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Abstract: Implantable cardiac defibrillators (ICDs) are recommended to prevent the risk of sudden
cardiac death. However, shocks are associated with an increased mortality with a dose response effect,
and a strategy of reducing electrical therapy burden improves the prognosis of implanted patients.
We review the mechanisms of defibrillation and its consequences, including cell damage, metabolic
remodeling, calcium metabolism anomalies, and inflammatory and pro-fibrotic remodeling. Electrical
shocks do save lives, but also promote myocardial stunning, heart failure, and pro-arrhythmic effects
as seen in electrical storms. Limiting unnecessary implantations and therapies and proposing new
methods of defibrillation in the future are recommended.
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1. Introduction

Implantable cardiac defibrillators (ICDs) are recommended to prevent the risk of
sudden cardiac death. More than 300,000 ICDs worldwide are implanted each year. How-
ever, shocks are associated with an increased mortality with a dose response effect, and
a strategy of reducing electrical therapy burden improves the prognosis of implanted pa-
tients. We review the mechanisms of defibrillation and the potential consequences of ICD
shocks, including cell damage, metabolic remodeling, calcium metabolism dysregulation,
inflammation, and fibrosis.

2. Background
2.1. Technology

Defibrillation has come a long way since 1775, when a Danish veterinarian, Peter
Christian Abildgaard, wishing to understand the destructive effects of lightning on animals,
using Leyden bottles (the ancestor of the capacitor) on hens, noticed that a shock to the
chest could resuscitate them [1,2]. The first ICD model was a simple shock box designed
by Mieczyslaw Mirowski [3]. The device, which weighs 289 g or 150 mL, is implanted
into the abdominal area and requires a sternotomy to place two epicardial patches for
defibrillation and two screwed leads for detection. Technical improvements have never
ceased: the synchronized electric shock was developed in 1982, which allows the reduction
of monomorphic ventricular tachycardias; a combined system including a subcutaneous
patch and an endocardial ventricular lead with coil was developed in 1988, removing the
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need for thoracotomy; a biphasic shock was developed in 1991; an exclusively transvenous
system was developed in 1995 with a box in the pectoral position; and anti-tachycardia
pacing was developed in 1996. From the 2000s onwards, all ICDs have had anti-bradycardia
pacing capabilities as sophisticated as those of pacemakers, since the arrival of biventricular
resynchronization in 2003, complex rhythm detection algorithms, discrimination of rhythms
of ventricular or supra-ventricular origin, and defibrillation with an active box (hot can)
have become possible. A totally extra-cardiac device, the subcutaneous ICD, emerged a
decade ago [4] (Figure 1).
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Figure 1. Main implantable cardiac defibrillators (ICD) technologies on the market. The historical technique uses a
subcutaneous or submuscular can and an intracardiac lead implanted in the right ventricle through supra-caval venous
access (Left Panel). Extracardiac technologies use an axillary can and a defibrillation lead tunneled subcutaneously in a
para-sternal position or directly under the sternum in a para-cardiac position (Right Panel). Shocks are delivered between
the hot can and the defibrillation lead coil.

2.2. Indications
2.2.1. Secondary Prevention

ICDs are used to treat patients who have suffered a sudden death, or in any case
a sustained arrhythmia of ventricular origin. It seems incredible today to think that the
ICD was used at the beginning not in case of sudden death, but in case of recurrence of
sudden death! Only the most miraculous benefited from it. It was not until the end of the
1990s that the results of the first large randomized studies became available [5–7]. In AVID,
which involved more than 1000 patients who had recovered from ventricular fibrillation
or ventricular tachycardia and left ventricular systolic dysfunction, the ICD reduced total
mortality at 1 year by 39% compared with anti-arrhythmic treatment with amiodarone
(10.7% versus 17.7% in absolute risk).

ICDs are now recommended (class I, level of evidence B) in patients with ischemic
heart disease, who either survive sudden cardiac arrest due to ventricular arrhythmia or
experience hemodynamically unstable or stable sustained ventricular tachycardia due to
irreversible causes [8].
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2.2.2. Primary Prevention

Primary prevention involves the prophylactic treatment of patients at high risk of
ventricular arrhythmia or sudden death. The vast majority of these patients have heart
disease with severe left ventricular systolic dysfunction complicated by heart failure.
The MADIT study opened the way in 1996 for post-infarction patients with inducible
ventricular arrhythmia, with a 54% reduction in total mortality in favor of the ICD [9].
MUSTT confirmed these results in 1999 in more than 700 patients [10]. The large post-
infarction study, MADIT II, was published in 2002 [11]. A total of 1232 patients with a
left ventricular ejection fraction (LVEF) less than or equal to 30% were randomized: the
ICD significantly reduced mortality by 31% after 20 months of average follow-up. The
SCD-HeFT study in 2005 confirmed the benefits of ICDs in patients with non-ischemic
heart disease and heart failure, although these results were more recently qualified by the
negative results of the DANISH study [12,13].

ICDs are now recommended (class I, level of evidence A) in patients with non-ischemic
cardiomyopathy, and in ischemic patients at least 40 days after myocardial infarction, and
at least 90 days post revascularization in case of heart failure (HF) with NYHA class II or
III and an LVEF of 35% or less [8].

2.3. Less Is More

A distinction is usually made between appropriate electric shocks, which are deliv-
ered due to an arrhythmia of ventricular origin, and inappropriate shocks, which are
delivered due to a supra-ventricular arrhythmia (mostly atrial fibrillation) or noise over-
sensing (electromagnetic interference, myopotentials, defibrillation lead fracture, T-wave
oversensing, etc.). In reality, the line between appropriate and inappropriate is much more
blurred. There are also treatments that are likely unnecessary or superfluous, making them
very difficult to quantify.

If ventricular fibrillation rarely stops spontaneously, ventricular tachycardias, on the
contrary, are mostly non-sustained (less than 30 s, by definition). This has been well demon-
strated in studies that have compared a short detection time before delivery of therapy with
a longer detection time. In ischemic heart disease, the PREPARE study found a 61% reduc-
tion in inappropriate shocks and a 45% reduction in appropriate shocks when the detection
time was increased to 30 of 40 intervals [14]. In RELEVANT, which focused on non-ischemic
dilated heart disease, changing the detection time from 12/16 to 30/40 intervals, which
represents only 5 s at a rate of 200 bpm, withheld 91% of treatments [15]! It is important
to note that these studies did not report any deleterious effect of programming slower
treatments, either on symptoms (syncope) or morbidity.

Substudies of large randomized trials show that shocks are independently associated
with a poor prognosis. For example, in MADIT II, hazard ratios for all-cause mortality
were 3.4 for appropriate shock, 2.3 for inappropriate shock, and more than 4 for any
shock [16]. In SCD-HeFT, the hazard ratios were even higher, at 5.7, 2.0, and more than
11, respectively [17].

The logical assumption would be that patients with the most severe forms of heart
disease have the most ventricular arrhythmias. Appropriate shocks will therefore intervene
mainly in patients with the worst prognosis. Sweeney has thus shown in a large retro-
spective of 4 randomized trials that patients who have the most therapies through their
ICD have the most recurrences of ventricular arrhythmias, and the worst prognosis, with a
20% excess risk of death per additional shock [18]. It would also be logical to conclude that
patients who have inappropriate shocks are mostly those who have episodes of rapid atrial
fibrillation (by far the greatest source of inappropriate therapy), and who therefore have a
worse prognosis, since the presence of atrial fibrillation may worsen heart failure [19].

Or could there be a deleterious effect (injury) specific to ICD shocks themselves,
independent of the underlying cardiac disease?
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2.4. Limiting Unnecessary Implantable Cardiac Defibrillators (ICD) Shocks

Implanting a defibrillator is above all preventing an event that is rare (sudden death).
The ICD is not a treatment for ventricular arrhythmias, unlike anti-arrhythmic drugs or
radiofrequency ablation, in the sense that it does not modify the arrhythmogenic substrate.

In case of recurrent ventricular arrhythmia, it is recommended, especially in patients
with ischemic heart disease and monomorphic ventricular tachycardia, to optimize antiar-
rhythmic medical therapy with a beta blocker, amiodarone, or sotalol [8]. Optimization
of HF therapy is also recommended. Catheter ablation of the ventricular scar has also
proven to dramatically reduce ventricular arrhythmia recurrence and improve patient
outcomes [20,21].

Minimalist programming was the origin of the Very-High-Rate Registry, which
prospectively includes more than 500 patients implanted with an ICD in primary preven-
tion, all programmed with a single high-rate therapy zone above 220 beats-per-minute [22].
The incidence of appropriate (3.5% per year) and inappropriate (2% per year) therapy is
extremely low in patients with structural heart disease and severe left ventricular systolic
dysfunction. Adverse events are also very rare: only 1.9% of symptomatic patients have
ventricular arrhythmias between 170 and 220 bpm (untreated), and no deaths have been
attributed to programming.

Our preliminary study was followed by the MADIT-RIT trial, which brought everyone
into alignment [23]. A total of 1500 patients implanted with an ICD in primary prevention
for heart disease with left ventricular systolic dysfunction (53% ischemic) were randomized
into 3 groups: “standard” programming with rapid therapies starting at 170 bpm, “high-
frequency” programming with therapies only beyond 200 bpm, and finally “long delay”
programming with extended detection times. The results were spectacular, with a reduction
in the total number of therapies of 82% in the “high frequency” group and 68% in the
“long delay” group compared to the “standard” group, but above all a reduction in overall
mortality of 55% and 45%, respectively. A simple change in ICD programming to reduce
the rate of therapy had a direct impact on the prognosis of implanted patients by halving
their risk of death. In a substudy, after adjustment, appropriate shocks increased the risk of
death by more than 6, while inappropriate therapies increased it by almost 3 [24].

MADIT-RIT is a landmark study. There seems to be a causality between therapies
and morbidity and mortality. Whereas intuitively doctors tended to over-treat patients to
protect them (but above all to reassure themselves), they must now avoid imposing on
them as much as possible the deleterious effects of treatments, especially shocks [25]. In a
controlled study published in 2017, we compared the results of the Very High-Rate Registry
(VH-RATE programming with therapies only from 220 bpm in primary prevention) to
other types of programming through the French national DAI-PP registry [26]. After
adjustment by propensity score, compared to aggressive programming with two active
therapy zones, VH-RATE programming reduced the risk of appropriate therapy by 62%,
inappropriate therapy by 56%, and most notably sudden death by 57%. Compared with
tolerant programming such as “MADIT-RIT high frequency”—a single zone of therapy
above 200 bpm—mortality was similar, and the reduction in the risk of appropriate and
inappropriate therapy was 50% and 53%, respectively.

Expert consensus guidelines on ICD programming were published to encourage
physicians to change their habits, which are unfortunately persistent [27,28].

3. Potential Consequences of ICD Shocks
3.1. Sudden Death

The ICD prevents sudden death, not all sudden deaths. In SCD-HeFT, for example,
deaths due to ventricular arrhythmia occurred in 11.2% of patients in the placebo group,
8.9% in the amiodarone group, and even 4.5% of patients in the ICD group, i.e., 1 in
5 deaths [29]. In a study of the cause of sudden death in 68 ICD patients, 29% were due to
post-shock electro-mechanical dissociation (from the first shock in 40% of cases), and 25%
were due to ineffective shocks [30]. These modes of death are particularly frequent in pa-
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tients with severe, terminal, heart failure. In these patients, therapy, sometimes unnecessary,
may precipitate death. Defibrillation testing is not recommended in this population.

3.2. Electrical Storm

Electrical shocks, often isolated, can also occur in a series: this is the electrical storm.
Of course, direct causes can exist. The alternation between long and short cycles following
defibrillation can re-initiate a ventricular arrhythmia. It is recommended to program a
temporary post-shock rapid anti-bradycardia pacing to avoid this phenomenon. On the
other hand, if detection is imperfect (over- or under-detection), a poorly synchronized
electric shock delivered during the vulnerable period of repolarization may initiate ventric-
ular fibrillation. These causes are rare, however, and it is likely that the arrhythmogenic
effect of electric shocks is more often due to structural alterations in ventricular myocardial
function.

An arrhythmic storm is usually defined as three or more episodes of ventricular ar-
rhythmias (treated or untreated) within 24 h. It is associated with a very poor prognosis. In
MADIT II, it involved 4% of patients, with 16% of patients having episodes of ventricular
arrhythmias recorded by the ICD [31]. After adjustment, the risk of death within 3 months
was increased 18-fold. In a more recent meta-analysis, the risk of death after electrical
storms was increased by a factor of 3.2, and even by a factor of 2.5 compared with patients
who had isolated episodes of ventricular arrhythmias without electrical storms [32]. Inter-
estingly, again, as shown by the large Italian OBSERVO-ICD registry, a strategy of reducing
electric shocks, by using ATP or increasing detection times and treatment rate threshold,
was associated with a reduced risk of rhythmic storm, all-cause death, and death from
heart failure [33].

3.3. Acute Heart Failure

Electrical storms are associated with an increased risk of hospitalization for acute HF
and heart transplantation [32]. In MADIT II, patients with ICDs who received any therapy
had an almost doubling of their risk of hospitalization for HF [34]. There is clearly a risk of
post-shock myocardial stunning [35]. Early studies following programmed defibrillation
threshold testing showed decreased cardiac output and alterations in diastolic function
on echocardiographs [36–38]. More recently, a Japanese team has shown a significant
reduction in left ventricular ejection fraction after defibrillation testing only in patients
with prior left ventricular systolic dysfunction [39]. Systolic function remained impaired
after 5 min and normalized after 4 h. This acute hemodynamic deleterious effect is also
proportional to the energy delivered [40–42].

3.4. Adrenergic Storm

ICD therapies are known to impair quality of life in implanted patients, especially in
the short-term [43]. Shock-induced stress and subsequent catecholamine release may even
induce stress cardiomyopathy, also known as Takotsubo syndrome [44]. This adrenergic
storm may thus favor myocardial stunning during the acute phase of ICD shocks, along
with ventricular arrhythmia through positive bathmotropic effects.

These studies undeniably show the deleterious role of shock by itself. By analogy
with atrial fibrillation, “shocks beget shocks”. Shocks have an arrhythmogenic effect, favor
arrhythmia recurrence, thus new therapies, and sometimes cause sudden death by electro-
mechanical dissociation. They also favor the decompensation of chronic HF, often in the
most vulnerable patients, which can precipitate death or cardiac transplantation (Figure 2).
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Figure 2. The vicious circle of ICD shocks. High-energy shocks induce myocardial injury, as shown by elevated troponin
serum levels. They also induce myocardial stunning, and subsequent reduced left ventricular ejection fraction (LVEF)
and cardiac output. They finally induce directly and through acute heart failure a major catecholamines release, with
proarrhythmic effects, which increases the risk of arrhythmia reinduction and ICD shocks.

4. Pathophysiology of Defibrillation
4.1. Mechanisms of Defibrillation

Although the delivery of an electrical current to the heart appears to be a fairly
simple process, the mechanisms by which this current will lead to defibrillation are in
fact extremely complex [45]. A direct electric current is delivered between 2 electrodes
with a potential difference of about 800 V, for 5 to 10 milliseconds. The shape of the shock
wave is biphasic in modern defibrillators: the direct current is delivered successively in
one direction, then in the other. The current density is greatest in the immediate vicinity of
the defibrillation electrodes, in contact with the right ventricular coil and the defibrillator
case in a modern single-coil hot can configuration. According to Ohm’s law, at constant
myocardial tissue resistivity, the current density is proportional to the potential gradient.
Defibrillation is possible if this potential gradient across the entire ventricular myocardial
tissue is greater than a critical value, about 4 V/cm for a standard biphasic shock (6 V/cm
for a monophasic shock) [46].

However, it should be remembered that the defibrillation threshold is probabilistic. In
modern ICDs, an optimally shaped biphasic shock has an ED90 (the energy required to
obtain a 90% success rate) of roughly 15 J. It will therefore not always defibrillate. However,
successive shocks of the same energy, in an identical configuration, produce the same
potential gradient distribution [47]. The stochastic effect is therefore produced by the
variations due to the unstable rhythm of ventricular fibrillation, with depolarization fronts
and zones in the refractory period that are extremely variable at the time of the shock
(mathematical theory of chaos) [48].
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If the potential gradient is too low, a large zone, the furthest from the electrodes,
will reactivate early and cause reinduction of the fibrillation by reentry phenomena [49].
Above this threshold, meanwhile, on the one hand the critical mass for re-initiation is not
reached, and on the other hand the electric field leads to a prolongation of the duration
of the action potentials initiated in the regions furthest from the electrodes. This is the
graded response [50,51]. This prolongation of action potentials and refractory periods
is proportional to the additional repolarization time caused by this graded response. It
thus prevents the propagation of early post-shock activation fronts, thus decreasing the
probability of fibrillatory wavelet reinduction. Thus, the success of defibrillation should
rather be seen as the failure of post-shock ventricular reentry formation, which causes the
failure of fibrillation reinduction [52].

At the cellular level, the effects of direct current have been well described by Weid-
mann [53]. In theory, during the first phase of a biphasic shock, it causes a hyperpolarization
of the transmembrane potential in contact with the anode, and a depolarization in contact
with the cathode, with an exponential decrease between the two depending on the dis-
tance to the electrode. Experimentally, due to the complexity of the distribution between
extra- and intra-cellular media, and the orientation of the myocardial fibers (anisotropy),
hyperpolarization is observed at the contact of the anode but depolarization at only a
few millimeters, and the opposite at the cathode [54]. This virtual electrode effect results
in a true patchwork of polarization, with the complex juxtaposition of depolarized and
hyperpolarized regions [55]. And it is the smallest fascicular structures, with the largest
surface curvature—the papillary muscles, for example—that are most sensitive to this
polarization. The post-shock interaction of new depolarization fronts with these differ-
ent regions of different polarization, refractory or not, allow or prevent the formation of
perennial reentries, reinduction, or defibrillation. In the biphasic shock, the second phase,
if well optimized in duration and voltage, allows homogenization of the myocardial tissue
polarization between the two electrodes, erasing the virtual electrode patchwork and thus
preventing reentry and facilitating defibrillation [56].

It is interesting to note that when the delivered energy is increased beyond a certain
threshold, the probability of defibrillation actually decreases. Typically, above 1 kV and
with gradient values above 150 V/cm, early ectopic activations appear in the regions where
the gradient is highest, in contact with the electrodes, and facilitate the reinduction of
ventricular fibrillation [57–59]. As the energy increases, the likelihood of bradyarrhythmia
and post-shock tachyarrhythmia increases, especially when the shock is monophasic in
form [60]. When the energy is too low, the reinduction of ventricular tachyarrhythmia
is rather polymorphic, whereas it is rather monomorphic following a shock of excessive
energy due to a local increase in the dispersion of repolarization [48,61].

Delivering a shock is therefore a matter of compromise: sufficient energy to have
a high probability of defibrillation from the first shock (because in this early situation,
the patient’s hemodynamics are not yet too compromised, and also to compensate for a
possible increase in the resistance (impedance) of the defibrillating system over time); but a
sufficiently low energy to avoid the reinduction of a post-shock ventricular arrhythmia.

4.2. Electroporation

When the lipid bilayer cell membrane is subjected to a strong electric field, its resistance
decreases abruptly due to the formation of volcano-shaped, non-selective, aqueous pores
permeable to ions and small molecules. They gradually expand to a diameter of 20–120 nm
during the first 20 ms, then shrink and close after a few seconds [62]. This technique is
commonly used for gene transfection.

Although the subject remains debated, this reversible electroporation could play a
major role in defibrillation. Its beneficial effects would come from the fact that trabeculated
endocardial structures are particularly sensitive—even at a distance—to polarization.
Papillary muscles would thus be more susceptible to the effects of electroporation [63]. The
Purkinje network, which is very involved in ventricular arrhythmogenesis, would therefore
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be more particularly affected by persistent post-shock conduction blocks, thus limiting
the reinduction of ventricular fibrillation. Conversely, a prolonged state of membrane
permeability results in potassium leakage into the extracellular medium, osmotic water
flow, and especially intracellular calcium overload, thus favoring ventricular arrhythmias
by afterdepolarizations.

When the electric field increases further, the electroporation becomes irreversible
and leads to cell death. This technique is also used in medicine, for example in the
treatment of tumors, or more recently proposed for the ablation of atrial fibrillation [64].
In myocardial tissue, the lethal dose 50 (to kill 50% of the cell population) corresponds
to a potential gradient of about 80 V/cm for a biphasic electric shock [65]. This dose
varies according to the orientation of the fibers, from 70 on average in the longitudinal
direction to 140 V/cm in the transverse direction. Knowing that the maximum potential
gradient of a shock at the defibrillation threshold, in contact with the electrode, is on
average between 110 and 190 V/cm, depending on the configuration, one can imagine
much higher values—and therefore larger lesions—on maximum energy shocks, even if
the gradient decreases exponentially with distance [56]. In a histological study on the
rabbit heart (Langendorff), a 300 V shock delivered to the tip of the right ventricle caused
irreversible electroporation—measured by the intracellular penetration of a dye, propidium
iodide—over about 200 mm3 opposite the electrode [66]. It was always transmural at the
level of the free wall of the right ventricle (a little more than 2 mm thick), and a little less
than 4 mm thick at the level of the interventricular septum. The extent of the lesions was
comparable in healthy and infarcted hearts. This localized acute myocardial injury may
play a role in the proarrhythmic and postinjury myocardial stunning effects.

4.3. Cellular Destruction

The first findings of release of myocardial necrosis markers after defibrillation are
old [67]. A first study in humans on ICDs with epicardial patches did not find significant
release of CPK-MB after defibrillation tests [68]. On the other hand, an increase in troponin
I was observed by Joglar, with a peak in the first 12 h that was not explained by myocardial
ischemia [69]. Hurst also found an elevation of troponin in 14% of the patients tested,
reflecting discrete but real myocardial cellular destruction, particularly marked in those
who had recently suffered an infarction [70].

This marker release occurs after programmed induction of ventricular fibrillation,
and could therefore easily be attributed to the transient drop in cardiac output more
than to the shock itself. However, a study of inappropriate electric shocks following a
lead fracture, and therefore without underlying ventricular arrhythmia, found significant
elevation of troponin in 3 out of 4 patients, and even very high levels—consistent with a
medium-sized infarct or severe myocarditis—in 1 out of 10 patients [71]. These findings
were confirmed in a larger German multicenter study, in which patients implanted with
an ICD and tested, whether with or without induction of ventricular fibrillation, had a
significant increase in ultra-sensitive troponin, in contrast to untested patients [72]. Finally,
the large randomized SIMPLE study also found a significant elevation of troponin more
frequent in the tested group [73].

The higher the energy delivered, the higher the damage appears to be [74]. The
level of H-FABP (heart-type fatty acid binding protein), another very specific marker of
necrosis in cardiac muscle, was higher after a high-energy shock. This elevated H-FABP
level is associated with a worse long-term prognosis in ICD patients, with a higher rate
of appropriate shocks and higher cardiovascular mortality [75]. Thus, electric shocks do
cause measurable macroscopic cell death, and this could be a marker of poor prognosis.

After electric shock, cell death as a direct effect of the high-intensity electric field is
evident, but it is probably not the only mechanism at work. A recent study by Brewster
found not only an elevation of troponin in patients who had undergone a defibrillation test,
but also a significant elevation of sFas, the soluble form of the transmembrane receptor Fas,
which is involved in the amplification of the inflammatory response, the extrinsic pathway
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of apoptosis, and pro-fibrotic mechanisms [76]. An earlier study showed the generation
of free radicals in dogs after electric shock, which are also very involved in inflammatory
processes and programmed cell death [77]. This production of free radicals could be due,
in part, to the ultrastructural alterations observed after shock, in particular mitochondrial
alterations [78,79].

This cell death is macroscopic and visible. Numerous histopathological studies have
found large areas of fibrosis in front of the defibrillation electrodes, especially after multiple
electric shocks [80–82]. Chronic fibrotic invasion could have an arrhythmogenic effect, with
a substrate for localized reentries, and could also promote the inefficiency of defibrillation
by raising the high-voltage impedance at the electrode-tissue interface.

4.4. Myocardial Dysfunction

The mechanisms of post-shock ventricular stunning are poorly understood and prob-
ably numerous. Membrane electroporation due to the electric field also reaches the sar-
colemma of the sarcoplasmic reticulum, decreasing its calcium reuptake and storage
capacities [83,84]. This direct and immediate effect could explain a transient decrease in
myocardial contractility. In addition, cell death leads to the rapid release of large quantities
of cations (Mg++, K+) into the extracellular environment, with consequences for cardiac
inotropism in addition to proarrhythmic effects [85].

Myocardial ischemia could also be associated with this phenomenon, although the
subject remains debated [86]. Cases of post-shock vasospasm have been described [87]. An
episode of ventricular fibrillation rapidly leads to coronary hypoperfusion! In all cases,
post-shock contractile dysfunction is more often observed in the hypo-perfused heart [88].
The release of free radicals, directly by ultrastructural alteration, and indirectly by ischemia-
reperfusion, could be involved in the dysfunction of the sarcoplasmic reticulum and thus
of the contractile function [80,89].

The role of cytosolic calcium overload of the myocyte, through increased membrane
permeability and sarcoplasmic reticulum dysfunction, is major, especially after a prolonged
episode of ventricular fibrillation [90]. Indeed, administration of verapamil, a calcium
channel blocker, attenuates shock-induced myocardial damage in a canine model [91].
Calcium overload would thus promote the reinduction of post-shock ventricular fibrilla-
tion, the inefficiency of defibrillation, and ventricular systolic dysfunction in a final fatal
vicious circle [92].

As can be seen, the mechanisms involved in defibrillation and their deleterious effects
on myocardial tissue are multiple and, above all, poorly understood.

5. New Insights from Proteomics
5.1. Main Principles

The proteome corresponds to all the proteins of an organism, expressed at a given time
and under given conditions. Proteomics will try to identify, in a global way, all the proteins
of a cell culture, a tissue, or a biological fluid, and measure their quantity. This is a field of
research that has exploded since the beginning of the 2000s, because the identification of
the proteome, the final expression of the genome, is an analysis that is much closer to the
phenotype than is sequencing, for example.

Proteomic analysis is based on 3 biotechnological tools: mass spectrometry, public
databases, and bioinformatics.

Mass spectrometry is the cornerstone of proteomics. It is a very old physical analysis
technique, developed by the British Joseph John Thomson, the famous discoverer of the
electron. It allows the separation of charged molecules in the gas phase according to their
mass/charge ratio (m/z). A mass spectrometer is composed of four main parts: a sample
introduction system; an ionization source, in order to vaporize and ionize the molecules;
the analyzer, which separates the ions according to their m/z; and the detector, which
transforms the ions into an electric current that it amplifies for computer processing.
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MALDI-TOF mass spectrometry is a “soft” method that uses a matrix-assisted laser
desorption ionization (MALDI) source, which minimizes protein degradation. It uses a
metal plate receiving a co-crystallized mixture of the matrix and the sample to be analyzed.
It is coupled with a time-of-flight (TOF) analyzer, in which the ions are accelerated in
an electric field: the ions of the same charge undergo the same acceleration (at constant
voltage), but their speed depends on the m/z ratio, so that the time (of flight) taken by the
molecule to reach a detector at a given distance makes it possible to deduce the m/z.

The “bottom-up” approach is the most used in proteomics. Proteins are first digested
by an enzyme (most often trypsin), which results in a mixture of peptides. These peptides
are then separated by liquid chromatography before being analyzed by mass spectrometry.
The peptides are first identified on the mass spectrum and then fragmented one by one to
further improve their identification (tandem-mass spectroscopy MS/MS). The identification
of the peptides is done with a specific software, allowing the identification of the original
protein(s). The “top-down” approach consists of analyzing a mixture of intact proteins,
without pre-digestion [93]. The protein mixture is separated by liquid chromatography, the
proteins are then ionized, and the protein to be studied will be isolated and fragmented in
the analyzer. The characteristic m/z of the protein ion and its daughter ions will be used
to identify the protein. The advantages of the top-down strategy are its ability to detect
degradation products, sequence variants, and combinations of modifications.

5.2. Shock-Related Myocardial Injury in Proteomics

We recently aimed to highlight the pathophysiological mechanisms involved in the
acute phase of electric shocks at the cellular level in an experimental large animal model by
utilizing proteomic analysis [94] (Figure 3).
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5.2.1. Cytolysis

Mechanisms of cellular destruction were found to be diverse. Enzymatic proteolytic
activity was increased following electrical shocks, as suggested by the abundance of pro-
teasome constituents, ubiquitin family proteins, and a decrease in heat shock proteins due
to the chaperone effect. Non-enzymatic cell degradation associated with extreme physical
conditions may also be involved. Indeed, RAD23 was more abundant after electrical shock
and plays a role in the nucleotide excision/repair pathway, especially in the recognition
of thermic DNA damages [76]. ATP-dependent (S)-NAD(P)H-hydrate dehydratase was
also increased and is known to be transcripted after osmotic or heat stress conditions, in
order to convert the abnormal metabolite NAD(P)HX to NAD(P)H [72]. Polymerase I and
transcript release factor (PTRF1), a crucial component of the membrane repair machinery,
was increased after electrical shocks, suggesting that electroporation-related injury may
extend well beyond high-gradient areas [74,95]. Beyond direct myocardial injury, regulated
cell death may also play a major role in cardiac dysfunction following electrical shocks. De-
crease in inositol monophosphatase, and increase in markers of mitochondrial permeability,
transition-driven necrosis, intrinsic apoptosis (VDAC1, VDAC2, HINT2), or parthanatos
(poly [ADP-ribose] polymerase 6 isoform X2, AIFM1) were observed [39,42]. Calreticulin
may also be implied [82], concordant with indirect evidence of apoptosis in humans [96].

5.2.2. Metabolic Remodeling and Oxidative Stress

Increase of glycolytic pathway was associated with a decrease in upstream keystep
of fatty acid metabolism (ACADVL) and gluconeogenesis. This switch from fatty acid
β-oxidation to glycolysis is involved in HF [97]. This deep modification of energy metabolism
induced by electrical shocks and such metabolic shifts might participate to cardiac dysfunc-
tion [98]. Decrease in hemoglobin and myoglobin after electrical shock may also lead to
a limitation of oxygene. The abundance of filamin-A (FLNA), involved in mitochondrial
hyperfission, induced by hypoxia following myocardial infarction, due to its interaction
with Dynamin-related protein 1, may contribute to the mitochondrial ultrastructural alter-
ations in this region already described in dogs, and thus metabolic modifications [78,79].
Aldehyde oxidase production also shows a generation of reactive oxygen species (ROS)
such as hydrogen peroxide. Increase in several proteins involved in detoxication of oxy-
gen/nitrogen reactive species suggest an adaptive response to increased oxidative stress.
This is concordant with some available data suggesting free-radical generation in dogs fol-
lowing transthoracic shocks [84]. Finally, an increase in peroxisome proliferator-activated
receptor γ coactivator 1 (PGC-1) and estrogen-related receptor (ERR)-induced regulator in
muscle protein 1 (Perm1), may participate in the regulation of muscle-specific transcriptional
programs, such as mitochondrial biogenesis and oxidative metabolism, and adaptation of
mitochondrial energy transduction pathways and oxidative metabolism [99].

5.2.3. Calcium Regulation

Interestingly, the cardiomyocyte calcium cycle, a major component of excitation-
contraction coupling, is drastically dysregulated following electrical discharges, which may
favour both heart failure and ventricular arrhythmias [100]. The decrease in calsequestrin-2
(CASQ2) is known to be associated with a shorter calcium-release phase, but an accelerated
restitution of calcium-release sites, with subsequent proarrhythmic calcium concentration
oscillations triggering delayed after depolarizations, and subsequent ventricular arrhyth-
mias [101]. Excessive diastolic calcium release may also play a role in the development of
acute heart failure [102]. Histidine rich calcium binding protein HRC overexpression may
also lead to a depressed contractility [103]. Protein phosphatase 1 (PP1) is also central in
SERCA2a regulatome as it dephosphorylates phospholamban (PLN) [104]. An increase of
PP1R7 may decrease PP1 activity, dephosphorylated PLN concentration, and thus increase
SERCA2a activity and intrasarcoplasmic calcium handling.
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5.2.4. Inflammation and Fibrosis

Serpin peptidase inhibitor, clade A, member 1 (also called alpha-1 antitrypsin) and
protein S100-A9 increase following electrical shocks, along with immunoglobulins and
CRP, suggesting an associated inflammatory response following electrical shocks in a large
surrounding area, which may contribute to cardiac dysfunction. The acute increase in
galectin 3-like galectin-7 and transglutaminase-2 (TGM2) we observed following electrical
shocks might lead to local progressive fibrotic invasion.

6. Conclusions

Although electric shocks have been saving many lives every day for more than
50 years, their use should never be trivial. ICDs are sometimes useless, and indications
for implantation in the future will probably have to be based on a new stratification of
rhythmic risk, particularly on the analysis of the ventricular fibrotic substrate, the truly
arrhythmogenic substrate. Once properly implanted, simple programming with a strategy
to reduce the quantity of electric shocks delivered, most often unnecessarily, is essential, and
has been shown to have a direct beneficial effect on the total mortality of patients implanted
with an ICD, particularly in the fragile heart failure population. Indeed, electric shocks
immediately cause significant cellular destruction in the ventricular myocardium, major
abnormalities in calcium regulation, oxidative stress, and stimulation of pro-inflammatory
and pro-fibrotic phenomena, which promote contractile dysfunction and the paradoxical
reinduction of ventricular arrhythmias.

7. Outlook

Regarding the reduction of therapies, a gradual change in the programming habits of
ICDs is under way and must continue, in compliance with recommendations. Perhaps the
next version of the expert recommendations will hopefully be even more permissive.

The method of defibrillation itself may simply need to be modified, and high en-
ergies abandoned. New extracardiac defibrillation technologies may further reduce the
deleterious effects of electric shocks—as the energy is not delivered directly into the heart
chambers—and thus may improve shock efficiency [105]. Subcutaneous ICD-S-ICD has
been developed to overcome systemic infections and failure of transvenous leads, the most
frightening complications of conventional ICDs. However, this technology still delivers
high-energy shocks at 80 J (40 J for conventional ICDs), and has no anti-bradycardia nor
anti-tachycardia pacing capability. Although some preliminary studies already suggest
that extra-cardiac defibrillation might reduce myocardial injury, further studies are needed
to explore the deleterious effects of these alternative technologies [106].

Finally, new approaches such as the use of “shock bursts” (the successive delivery of
several low-energy shocks) or, in a more distant future, optogenetics (the use of light to
modify transmembrane potentials) may hopefully put a definitive end to the toxic effects
of electric shocks [107,108].
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