil temperature and 18O were 24.25 ℃ and -6.34‰, respectively. 232 

The temperature BC was used for heat transport at both surface and bottom boundaries, using 233 

temperatures measured at 2.5 and 24 cm depths, respectively. The atmospheric and zero flux BCs were used 234 

for water flow at the upper and lower boundaries, respectively. The measured evaporation flux, 𝐸 was used 235 

as the upper BC for water flow. In this arid condition example, evaporation fractionation occurred both at 236 

the soil surface and within the soil due to the existence of the vapor phase. The stagnant air layer BC (which 237 

had been modified to account for evaporation fractionation) and zero flux BC were used for isotope transport 238 
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at the upper and lower boundaries, respectively. The surface isotope flux associated with evaporation was 239 

calculated either assuming no fractionation, using the Craig-Gordon or Gonfiantini fractionation models, or 240 

using the measured values (hereafter referred to as Non_Frac, CG_Frac, Gon_Frac, and Meas_Frac, 241 

respectively). The Non_Frac scenario calculated the isotope flux of evaporation by assuming that its isotopic 242 

composition was the same as that of surface soil water (i.e., no fractionation at the soil surface), and 243 

equilibrium and kinetic fractionation factors within the soil (𝛼+, 𝛼𝑖
𝐷) were equal to 1 (i.e., no fractionation 244 

within the soil). The theory of CG_Frac and Gon_Frac scenarios was explained in Method S1. For 245 

simplification, the kinetic fractionation coefficient 𝑛𝑘 in Eq. (11) of Zhou et al. (2021) was set to 1, and thus 246 

the kinetic fractionation factor at the soil surface (𝛼𝑖
𝑘) in the CG_Frac and Gon_Frac scenarios (Eqs. S2, S3) 247 

was equal to 1.0324. The measured isotopic composition of the outlet water vapor, 𝛿𝐸 , was used in the 248 

Meas_Frac scenario to calculate the surface isotope flux 𝐸𝑖 corresponding to the evaporation flux 𝐸. More 249 

details about how upper boundary fluxes were calculated can be found in Braud et al. (2009a). 250 

 251 

 252 

Figure 5. Model setup for the Braud et al. (2009a) dataset. Note that "W," "H," and "I" represent water 253 

flow, heat transport, and isotope transport, respectively. 254 

 255 
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2.3 Global sensitivity analysis 256 

Five soil hydraulic parameters (i.e., 𝜃𝑟, 𝜃𝑠, 𝑛, 𝛼, and 𝐾𝑠) need to be optimized for each layer of the 257 

soil profile to simulate water flow using the HYDRUS-1D model. The residual water content 𝜃𝑟 was set to 258 

zero to reduce the number of fitting parameters. To simulate isotope transport in the soil, the longitudinal 259 

dispersivity 𝜆 also needs to be optimized. Since only the isotopic composition of the lysimeter discharge 260 

was measured in the Stumpp et al. (2012) dataset, the dispersivity of three individual soil layers cannot be 261 

estimated. Therefore, only one longitudinal dispersivity for the entire lysimeter was estimated. Therefore, 262 

the total number of parameters p was 13 and 5 for the Stumpp et al. (2012) and Braud et al. (2009a) datasets, 263 

respectively. The global sensitivity analysis (GSA) using both Morris and Sobol' methods was conducted in 264 

this study to determine the most influential parameters and their interactions. The detailed description of 265 

these two methods is shown in Method S2 in the Supplementary Material. 266 

The sensitivity analysis was conducted using Python's Sensitivity Analysis Library (SALib) 267 

(Herman and Usher, 2017). The script produces the input parameter space, overwrites the input parameters 268 

file, and runs the executable module of HYDRUS-1D. For each simulation of the Stumpp et al. (2012) 269 

dataset, five Kling-Gupta efficiency (KGE) indices for different evaluation indicators were calculated, 270 

including for the time series of the bottom water flux (KGE_bf), the soil water content at different depths 271 

(KGE_wc), the bottom water isotopic composition (KGE_wi), the water retention curves (KGE_rc), and the 272 

average of the four KGE values (KGE_avg). For each simulation of the Braud et al. (2009a) dataset, three 273 

Kling-Gupta efficiency (KGE) indices for different evaluation indicators were calculated, including the final 274 

soil water content profile (KGE_wc), the final water isotopic composition profile (KGE_wi), and the 275 

average of the two KGE values (KGE_avg). The KGE index compares the correlation coefficient (r), the 276 

ratio of mean values (β), and the ratio of variances (γ) between simulated and observed data. The value of 277 

the KGE index is always smaller or equal to 1. The higher the KGE value, the better fit between the simulated 278 

and observed values. The positive and negative KGE values are often considered "good" and "bad" solutions 279 

(Knoben et al., 2019). 280 
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KGE = 1 − [(1 − 𝑟)2 + (1 − 𝛽)2 + (1 − 𝛾)2]0.5 (1) 

If a HYDRUS-1D run was not finished within a prescribed time (i.e., 30 s and 60 s for the Stumpp 281 

et al. (2012) and Braud et al. (2009a) datasets, respectively) or the length of the modeled hydrograph was 282 

shorter than the total simulation period (1736 and 163 days for the Stumpp et al. (2012) and Braud et al. 283 

(2009a) datasets, respectively), it was considered non-convergent. The run was then terminated, and a large 284 

negative value (1E+7) was prescribed to the objective function.  285 

Non-convergent runs in GSA are a frequent problem when using nonlinear 286 

environmental/hydrological models, and there are no clear indications on how to handle these "unfeasible" 287 

points (Razavi et al., 2021). Removing or skipping them alters the sampling trajectory and can result in 288 

biased conclusions, especially if non-convergent runs lie in informative regions of the parameter space. 289 

Recently, Sheikholeslami et al. (2019) compared strategies such as median substitution, single nearest-290 

neighbor, or response surface modeling (Brunetti et al., 2017) to fill in for model crashes. Their results show 291 

that interpolating non-convergent runs with a radial basis function trained in the vicinity of that point leads 292 

to reliable results and outperforms other strategies. We implemented a similar approach in the present work 293 

but with important differences. In particular:  294 

1. For each non-convergent point, we calculated its Euclidean distance from all other convergent 295 

points in the GSA sample. 296 

2. Convergent points were ordered in ascending order (i.e., from the closest to the farthest). 297 

3. The 100 closest convergent points were used to train a response surface surrogate based on the 298 

Kriging Partial Least Squares method (KPLS) (Bouhlel et al., 2016), which outperforms traditional 299 

kriging on high-dimensional problems. 300 

4. The trained KPLS surrogate was finally used to interpolate non-convergent runs in the original GSA 301 

sample.  302 

The use of multiple localized surrogates allowed for better reconstruction of the topological features of the 303 

response surface in the vicinity of the non-convergent points. 304 
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In this study, the global sensitivity analysis was combined with the Monte Carlo filtering to identify 305 

reduced ranges of parameters with good solutions for subsequent parameter optimization. Potential solutions 306 

were filtered into good solutions with KGE > 0.0 and bad solutions with KGE ≤ 0.0. Kernel density 307 

estimation (KDE) plots were then used to identify areas with high-density good solutions, while the 308 

correlation analysis was conducted to determine interactions between parameters and may help reduce the 309 

input factor space. More details can be found in Brunetti et al. (2016). This type of procedure shares multiple 310 

similarities with the Generalized Likelihood Uncertainty Estimation (GLUE) proposed by Beven et al. 311 

(2001). The joint use of the GSA sample with the GLUE approach [i.e., GSA-GLUE (Ratto et al., 2001)] 312 

allows for obtaining a rough assessment of the parameters uncertainty and successful estimates of soil 313 

hydraulic parameters (e.g., Brunetti et al., 2018). 314 

 315 

2.4 Parameter optimization 316 

The Particle Swarm Optimization (PSO) algorithm was used in this study for parameter 317 

optimization. In the PSO, a swarm of candidate solutions is moved around in the search space according to 318 

a few equations. The movement of the particles is guided by the optimal position of themselves and the 319 

whole swarm. Once improved positions are discovered, they are used to guide the swarm's movement. This 320 

process is repeated until the global optimal position that all particles tend to follow is found (Shi and 321 

Eberhart, 1998). 322 

The PSO parameters (cognitive parameter 𝑐1=-0.267; social parameter 𝑐2=3.395; inertia-weight 323 

𝑤=-0.444) from Brunetti et al. (2016) were used in this study. The number of particle swarm and iterations 324 

are 40 and 200, respectively. 325 

The PySwarm Library in Python was used for the PSO. The process was similar to the GSA, except 326 

that reduced ranges of parameters were used. In this way, the number of potential local minima is reduced, 327 

and the convergence improves. Only the set of parameters leading to the maximum KGE_avg (i.e., minimum 328 

1-KGE_avg as the objective function) was retained as optimized parameters. 329 
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 330 

2.5 First practical application: Calculation of drainage and RWU travel times 331 

2.5.1 The peak displacement (isotope-transport-based) method 332 

The peak displacement method estimates travel times from the time lag between signals in the 333 

measured input (rainfall isotopic composition) and output (drainage isotopic composition) isotope time 334 

series. In the Stumpp et al. (2012) dataset, a pronounced correspondence was observed between the depleted 335 

precipitation peak in the winter (November 18, 2005, to April 14, 2006) and the lysimeter discharge. The 336 

mean drainage travel time 𝑡𝑜
∗ [T], accounting for dispersion effects, can be calculated by the mean peak 337 

isotopic composition lag time 𝑡𝑚
∗  [T] using Eq. 2: 338 

𝑡𝑜
∗ =

𝑡𝑚
∗

√1 + (3
𝜆
𝐿

)2 − 3
𝜆
𝐿

 

(2) 

where 𝐿 is the lysimeter length [L]. More details can be found in Stumpp et al. (2012). In this study, 𝑡𝑚
∗  339 

from Stumpp et al. (2012) and dispersivities 𝜆  optimized using HYDRUS-1D assuming different 340 

fractionation scenarios were used. 341 

2.5.2 The particle tracking (water-flow-based) method 342 

The particle tracking algorithm is based on the water mass balance calculation. The initial position 343 

of the particles is defined using the initial water content distribution. Depending on the 344 

precipitation/irrigation inputs, the particles may be released at the soil surface and leave at the soil profile 345 

bottom. In this study, the input parameters wStand (the initial distribution) and wPrec (the upper BC distribution) 346 

for the particle tracking algorithm were set to 10 cm and a negative number (which triggers the option of 347 

releasing particles with each rain event), respectively. More details about the particle tracking algorithm can 348 

be found in Šimůnek (1991) or Zhou et al. (2021).  349 

When knowing the positions of the particles at different times, the residence time (RT) and locations 350 

of water from all precipitation/irrigation events can be obtained, i.e., the residence time distribution (RTD). 351 
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Note that the particle travel time (TT) is the sum of the particle age (i.e., residence time) and life expectancy 352 

(i.e., time to reach the destination). The former is the time elapsed since the particle release, while the latter 353 

is the remaining time before the particle reaches the outlet (Benettin et al., 2015). Therefore, when the 354 

particles leave the lysimeter bottom or as root water uptake (RWU), their residence times can be called 355 

drainage or RWU travel times, respectively. The particle tracking module additionally assesses RWU 356 

between two neighboring particles as a function of time. When particles are released for each precipitation 357 

event, we can precisely evaluate the contribution of each precipitation event to RWU at different times. We 358 

can then infer the temporal origin of RWU by synthesizing this information. Different fractionation 359 

scenarios with the soil hydraulic parameters optimized using HYDRUS-1D were used to run the particle 360 

tracking module to calculate drainage and RWU travel times. 361 

 362 

2.6 Second practical application: Calculation of evaporation flux 363 

2.6.1 The water-flow-based method 364 

Braud et al. (2009a) calculated evaporation using three methods. The first method determines the 365 

evaporation rate by continuously measuring the vapor flux and humidity at the outlet of the soil column. 366 

The second method obtains the evaporation rate by repeatedly weighing the soil column. Finally, the third 367 

method determines the evaporation rate by weighting the mass of the frozen water trapped at the outlet of 368 

the soil column. These three methods are hereafter referred to as direct measurement, column weighting, 369 

and trapped volume, respectively. This study presents these results also as the reference for other methods. 370 

More details can be found in Braud et al. (2009a). Another water-flow-based method used in this study to 371 

calculate water flux components was to analyze the water mass balance simulated in HYDRUS-1D  (e.g., 372 

Sutanto et al., 2012). 373 
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2.6.2 The isotope-transport-based method 374 

For an isolated water volume with an initial isotopic composition, 𝛿0  (‰) evaporating into the 375 

atmosphere, the isotopic composition of the residual liquid water 𝛿𝑠 (‰) can be calculated as (Benettin et 376 

al., 2018):  377 

𝛿𝑠 = (𝛿0 − 𝛿∗)(1 − 𝐹𝐸)𝑥𝑚 + 𝛿∗ (3) 

where 𝛿∗ (‰) is the limiting isotopic composition that would be approached when water is drying up,  𝑥𝑚 378 

is the temporal enrichment slope (–), and FE is described below.  379 

Eq. (3) is based on the isotope mass balance equations of Gonfiantini (1986) and the isotopic 380 

composition of the evaporation flux estimated by the Craig–Gordon model (Craig and Gordon, 1965). More 381 

details about the derivations can be found in Gonfiantini (1986). This equation implies that the isotopic 382 

composition of soil water only changes due to evaporation fractionation. The ratio of the evaporation loss 383 

to the initial water storage (𝐹𝐸) can be then estimated as (Sprenger et al., 2017): 384 

𝐹𝐸 = 1 − [
(𝛿𝑠 − 𝛿∗)

(𝛿0 − 𝛿∗)
]

1
𝑥𝑚 (4) 

The two variables 𝛿∗ and 𝑥𝑚 can be calculated as (Benettin et al., 2018): 385 

𝛿∗ =
(𝑅𝐻 ⋅ 𝛿𝐴 + 휀𝑘 + 휀+/𝛼+)

(𝑅𝐻 − 10−3(휀𝑘 + 휀+/𝛼+))
 (5) 

𝑥𝑚 =
(𝑅𝐻 − 10−3(휀𝑘 + 휀+/𝛼+))

(1 − 𝑅𝐻 + 10−3휀𝑘)
 (6) 

where 𝛿𝐴 (‰) is the isotopic composition of the atmospheric water vapor, 𝑅𝐻 is the air relative humidity, 386 

𝛼+ (–) is the dimensionless equilibrium fractionation factor, while 휀+ (‰) and 휀𝑘 (‰) are equilibrium and 387 

kinetic fractionation enrichments, respectively. Details about the calculation procedure for these parameters 388 

(𝛼+, 휀+, 휀𝑘) can be found in Benettin et al. (2018) or Zhou et al. (2021). The equivalent kinetic fractionation 389 

factor within the soil (𝛼𝑖
𝐷) used to calculate 휀𝑘 was optimized manually to get the best match of 𝐹𝐸 with 390 

those from water-flow-based methods in Section 2.6.1. 391 
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The fraction of water that evaporated before the end of the Braud et al. (2009a) experiment was 392 

calculated in this study. Average measured values of RH, 𝑇𝑎𝑖𝑟, 𝑇𝑠, and 𝛿0 during the experiment, and the 393 

final isotope profile simulated using HYDRUS-1D were used in the above equations. 394 

3 Results 395 

3.1 Stumpp et al. (2012) dataset analysis 396 

3.1.1 Parameter optimization and model performance 397 

The global sensitivity analysis and Monte-Carlo filtering results for the Stumpp et al. (2012) dataset 398 

are shown in the Results S1 section of the Supplementary material. Overall, soil hydraulic parameters of 399 

different layers had comparable impacts on the model outputs. The order of sensitive parameters is: shape 400 

parameters of the water retention function, namely n, and α, saturated water content 𝜃𝑠, saturated hydraulic 401 

conductivity 𝐾𝑠, and dispersivitie 𝜆. The final optimized soil hydraulic and solute transport parameters and 402 

corresponding KGEs are shown in Table 1. Considering evaporation fractionation impacted parameter 403 

estimation significantly, especially in the optimization of the soil saturated hydraulic conductivity, 𝐾𝑠, and 404 

shape parameter, 𝛼. Overall, the water retention and soil hydraulic conductivity curves (Fig. S8) differed 405 

greatly between different fractionation scenarios in the third layer, but were relatively similar in the first and 406 

second layers. The water retention curve in the Gon_Frac scenario best matched the measured one, but did 407 

not outperform those from the CG_Frac and Non_Frac scenarios, as seen from the KGE_rc values in Table 408 

1. Compared with the CG_Frac and Gon_Frac scenarios, the water retention curve in the Non_Frac scenario 409 

had a steeper decline and a lower saturated water content in the third layer, while it became more gradual 410 

with higher saturated water contents in the first and second layers. However, the Non_Frac scenario always 411 

produced higher hydraulic conductivities than the CG_Frac and Gon_Frac scenarios (Note that the 412 

Non_Frac scenario also had higher hydraulic conductivities in the third layer because of relatively higher 413 

matric potentials).  414 

The fits for different fractionation scenarios are shown in Fig. 6. The isotopic composition of the 415 

lysimeter discharge remained the same for different fractionation scenarios during about the first 150 days 416 
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and started deviating after this time, but the trends were still similar except for some vertical shifts. Different 417 

fractionation scenarios resulted in a similar average fitting performance (KGE_avg) (within 0.03). The 418 

Non_Frac scenario had the highest KGE_wi (i.e., for water isotopic composition), followed by the CG_Frac 419 

scenario, while the Gon_Frac scenario performed the worst. The difference between KGE_wi indices for 420 

different fractionation scenarios was within 0.09. 421 

 422 

Table 1. Optimized parameters and Kling-Gupta efficiency (KGE) indices (bf, wc, wi, and avg refer to the 423 

bottom flux, water content, water isotopic composition, and average, respectively) for different fractionation 424 

scenarios (Non_Frac, CG_Frac, and Gon_Frac) (for the Stumpp et al. (2012) dataset). 425 

Fractionation 

scenario 
𝑧 𝜃𝑟 𝜃𝑠 𝛼 𝑛 𝐾𝑠 𝜆 

KGE

_bf 

KGE

_wc 

KGE

_wi 

KGE

_rc 

KGE

_avg 

 cm 
cm3/ 

cm3 

cm3/ 

cm3 
cm-1 - cm/d cm      

Non_Frac 

0–30 0 0.31 0.010 1.19 83.6 

5.00 0.99 0.47 0.59 

 

0.73 31–90 0 0.43 0.293 1.11 1131.71 0.87 

91–150 0 0.30 0.009 1.91 85.16  

CG_Frac 

 

0–30 0 0.30 0.020 1.15 220.00       

31–90 0 0.41 0.300 1.11 287.24 5.00 0.99 0.54 0.58 0.89 0.75 

91–150 0 0.30 0.082 1.10 220.00       

Gon_Frac 

0–30 0 0.30 0.026 1.14 220.00 
 

6.02 

 

0.99 0.45 0.50 

 

0.72 31–90 0 0.40 0.298 1.11 191.89 0.92 

91–150 0 0.35 0.300 1.12 220.00  

 426 

 427 

Figure 6. Measured (symbols) and simulated discharge 18O isotopic compositions for different 428 

fractionation scenarios (for the Stumpp et al. (2012) dataset). 429 
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3.1.2 First practical application: Drainage travel times and RWU temporal origin 430 

The mean travel times (MTTs) of drainage (i.e., from the surface to the bottom) estimated by the 431 

peak displacement method are shown in Table 2. The MTTs were 251.9, 251.9, and 257.1 days for the 432 

Non_Frac, CG_Frac, and Gon_Frac scenarios, respectively. The consideration of fractionation using the 433 

Gonfiantini model slightly overestimated the travel times compared to the Non_Frac scenario. However, the 434 

difference was not very evident (within 6 days) for different fractionation scenarios. 435 

 436 

Table 2. Estimated mean travel times of drainage (𝑡0
∗) and mean water fluxes (𝑣0

∗) for different 437 

fractionation scenarios (Non_Frac, CG_Frac, and Gon_Frac) using different methods (peak displacement 438 

and particle tracking). 439 

Method Fractionation scenario 𝑡0
∗ (d) 𝑣0

∗ (mm/d) 
Ratio of 𝑡0

∗ compared to  

𝑡0
∗ for Non_Frac 

Peak 

displacement 

Non_Frac 251.9 5.95  

CG_Frac 251.9 5.95 0% 

Gon_Frac 257.1 5.83 2.06% 

Particle 

tracking 

Non_Frac 297.5 5.04  

CG_Frac 356.8 4.20 19.93% 

Gon_Frac 369.9 4.05 24.33% 

 440 

Fig. S9 shows the spatial-temporal distribution of particles simulated using the soil hydraulic 441 

parameters estimated considering different fractionation scenarios. The residence time distribution (RTD) 442 

of soil water is displayed in Fig. 7. The mean residence time (MRT – the mean of RTs averaged over the 443 

entire simulation duration) increased with soil depth in all scenarios due to a time lag involved in water 444 

transfer. The MRTs for the Non_Frac scenario for depths of 30, 70, and 110 cm were 82.1, 138.2, and 203.6 445 

days, respectively. The MRTs for the CG_Frac scenario for 30, 70, and 110 cm depths were 69.9, 170.0, and 446 

258.5 days, respectively. Finally, the MRTs for the Gon_Frac scenario for 30, 70, and 110 cm depths were 447 

80.6, 174.3, and 270.6 days, respectively. In terms of temporal distribution, RTs showed five distinct 448 

seasonal cycles. Specifically, they had a trough after every rainy season and a peak after every dry season, 449 
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showing a pronounced lag effect. In other words, RTs were determined by the trade-off between precipitation 450 

input and evapotranspiration removal. 451 

Corresponding travel times of drainage are shown as probability density distribution histograms in 452 

Fig. S10 and summarized in Table 2. The means (and standard deviations) of travel times were 297.5 (79.96), 453 

356.8 (104.29), and 369.9 (101.24) days for the Non_Frac, CG_Frac, and Gon_Frac scenarios, respectively. 454 

The particle tracking method produced significantly higher travel times (by about 89 days) than the peak 455 

displacement method. Similarly, considering fractionation using the CG_Frac and Gon_Frac scenarios led 456 

to longer travel times (TTs) than the Non_Frac scenario. In addition, the difference was very evident 457 

(reached 78 days) for different scenarios. 458 

To further explore and quantify the RTD differences when considering different fractionation 459 

models, the temporal origin of RWU is plotted in Fig. 8. Fig. 8 shows the monthly transpiration sums in the 460 

upper panels and fractional contributions of water of a certain age/origin to these monthly transpiration sums 461 

in the lower panels. Note that the amount and temporal distribution of transpiration were similar under 462 

different fractionation scenarios (54.95, 53.91, and 54.03 cm for Non_Frac, CG_Frac, and Gon_Frac, 463 

respectively). Therefore, only the temporal distribution of transpiration in the Non_Frac scenario is 464 

displayed. As for the age distribution of RWU, for example, in the Non_Frac scenario, the yellow line in 465 

2002 indicates that about 29% of the water taken up by roots in August was older than May, while the 466 

remaining 71% was from May~August of 2002 (5% from June, 16% from July, and 50% from August). 467 

More details about how to read the age distribution of RWU can be found in Fig. 5 of Brinkmann et al. 468 

(2018). 469 

The maximum water age for RWU for different fractionation scenarios was almost the same, about 470 

300 d in October 2003, 330 d in September 2004, 270 d in November 2005, and 180 d in February 2006, 471 

except for 240 d in December 2004 and 180 d in February of 2005 for the Non_Frac scenario. These results 472 

were consistent with water residence times at the maximum rooting depths in Fig. 7. However, different 473 

fractionation scenarios had relatively large impacts (up to three months) on the minimum water age for 474 
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RWU. The most obvious example was the 2003 growing season (a relatively dry year with less precipitation, 475 

as shown in Fig. 2). The minimum water age for RWU in 2003 was within about a month for the Gon_Frac 476 

scenario and 120 d (February) for the Non_Frac and CG_Frac scenarios. In addition, the dynamics of 477 

fractional monthly contributions to RWU also varied between different scenarios. In general, the water age 478 

for RWU was far longer in dry years (2003~2004) than in wet years (2005~2006), suggesting that drought 479 

can promote crop uptake of old water. In the same growing season, the water age for RWU was consistently 480 

lower in May and June than in July and August, which reflected an increase in the rooting depth. 481 

 482 

 483 
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 484 

Figure 7. The residence time distributions (RTDs) for different fractionation scenarios (Non_Frac – top, 485 

CG_Frac – middle, and Gon_Frac – bottom). Note that the dashed red line represents the rooting depth. 486 

 487 

 488 

 489 
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490 

 491 

Figure 8. The temporal origin of root water uptake (RWU) for different fractionation scenarios (Non_Frac 492 

– top, CG_Frac – middle, and Gon_Frac – bottom). The upper panels show the monthly transpiration sums 493 

(in different colors); the lower panels show fractional contributions of water of a certain age/origin (by 494 

month) to the monthly transpiration sums. 495 

 496 

3.2 Braud et al. (2009a) dataset analysis 497 

3.2.1 Parameter optimization and model performance 498 

The global sensitivity analysis and Monte-Carlo filtering results for the Braud et al. (2009a) dataset 499 

are shown in the Results S2 section of the Supplementary material. The most sensitive parameters were 500 

shape parameters n and saturated water contents 𝜃𝑠. The final optimized soil hydraulic and solute transport 501 

parameters and corresponding KGEs are shown in Table 3. Considering (or not) evaporation fractionation 502 

also impacted parameter estimation significantly. The most significant impacts were on dispersivity,𝜆, and 503 

the shape parameter, 𝛼 (Table 3). The soil water retention curves (Fig. S12) showed that the wilting points 504 
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were almost identical for the Non_Frac and fractionation (CG_Frac, Gon_Frac, Meas_Frac) scenarios. 505 

However, the saturated water contents were higher, and water contents started to drop later in the 506 

fractionation scenarios than those in the Non_Frac scenario. The soil hydraulic conductivity curves (Fig. 507 

S12) showed that the saturated hydraulic conductivities were very similar, but the hydraulic conductivities 508 

in the fractionation scenarios were a little higher than those in the Non_Frac scenario.  509 

The fits of soil profile isotopic compositions for different fractionation scenarios are shown in Fig. 510 

9. The Non_Frac scenario had an almost uniform isotopic composition profile. In this case, the parameter 511 

optimization depended mainly on the measured soil water content profile. In fractionation scenarios, the 512 

peak value of the isotopic composition profile in the Meas_Frac scenario was smaller than those in the 513 

Gon_Frac and CG_Frac scenarios, while the value of dispersivities was the opposite. Different fractionation 514 

scenarios resulted in significantly different average fitting performances (KGE_avg) (reached 0.72). The 515 

Meas_Frac scenario had the highest KGE_wi (i.e., for soil water isotopic composition), followed by 516 

Gon_Frac and CG_Frac scenarios, while the Non_Frac scenario performed the worst. The difference 517 

between KGE_wi indices for different fractionation scenarios reached 1.49. 518 

 519 

Table 3. Optimized parameters and Kling-Gupta efficiency (KGE) indices (wc, wi, and avg refer to the 520 

water content, water isotopic composition, and average, respectively) for different fractionation scenarios 521 

(Non_Frac, CG_Frac, Gon_Frac, and Meas_Frac) (for the Braud et al. (2009a) dataset). 522 

Fractionation 

scenario 

𝜃𝑟 
cm3/ 

cm3 

𝜃𝑠 
cm3/ 

cm3 

𝛼  
(cm-1) 

𝑛 
(-) 

𝐾𝑠  
(cm/d) 

𝜆 (cm) 
KGE_

wc 

KGE_

wi 

KGE_

avg 

Non_Frac 0 0.435 0.0103 2.352 0.158 0.166 0.96 -0.55 0.20 

CG_Frac 0 0.458 0.0106 2.367 0.139 0.126 0.85 0.37 0.61 

Gon_Frac 0 0.441 0.0101 2.352 0.142 0.114 0.96 0.47 0.71 

Meas_Frac 0 0.452 0.0082 2.392 0.156 0.932 0.90 0.94 0.92 

 523 
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 524 

Figure 9. Measured (symbols) and simulated (lines) 18O isotopic compositions across the soil profile for 525 

different fractionation (Non_Frac, CG_Frac, Gon_Frac, and Meas_Frac) scenarios (for the Braud et al. 526 

(2009a) dataset). 527 

3.2.2 Second practical application: Estimation of evaporation flux  528 

Table 4 shows cumulative evaporation obtained using different measurements and simulated 529 

considering different fractionation scenarios. The average isotopic composition of the whole profile was 530 

calculated using soil water contents and the column depth as weights. Cumulative evaporation was estimated 531 

to account for about 64.4%, 63.1%, and 65.6% of the initial soil water storage in the CG_Frac, Gon_Frac, 532 

and Meas_Frac scenarios, respectively. These values for the CG_Frac, Gon_Frac, and Meas_Frac scenarios 533 

were (slightly) lower than but comparable to laboratory measurements and the HYDRUS-1D water balance. 534 

Slight differences may have been caused by uncontrollable measurement errors in the isotopic composition 535 

of the atmospheric water vapor (𝛿𝑎 in Eq. 5), which is the most sensitive parameter in the isotope mass 536 

balance method  (Skrzypek et al., 2015). Cumulative evaporation cannot be estimated using this method in 537 

the Non_Frac scenario since no isotopic enrichment occurred (i.e., 𝛿𝑠 = 𝛿0 in Eq. 4).  538 

 539 
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Table 4. Cumulative evaporation measured using different experimental methods and calculated 540 

considering different fractionation scenarios. 541 

Method 

Fractionation 

scenario 

Cumulative 

evaporation 

(mm) 

Initial soil 

water storage 

(mm) 

𝐹𝐸 (-) 

Direct measurement  

(of airflow and humidity) 

 
105 153 68.7% 

Column weighting  103 153 67.1% 

Trapped volume  103 153 67.3% 

HYDRUS-1D water mass balance 

Non_Frac 105 151 69.5% 

CG_Frac 105 159 66.0% 

Gon_Frac 105 153 68.6% 

Meas_Frac 105 157 66.9% 

Isotope mass balance 

Non_Frac - 151 - 

CG_Frac 102 159 64.4% 

Gon_Frac 97 153 63.1% 

Meas_Frac 103 157 65.6% 

Note that values of cumulative evaporation for the first three laboratory measurement methods are from 542 

Braud et al. (2009a). 543 

4 Discussion 544 

4.1 Impacts of evaporation fractionation on parameter estimation and model performance 545 

For the Stumpp et al. (2012) dataset, as indicated in Section 3.1.1, the fractionation scenarios 546 

(CG_Frac and Gon_Frac) had lower hydraulic conductivities than the Non_Frac scenario. This is because 547 

fractionation decreases the isotope flux by evaporation compared with a no fractionation scenario (the 548 

isotopic composition of the evaporation flux cannot be greater than that of surface soil water) and thus 549 

increases the isotope flux by net infiltration. To get a good fit between simulated and observed isotopic 550 

compositions of discharge water, the inverse modeling yields a larger longitudinal dispersivity (to increase 551 

the dispersion of isotopes) (Table 1) or lower hydraulic conductivities (to decrease downward convection 552 

of isotopes) (Fig. S8). 553 

The simulated isotopic composition of the lysimeter discharge remained the same for different 554 

fractionation scenarios during about the first 150 d and started deviating after this time (Fig. 6). This suggests 555 
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that it takes about 150 d before the impact of different treatments of the upper BC for isotope transport 556 

propagates to the soil profile bottom and affects the isotopic composition in drainage water (Zhou et al., 557 

2021). This time interval (i.e., about 150 d) is much smaller than the travel time of the first particle (released 558 

at the soil surface) as calculated by the particle tracking method (Fig. S9). This is because the particle 559 

tracking algorithm considers only piston flow, while dispersion accelerates the arrival of isotopes to the soil 560 

profile bottom. However, the trends are still similar, except for some vertical shifts.  561 

Since KGE_wi values did not differ much for different fractionation scenarios (within 0.09) (Fig. 6 562 

and Table 1), considering (or not) evaporation fractionation does not significantly impact the isotopic 563 

composition in discharge water in this example (humid conditions). The Non_Frac scenario had a slightly 564 

higher KGE_wi, indicating that it can fit isotopic data better, followed by CG_Frac, while Gon_Frac 565 

performed the worst. This is understandable since evaporation fractionation could be neglected in this 566 

example, as seen from the dual-isotope plots (Fig. 5 of Stumpp et al., 2012). 567 

For the Braud et al. (2009a) dataset, as indicated in Section 3.2.1, the hydraulic conductivities in the 568 

fractionation (CG_Frac, Gon_Frac, Meas_Frac) scenarios were a little higher than those in the Non_Frac 569 

scenario. This is because fractionation decreases the isotope flux by evaporation compared with a no 570 

fractionation scenario. A higher hydraulic conductivity in the fractionation scenarios promotes upward 571 

evaporation and fractionation. This increases the isotopic composition of remaining soil water and thus 572 

produces a better fit between simulated and observed isotope profiles.  573 

When evaporation fractionation was not considered, the isotopic composition of evaporation 574 

remained the same as the initial isotopic composition. This resulted in a uniform isotopic composition (equal 575 

to the initial value) distribution of soil water throughout the profile in the Non_Frac scenario (Fig. 9). In 576 

fractionation scenarios, the peak value of the isotopic composition profile was inversely proportional to the 577 

dispersivity value (Fig. 9 and Table 3), which is consistent with the conclusions from Braud et al. (2009b).  578 

The isotopic composition profiles and the KGE_wi values differed dramatically (reached 1.48) 579 

between different fractionation scenarios (Fig. 9 and Table 3). This implies that considering evaporation 580 
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fractionation significantly impacts the isotopic composition profile in this example (arid conditions). The 581 

Meas_Frac scenario had the highest KGE_wi (i.e., for the water isotopic composition), followed by the 582 

Gon_Frac, and then CG_Frac, while the Non_Frac scenario performed the worst. This is understandable 583 

since evaporation fractionation could not be neglected, and the measured evaporation isotope flux is the 584 

most accurate for this example (Braud et al. 2009b). 585 

4.2 Impacts of evaporation fractionation on practical applications 586 

4.2.1 Estimation of drainage and RWU travel times 587 

Differences in water travel times were not evident among different fractionation scenarios (Table 588 

4), since the numerator in Eq. 2 is much larger than the denominator in the peak displacement method. As a 589 

result, water travel times were similar for different fractionation scenarios despite a very different 590 

dispersivity. However, for the particle tracking method based on water flow calculations, differences in 591 

water travel times were evident among different fractionation scenarios (Table 2), despite their similar KGE 592 

values (Table 1). In addition, differences in estimated soil hydraulic parameters may also cause 593 

discrepancies in TTs of individual precipitation events and the temporal origin of water for RWU (Figs. S8 594 

and 7~8).  595 

Overall, the particle tracking method gave much higher travel times than the peak displacement 596 

method (Table 2). Different results by these two methods may be associated with different rainfall events 597 

selected for these calculations. The peak-displacement method calculates the travel times during frequent 598 

and heavy precipitation events (precipitation events from 2005~2006), while particle tracking assesses the 599 

travel times over longer periods (Zhou et al., 2021). 600 

Notably, water travel times in the Non_Frac scenario obtained by the particle tracking method are 601 

most consistent with the approximate estimate of 41weeks provided by previous studies with similar crops 602 

and areas (Stumpp et al., 2009). It is worth mentioning that Asadollahi et al. (2020) pointed out that the SAS 603 

approach was a good alternative for estimating water travel times when the system was too complicated to 604 

be fully described by the HYDRUS-1D model. Our study demonstrates that the water-flow-based particle 605 
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tracking module in HYDRUS-1D is another promising way of constraining estimation errors in water travel 606 

times, especially when there is not enough isotope data to calibrate the lumped or physically based isotope 607 

transport models. 608 

In contrast, considering fractionation using either the CG or Gonfiantini models will likely led to 609 

larger water travel time estimates than in the Non_Frac scenario (Table 2). This is because fractionation 610 

scenarios result in a larger dispersivity (to increase the dispersion of isotopes) or lower hydraulic 611 

conductivities (to decrease convection of isotopes), as discussed in Section 4.1. 612 

4.2.2 Estimation of the evaporation flux 613 

For evaporation estimation, the isotope-transport-based methods for different fractionation 614 

(CG_Frac, Gon_Frac, and Meas_Frac) scenarios can give comparable results to the water-flow-based 615 

methods, including laboratory measurements and the HYDRUS-1D water balance. In contrast, the 616 

Non_Frac scenario can produce similar results only when using the water-flow-based method (HYDRUS-617 

1D water balance). However, since the measured evaporation flux was used as the upper boundary condition 618 

in this (arid conditions) example, it is not clear whether the similarity between estimated evaporation 619 

amounts using the HYDRUS-1D water balance method in the Non_Frac and fractionation (CG_Frac, 620 

Gon_Frac, Meas_Frac) scenarios was due to this boundary condition, or because actual soil hydraulic 621 

conductivities and water contents were continuously adjusted to actual soil fluxes without ever reaching full 622 

saturation. However, it is clear that evaporation fractionation has a significant impact on the isotope transport 623 

and isotopic compositions in arid conditions, as shown in Fig. 9. Therefore, the direct use of simulated 624 

isotopic compositions in the Non_Frac scenario may result in large biases in practical applications in arid 625 

conditions, as seen from the evaporation estimation results in Table 4.  626 

4.3 Comparison of different climate conditions and implications for future studies 627 

The soil saturated hydraulic conductivities (𝐾𝑠), and the retention curve shape parameter (𝛼) were 628 

the parameters most affected by the consideration of evaporation fractionation for the humid condition 629 

dataset (Table 1). For the arid condition dataset, these were the dispersivity (𝜆) and the retention curve shape 630 
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parameter (𝛼) (Table 3). This is likely associated with the effects of soil texture on retention curves and soil 631 

moisture conditions in different climate zones (Radcliffe and Šimůnek, 2018). Overall, soil water retention 632 

and hydraulic conductivity curves (Fig. S12) in different fractionation scenarios were more similar for the 633 

Braud et al. (2009a) dataset than the Stumpp et al. (2012) dataset (Fig. S8). One reason is that the measured 634 

evaporation flux was used as the upper BC in the former, which constrains the model flexibility. Another 635 

reason is that there was only one soil layer in the Braud et al. (2009a) dataset, while there were three soil 636 

layers in the Stumpp et al. (2012) dataset. There is likely a compensation effect between the parameters of 637 

different layers, and thus the parameter values can vary more in the Stumpp et al. (2012) dataset. 638 

While evaporation fractionation plays an essential role in parameter estimation in both cases, its 639 

impact on model performance is relatively small in the example for humid conditions but more significant 640 

in the example for arid conditions, as discussed in Sections 4.1 and 4.2. This is expected since evaporation 641 

plays a more important role in the water balance of the arid dataset (Table 4) than in the humid dataset (Fig. 642 

S13). These conclusions also indirectly validate the common assumption that evaporation fractionation may 643 

be neglected in some humid regions but not in arid areas (Sprenger et al., 2016a).  644 

However, parameter sensitivities and optimization results reflect complex combined effects of 645 

climate, soil, and vegetation characteristics. The isotopic composition of soil water is not only affected by 646 

evaporation fractionation, but also by the mixing of rainfall with soil water and different flow paths in the 647 

soil, leading to its variations with depths and time. The insufficient knowledge of the spatiotemporal isotope 648 

distribution (e.g., in shallow and deep depths or during different stages of evaporation) and the lack of such 649 

information in the objective function may bias the parameter estimation results. For example, not including 650 

isotopes from different soil depths within the soil profile might lead to an underestimation of evaporation 651 

fractionation in general, biased estimation of water mixing within the profile, and a similar isotopic signal 652 

in the discharge. In this study, we considered either the time series of the isotopic composition of the bottom 653 

flux in the Stumpp et al. (2012) dataset or the final isotopic composition profile in the Braud et al. (2009a) 654 

dataset. In addition, observation data types and spatiotemporal distributions are different for these two 655 
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datasets, and this difference may affect the comparison of parameter estimation results between different 656 

climate conditions.  657 

The GSA was carried out for the Non_Frac scenario for the Stumpp et al. (2012) dataset and the 658 

Meas_Frac scenario for the Braud et al. (2009a) dataset because they were closest to the experimental 659 

conditions. This implicitly assumes that sensitivity remains the same for different model structures. 660 

However, different model structures may affect GSA and PSO results, which should be further explored. 661 

Last but not least, the impacts of possible transpiration fractionation, as observed in multiple studies, should 662 

also be included in future analyses (e.g., Barbeta et al., 2019). Therefore, it is difficult to generalize the 663 

results of this study or apply them to other specific conditions.  664 

5 Summary and Conclusions 665 

In this study, we analyzed parameter estimation results for two datasets collected under humid and 666 

arid climate conditions using the isotope transport model, in which we either did or did not consider 667 

evaporation fractionation. The global sensitivity analysis using the Morris and Sobol' methods and the 668 

parameter estimation using the Particle Swarm Optimization algorithm highlight the significant impacts of 669 

considering evaporation fractionation on parameter estimation and model performance. The KGE index for 670 

isotope data can increase by 0.09 and 1.49 for the humid and arid datasets, respectively, when selecting 671 

suitable fractionation scenarios. 672 

The impact of different parameter values estimated when considering (or not) evaporation 673 

fractionation propagates into practical applications of isotope transport modeling. The isotope-transport-674 

based method (peak displacement) gave much lower water travel times than the water-flow-based method 675 

(particle tracking) for humid conditions. Considering fractionation using the CG and Gonfiantini models 676 

will likely lead to larger water travel time estimates and ages for RWU. For arid conditions example, the 677 

isotope-transport-based method (isotope mass balance) can provide comparable evaporation estimates for 678 

different fractionation (CG_Frac, Gon_Frac, Meas_Frac) scenarios as the water-flow-based methods 679 
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(HYDRUS-1D water balance and laboratory measurements). In contrast, the Non_Frac scenario can produce 680 

reasonable evaporation estimation only when using the water-flow-based method.  681 

The direct use of simulated isotopic compositions in the no fractionation scenario may result in large 682 

biases in practical applications in arid regions where evaporation fractionation is more extensive than in 683 

humid areas. Integrated use of water-flow and isotope-transport-based methods may provide mutual 684 

validation and be an important way to avoid this problem. This research may shed some light on future 685 

laboratory and field experimental designs regarding the practical applications of the isotope-transport 686 

modeling in different climate zones. 687 

Appendix 688 

Acronym/Symbol Description Dimension/Units 

𝑃 Precipitation  L 

𝐸𝑇0 Grass-reference potential evapotranspiration L 

𝐸 Actual evaporation L 

𝐸𝑖 Isotope flux of evaporation ‰∙L/T or ML-2/T 

𝑇𝑠 Soil surface temperature ℃ 

𝑇𝑎𝑖𝑟  Air temperature ℃ 

𝑅𝐻 Air relative humidity - 

𝐿𝐴𝐼 Leaf area index - 

𝛿𝑃 Isotopic composition of precipitation ‰ 

𝛿0 Initial isotopic composition of soil water ‰ 

𝛿𝐸 Isotopic composition of evaporation flux ‰ 

𝛿𝑠 Isotopic composition of the residual liquid ‰ 

𝛿∗ Limiting isotopic composition ‰ 

𝛿𝐴 Isotopic composition of the atmospheric water vapor ‰ 

𝑥𝑚 Enrichment slope - 

𝛼+ Equilibrium fractionation factor - 

휀+ Equilibrium fractionation enrichment ‰ 

휀𝑘 Kinetic fractionation enrichment ‰ 

𝛼𝑖
𝑘 Kinetic fractionation factor at the soil surface - 

𝛼𝑖
𝐷 Kinetic fractionation factor within the soil - 

𝑛𝑘 Kinetic fractionation coefficient within the soil - 

𝐹𝐸  Ratio of the evaporation loss to the initial water storage - 

𝜃𝑟 Residual water content L3/L3 

𝜃𝑠 Saturated water content L3/L3 

𝑛, 𝛼 Shape parameters of the VG model - 

𝐾𝑠 Saturated hydraulic conductivity L/T 

𝜆 Longitudinal dispersivity L 
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