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Abstract 
Prior biological information has the potential to guide and inform genomic prediction models, but 
the BayesRC approach is currently limited to the use of disjoint categorizations of genetic markers. 
We propose two novel Bayesian approaches to model cumulative (BayesRC+) or preferential 
(BayesRC𝜋𝜋) contributions of multiple biological categories for multi-annotated SNPs. We 
illustrate the performance of these approaches on data from a backcross population of growing 
pigs in conjunction with several different sets of annotations related to multiple production traits 
constructed using the PigQTLdb. On the two traits predicted, ADG and BFT, we observed 
improved prediction quality on ADG (up to 1.7-gain point) with both BayesRCpi and BayesRC+, 
and suitable annotation set. 
 
Introduction 
In plant and animal breeding, genomic prediction models have been widely developed and 
deployed in recent years to predict polygenic traits using genetic variants, typically single 
nucleotide polymorphisms (SNP). An interesting and potentially useful approach to improve upon 
existing genomic prediction models is to combine the use of genotype and phenotype data with 
prior biological information to better guide models. Most routinely used genomic prediction 
models are based on linear models, including notably genomic best linear unbiased prediction. 
Another family of models, known as the Bayesian alphabet (Habier et al., 2011), uses a flexible 
set of assumptions about how individual SNPs contribute to the overall genomic variance. Among 
these, BayesR (Erbe et al., 2012) assumes SNP effects arise from one of four groups (null, small, 
medium, or large variance) and has been shown to perform well for both prediction and 
quantitative trait loci (QTL) mapping (Moser et al., 2015; Mollandin et al., 2021). BayesRC 
extends BayesR to further incorporate prior biological information in the form of disjoint 
annotation categories (MacLeod et al., 2016), but SNPs can only be assigned to a single annotation 
category. There thus remains a need for genomic prediction models able to capitalize on 
annotations of greater complexity, in particular those for which SNPs may potentially be assigned 
to multiple categories.  
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In this work, we present two novel extensions to BayesRC to deal with such complex, overlapping 
annotations, and we illustrate their utility on data from an experimental backcross population in 
growing pigs. This project is part of EuroFAANG (https://eurofaang.eu), a synergy of five Horizon 
2020 projects that share the common goal to discover links between genotype to phenotype in 
farmed animals and meet global Functional Annotation of ANimal Genomes (FAANG) objectives. 
 
Materials & Methods 
Bayesian genomic prediction with complex, overlapping annotations. The general statistical 
model for genomic prediction can be defined as  
𝒚𝒚 =  𝝁𝝁 + 𝑿𝑿𝑿𝑿 + 𝒆𝒆,    𝑒𝑒𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑒𝑒2)                                                                                                   (1) 
where y is a vector of phenotypes, 𝝁𝝁 an intercept, 𝜷𝜷 the vector of SNP effects, X the centered and 
scaled marker matrix, and 𝜎𝜎𝑒𝑒2 the variance of the residuals 𝒆𝒆. We further assume that 𝑪𝑪 = �𝐶𝐶𝑖𝑖,𝑗𝑗� 
denotes annotation categories, such that 𝐶𝐶𝑖𝑖,𝑗𝑗 = 1 if SNP i is included in category j and 0 otherwise.  
 
Using the four-component mixture of BayesR as a base, we propose two alternative models to 
account for overlapping annotations (where ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗 > 1𝑗𝑗  for some i). The first, BayesRC𝜋𝜋, defines 
a mixture-of-mixtures prior for SNP effects to assign multi-annotated markers to the single 
annotation category that maximizes its conditional likelihood: 
𝛽𝛽𝑖𝑖 ∼ ∑ 𝑝𝑝𝑖𝑖,𝑗𝑗�𝜋𝜋1,𝑗𝑗𝛿𝛿(0) + 𝜋𝜋2,𝑗𝑗𝑁𝑁(0, 10−4𝜎𝜎𝑔𝑔2) + 𝜋𝜋3,𝑗𝑗𝑁𝑁(0, 10−3𝜎𝜎𝑔𝑔2) + 𝜋𝜋4,𝑗𝑗𝑁𝑁(0, 10−2𝜎𝜎𝑔𝑔2)�𝑗𝑗∈𝐶𝐶𝑖𝑖,𝑗𝑗=1 ,    (2) 
such that 𝛿𝛿(0) represents the dirac function at 0, ∑ 𝜋𝜋𝑘𝑘,𝑗𝑗 = 1𝑘𝑘  for all annotations j, 𝜎𝜎𝑔𝑔2 the total 
additive genetic variance, and 𝑝𝑝𝑖𝑖,𝑗𝑗 the annotation mixing parameter with ∑ 𝑝𝑝𝑖𝑖,𝑗𝑗 = 1𝑗𝑗  for all i. The 
second, BayesRC+, instead defines a cumulative mixture prior across categories for SNP effects: 
𝛽𝛽𝑖𝑖 ∼ ∑ �𝜋𝜋1,𝑗𝑗𝛿𝛿(0) + 𝜋𝜋2,𝑗𝑗𝑁𝑁(0, 10−4𝜎𝜎𝑔𝑔2) + 𝜋𝜋3,𝑗𝑗𝑁𝑁(0, 10−3𝜎𝜎𝑔𝑔2) + 𝜋𝜋4,𝑗𝑗𝑁𝑁(0, 10−2𝜎𝜎𝑔𝑔2)�𝑗𝑗∈𝐶𝐶𝑖𝑖,𝑗𝑗=1 .            (3) 
In both models, all mixing proportions are assumed to follow flat Dirichlet priors and 𝜎𝜎𝑔𝑔2 an inverse 
𝜒𝜒2 prior. A Gibbs sampler is used for inference as posterior distributions are not tractable. Both 
BayesRC𝜋𝜋 and BayesRC+ have been implemented in the BayesRCO software in Fortran; 
additional details can be found in the User’s Guide (https://github.com/fmollandin/BayesRCO). 
 
Genotype and phenotype data from a backcross pig population. A backcross (BC) population 
between Large White (LW; 3/4) and Creole (CR;1/4) pigs was established as previously described 
(Gourdine et al., 2019). BC (n = 1,297 from 130 LW sows) growing pigs raised in two 
environments (tropical and temperate) were related via genetically related sows sired with the same 
10 F1 × CR LW boars. A common trait recording protocol was used in the two environments for 
phenotypic data. Phenotypes were pre-corrected for age, sex, and farm; we focus here on measures 
at 23 weeks for backfat thickness (BFT) and average daily weight gain (ADG). Animals were 
genotyped using the Illumina Porcine 60k BeadChip array; markers with minor allele frequencies 
greater than 0.01 were retained for the analysis (corresponding to 46,908 and 46,881 markers for 
ADG and BFT, respectively).  To establish the potential impact of our models on prediction 
accuracy, we used a sibling-structured 10-fold cross validation procedure. For the descendants 
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from each sire in turn, we calculated the correlation between their observed corrected phenotypes 
and those predicted from models constructed on the descendants of the remaining 9 sires; 
validation correlations were averaged across the ten folds. 
 
PigQTLdb annotations. Animal QTLdb (https://www.animalgenome.org/QTLdb) groups 
together curated results from genotype-phenotype association studies in several livestock species 
(Hu et al., 2021). Cross-experiment QTL data from PigQTLdb (Release 45; SS11.1) for traits 
relevant to pig production were downloaded for eleven trait sub-hierarchy categories (anatomy, 
behavioral, blood parameters, conformation, fatness, fatty acid content, feed conversion, fowth, 
immune capacity, litter traits, reproductive organs). An additional “other” category was created 
for markers not included in PigQTLdb. Genotyped markers in our data were subsequently assigned 
to one or more annotation categories using three different strategies: (1) using the position of 
known PigQTLdb markers; (2) using the extended position of known PigQTLdb markers, 
including the nearest up- and downstream neighbors (“extended PigQTLdb”); and (3) using the 
extended position of known PigQTLdb markers as before, where neighboring markers were 
allowed ambiguous assignment to both trait-specific and “other” categories (“fuzzy extended 
PigQTLdb”). In the three annotation construction strategies, 1.3%, 4.9% and 17.7% of markers 
were respectively assigned to two or more categories. 
 
Results 
We compared the prediction accuracy of BayesRC𝜋𝜋 and BayesRC+ to that of BayesR (ignoring 
annotation categories) and BayesRC (where a single category is allowed per marker). For the latter, 
multi-annotated SNPs were randomly assigned to a single category. We notably observed different 
trends for the two traits (Table 1). For ADG, we remark a loss in prediction accuracy compared to 
BayesR for all annotation-based models with straightforward pigQTLdb annotations; however, 
extending these annotations to include neighboring markers (extended and fuzzy extended 
pigQTLdb) led to improvements in prediction quality, with a 1.7-point gain in correlation for 
BayesRC𝜋𝜋 with extended annotations. On the other hand, for BFT the use of annotations, 
regardless of how they are constructed, did not appear to lead to a marked improvement in 
prediction. This suggests that categorizations constructed from PigQTLdb contribute little 
pertinent information for the genomic prediction of BFT in our data, or that environment-
dependent categories should be added to the model to account for the significant GxE affecting 
this trait (Gourdine et al., 2019). 
 
Discussion 
In this work we have proposed two new approaches, BayesRC𝜋𝜋 and BayesRC+, to fully capitalize 
on complex, overlapping annotations in genomic prediction. Both methods showed promise for 
incorporating partially overlapping categories from pigQTLdb in genomic prediction for a growing 
pig population, although a gain in predictive accuracy was observed for only one (ADG) of the 
two traits considered here. We also compared three strategies for constructing prior biological 
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categories by extending pigQTLdb annotations in various ways to include neighboring markers, 
which has the potential to better exploit linkage disequilibrium around relevant markers. Taken 
together, these results suggest that the incorporation of complex annotations can lead to modest 
gains in prediction performance in some cases, even for moderate marker density SNP chips, but 
such gains depend strongly on the choice and construction of annotations and are unlikely to be 
universal across traits. 
 
Table 1. Validation correlation for two traits in pig data for BayesRC𝜋𝜋 and BayesRC+ with 
different annotation strategies, as compared to BayesR and BayesRC.  

Method Annotations ADG 
Mean (SD) 

BFT 
Mean (SD) 

BayesR — 0.213 (± 0.081) 0.265  (± 0.161) 

BayesRC PigQTLdb (random) 
Extended pigQTLdb (random) 

0.200 (± 0.105) 
0.225 (± 0.098) 

0.265 (± 0.159) 
0.258 (± 0.157) 

BayesRC𝜋𝜋 PigQTLdb 
Extended pigQTLdb 
Fuzzy extended pigQTLdb 

0.200 (± 0.100) 
0.229 (± 0.095) 
0.226 (± 0.096) 

0.266 (± 0.157) 
0.254 (± 0.162) 
0.262 (± 0.159) 

BayesRC+ PigQTLdb 
Extended pigQTLdb 

0.207 (± 0.097) 
0.227 (± 0.095) 

0.273 (± 0.163) 
0.271 (± 0.158) 
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