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A B S T R A C T   

As digital soil mapping (DSM) applications have been developed at multiple extents over the two last decades, 
large areas of the world are now covered by several DSM products with similar resolution and targeted soil 
properties. Thus, from these products, end-users must carefully select the one that will best meet their needs. The 
aim of this study was to evaluate three DSM products obtained at different scales (global, national and regional) 
over three local territories of increasing area selected in three contrasting regions of France (Alsace, Brittany and 
Languedoc-Roussillon). Three topsoil (5–15 cm) properties were evaluated: clay content, pH in water and soil 
organic carbon content. Evaluations were done at both point and soil mapping unit supports, the latter corre
sponding to quantitative assessment of visual accordance between DSM products and conventional local soil 
maps of acknowledged quality. The ability to predict soil properties well increased from global to national to 
regional DSM products. However, none of the DSM products tested was able to predict satisfactorily at the most 
local (1:25,000) scale. Evaluations of DSM products using local soil maps were generally in accordance with 
those using points. Evaluations using local soil maps also provided additional information about the utility of 
DSM products for small areas with too few soil measurements to perform punctual evaluation and for issues 
concerning areal-support uses of DSM products. These results suggest that when focusing on local areas, users of 
DSM products should evaluate their performance and, if unsatisfactory, invest in development of local DSM.   

1. Introduction 

The concept of soil security (Koch et al., 2013; McBratney et al., 
2014) considers the soil as a vital and central resource in the Earth 
system. Thus, information about soil is of major interest and helps 
address critical worldwide issues such as food security, climate change, 
environmental degradation, water scarcity and threatened biodiversity 
(Sanchez et al., 2009). Since the beginning of this century, digital soil 
mapping (DSM) (McBratney et al., 2003) has been advocated as a 
promising solution to provide, at acceptable cost, soil information 
adapted to users’ needs. DSM is defined as “the creation and population 
of spatial soil information systems by numerical models inferring the 
spatial and temporal variations of soil types and soil properties from soil 
observation and knowledge and from related environmental variables” 

(Lagacherie and McBratney, 2006). In a recent study, Arrouays et al. 
(2021) reviewed how soil mapping and DSM over large areas contribute 
to soil security at scales ranging from national to global. 

Production of soil information using DSM techniques started in the 
1970s (Webster and Burrough, 1974), accelerated in the 1990s (Skid
more et al., 1991; Favrot and Lagacherie, 1993; Moore et al., 1993) and 
has expanded considerably since 2000. In the past decade, a dynamic 
and growing community has developed and shared DSM procedures 
(Malone et al., 2017), which has helped DSM enter a new era of oper
ationalisation. Thus, DSM has left laboratories and is encountering end- 
users’ needs. Due to technological advancements in statistical model
ling, computational capacity and Earth-system descriptors, as well as the 
efforts of many research teams, spatial soil information can now be 
delivered worldwide, whether soil surveys exist or not. The result is a 
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growing collection of DSM products of varying resolution and extent. 
The worldwide GlobalSoilMap programme (Arrouays et al., 2014) 
contributed to this increase in the number of DSM products by providing 
specifications for the horizontal dimension (2D-resolution), vertical 
dimension (6 standard depth intervals down to 200 cm) and uncertainty 
calculations for a set of functional soil properties. GlobalSoilMap’s 
specifications, which were widely adopted for producing digital soil 
maps, were a major step in enhancing soil information, which is now 
available worldwide (Poggio et al., 2021). This information improves 
consideration of the role of soil in the functioning of soil ecosystems and 
dissemination of soil information outside of soil science. Indeed, the 
GlobalSoilMap format corresponds to the specifications of most bio
physical modelling tools and meets the expectations that many end- 
users have of ready-to-use data (Voltz et al., 2020). 

As DSM applications have been developed at multiple scales (Grun
wald, 2009; Minasny and McBratney, 2016; Poggio et al., 2021), many 
areas in the world are now covered by several DSM products with similar 
resolution and identical targeted soil properties. For example, Rossiter 
et al. (2021) inventoried three DSM products for the USA. Similarly, in 
some regions of France, a user of soil information can choose from the 
global DSM product SoilGrids version 2.0 (Poggio et al., 2021), the na
tional GlobalSoilMap product (Mulder et al., 2016) and a regional 
GlobalSoilMap product (Vaysse and Lagacherie (2015) in Languedoc- 
Roussillon; Ellili-Bargaoui et al. (2020b) in Brittany). 

Although they share the same “scorpan” paradigm (McBratney et al., 
2003), the approaches for developing these DSM products differ greatly 
in soil input data, covariates and machine- learning algorithms. This 
logically results in large differences in soil property predictions among 
DSM products. These differences are revealed, for example, by in
consistencies in the global soil organic carbon (SOC) map (FAO and ITS, 
2020) at country borders (e.g. USA-Canada border), as each country 
applied its own DSM approach to map SOC stocks. Rossiter et al. (2021) 
recently provided quantitative assessments of these differences in the 
USA. This study revealed that the DSM products differed greatly in es
timates of soil pH values and uncertainties (provided for POLARIS and 
SoilGrids 2.0), both in range and spatial distribution. Richer-de-Forges 
et al. (in press) performed an evaluation of four DSM products of 
particle-size distribution prediction developed at various scales (Global, 
continental, national, and sub-national) using ca. 3,200 hand-feel soil 
texture data. This study conducted in an area of 550 km2 of Central 
France showed that prediction performance decreased between global 
and sub-national predictions. Consequently, available DSM products are 
expected to map soil properties of a given territory differently. 

From these products, end-users must carefully select the one that will 
best meet their needs. If they do not, errors in these products could 
propagate through the decision process or modelling chain, which could 
degrade study results (Arrouays et al., 2020, Lagacherie et al., 2021). 
End-users are not always aware of the quality of the data they use, 
however, and they need guidelines for evaluating DSM products based 
on assessing the products’ uncertainty. 

GlobalSoilMap specifications include estimates of uncertainty for 
each predicted property at each location and each depth layer (Heuve
link, 2014), which could theoretically serve to assess the quality of 
GlobalSoilMap products. However, these estimates of uncertainty should 
be taken with caution, as recent studies (Lagacherie et al., 2020; Hel
fenstein et al., 2021) showed significant differences between overall 
uncertainties calculated from the modelling procedure and those 
calculated from estimated independent punctual datasets. Moreover, 
end-users usually focus on study areas much smaller than the spatial 
extents of DSM products. Gomez and Coulouma (2018) observed large 
differences in uncertainty among spatial extents for soil properties 
predicted by spectrometry. It is therefore also expected that reduction in 
spatial extent strongly influences uncertainties in soil property pre
dictions of DSM products. 

To estimate uncertainties, DSM model outputs are usually used. An 
alternative method is to perform evaluation using an independent 

validation dataset (Brus et al., 2011; Brus, 2014). However, digital soil 
maps are usually evaluated using point-support comparisons of observed 
vs predicted values of soil properties, which is not satisfactory for two 
main reasons. First, unevenly distributed and non-probabilistic spatial 
sampling, as usually encountered when using legacy data, generate 
biases in uncertainty estimates (Lagacherie et al., 2020; Helfenstein 
et al., 2021). Second, as end-users manage areal (landscape) units rather 
than points (Rossiter et al., 2021), they are usually much more interested 
in uncertainty estimates for areal units, which avoids having to consider 
unmanageable short-range variations in soil properties. 

Comparing DSM products to existing high-quality conventional soil 
surveys can be an alternative to point-support evaluations where such 
information exists. Conventional soil maps are spatially exhaustive, 
which solves the above-mentioned problem with spatial sampling while 
offering many possibilities for spatial aggregation of DSM products. 
Recently, Rossiter et al. (2021) compared DSM products to soil surveys 
visually and quantitatively based on spatial aggregations of both at 
different pixel sizes. Instead of pixels, the elementary information unit of 
a soil map − the soil mapping unit (SMU) − can be used as the 
geographical support for comparing DSM products and soil maps 
(Bishop et al., 2015). Indeed, the SMU represents an optimized areal- 
support that was delineated by the soil surveyor to best represent the 
soil variations occurring at a given scale (that depends on the soil map) 
while filtering the soil variations occurring at more local scales. 
Following this idea, mean values of predicted soil properties from spatial 
aggregations of DSM products at the SMU level can be compared to those 
observed in SMUs. The latter is usually approximated by measuring a 
“representative profile” of the SMU that is carefully selected by the soil 
surveyor. Indeed, Leenhardt et al. (1994) observed that representative 
profiles approximated values of soil properties better at all sites in SMUs 
than randomly-selected soil profiles did. For complex SMUs, the mean 
value of a soil property can be approximated by a weighted mean of the 
values in representative profiles of each soil type unit (STU) in the SMU. 
Where conventional polygonal soil maps exist, comparisons based on 
areal units can be useful to quantify and objectivise visual comparisons 
between DSM products and local soil maps. 

The aim of this study was to evaluate three DSM products obtained at 
different scales (global, national and regional) over three local terri
tories of increasing sizes covered by conventional soil surveys selected 
within three contrasting regions of France: Alsace, Brittany and 
Languedoc-Roussillon. Predictions of three topsoil (5–15 cm) properties 
were evaluated: clay content, pH in water and SOC content. Evaluations 
were performed using both point and SMU supports, the latter corre
sponding to quantitative assessment of visual accordance between DSM 
products and local soil maps. 

2. Materials and methods 

2.1. Study areas 

The three French regions studied (Fig. 1) have different climates, 
reliefs, geology, soils and agricultural contexts. Located in north-eastern 
France, Alsace (8,280 km2) lies on the border with Germany and 
Switzerland. Eastern Alsace belongs to the Rhine Plain and is relatively 
flat, whereas western Alsace is part of the Vosges Mountains and has its 
highest point 1,423 m above sea level. The climate is continental, with 
contrasting temperatures between winter and summer. The cultivated 
areas are located mainly in the sedimentary Rhine Plain, whereas hill
sides are frequently occupied by vineyards, and mountainous areas are 
mainly forested. 

Located in southern France, Languedoc-Roussillon covers 27,236 
km2 on the coast of the Mediterranean Sea. Its relief varies greatly: flat 
and close to sea level on the coast, but rugged in the northwest due to the 
Massif Central Mountains and in the southwest due to the Pyrénées 
Mountains. Its highest elevation is 2,921 m above sea level and is located 
in south-eastern Languedoc-Roussillon. The region lies at geological and 
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climatic crossroads. Limestone plateaus, volcanic/granitic highlands 
and sedimentary plains are the main soil parent materials, and Medi
terranean, temperate oceanic, temperate continental and mountain cli
mates are observed. Consequently, this region has diverse soils and land 
uses. 

Located in extreme western France, Brittany (27,040 km2) is a 
peninsula under oceanic influence. The climate is oceanic, with mean 
annual rainfall ranging from 650 mm in the east to 1300 mm in the west, 
and mild temperatures. Brittany lies within the Armorican Massif. The 
relief is relatively smooth, with a maximum elevation of 382 m above 
sea level, and strongly correlated with the bedrock, which consists 
mainly of shale, sandstone and granite. Loess deposits have influenced 
northern Brittany, allowing for the development of fertile soils. Agri
culture is oriented mainly towards integrated crop-livestock production, 
whereas vegetable field crops occupy the land near the northern coast. 

2.2. Soil properties and layer analyzed 

The values of three soil properties were compared: clay content, pH 
in water and SOC content. The underlying processes that influence 
current values of the 3 soil properties differ depending on the property 
considered. SOC content depends strongly on climate, soil, land use and 
management, whereas clay content is considered an inherent soil 
property. The pH has an intermediate position between SOC and clay 
contents as it is influenced strongly by parent material and partially 
modified by soil and land management. Thus, using these three attri
butes, we expected to cover several trends in variability across and 
within the study areas, as well as different soil-controlling factors that 
may be captured by spatial covariates. 

The layer 5–15 cm, corresponding to the second standard layer 
considered in the GlobalSoilMap specifications (Arrouays et al., 2014) 
was analysed. It represents the best compromise between the possible 
layers considering both the vertical distribution of the studied proper
ties, the fact that the information of the first layers is more reliable 
because based on more abundant data, and the fact that this layer 
frequently concerns only one soil horizon (at least in agricultural soils). 

2.3. Soil data 

2.3.1. Digital soil mapping products 
Digital soil maps produced at global, national and regional extents 

were evaluated: SoilGrids 2.0 (SG2.0), the French GlobalSoilMap 
(GSM_Fr) and regional digital soil maps for Brittany (GSM_Br) and 
Languedoc-Roussillon (GSM_LR). The main characteristics of these dig
ital soil maps varied (Table 1). 

SG2.0 (Poggio et al., 2021) is the second version of a set of soil maps 

produced for the entire globe at medium spatial resolution (250 m pixel 
size) using a machine-learning approach, a quantile random forest al
gorithm trained with ca. 240,000 punctual observations unevenly 
distributed around the world of which 4,087 were located in mainland 
France (Batjes et al., 2019) and 400 global environmental covariates. 
This modelling procedure yields maps of values of physical and chemical 
soil properties, and their associated uncertainties, for six standard in
terval depths. Data were downloaded from https://soilgrids.org/, 
powered by ISRIC (last access: 12/20/2021). 

GSM_Fr products (Mulder et al., 2016) were calculated at 90 m 
spatial resolution and for the six standard depth intervals. Input data 
were punctual field observations (23,822–57,915, depending on the soil 
property for the 5–15 cm depth interval) and 20 covariates for prevailing 
climate regimes and meteorological data, vegetation, topography, ge
ology, soils and land management. The 90 % confidence intervals were 
estimated to provide uncertainties. 

GSM_LR products were calculated at 90 m resolution for the six 
standard depth intervals from a set of 2,024 legacy soil profiles associ
ated with a set of 16 covariates freely available (at least at the national 
level), using a quantile random forest algorithm (Vaysse and Lagacherie, 
2017) that also provided local uncertainty estimates. 

GSM_Br products are available for the six standard depth intervals at 
50 m spatial resolution. A two-step procedure was applied. The existing 
1:250,000 soil map (was first disaggregated using the DSMART algo
rithm (Odgers et al., 2014) and soil-landscape relationships (Vincent 
et al., 2018, Ellili-Bargaoui et al., 2020a) to map the three most probable 
STUs. Soil properties of each of the 320 STUs were then estimated for 
standard soil-depth intervals by applying equal-area spline functions to 
each STU. Finally, to map soil properties at the six standard depths, the 
weighted mean of each soil attribute was calculated for each grid cell 
from reference soil-property values of the three most probable predicted 
STUs, using their associated probabilities of occurrence as the weights 
(Ellili-Bargaoui et al., 2020b). 

2.3.2. Reference data 

2.3.2.1. Soil maps. The reference soil maps compared to DSM products 
were selected according to two criteria: i) built by experienced local soil 
surveyors who followed conventional pedological approaches (Jamagne 
et al., 1967) and ii) available in a digital format. For each of the three 
regions studied, three soil maps were selected to explore three scales  – 
1:250,000, 1:50,000 to 1:100,000 and 1:25,000 – focusing on study 
areas of decreasing size (Fig. 2, Table 2). 

Regional (1:250,000) soil maps covered the three regions entirely. 

Fig. 1. Locations of the three regions studied in France.  

Table 1 
Characteristics of the four digital soil mapping products compared.  

Characteristic SoilGrids 
2.0 

GSM France GSM 
Brittany 

GSM 
Languedoc- 
Roussillon 

Spatial extent Global France Brittany 
region 

Languedoc- 
Roussillon 
region 

Spatial resolution 
(m) 

250 90 50 90 

Density of 
punctual 
observations 
(km2 per 
observation) 

617 (134 
for France) 

16–19* 36 13.5 

Algorithm Quantile 
random 
forest 

Cubist 
regression 
tree 

DSMART Quantile 
random forest 

Reference Poggio 
et al. 
(2021) 

Mulder 
et al. (2016) 

Ellili- 
Bargaoui 
et al. 
(2020b) 

Vaysse and 
Lagacherie 
(2017)  

* depending on the soil property predicted. 
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They followed specifications of the French National Soil Survey (INRAE 
InfoSol, 2014), and their soil databases were built following the national 
format DoneSol (INRAE InfoSol, 2021), which ensured that the data
bases for each French region had the same structure. Soil information is 
spatially represented in polygons with crisp boundaries. SMUs group 
together one or usually several polygons and are defined as areas with 
homogeneous soil-forming factors, such as morphology, geology and 
climate. SMUs are complex, as each contains known proportions of 
several STUs, which are described in the semantical DoneSol database 
by a set of soil layers that represent vertical variation in the soil (Laroche 
et al., 2014). 

Intermediate-scale soil maps covered part of each region (Richer-de- 
Forges et al., 2014). In Languedoc-Roussillon, the 1:100,000 pedological 
map of Lodève (Bonfils, 1993) covers 8 % of the region. In Alsace, the 
1:50,000 soil map of the “Rhin-Vignoble-Grand Ballon” territory (Sauter 
J., pers. comm.) covers 7 % of the region. In Brittany, the 1:100,000 soil 
map of Janzé (Rivière et al., 2011) covers 8 % of the region. 

In each region, a local and detailed (1:25,000) polygonal soil map 
was chosen, nested within the intermediate-scale maps: the Peyne soil 
map in Languedoc-Roussillon (Coulouma et al., 2008), the vineyard area 
of the “Rhin-Vignoble-Grand Ballon” territory in Alsace (Sauter J., pers. 
comm.) and the Pipriac soil map in Brittany (Rivière et al., 1984). The 
SMUs of intermediate-scale and detailed maps were simple, meaning 
that only one STU was described in each SMU and polygon, even if in 
reality they may have inclusions of others STUs that were not recorded. 

2.3.2.2. Punctual measurements. Punctual measurements of soil prop
erties of interest for this study were available for the three regions. For 
Languedoc-Roussillon and Alsace, legacy datasets of punctual 

measurements (1,696 and 346, respectively), collected in the past few 
decades to improve pedological knowledge and map soil at multiple 
scales, were used. For Brittany, an independent evaluation dataset of 
135 punctual measurements sampled according to a probabilistic sam
pling procedure (Ellili Bargaoui et al., 2019) was used. 

2.4. Data processing 

To make comparison of digital soil maps and reference data feasible, 
the following pre-processing procedures were applied to the datasets, if 
necessary:  

• Data cleaning to discard cells with no value in gridded maps  
• Standardizing units for the three soil properties in all databases  
• Assigning a unique Coordinate Reference System (CRS) to all vectors 

and rasters: WGS84 – EPSG (European Petroleum Survey Group) 
code: 4326  

• Adjusting the spatial extents of soil maps using regional masks to 
ensure compatible extents 

To process data to compare DSM products to the reference datasets, 
the first step (pre-processing) consisted of extracting information about 
soil properties from the punctual and polygonal databases (Fig. 3). Soil 
profiles were vertically divided into pedological horizons, each of which 
had values for clay content, pH and SOC content. Horizons overlapped 
the 5–15 depth interval were selected, and weighted means of soil 
properties were calculated using the proportion of each layer’s thickness 
in the target depth interval as the weights. The same procedure was 
applied to the layers of STUs for intermediate-scale and detailed maps, 

Fig. 2. Spatial extent of reference polygonal soil maps and profile data used to evaluate the digital soil mapping products in the Languedoc-Roussillon (A), Alsace (B) 
and Brittany (C) regions of France. In Brittany, punctual information are independent from all DSM products. 

Table 2 
Main characteristics of the three scales of reference soil maps used for the three regions studied: Languedoc-Roussillon (LR), Alsace (Al) and Brittany (Br).  

Scale 1:250,000 1:100,000 – 1:50,000 1:25,000 

Region LR Al Br LR Al Br LR Al Br 

Area (km2) 27,156 8,329 27,376 1,761 554 2,156 49 42 540 
No. of SMUs 396 82 341 – – – – – – 
No. of STUs 732 377 320 159 41 72 29 42 75 
No. of polygons 3,996 3,471 2,043 3,126 882 4,226 325 251 4114 
Mean area (ha) 680 240 1,340 73 63 51 15 17 13 
SD area (ha) 1,598 1,177 3,031 171 286 554 26 28 25 

SMU: Soil map unit; STU: Soil type unit; SD: Standard deviation. 
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with values extracted from the representative profiles of the STU. For 
complex SMUs of regional polygonal soil maps, weighted means of clay 
content, pH and SOC content were calculated for each STU as before, 
and then an additional calculation yielded horizontally weighted means, 
using the probability of occurrence of each STU in each SMU as the 
weight (Vincent et al., 2018). 

The comparisons were performed using both point and areal sup
ports. Point-support comparisons consisted of quantitatively comparing 
global and national DSM products to punctual soil measurements. To 
this end, values of SG2.0 and GSM_Fr were extracted for each profile 
location. As regional DSM products could not be compared to the 
punctual soil measurements that had been used as inputs to develop the 
products, different strategies were applied. For GSM_LR, results of cross- 
validation from a previous evaluation (Vaysse and Lagacherie, 2017) 
were considered. For GSM_Br, we used the independent set of 135 
punctual measurements. 

Areal-support comparisons consisted of comparing, for each map 
polygon, zonal means of a soil property derived from the DSM products 
to the estimated value of the property given by the map following the 
procedure described previously. For each region, areal-support com
parisons were performed for the three soil-map scales considered. Data 
pre-processing and processing were performed using QGIS 3.12 software 
(QGIS Development Team, 2018), along with the Python (Van Rossum 
and Drake, 2009) and R 3.6.2 (R Core Team, 2019) languages. 

2.5. Statistical indicators for quantitative comparison 

For quantitative comparison, the similarity between datasets was 
assessed using several statistical indicators: the slope (SL), intercept and 
correlation coefficient of the linear regression between observed and 
predicted soil properties. In addition, the mean error (ME, Eq. (1)) was 
used to identify potential bias, and the root mean squared error (RMSE, 
Eq. (2)) measured the difference between values of two datasets. Two 
indicators of the overall quality of adjustment were calculated: the mean 
squared error skill score (SSmse, Eq. (3)), which represents the amount of 
variance explained by the prediction (Wilks, 2011; Nussbaum et al., 
2018), and Lin’s concordance correlation coefficient (LCCC, Eq, 4). 

ME =
1
n
∑n

i=1
(ŷi − yi) (1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷi − yi)

2

√

(2)  

SSmse = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1

(
yi − 1

n

∑n
i=1yi

)2 (3)  

LCCC =
2ρσŷ σy

σ2
ŷ
+ σ2

y + (ŷ − y)2 (4)  

where n is the number of soil samples, yi the observed values, ŷi the 
predicted values, ŷ and y the means of the predicted and observed 
values, respectively, σ2 their variance and ρ the correlation between 
predicted and observed values. 

For brevity, only the indicators that illustrated the largest difference 
between the DSM products tested are presented: ME, RMSE, LCCC and 
SSmse for point-support comparisons, and LCCC and SL for areal-support 
comparisons. Statistical indicators were calculated using R software 
3.6.2 (R Core Team, 2019). 

2.6. Objectivizing visual comparisons of the spatial distribution of soil 
properties’ values 

To supplement the punctual evaluation, DSM products were also 
evaluated by visual assessment of the similarity of the spatial organi
zation of DSM products values aggregated to the map unit polygons to 
that of high-quality soil maps used as references. Thus DSM products 
aggregated to the polygons of the reference maps were compared to 
values given by the reference maps in order to evaluate if the spatial 
patterns highlighted with the reference maps are reproduced by the 
aggregated DSM products or not. To strengthen and objectivise the vi
sual comparison, a quantitative and reproducible decision rule was 
established to allow us to determine whether the soil geography struc
ture of a DSM product were similar to those of the reference map or not. 

Fig. 3. Workflow for evaluating the accordance between digital soil mapping (DSM) products and legacy soil profiles or conventional soil maps.  
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The decision rule consists in the combination of the two statistical in
dicators used for areal-support comparison, associated with thresholds 
defined through trial-and-error: 

• LCCC related to the ability of DSM products to reproduce the poly
gon’s representative value observed from the conventional soil maps, 
with a threshold of 0.25 set;  

• SL represented the range of DSM products’ values averaged by 
polygons to the reference values from conventional maps, i.e. the 
degree of contrast of DSM products relatively to conventional soil 
maps. A threshold of 0.35 was set. 

3. Results 

3.1. Preliminary results 

Soil properties varied among regions and scales (Table 3). At 
regional level (SG2.0, GSM_Fr, GSM_LR, GSM_Br and 250), Languedoc- 
Roussillon, then Alsace exhibited higher clay contents and pH than 
Brittany. In addition, the clay content and pH values were much less 
scattered in Brittany than in the other regions. Regarding SOC, the 
values were higher in Brittany than in Languedoc-Roussillon and Alsace, 
but a greater dispersion of the data was noted for Languedoc-Roussillon, 
again at regional level. The detailed soil map in Languedoc-Roussillon 
covered an area with higher pH and lower SOC than reported from 
other maps. In Alsace, soils in the area covered by intermediate and 
detailed soil maps were more clayey and basic and contained less SOC 
than the region as a whole. In Brittany, mean and median values the 
three soil properties from the intermediate-scale map were similar to 
regional values and the detailed-scale map exhibited a slightly higher 
level of clay content. For point values, standard deviations and inter
quartile ranges highlighted a greater dispersion of values for all regions, 
scales and data sources, with the exception of SOC in Brittany and pH in 
Alsace. 

3.2. Evaluation of punctual predictions 

According to statistical indicators of the point-support evaluation, 
for most of the comparisons tested (18 of 24, i.e. 75 %), DSM products 
exhibited only moderate biases in predicting clay content (≤20 g.kg− 1), 
pH (≤0.2) and SOC content (≤10 g.kg− 1) (Table 4). Four exceptions 
were observed for SG2.0, which strongly overestimated clay content in 
Languedoc-Roussillon and Alsace and pH in Languedoc-Roussillon and 
Alsace. One exception was observed for GSM_Fr, which strongly 
underestimated clay content in Brittany and SOC content in Languedoc- 
Roussillon. The regional DSM exhibited no strong biases, regardless of 
the property or region. 

SG2.0 generally had poor prediction performances for most of the 
comparisons tested (SSmse < 0.20 for 7 of 9 comparisons), except for 
predicted pH in Languedoc-Roussillon and Brittany, capturing a small 
but significant part of the variability (SSmse = 0.24 and 0.30, respec
tively) (Table 4). GSM_Fr predicted pH slightly better than SG2.0 in 
Languedoc-Roussillon and Brittany (SSmse = 0.56 and 0.35, respec
tively), while predicting pH well in Alsace (SSmse = 0.38). When tested, 
the regional DSM products (GSM_LR and GSM_Br) outperformed SG2.0 
and GSM_Fr, with a large increase in SSmse and LCCC for all properties 
and regions, except for SSmse for clay content and pH in Brittany. 
However, regional DSM products still predicted clay content poorly 
(SSmse < 0.20), although LCCC for clay content was satisfactory in 
Brittany (LCCC = 0.59). The DSM products predicted the soil properties 
with differing prediction quality: overall, pH was predicted best, fol
lowed by SOC content and then clay content (Table 4). 
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3.3. Comparisons of DSM products to soil maps 

3.3.1. Example of pH in Languedoc-Roussillon 
The decision rule established to objectivise the visual assessment of 

the similarity of the predicted versus conventional soil spatial distribu
tion (section 2.6) is illustrated using the example of pH in Languedoc- 
Roussillon, which had the greatest range of performances among DSM 
products (Table 4). Using this decision rule, the ability of DSM products 
to reproduce soil pH patterns of reference maps in Languedoc-Roussillon 
(Fig. 4) was classified as follows: 

o SG2.0 compared to 1:250,000 and 1:100,000 maps: partial repro
duction of polygons’ representative values (LCCC > 0.25) but low 
contrast (SL < 0.35) 

o GSM_Fr compared to 1:250,000 and 1:100,000 maps: partial repro
duction of polygons’ representative values (LCCC > 0.25) and 
satisfactory contrast (SL > 0.35)  

o SG2.0 and GSM_Fr compared to 1:25,000 maps: no reproduction of 
polygons’ representative values (LCCC < 0.25) and low contrast (SL 
< 0.35)  

o GSM_LR compared to 1:250,000 and 1:100,000 maps: partial 
reproduction of polygons’ representative values (LCCC > 0.25) and 
satisfactory contrast (SL > 0.35) 

o GSM_LR compared to the 1:25,000 map: no reproduction of poly
gons’ representative values (LCCC < 0.25) and low contrast (SL <
0.35) 

3.3.2. Evaluation of soil pattern accordance 
We applied the decision rule to all 72 comparisons of the experiments 

(i.e. 3 properties × 3 regions × 3 soil reference maps of various scales ×
2 products (SG2.0 and GSM_Fr) + 3 properties × 2 regions × 3 scales × 1 
product (GSM_LR or GSM_Br)). 

For most comparisons (49 of 72, i.e. 68 %), soil patterns of the GSM 
products were not in accordance with those in regional, intermediate- 
scale or detailed soil maps (LCCC < 0.25) (Table 5). Conversely, a few 
comparisons (13 of 72, i.e. 18 %) were in partial accordance with soil 
patterns in soil maps, with satisfactory contrast (SL > 0.35). For the 
remaining comparisons (14 %), the DSM products represented some of 
the soil patterns in soil maps (LCC > 0.25), but with low contrast (SL <
0.35) (i.e. variability underestimated). 

Where they were tested, regional DSM products always out
performed national and global products, regardless of the region or soil 
property. DSM products did not reproduce reference values of all soil 
properties equally well. Patterns of pH were clearly reproduced better - 
only 12 of 24 (50 %) disagreements - than those of clay – 19 of 24 (79 %) 
disagreements and SOC contents – 18 of 24 (75 %) disagreements. 

The ability of DSM products to represent soil patterns of reference 
maps decreased as the scale at which soil surveyors had delineated them 
increased (Fig. 5). In addition, there was a clear hierarchy among DSM 
products: GSM_Fr outperformed SG2.0, and regional DSM products 
outperformed national DSM products. 

3.3.3. Relations between punctual evaluation and comparison of soil 
patterns 

Results of punctual evaluations of the DSM products at the regional 
scale (Table 4) were related to those of evaluations of the ability of DSM 
products to reproduce soil variations given by reference maps (Table 5), 
based on the thresholds used to classify the comparisons. DSM products 
that failed to predict soil variations in accordance with soil maps (LCCC 
< 0.25) also failed to predict soil properties at punctual sites (SSmse <

0.20). Conversely, all DSM products that captured some variability in a 
soil property at punctual sites (SSmse ≥ 0.20) also predicted regional soil 
patterns in accordance with regional soil maps. Interestingly, eight DSM 
products that were in accordance with soil maps did not predict punc
tual sites well. 

4. Discussion 

4.1. Need for local evaluation of DSM products 

The uncertainty in punctual evaluations of DSM products performed 
for three contrasting regions of France (Table 4) were higher than those 
obtained by the authors of the DSM products tested (Table 6), except for 
the pH map of GlobalSoilMap France in Languedoc-Roussillon. Other 
researchers observed this result with the previous version of SoilGrids 
(Hengl et al., 2017), such as Tifafi et al. (2018), Song et al. (2020) and 
Dharumarajan et al. (2021). This result may be due to the size of area 
studied, which biases the percentage of variance explained, as a larger 
area contains more contrasting situations. Thus, when a DSM product is 
used for spatial extents that differ from that for which it was created, it 
should be re-evaluated with local references. 

4.2. Possible biases due to legacy data 

The legacy soil data used in this study consisted of point data and 
soil-property maps, which themselves were based on measured point 
values. However, this information was acquired over a few decades. 
While clay content can be assumed not to vary over this period, pH or 
SOC content may do so, depending mainly on soil use and management. 
Thus, the probable change in these two properties may have introduced 
bias when evaluating the DSM products. This change influenced mainly 
Brittany, where the difference in date between the legacy data used to 

Table 4 
Quantitative indicators of comparison between observed punctual values and predicted values from global (SG2.0), national (GSM_Fr) and regional (GSM_LR for 
Languedoc-Roussillon and GSM_Br for Brittany) digital soil mapping products for clay content, pH in water and soil organic carbon content for the 5–15 cm depth 
interval. Results for GSM_LR came from Vaysse and Lagacherie (2017).    

Languedoc-Roussillon Alsace Brittany 

Property Indicator SG2.0 GSM_Fr GSM_LR SG2.0 GSM_Fr SG2.0 GSM_Fr GSM_Br 

Clay content (g.kg− 1) ME 53.7 − 13.3 − 14 58.8 − 8.3 20 − 30.6 − 3.6  
RMSE 118.4 98.7 96 124.7 105.6 76.8 82.7 77.6  
SSmse − 0.25 0.13 0.17 − 0.29 0.08 0.16 0.03 0.14  
LCCC 0.1 0.26 / 0.07 0.27 0.29 0.17 0.59 

pH in water ME 0.3 0.2 0.1 0.12 0.03 0.6 − 0.1 − 0.2  
RMSE 1.2 1 0.82 1.6 0.9 0.8 0.8 0.8  
SSmse 0.24 0.56 0.67 − 1.06 0.38 0.3 0.35 0.32  
LCCC 0.46 0.74 / 0.12 0.62 0.32 0.46 0.64 

Soil organic carbon content (g.kg− 1) ME − 7.5 − 19.5 − 9 6 − 1.5 1.2 − 6 0.5  
RMSE 78.8 82 41 23.6 22.5 24.6 26.9 23.1  
SSmse 0.13 0.06 0.26 − 0.05 0.04 0.16 − 0.01 0.26  
LCCC 0.14 0.1 / 0.24 0.19 0.21 0.05 0.47 

/: not provided by Vaysse and Lagacherie (2017). 
ME: Mean error; RMSE: Root mean squared error; SSme: Mean squared error skill score; LCCC: Lin’s concordance correlation coefficient. 
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create the DSM products and the independent dataset used in this study 
was large. We estimate that this bias is weak, however, because the 
magnitude of change is smaller over time than over space, and spatial 
structures with contrasting values are conserved over time, as verified 

for pH in France using the national soil test database (Saby et al., 2017). 
For Languedoc-Roussillon and Alsace, we estimate that the bias of 

legacy data is weak because the point data used for the evaluation were 
also included in the datasets used to calibrate the national DSM model 

Fig. 4. Visual comparisons of soil spatial distributions and indicators of accordance for the example of pH in Languedoc-Roussillon from reference maps and tested 
digital soil mapping products at three scales: (left column) regional; (middle column) intermediate; and (right column) detailed. Units of geographic coordinates are 
kilometres. LCCC: Lin’s concordance correlation coefficient; R2: Correlation coefficient of the linear regression; SL: Slope of the linear regression; ME: Mean error. 
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and that for Languedoc-Roussillon. However, this raises another issue: 
this approach may have overestimated the prediction quality when 
comparing DSM products to these punctual measurements. However, 
this influenced only comparisons of the regional DSM product of 

Languedoc-Roussillon, as regional datasets of soil measurements rep
resented too little of all input datasets of the national GSM product to 
influence its uncertainty assessment significantly. 

4.3. Utility of evaluating DSM products using local soil maps 

In this study, we compared global, national and regional (where 
available) DSM products to local soil maps. Quantitative indicators 
(LCCC and SL) helped determine whether the soil patterns shown by the 
DSM products were consistent with the patterns shown by the soil maps. 
Although visual comparisons have been performed to assess the quality 
of DSM products (Hengl et al., 2017), to our knowledge, until recently, 
no study attempted to objectivise these comparisons using quantitative 
indicators. Rossiter et al. (2021) recently compared DSM products to 

Table 5 
Degree of accordance between digital soil mapping products and reference soil maps across soil properties and scales for the French regions of Languedoc-Roussillon 
(LR), Brittany (Br) and Alsace (Al). Lin’s concordance correlation coefficient (LCCC) assesses reproduction of polygons’ representative values given by the reference 
maps, and the slope of the linear regression (SL) assesses the degree to which the range of soil variability is similar. Colours indicate whether LCCC or SL lies above 
(green) or below (pink) the satisfactory threshold (0.25 and 0.35, respectively). Grey: not compared.  

GSM_Reg: regional DSM products. 

Fig. 5. Overall percentages of global (SG2.0), national (GSM_Fr), regional (GSM_Reg) and overall digital soil mapping products not in accordance with soil patterns 
of soil maps across scales (Lin’s concordance correlation coefficient < 0.25). 

Table 6 
Proportion of variance of predicted soil properties explained in articles on 
SoilGrids version 2 (Poggio et al., 2021) and GlobalSoilMap for France (Mulder 
et al., 2016).  

Property (5–15 cm) SoilGrids GlobalSoilMap France 

Clay content  0.42  0.30 
pH in water  0.68  0.48 
Soil organic carbon content  0.39  0.20  
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conventional soil maps for square areas using a set of quantitative in
dicators that expressed the similarity/dissimilarity between products 
and characterised their predicted spatial pattern. However, none of 
these indicators was explicitly related to the visual comparisons between 
soil maps and DSM products or evaluations at punctual sites. 

Evaluating DSM products with soil maps using quantitative in
dicators that express the similarity of predicted soil patterns was rele
vant, as good agreement was found with conventional evaluation using 
spatial sets of punctual soil-property measurements (section 3.3.3). 
However, soil maps delineate soil classes, not soil properties. Further
more, it is well known that soil maps have their own uncertainties in 
predicting soil properties (Marsmann and De Gruijter, 1986; Leenhardt 
et al., 1994) and that their model of spatial representation of soil vari
ability (the choropleth map) distorts reality severely (Burrough, 2006). 
Thus, conventional soil maps should not be considered as ground truth 
but rather as another (inevitably distorted) picture of spatial variations, 
with which DSM products should be in partial accordance. This view 
matches well with the low thresholds of LCCC and SL used in this study 
to identify partial accordance between soil maps and DSM products. 

Finally, when available, using existing local soil maps to evaluate 
DSM products considerably increases the possible ways to evaluate DSM 
products. This approach is a solution to the limitation of conventional 
point-support evaluations, which are the worst-case scenario for 
assessing the prediction quality of DSM products (Bishop et al., 2015). In 
this perspective, the LCCC of comparisons with soil maps (Table 5) were 
generally higher than those of comparisons with punctual measure
ments (Table 4). Similarly, some DSM products that did not predict 
punctual sites well still exhibited partial accordance with conventional 
regional soil maps, for example the national GlobalSoilMap for SOC 
content in Languedoc-Roussillon and Alsace. This result could be useful 
to avoid rejecting DSM products for applications that consider areal 
units and thus do not need good punctual estimates but only good rep
resentation of the trends of soil variation over an area. In addition, using 
existing local soil maps as a reference is helpful to evaluate DSM prod
ucts for small areas for which too few profile measurements may exist to 
perform traditional validation, as shown in this study. 

4.4. Performances of DSM products developed at different scales 

Results for the three regions clearly showed that GlobalSoilMap 
France outperformed SoilGrids 2.0 for predicting soil properties and 
showing realistic soil spatial distribution at the regional scale. Likewise, 
regional GSM products, when available, outperformed the national GSM 
product. We thus observed an increase in the quality of DSM products, as 
they were developed at a more local scale. These results are consistent 
with those of Richer-de-Forges et al. (in press) who pointed out that the 
predictions of texture classes deriving from the regional model were the 
closest to the manually assessed soil texture classes, followed by Glob
alSoilMap France and then SoilGrids 2.0. However these results do not 
agree with those of Rossiter et al. (2021), who observed no increase in 
quality from SoilGrids 2.0 (global scale) to the national GSM product for 
the USA. As there is no evidence that SoilGrids 2.0 used significantly 
more profiles from the USA than from France (see Poggio et al. (2021), 
Figs. 3 and 4), these differences could be explained by differences in the 
geographical supports considered in the present study and those of 
Rossiter et al. (2021) when comparing DSM products to soil maps. Dif
ferences in complexities of soil patterns between France and the USA 
may also have an influence. As Minasny et al. (2010) highlight, main
land France has one of the highest diversity of soil types in Europe and 
the rest of the world. 

Finally, the comparison to local soil patterns in soil maps revealed 
that none of these DSM products was relevant for use at local extent 
despite an apparent high resolution that might suggest the opposite to 
end-users. Indeed, confusion between spatial resolution and accuracy is 
frequent, and accompanying predicted values with confidence intervals 
or, even better, probability function distributions, helps to clarify the 

concepts. These results for comparison of local soil patterns provided by 
DSM products to local soil maps agree with those of Rossiter et al. 
(2021). DSM techniques therefore need to be applied to small extents 
(“local DSM”) to satisfy users’ needs at a local scale (Arrouays et al., 
2017). Doing so would require great effort to populate DSM models with 
soil data and relevant environmental covariates over such small extents, 
so that the models are able to capture local and usually small variations. 

In the future, such results will need to be complemented by com
parisons of uncertainty assessments provided by the DSM products that 
will constitute an important output for the end users. 

4.5. Drivers of GSM product performances 

Despite sharing a common methodological framework, the perfor
mances of DSM products differed greatly across properties, regions, 
scales of development and scales of application. Some possible causes of 
these differences include the following:  

• Targeted soil property: pH was generally predicted better than clay 
or SOC contents. This result agreed with the global and national 
evaluations provided by the authors of the DSM products (Table 6). 
This is also consistent with the results of a review of 244 broad-scale 
DSM studies published between 2003 and 2021, where pH was found 
to be the best predicted property among the 12 mandatory soil 
properties for GlobalSoilMap (Chen et al., 2022). Indeed, the spatial 
variations in pH seems to be influenced more by drivers acting over 
long distances, such as lithology, which are more likely to be 
captured by calibration datasets of low spatial density, whereas 
spatial distributions of clay and SOC contents seem to be influenced 
more by drivers acting over short distances, such as local topography 
and agricultural practices. However, pH may have been predicted 
relatively poorly in Brittany because it usually varies little there, as 
most of its soils are acidic due to the bedrock, except on the northern 
coast, due to the presence of decarbonated Aeolian silts, which are 
parent materials of local marine origin, and the influence of 
amendments, particularly on vegetable field crops sensitive to acid
ity. Therefore, our results for Brittany should not be interpreted as 
revealing poor predictions.  

• Spatial density of the calibration dataset: The model for SoilGrids 
2.0 was calibrated with a less dense dataset (1 profile/600 km2 

globally and 1 profile /134 km2 for mainland France) than that for 
GSM France (1 profile/15–19 km2). Many recent studies have 
demonstrated the large impact of this spatial density on the perfor
mances of DSM models (Somarathna et al., 2017; Wadoux et al., 
2019; Lagacherie et al., 2020; Loiseau et al., 2021). This lower 
density of calibration datasets may partly explain the lower perfor
mance. Thus, collecting additional soil data to densify calibration 
datasets is a key issue for improving DSM applications, especially if 
the goal is to capture local soil variations.  

• The scale of development of the DSM product: Calibrating models 
over areas larger than those at which they are subsequently analyzed 
generates distortions in the modelled soil-landscape rules, which 
become visible when comparing predicted soil patterns. For 
example, in pH maps of Alsace, local soil spatial structures that result 
from soil-landscape relationships that are specific to a mapped area, 
such as the presence of a narrow zone of a basic fluviosol in the Rhine 
Valley (Fig. 6, blue ellipse), were not predicted by DSM products 
calibrated with datasets that cover larger extents. This occurs more 
frequently as the extent increases (global instead of national), as 
shown by a zone of neutral pH, which GlobalSoilMap France predicts 
well, but SoilGrids 2.0 does not (Fig. 6, black ellipse). The opposite 
can also occur; for example, SoilGrids 2.0 and GlobalSoilMap France 
clearly delineated an acidic area that does not correspond to any soil 
pattern recognised at the regional level (Fig. 6, red ellipse). This area, 
which corresponds to a forest, strongly influenced predictions of 
SoilGrids 2.0 and GlobalSoilMap France. A soil-landscape 
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relationship that was calibrated from soil profiles located outside of 
the area could have inferred a false soil pattern. Global models may 
not necessarily consider local variations because the variety of pro
cesses and soil-covariate relationships is too wide to model local 
features. More generally, the relative importance of covariates may 
depend on the size of the area of interest, because covariates repre
sent the various factors controlling soil processes and these factors 
depend on the scale at which these processes occur. For example, the 
predominant effect of climate on SOC content is clear at the global 
scale, whereas SOC content may be driven more by land use and 
agricultural practices at more local scales. 

5. Conclusions 

This study evaluated DSM products obtained at global, national and 
regional levels over three French regions, at regional, intermediate and 
detailed scales. Topsoil values of pH in water, clay content and SOC 
content were evaluated for both point and SMU supports. The main 
lessons from these multiscale evaluations are the following:  

• Users should evaluate DSM products themselves as soon as they focus 
on a study area much smaller than the initial area covered by the 
DSM products.  

• Comparing DSM products to existing soil maps could greatly increase 
the potential of DSM product evaluations for small areas with too few 
soil measurements and for the consideration of areal-support uses of 
DSM products.  

• Users should select a DSM product whose coverage by the calibration 
soil dataset and covariates best match those of their target study 
area. In our study, regional DSM products outperformed the national 
product, which outperformed the global product.  

• None of the DSM products tested provided satisfactory predictions at 
a local scale. This raises the need to develop local DSM products to 
provide tools to improve local soil management. 
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